]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc/64s/hash: Add a SLB preload cache
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
06bb53b3 45#include <linux/pkeys.h>
fb2d9505 46#include <linux/seq_buf.h>
14cf11af
PM
47
48#include <asm/pgtable.h>
14cf11af
PM
49#include <asm/io.h>
50#include <asm/processor.h>
51#include <asm/mmu.h>
52#include <asm/prom.h>
76032de8 53#include <asm/machdep.h>
c6622f63 54#include <asm/time.h>
ae3a197e 55#include <asm/runlatch.h>
a7f31841 56#include <asm/syscalls.h>
ae3a197e 57#include <asm/switch_to.h>
fb09692e 58#include <asm/tm.h>
ae3a197e 59#include <asm/debug.h>
06d67d54
PM
60#ifdef CONFIG_PPC64
61#include <asm/firmware.h>
c2e480ba 62#include <asm/hw_irq.h>
06d67d54 63#endif
7cedd601 64#include <asm/code-patching.h>
7f92bc56 65#include <asm/exec.h>
5d31a96e 66#include <asm/livepatch.h>
b92a226e 67#include <asm/cpu_has_feature.h>
0545d543 68#include <asm/asm-prototypes.h>
c9386bfd 69#include <asm/stacktrace.h>
5d31a96e 70
d6a61bfc
LM
71#include <linux/kprobes.h>
72#include <linux/kdebug.h>
14cf11af 73
8b3c34cf
MN
74/* Transactional Memory debug */
75#ifdef TM_DEBUG_SW
76#define TM_DEBUG(x...) printk(KERN_INFO x)
77#else
78#define TM_DEBUG(x...) do { } while(0)
79#endif
80
14cf11af
PM
81extern unsigned long _get_SP(void);
82
d31626f7 83#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
84/*
85 * Are we running in "Suspend disabled" mode? If so we have to block any
86 * sigreturn that would get us into suspended state, and we also warn in some
87 * other paths that we should never reach with suspend disabled.
88 */
89bool tm_suspend_disabled __ro_after_init = false;
90
b86fd2bd 91static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
92{
93 /*
94 * If we are saving the current thread's registers, and the
95 * thread is in a transactional state, set the TIF_RESTORE_TM
96 * bit so that we know to restore the registers before
97 * returning to userspace.
98 */
99 if (tsk == current && tsk->thread.regs &&
100 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
103 set_thread_flag(TIF_RESTORE_TM);
104 }
d31626f7 105}
dc16b553 106
a7771176
CB
107static bool tm_active_with_fp(struct task_struct *tsk)
108{
5c784c84 109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
110 (tsk->thread.ckpt_regs.msr & MSR_FP);
111}
112
113static bool tm_active_with_altivec(struct task_struct *tsk)
114{
5c784c84 115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
116 (tsk->thread.ckpt_regs.msr & MSR_VEC);
117}
d31626f7 118#else
b86fd2bd 119static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
120static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
122#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123
3eb5d588
AB
124bool strict_msr_control;
125EXPORT_SYMBOL(strict_msr_control);
126
127static int __init enable_strict_msr_control(char *str)
128{
129 strict_msr_control = true;
130 pr_info("Enabling strict facility control\n");
131
132 return 0;
133}
134early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135
3cee070a 136unsigned long msr_check_and_set(unsigned long bits)
98da581e 137{
a0e72cf1
AB
138 unsigned long oldmsr = mfmsr();
139 unsigned long newmsr;
98da581e 140
a0e72cf1 141 newmsr = oldmsr | bits;
98da581e 142
98da581e 143#ifdef CONFIG_VSX
a0e72cf1 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
145 newmsr |= MSR_VSX;
146#endif
a0e72cf1 147
98da581e
AB
148 if (oldmsr != newmsr)
149 mtmsr_isync(newmsr);
3cee070a
CB
150
151 return newmsr;
a0e72cf1 152}
d1c72112 153EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 154
3eb5d588 155void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
156{
157 unsigned long oldmsr = mfmsr();
158 unsigned long newmsr;
159
160 newmsr = oldmsr & ~bits;
161
162#ifdef CONFIG_VSX
163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164 newmsr &= ~MSR_VSX;
165#endif
166
167 if (oldmsr != newmsr)
168 mtmsr_isync(newmsr);
169}
3eb5d588 170EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
171
172#ifdef CONFIG_PPC_FPU
1cdf039b 173static void __giveup_fpu(struct task_struct *tsk)
8792468d 174{
8eb98037
AB
175 unsigned long msr;
176
8792468d 177 save_fpu(tsk);
8eb98037
AB
178 msr = tsk->thread.regs->msr;
179 msr &= ~MSR_FP;
8792468d
CB
180#ifdef CONFIG_VSX
181 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 182 msr &= ~MSR_VSX;
8792468d 183#endif
8eb98037 184 tsk->thread.regs->msr = msr;
8792468d
CB
185}
186
a0e72cf1
AB
187void giveup_fpu(struct task_struct *tsk)
188{
189 check_if_tm_restore_required(tsk);
190
191 msr_check_and_set(MSR_FP);
98da581e 192 __giveup_fpu(tsk);
a0e72cf1 193 msr_check_and_clear(MSR_FP);
98da581e
AB
194}
195EXPORT_SYMBOL(giveup_fpu);
196
14cf11af
PM
197/*
198 * Make sure the floating-point register state in the
199 * the thread_struct is up to date for task tsk.
200 */
201void flush_fp_to_thread(struct task_struct *tsk)
202{
203 if (tsk->thread.regs) {
204 /*
205 * We need to disable preemption here because if we didn't,
206 * another process could get scheduled after the regs->msr
207 * test but before we have finished saving the FP registers
208 * to the thread_struct. That process could take over the
209 * FPU, and then when we get scheduled again we would store
210 * bogus values for the remaining FP registers.
211 */
212 preempt_disable();
213 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
214 /*
215 * This should only ever be called for current or
216 * for a stopped child process. Since we save away
af1bbc3d 217 * the FP register state on context switch,
14cf11af
PM
218 * there is something wrong if a stopped child appears
219 * to still have its FP state in the CPU registers.
220 */
221 BUG_ON(tsk != current);
b86fd2bd 222 giveup_fpu(tsk);
14cf11af
PM
223 }
224 preempt_enable();
225 }
226}
de56a948 227EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
228
229void enable_kernel_fp(void)
230{
e909fb83
CB
231 unsigned long cpumsr;
232
14cf11af
PM
233 WARN_ON(preemptible());
234
e909fb83 235 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 236
d64d02ce
AB
237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238 check_if_tm_restore_required(current);
e909fb83
CB
239 /*
240 * If a thread has already been reclaimed then the
241 * checkpointed registers are on the CPU but have definitely
242 * been saved by the reclaim code. Don't need to and *cannot*
243 * giveup as this would save to the 'live' structure not the
244 * checkpointed structure.
245 */
5c784c84
BL
246 if (!MSR_TM_ACTIVE(cpumsr) &&
247 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 248 return;
a0e72cf1 249 __giveup_fpu(current);
d64d02ce 250 }
14cf11af
PM
251}
252EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 253
6a303833
BH
254static int restore_fp(struct task_struct *tsk)
255{
a7771176 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
257 load_fp_state(&current->thread.fp_state);
258 current->thread.load_fp++;
259 return 1;
260 }
261 return 0;
262}
263#else
264static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 265#endif /* CONFIG_PPC_FPU */
14cf11af 266
14cf11af 267#ifdef CONFIG_ALTIVEC
70fe3d98
CB
268#define loadvec(thr) ((thr).load_vec)
269
6f515d84
CB
270static void __giveup_altivec(struct task_struct *tsk)
271{
8eb98037
AB
272 unsigned long msr;
273
6f515d84 274 save_altivec(tsk);
8eb98037
AB
275 msr = tsk->thread.regs->msr;
276 msr &= ~MSR_VEC;
6f515d84
CB
277#ifdef CONFIG_VSX
278 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 279 msr &= ~MSR_VSX;
6f515d84 280#endif
8eb98037 281 tsk->thread.regs->msr = msr;
6f515d84
CB
282}
283
98da581e
AB
284void giveup_altivec(struct task_struct *tsk)
285{
98da581e
AB
286 check_if_tm_restore_required(tsk);
287
a0e72cf1 288 msr_check_and_set(MSR_VEC);
98da581e 289 __giveup_altivec(tsk);
a0e72cf1 290 msr_check_and_clear(MSR_VEC);
98da581e
AB
291}
292EXPORT_SYMBOL(giveup_altivec);
293
14cf11af
PM
294void enable_kernel_altivec(void)
295{
e909fb83
CB
296 unsigned long cpumsr;
297
14cf11af
PM
298 WARN_ON(preemptible());
299
e909fb83 300 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 301
d64d02ce
AB
302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 check_if_tm_restore_required(current);
e909fb83
CB
304 /*
305 * If a thread has already been reclaimed then the
306 * checkpointed registers are on the CPU but have definitely
307 * been saved by the reclaim code. Don't need to and *cannot*
308 * giveup as this would save to the 'live' structure not the
309 * checkpointed structure.
310 */
5c784c84
BL
311 if (!MSR_TM_ACTIVE(cpumsr) &&
312 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 313 return;
a0e72cf1 314 __giveup_altivec(current);
d64d02ce 315 }
14cf11af
PM
316}
317EXPORT_SYMBOL(enable_kernel_altivec);
318
319/*
320 * Make sure the VMX/Altivec register state in the
321 * the thread_struct is up to date for task tsk.
322 */
323void flush_altivec_to_thread(struct task_struct *tsk)
324{
325 if (tsk->thread.regs) {
326 preempt_disable();
327 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 328 BUG_ON(tsk != current);
b86fd2bd 329 giveup_altivec(tsk);
14cf11af
PM
330 }
331 preempt_enable();
332 }
333}
de56a948 334EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
335
336static int restore_altivec(struct task_struct *tsk)
337{
dc16b553 338 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
340 load_vr_state(&tsk->thread.vr_state);
341 tsk->thread.used_vr = 1;
342 tsk->thread.load_vec++;
343
344 return 1;
345 }
346 return 0;
347}
348#else
349#define loadvec(thr) 0
350static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
351#endif /* CONFIG_ALTIVEC */
352
ce48b210 353#ifdef CONFIG_VSX
bf6a4d5b 354static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 355{
dc801081
BH
356 unsigned long msr = tsk->thread.regs->msr;
357
358 /*
359 * We should never be ssetting MSR_VSX without also setting
360 * MSR_FP and MSR_VEC
361 */
362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363
364 /* __giveup_fpu will clear MSR_VSX */
365 if (msr & MSR_FP)
a7d623d4 366 __giveup_fpu(tsk);
dc801081 367 if (msr & MSR_VEC)
a7d623d4 368 __giveup_altivec(tsk);
bf6a4d5b
CB
369}
370
371static void giveup_vsx(struct task_struct *tsk)
372{
373 check_if_tm_restore_required(tsk);
374
375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 376 __giveup_vsx(tsk);
a0e72cf1 377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 378}
bf6a4d5b 379
ce48b210
MN
380void enable_kernel_vsx(void)
381{
e909fb83
CB
382 unsigned long cpumsr;
383
ce48b210
MN
384 WARN_ON(preemptible());
385
e909fb83 386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 387
5a69aec9
BH
388 if (current->thread.regs &&
389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 390 check_if_tm_restore_required(current);
e909fb83
CB
391 /*
392 * If a thread has already been reclaimed then the
393 * checkpointed registers are on the CPU but have definitely
394 * been saved by the reclaim code. Don't need to and *cannot*
395 * giveup as this would save to the 'live' structure not the
396 * checkpointed structure.
397 */
5c784c84
BL
398 if (!MSR_TM_ACTIVE(cpumsr) &&
399 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 400 return;
a0e72cf1 401 __giveup_vsx(current);
611b0e5c 402 }
ce48b210
MN
403}
404EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
405
406void flush_vsx_to_thread(struct task_struct *tsk)
407{
408 if (tsk->thread.regs) {
409 preempt_disable();
5a69aec9 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 411 BUG_ON(tsk != current);
ce48b210
MN
412 giveup_vsx(tsk);
413 }
414 preempt_enable();
415 }
416}
de56a948 417EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
418
419static int restore_vsx(struct task_struct *tsk)
420{
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
424 }
425
426 return 0;
427}
428#else
429static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
430#endif /* CONFIG_VSX */
431
14cf11af 432#ifdef CONFIG_SPE
98da581e
AB
433void giveup_spe(struct task_struct *tsk)
434{
98da581e
AB
435 check_if_tm_restore_required(tsk);
436
a0e72cf1 437 msr_check_and_set(MSR_SPE);
98da581e 438 __giveup_spe(tsk);
a0e72cf1 439 msr_check_and_clear(MSR_SPE);
98da581e
AB
440}
441EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
442
443void enable_kernel_spe(void)
444{
445 WARN_ON(preemptible());
446
a0e72cf1 447 msr_check_and_set(MSR_SPE);
611b0e5c 448
d64d02ce
AB
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
a0e72cf1 451 __giveup_spe(current);
d64d02ce 452 }
14cf11af
PM
453}
454EXPORT_SYMBOL(enable_kernel_spe);
455
456void flush_spe_to_thread(struct task_struct *tsk)
457{
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 461 BUG_ON(tsk != current);
685659ee 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 463 giveup_spe(tsk);
14cf11af
PM
464 }
465 preempt_enable();
466 }
467}
14cf11af
PM
468#endif /* CONFIG_SPE */
469
c2085059
AB
470static unsigned long msr_all_available;
471
472static int __init init_msr_all_available(void)
473{
474#ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476#endif
477#ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480#endif
481#ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484#endif
485#ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488#endif
489
490 return 0;
491}
492early_initcall(init_msr_all_available);
493
494void giveup_all(struct task_struct *tsk)
495{
496 unsigned long usermsr;
497
498 if (!tsk->thread.regs)
499 return;
500
501 usermsr = tsk->thread.regs->msr;
502
503 if ((usermsr & msr_all_available) == 0)
504 return;
505
506 msr_check_and_set(msr_all_available);
b0f16b46 507 check_if_tm_restore_required(tsk);
c2085059 508
96c79b6b
BH
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
c2085059
AB
511#ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514#endif
515#ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518#endif
c2085059
AB
519#ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522#endif
523
524 msr_check_and_clear(msr_all_available);
525}
526EXPORT_SYMBOL(giveup_all);
527
70fe3d98
CB
528void restore_math(struct pt_regs *regs)
529{
530 unsigned long msr;
531
5c784c84 532 if (!MSR_TM_ACTIVE(regs->msr) &&
dc16b553 533 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
534 return;
535
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
538
539 /*
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
542 */
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
545
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
548
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
552 }
553
554 msr_check_and_clear(msr_all_available);
555
556 regs->msr = msr;
557}
558
1cdf039b 559static void save_all(struct task_struct *tsk)
de2a20aa
CB
560{
561 unsigned long usermsr;
562
563 if (!tsk->thread.regs)
564 return;
565
566 usermsr = tsk->thread.regs->msr;
567
568 if ((usermsr & msr_all_available) == 0)
569 return;
570
571 msr_check_and_set(msr_all_available);
572
96c79b6b
BH
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
577
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
de2a20aa
CB
580
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
583
584 msr_check_and_clear(msr_all_available);
c76662e8 585 thread_pkey_regs_save(&tsk->thread);
de2a20aa
CB
586}
587
579e633e
AB
588void flush_all_to_thread(struct task_struct *tsk)
589{
590 if (tsk->thread.regs) {
591 preempt_disable();
592 BUG_ON(tsk != current);
de2a20aa 593 save_all(tsk);
579e633e
AB
594
595#ifdef CONFIG_SPE
596 if (tsk->thread.regs->msr & MSR_SPE)
597 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
598#endif
599
600 preempt_enable();
601 }
602}
603EXPORT_SYMBOL(flush_all_to_thread);
604
3bffb652
DK
605#ifdef CONFIG_PPC_ADV_DEBUG_REGS
606void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 607 unsigned long error_code, int breakpt)
3bffb652 608{
47355040 609 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
610 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
611 11, SIGSEGV) == NOTIFY_STOP)
612 return;
613
614 /* Deliver the signal to userspace */
f71dd7dc
EB
615 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
616 (void __user *)address);
3bffb652
DK
617}
618#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 619void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
620 unsigned long error_code)
621{
622 siginfo_t info;
623
41ab5266 624 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
625 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
626 11, SIGSEGV) == NOTIFY_STOP)
627 return;
628
9422de3e 629 if (debugger_break_match(regs))
d6a61bfc
LM
630 return;
631
9422de3e
MN
632 /* Clear the breakpoint */
633 hw_breakpoint_disable();
d6a61bfc
LM
634
635 /* Deliver the signal to userspace */
3eb0f519 636 clear_siginfo(&info);
d6a61bfc
LM
637 info.si_signo = SIGTRAP;
638 info.si_errno = 0;
639 info.si_code = TRAP_HWBKPT;
640 info.si_addr = (void __user *)address;
641 force_sig_info(SIGTRAP, &info, current);
642}
3bffb652 643#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 644
9422de3e 645static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 646
3bffb652
DK
647#ifdef CONFIG_PPC_ADV_DEBUG_REGS
648/*
649 * Set the debug registers back to their default "safe" values.
650 */
651static void set_debug_reg_defaults(struct thread_struct *thread)
652{
51ae8d4a 653 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 654#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 655 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 656#endif
51ae8d4a 657 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 658#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 659 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 660#endif
51ae8d4a 661 thread->debug.dbcr0 = 0;
3bffb652
DK
662#ifdef CONFIG_BOOKE
663 /*
664 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
665 */
51ae8d4a 666 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
667 DBCR1_IAC3US | DBCR1_IAC4US;
668 /*
669 * Force Data Address Compare User/Supervisor bits to be User-only
670 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
671 */
51ae8d4a 672 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 673#else
51ae8d4a 674 thread->debug.dbcr1 = 0;
3bffb652
DK
675#endif
676}
677
f5f97210 678static void prime_debug_regs(struct debug_reg *debug)
3bffb652 679{
6cecf76b
SW
680 /*
681 * We could have inherited MSR_DE from userspace, since
682 * it doesn't get cleared on exception entry. Make sure
683 * MSR_DE is clear before we enable any debug events.
684 */
685 mtmsr(mfmsr() & ~MSR_DE);
686
f5f97210
SW
687 mtspr(SPRN_IAC1, debug->iac1);
688 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 689#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
690 mtspr(SPRN_IAC3, debug->iac3);
691 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 692#endif
f5f97210
SW
693 mtspr(SPRN_DAC1, debug->dac1);
694 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 695#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
696 mtspr(SPRN_DVC1, debug->dvc1);
697 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 698#endif
f5f97210
SW
699 mtspr(SPRN_DBCR0, debug->dbcr0);
700 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 701#ifdef CONFIG_BOOKE
f5f97210 702 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
703#endif
704}
705/*
706 * Unless neither the old or new thread are making use of the
707 * debug registers, set the debug registers from the values
708 * stored in the new thread.
709 */
f5f97210 710void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 711{
51ae8d4a 712 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
713 || (new_debug->dbcr0 & DBCR0_IDM))
714 prime_debug_regs(new_debug);
3bffb652 715}
3743c9b8 716EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 717#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 718#ifndef CONFIG_HAVE_HW_BREAKPOINT
b5ac51d7
CL
719static void set_breakpoint(struct arch_hw_breakpoint *brk)
720{
721 preempt_disable();
722 __set_breakpoint(brk);
723 preempt_enable();
724}
725
3bffb652
DK
726static void set_debug_reg_defaults(struct thread_struct *thread)
727{
9422de3e
MN
728 thread->hw_brk.address = 0;
729 thread->hw_brk.type = 0;
252988cb
NP
730 if (ppc_breakpoint_available())
731 set_breakpoint(&thread->hw_brk);
3bffb652 732}
e0780b72 733#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
734#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
735
172ae2e7 736#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
737static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738{
d6a61bfc 739 mtspr(SPRN_DAC1, dabr);
221c185d
DK
740#ifdef CONFIG_PPC_47x
741 isync();
742#endif
9422de3e
MN
743 return 0;
744}
c6c9eace 745#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
746static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747{
c6c9eace 748 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
749 if (cpu_has_feature(CPU_FTR_DABRX))
750 mtspr(SPRN_DABRX, dabrx);
cab0af98 751 return 0;
14cf11af 752}
4ad8622d
CL
753#elif defined(CONFIG_PPC_8xx)
754static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
755{
756 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
757 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
758 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
759
760 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
761 lctrl1 |= 0xa0000;
762 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
763 lctrl1 |= 0xf0000;
764 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
765 lctrl2 = 0;
766
767 mtspr(SPRN_LCTRL2, 0);
768 mtspr(SPRN_CMPE, addr);
769 mtspr(SPRN_CMPF, addr + 4);
770 mtspr(SPRN_LCTRL1, lctrl1);
771 mtspr(SPRN_LCTRL2, lctrl2);
772
773 return 0;
774}
9422de3e
MN
775#else
776static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
777{
778 return -EINVAL;
779}
780#endif
781
782static inline int set_dabr(struct arch_hw_breakpoint *brk)
783{
784 unsigned long dabr, dabrx;
785
786 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
787 dabrx = ((brk->type >> 3) & 0x7);
788
789 if (ppc_md.set_dabr)
790 return ppc_md.set_dabr(dabr, dabrx);
791
792 return __set_dabr(dabr, dabrx);
793}
794
bf99de36
MN
795static inline int set_dawr(struct arch_hw_breakpoint *brk)
796{
05d694ea 797 unsigned long dawr, dawrx, mrd;
bf99de36
MN
798
799 dawr = brk->address;
800
801 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
802 << (63 - 58); //* read/write bits */
803 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
804 << (63 - 59); //* translate */
805 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
806 >> 3; //* PRIM bits */
05d694ea
MN
807 /* dawr length is stored in field MDR bits 48:53. Matches range in
808 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
809 0b111111=64DW.
810 brk->len is in bytes.
811 This aligns up to double word size, shifts and does the bias.
812 */
813 mrd = ((brk->len + 7) >> 3) - 1;
814 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
815
816 if (ppc_md.set_dawr)
817 return ppc_md.set_dawr(dawr, dawrx);
818 mtspr(SPRN_DAWR, dawr);
819 mtspr(SPRN_DAWRX, dawrx);
820 return 0;
821}
822
21f58507 823void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 824{
69111bac 825 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 826
bf99de36 827 if (cpu_has_feature(CPU_FTR_DAWR))
252988cb 828 // Power8 or later
04c32a51 829 set_dawr(brk);
252988cb
NP
830 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
831 // Power7 or earlier
04c32a51 832 set_dabr(brk);
252988cb
NP
833 else
834 // Shouldn't happen due to higher level checks
835 WARN_ON_ONCE(1);
9422de3e 836}
14cf11af 837
404b27d6
MN
838/* Check if we have DAWR or DABR hardware */
839bool ppc_breakpoint_available(void)
840{
841 if (cpu_has_feature(CPU_FTR_DAWR))
842 return true; /* POWER8 DAWR */
843 if (cpu_has_feature(CPU_FTR_ARCH_207S))
844 return false; /* POWER9 with DAWR disabled */
845 /* DABR: Everything but POWER8 and POWER9 */
846 return true;
847}
848EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
849
9422de3e
MN
850static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
851 struct arch_hw_breakpoint *b)
852{
853 if (a->address != b->address)
854 return false;
855 if (a->type != b->type)
856 return false;
857 if (a->len != b->len)
858 return false;
859 return true;
860}
d31626f7 861
fb09692e 862#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
863
864static inline bool tm_enabled(struct task_struct *tsk)
865{
866 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
867}
868
edd00b83 869static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 870{
7f821fc9
MN
871 /*
872 * Use the current MSR TM suspended bit to track if we have
873 * checkpointed state outstanding.
874 * On signal delivery, we'd normally reclaim the checkpointed
875 * state to obtain stack pointer (see:get_tm_stackpointer()).
876 * This will then directly return to userspace without going
877 * through __switch_to(). However, if the stack frame is bad,
878 * we need to exit this thread which calls __switch_to() which
879 * will again attempt to reclaim the already saved tm state.
880 * Hence we need to check that we've not already reclaimed
881 * this state.
882 * We do this using the current MSR, rather tracking it in
883 * some specific thread_struct bit, as it has the additional
027dfac6 884 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
885 */
886 if (!MSR_TM_SUSPENDED(mfmsr()))
887 return;
888
91381b9c
CB
889 giveup_all(container_of(thr, struct task_struct, thread));
890
eb5c3f1c
CB
891 tm_reclaim(thr, cause);
892
f48e91e8
MN
893 /*
894 * If we are in a transaction and FP is off then we can't have
895 * used FP inside that transaction. Hence the checkpointed
896 * state is the same as the live state. We need to copy the
897 * live state to the checkpointed state so that when the
898 * transaction is restored, the checkpointed state is correct
899 * and the aborted transaction sees the correct state. We use
900 * ckpt_regs.msr here as that's what tm_reclaim will use to
901 * determine if it's going to write the checkpointed state or
902 * not. So either this will write the checkpointed registers,
903 * or reclaim will. Similarly for VMX.
904 */
905 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
906 memcpy(&thr->ckfp_state, &thr->fp_state,
907 sizeof(struct thread_fp_state));
908 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
909 memcpy(&thr->ckvr_state, &thr->vr_state,
910 sizeof(struct thread_vr_state));
d31626f7
PM
911}
912
913void tm_reclaim_current(uint8_t cause)
914{
915 tm_enable();
edd00b83 916 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
917}
918
fb09692e
MN
919static inline void tm_reclaim_task(struct task_struct *tsk)
920{
921 /* We have to work out if we're switching from/to a task that's in the
922 * middle of a transaction.
923 *
924 * In switching we need to maintain a 2nd register state as
925 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
926 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
927 * ckvr_state
fb09692e
MN
928 *
929 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
930 */
931 struct thread_struct *thr = &tsk->thread;
932
933 if (!thr->regs)
934 return;
935
936 if (!MSR_TM_ACTIVE(thr->regs->msr))
937 goto out_and_saveregs;
938
92fb8690
MN
939 WARN_ON(tm_suspend_disabled);
940
fb09692e
MN
941 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
942 "ccr=%lx, msr=%lx, trap=%lx)\n",
943 tsk->pid, thr->regs->nip,
944 thr->regs->ccr, thr->regs->msr,
945 thr->regs->trap);
946
edd00b83 947 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
948
949 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
950 tsk->pid);
951
952out_and_saveregs:
953 /* Always save the regs here, even if a transaction's not active.
954 * This context-switches a thread's TM info SPRs. We do it here to
955 * be consistent with the restore path (in recheckpoint) which
956 * cannot happen later in _switch().
957 */
958 tm_save_sprs(thr);
959}
960
eb5c3f1c 961extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 962
eb5c3f1c 963void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
964{
965 unsigned long flags;
966
5d176f75
CB
967 if (!(thread->regs->msr & MSR_TM))
968 return;
969
e6b8fd02
MN
970 /* We really can't be interrupted here as the TEXASR registers can't
971 * change and later in the trecheckpoint code, we have a userspace R1.
972 * So let's hard disable over this region.
973 */
974 local_irq_save(flags);
975 hard_irq_disable();
976
977 /* The TM SPRs are restored here, so that TEXASR.FS can be set
978 * before the trecheckpoint and no explosion occurs.
979 */
980 tm_restore_sprs(thread);
981
eb5c3f1c 982 __tm_recheckpoint(thread);
e6b8fd02
MN
983
984 local_irq_restore(flags);
985}
986
bc2a9408 987static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 988{
fb09692e
MN
989 if (!cpu_has_feature(CPU_FTR_TM))
990 return;
991
992 /* Recheckpoint the registers of the thread we're about to switch to.
993 *
994 * If the task was using FP, we non-lazily reload both the original and
995 * the speculative FP register states. This is because the kernel
996 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 997 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
998 * need to be restored.
999 */
5d176f75 1000 if (!tm_enabled(new))
fb09692e
MN
1001 return;
1002
e6b8fd02
MN
1003 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1004 tm_restore_sprs(&new->thread);
fb09692e 1005 return;
e6b8fd02 1006 }
fb09692e 1007 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1008 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1009 new->pid, new->thread.regs->msr);
fb09692e 1010
eb5c3f1c 1011 tm_recheckpoint(&new->thread);
fb09692e 1012
dc310669
CB
1013 /*
1014 * The checkpointed state has been restored but the live state has
1015 * not, ensure all the math functionality is turned off to trigger
1016 * restore_math() to reload.
1017 */
1018 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1019
1020 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1021 "(kernel msr 0x%lx)\n",
1022 new->pid, mfmsr());
1023}
1024
dc310669
CB
1025static inline void __switch_to_tm(struct task_struct *prev,
1026 struct task_struct *new)
fb09692e
MN
1027{
1028 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1029 if (tm_enabled(prev) || tm_enabled(new))
1030 tm_enable();
1031
1032 if (tm_enabled(prev)) {
1033 prev->thread.load_tm++;
1034 tm_reclaim_task(prev);
1035 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1036 prev->thread.regs->msr &= ~MSR_TM;
1037 }
1038
dc310669 1039 tm_recheckpoint_new_task(new);
fb09692e
MN
1040 }
1041}
d31626f7
PM
1042
1043/*
1044 * This is called if we are on the way out to userspace and the
1045 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1046 * FP and/or vector state and does so if necessary.
1047 * If userspace is inside a transaction (whether active or
1048 * suspended) and FP/VMX/VSX instructions have ever been enabled
1049 * inside that transaction, then we have to keep them enabled
1050 * and keep the FP/VMX/VSX state loaded while ever the transaction
1051 * continues. The reason is that if we didn't, and subsequently
1052 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1053 * we don't know whether it's the same transaction, and thus we
1054 * don't know which of the checkpointed state and the transactional
1055 * state to use.
1056 */
1057void restore_tm_state(struct pt_regs *regs)
1058{
1059 unsigned long msr_diff;
1060
dc310669
CB
1061 /*
1062 * This is the only moment we should clear TIF_RESTORE_TM as
1063 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1064 * again, anything else could lead to an incorrect ckpt_msr being
1065 * saved and therefore incorrect signal contexts.
1066 */
d31626f7
PM
1067 clear_thread_flag(TIF_RESTORE_TM);
1068 if (!MSR_TM_ACTIVE(regs->msr))
1069 return;
1070
829023df 1071 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1072 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1073
dc16b553
CB
1074 /* Ensure that restore_math() will restore */
1075 if (msr_diff & MSR_FP)
1076 current->thread.load_fp = 1;
39715bf9 1077#ifdef CONFIG_ALTIVEC
dc16b553
CB
1078 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1079 current->thread.load_vec = 1;
1080#endif
70fe3d98
CB
1081 restore_math(regs);
1082
d31626f7
PM
1083 regs->msr |= msr_diff;
1084}
1085
fb09692e
MN
1086#else
1087#define tm_recheckpoint_new_task(new)
dc310669 1088#define __switch_to_tm(prev, new)
fb09692e 1089#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1090
152d523e
AB
1091static inline void save_sprs(struct thread_struct *t)
1092{
1093#ifdef CONFIG_ALTIVEC
01d7c2a2 1094 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1095 t->vrsave = mfspr(SPRN_VRSAVE);
1096#endif
1097#ifdef CONFIG_PPC_BOOK3S_64
1098 if (cpu_has_feature(CPU_FTR_DSCR))
1099 t->dscr = mfspr(SPRN_DSCR);
1100
1101 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1102 t->bescr = mfspr(SPRN_BESCR);
1103 t->ebbhr = mfspr(SPRN_EBBHR);
1104 t->ebbrr = mfspr(SPRN_EBBRR);
1105
1106 t->fscr = mfspr(SPRN_FSCR);
1107
1108 /*
1109 * Note that the TAR is not available for use in the kernel.
1110 * (To provide this, the TAR should be backed up/restored on
1111 * exception entry/exit instead, and be in pt_regs. FIXME,
1112 * this should be in pt_regs anyway (for debug).)
1113 */
1114 t->tar = mfspr(SPRN_TAR);
1115 }
1116#endif
06bb53b3
RP
1117
1118 thread_pkey_regs_save(t);
152d523e
AB
1119}
1120
1121static inline void restore_sprs(struct thread_struct *old_thread,
1122 struct thread_struct *new_thread)
1123{
1124#ifdef CONFIG_ALTIVEC
1125 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1126 old_thread->vrsave != new_thread->vrsave)
1127 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1128#endif
1129#ifdef CONFIG_PPC_BOOK3S_64
1130 if (cpu_has_feature(CPU_FTR_DSCR)) {
1131 u64 dscr = get_paca()->dscr_default;
b57bd2de 1132 if (new_thread->dscr_inherit)
152d523e 1133 dscr = new_thread->dscr;
152d523e
AB
1134
1135 if (old_thread->dscr != dscr)
1136 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1137 }
1138
1139 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1140 if (old_thread->bescr != new_thread->bescr)
1141 mtspr(SPRN_BESCR, new_thread->bescr);
1142 if (old_thread->ebbhr != new_thread->ebbhr)
1143 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1144 if (old_thread->ebbrr != new_thread->ebbrr)
1145 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1146
b57bd2de
MN
1147 if (old_thread->fscr != new_thread->fscr)
1148 mtspr(SPRN_FSCR, new_thread->fscr);
1149
152d523e
AB
1150 if (old_thread->tar != new_thread->tar)
1151 mtspr(SPRN_TAR, new_thread->tar);
1152 }
ec233ede 1153
3449f191 1154 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1155 old_thread->tidr != new_thread->tidr)
1156 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1157#endif
06bb53b3
RP
1158
1159 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1160}
1161
07d2a628
NP
1162#ifdef CONFIG_PPC_BOOK3S_64
1163#define CP_SIZE 128
1164static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1165#endif
1166
14cf11af
PM
1167struct task_struct *__switch_to(struct task_struct *prev,
1168 struct task_struct *new)
1169{
1170 struct thread_struct *new_thread, *old_thread;
14cf11af 1171 struct task_struct *last;
d6bf29b4
PZ
1172#ifdef CONFIG_PPC_BOOK3S_64
1173 struct ppc64_tlb_batch *batch;
1174#endif
14cf11af 1175
152d523e
AB
1176 new_thread = &new->thread;
1177 old_thread = &current->thread;
1178
7ba5fef7
MN
1179 WARN_ON(!irqs_disabled());
1180
4e003747 1181#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1182 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1183 if (batch->active) {
1184 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1185 if (batch->index)
1186 __flush_tlb_pending(batch);
1187 batch->active = 0;
1188 }
4e003747 1189#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1190
f3d885cc
AB
1191#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1192 switch_booke_debug_regs(&new->thread.debug);
1193#else
1194/*
1195 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1196 * schedule DABR
1197 */
1198#ifndef CONFIG_HAVE_HW_BREAKPOINT
1199 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1200 __set_breakpoint(&new->thread.hw_brk);
1201#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1202#endif
1203
1204 /*
1205 * We need to save SPRs before treclaim/trecheckpoint as these will
1206 * change a number of them.
1207 */
1208 save_sprs(&prev->thread);
1209
f3d885cc
AB
1210 /* Save FPU, Altivec, VSX and SPE state */
1211 giveup_all(prev);
1212
dc310669
CB
1213 __switch_to_tm(prev, new);
1214
e4c0fc5f
NP
1215 if (!radix_enabled()) {
1216 /*
1217 * We can't take a PMU exception inside _switch() since there
1218 * is a window where the kernel stack SLB and the kernel stack
1219 * are out of sync. Hard disable here.
1220 */
1221 hard_irq_disable();
1222 }
bc2a9408 1223
20dbe670
AB
1224 /*
1225 * Call restore_sprs() before calling _switch(). If we move it after
1226 * _switch() then we miss out on calling it for new tasks. The reason
1227 * for this is we manually create a stack frame for new tasks that
1228 * directly returns through ret_from_fork() or
1229 * ret_from_kernel_thread(). See copy_thread() for details.
1230 */
f3d885cc
AB
1231 restore_sprs(old_thread, new_thread);
1232
20dbe670
AB
1233 last = _switch(old_thread, new_thread);
1234
4e003747 1235#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1236 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1237 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1238 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1239 batch->active = 1;
1240 }
70fe3d98 1241
07d2a628 1242 if (current_thread_info()->task->thread.regs) {
70fe3d98 1243 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1244
1245 /*
1246 * The copy-paste buffer can only store into foreign real
1247 * addresses, so unprivileged processes can not see the
1248 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1249 * mappings. If the new process has the foreign real address
1250 * mappings, we must issue a cp_abort to clear any state and
1251 * prevent snooping, corruption or a covert channel.
07d2a628 1252 */
2bf1071a 1253 if (current_thread_info()->task->thread.used_vas)
9d2a4d71 1254 asm volatile(PPC_CP_ABORT);
07d2a628 1255 }
4e003747 1256#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1257
14cf11af
PM
1258 return last;
1259}
1260
df13102f 1261#define NR_INSN_TO_PRINT 16
06d67d54 1262
06d67d54
PM
1263static void show_instructions(struct pt_regs *regs)
1264{
1265 int i;
df13102f 1266 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54
PM
1267
1268 printk("Instruction dump:");
1269
df13102f 1270 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1271 int instr;
1272
1273 if (!(i % 8))
2ffd04de 1274 pr_cont("\n");
06d67d54 1275
0de2d820
SW
1276#if !defined(CONFIG_BOOKE)
1277 /* If executing with the IMMU off, adjust pc rather
1278 * than print XXXXXXXX.
1279 */
1280 if (!(regs->msr & MSR_IR))
1281 pc = (unsigned long)phys_to_virt(pc);
1282#endif
1283
00ae36de 1284 if (!__kernel_text_address(pc) ||
3b35bd48 1285 probe_kernel_address((const void *)pc, instr)) {
2ffd04de 1286 pr_cont("XXXXXXXX ");
06d67d54
PM
1287 } else {
1288 if (regs->nip == pc)
2ffd04de 1289 pr_cont("<%08x> ", instr);
06d67d54 1290 else
2ffd04de 1291 pr_cont("%08x ", instr);
06d67d54
PM
1292 }
1293
1294 pc += sizeof(int);
1295 }
1296
2ffd04de 1297 pr_cont("\n");
06d67d54
PM
1298}
1299
88b0fe17
MOA
1300void show_user_instructions(struct pt_regs *regs)
1301{
1302 unsigned long pc;
df13102f 1303 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1304 struct seq_buf s;
1305 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1306
df13102f 1307 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1308
a932ed3b
ME
1309 /*
1310 * Make sure the NIP points at userspace, not kernel text/data or
1311 * elsewhere.
1312 */
df13102f 1313 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
a932ed3b
ME
1314 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1315 current->comm, current->pid);
1316 return;
1317 }
1318
fb2d9505 1319 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1320
fb2d9505
CL
1321 while (n) {
1322 int i;
88b0fe17 1323
fb2d9505 1324 seq_buf_clear(&s);
88b0fe17 1325
fb2d9505
CL
1326 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1327 int instr;
1328
1329 if (probe_kernel_address((const void *)pc, instr)) {
1330 seq_buf_printf(&s, "XXXXXXXX ");
1331 continue;
1332 }
1333 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1334 }
1335
fb2d9505
CL
1336 if (!seq_buf_has_overflowed(&s))
1337 pr_info("%s[%d]: code: %s\n", current->comm,
1338 current->pid, s.buffer);
88b0fe17 1339 }
88b0fe17
MOA
1340}
1341
801c0b2c 1342struct regbit {
06d67d54
PM
1343 unsigned long bit;
1344 const char *name;
801c0b2c
MN
1345};
1346
1347static struct regbit msr_bits[] = {
3bfd0c9c
AB
1348#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1349 {MSR_SF, "SF"},
1350 {MSR_HV, "HV"},
1351#endif
1352 {MSR_VEC, "VEC"},
1353 {MSR_VSX, "VSX"},
1354#ifdef CONFIG_BOOKE
1355 {MSR_CE, "CE"},
1356#endif
06d67d54
PM
1357 {MSR_EE, "EE"},
1358 {MSR_PR, "PR"},
1359 {MSR_FP, "FP"},
1360 {MSR_ME, "ME"},
3bfd0c9c 1361#ifdef CONFIG_BOOKE
1b98326b 1362 {MSR_DE, "DE"},
3bfd0c9c
AB
1363#else
1364 {MSR_SE, "SE"},
1365 {MSR_BE, "BE"},
1366#endif
06d67d54
PM
1367 {MSR_IR, "IR"},
1368 {MSR_DR, "DR"},
3bfd0c9c
AB
1369 {MSR_PMM, "PMM"},
1370#ifndef CONFIG_BOOKE
1371 {MSR_RI, "RI"},
1372 {MSR_LE, "LE"},
1373#endif
06d67d54
PM
1374 {0, NULL}
1375};
1376
801c0b2c 1377static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1378{
801c0b2c 1379 const char *s = "";
06d67d54 1380
06d67d54
PM
1381 for (; bits->bit; ++bits)
1382 if (val & bits->bit) {
db5ba5ae 1383 pr_cont("%s%s", s, bits->name);
801c0b2c 1384 s = sep;
06d67d54 1385 }
801c0b2c
MN
1386}
1387
1388#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1389static struct regbit msr_tm_bits[] = {
1390 {MSR_TS_T, "T"},
1391 {MSR_TS_S, "S"},
1392 {MSR_TM, "E"},
1393 {0, NULL}
1394};
1395
1396static void print_tm_bits(unsigned long val)
1397{
1398/*
1399 * This only prints something if at least one of the TM bit is set.
1400 * Inside the TM[], the output means:
1401 * E: Enabled (bit 32)
1402 * S: Suspended (bit 33)
1403 * T: Transactional (bit 34)
1404 */
1405 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1406 pr_cont(",TM[");
801c0b2c 1407 print_bits(val, msr_tm_bits, "");
db5ba5ae 1408 pr_cont("]");
801c0b2c
MN
1409 }
1410}
1411#else
1412static void print_tm_bits(unsigned long val) {}
1413#endif
1414
1415static void print_msr_bits(unsigned long val)
1416{
db5ba5ae 1417 pr_cont("<");
801c0b2c
MN
1418 print_bits(val, msr_bits, ",");
1419 print_tm_bits(val);
db5ba5ae 1420 pr_cont(">");
06d67d54
PM
1421}
1422
1423#ifdef CONFIG_PPC64
f6f7dde3 1424#define REG "%016lx"
06d67d54
PM
1425#define REGS_PER_LINE 4
1426#define LAST_VOLATILE 13
1427#else
f6f7dde3 1428#define REG "%08lx"
06d67d54
PM
1429#define REGS_PER_LINE 8
1430#define LAST_VOLATILE 12
1431#endif
1432
14cf11af
PM
1433void show_regs(struct pt_regs * regs)
1434{
1435 int i, trap;
1436
a43cb95d
TH
1437 show_regs_print_info(KERN_DEFAULT);
1438
a6036100 1439 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1440 regs->nip, regs->link, regs->ctr);
182dc9c7 1441 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1442 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1443 printk("MSR: "REG" ", regs->msr);
801c0b2c 1444 print_msr_bits(regs->msr);
f6fc73fb 1445 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1446 trap = TRAP(regs);
2271db20 1447 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1448 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1449 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1450#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1451 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1452#else
7dae865f 1453 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1454#endif
1455#ifdef CONFIG_PPC64
3130a7bb 1456 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1457#endif
1458#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1459 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1460 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1461#endif
14cf11af
PM
1462
1463 for (i = 0; i < 32; i++) {
06d67d54 1464 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1465 pr_cont("\nGPR%02d: ", i);
1466 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1467 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1468 break;
1469 }
7dae865f 1470 pr_cont("\n");
14cf11af
PM
1471#ifdef CONFIG_KALLSYMS
1472 /*
1473 * Lookup NIP late so we have the best change of getting the
1474 * above info out without failing
1475 */
058c78f4
BH
1476 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1477 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1478#endif
14cf11af 1479 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1480 if (!user_mode(regs))
1481 show_instructions(regs);
14cf11af
PM
1482}
1483
14cf11af
PM
1484void flush_thread(void)
1485{
e0780b72 1486#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1487 flush_ptrace_hw_breakpoint(current);
e0780b72 1488#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1489 set_debug_reg_defaults(&current->thread);
e0780b72 1490#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1491}
1492
425d3314
NP
1493#ifdef CONFIG_PPC_BOOK3S_64
1494void arch_setup_new_exec(void)
1495{
1496 if (radix_enabled())
1497 return;
1498 hash__setup_new_exec();
1499}
1500#endif
1501
9d2a4d71
SB
1502int set_thread_uses_vas(void)
1503{
1504#ifdef CONFIG_PPC_BOOK3S_64
1505 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1506 return -EINVAL;
1507
1508 current->thread.used_vas = 1;
1509
1510 /*
1511 * Even a process that has no foreign real address mapping can use
1512 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1513 * to clear any pending COPY and prevent a covert channel.
1514 *
1515 * __switch_to() will issue CP_ABORT on future context switches.
1516 */
1517 asm volatile(PPC_CP_ABORT);
1518
1519#endif /* CONFIG_PPC_BOOK3S_64 */
1520 return 0;
1521}
1522
ec233ede 1523#ifdef CONFIG_PPC64
71cc64a8
AS
1524/**
1525 * Assign a TIDR (thread ID) for task @t and set it in the thread
1526 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1527 *
71cc64a8
AS
1528 * Since the TID value is a truncated form of it PID, it is possible
1529 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1530 * that 2 threads share the same TID and are waiting, one of the following
1531 * cases will happen:
ec233ede 1532 *
71cc64a8
AS
1533 * 1. The correct thread is running, the wrong thread is not
1534 * In this situation, the correct thread is woken and proceeds to pass it's
1535 * condition check.
ec233ede 1536 *
71cc64a8
AS
1537 * 2. Neither threads are running
1538 * In this situation, neither thread will be woken. When scheduled, the waiting
1539 * threads will execute either a wait, which will return immediately, followed
1540 * by a condition check, which will pass for the correct thread and fail
1541 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1542 *
71cc64a8
AS
1543 * 3. The wrong thread is running, the correct thread is not
1544 * The wrong thread will be woken, but will fail it's condition check and
1545 * re-execute wait. The correct thread, when scheduled, will execute either
1546 * it's condition check (which will pass), or wait, which returns immediately
1547 * when called the first time after the thread is scheduled, followed by it's
1548 * condition check (which will pass).
ec233ede 1549 *
71cc64a8
AS
1550 * 4. Both threads are running
1551 * Both threads will be woken. The wrong thread will fail it's condition check
1552 * and execute another wait, while the correct thread will pass it's condition
1553 * check.
1554 *
1555 * @t: the task to set the thread ID for
ec233ede
SB
1556 */
1557int set_thread_tidr(struct task_struct *t)
1558{
3449f191 1559 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1560 return -EINVAL;
1561
1562 if (t != current)
1563 return -EINVAL;
1564
7e4d4233
VJ
1565 if (t->thread.tidr)
1566 return 0;
1567
71cc64a8 1568 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1569 mtspr(SPRN_TIDR, t->thread.tidr);
1570
1571 return 0;
1572}
b1db5513 1573EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1574
1575#endif /* CONFIG_PPC64 */
1576
14cf11af
PM
1577void
1578release_thread(struct task_struct *t)
1579{
1580}
1581
1582/*
55ccf3fe
SS
1583 * this gets called so that we can store coprocessor state into memory and
1584 * copy the current task into the new thread.
14cf11af 1585 */
55ccf3fe 1586int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1587{
579e633e 1588 flush_all_to_thread(src);
621b5060
MN
1589 /*
1590 * Flush TM state out so we can copy it. __switch_to_tm() does this
1591 * flush but it removes the checkpointed state from the current CPU and
1592 * transitions the CPU out of TM mode. Hence we need to call
1593 * tm_recheckpoint_new_task() (on the same task) to restore the
1594 * checkpointed state back and the TM mode.
5d176f75
CB
1595 *
1596 * Can't pass dst because it isn't ready. Doesn't matter, passing
1597 * dst is only important for __switch_to()
621b5060 1598 */
dc310669 1599 __switch_to_tm(src, src);
330a1eb7 1600
55ccf3fe 1601 *dst = *src;
330a1eb7
ME
1602
1603 clear_task_ebb(dst);
1604
55ccf3fe 1605 return 0;
14cf11af
PM
1606}
1607
cec15488
ME
1608static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1609{
4e003747 1610#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1611 unsigned long sp_vsid;
1612 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1613
caca285e
AK
1614 if (radix_enabled())
1615 return;
1616
cec15488
ME
1617 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1618 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1619 << SLB_VSID_SHIFT_1T;
1620 else
1621 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1622 << SLB_VSID_SHIFT;
1623 sp_vsid |= SLB_VSID_KERNEL | llp;
1624 p->thread.ksp_vsid = sp_vsid;
1625#endif
1626}
1627
14cf11af
PM
1628/*
1629 * Copy a thread..
1630 */
efcac658 1631
6eca8933
AD
1632/*
1633 * Copy architecture-specific thread state
1634 */
6f2c55b8 1635int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1636 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1637{
1638 struct pt_regs *childregs, *kregs;
1639 extern void ret_from_fork(void);
58254e10
AV
1640 extern void ret_from_kernel_thread(void);
1641 void (*f)(void);
0cec6fd1 1642 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1643 struct thread_info *ti = task_thread_info(p);
1644
1645 klp_init_thread_info(ti);
14cf11af 1646
14cf11af
PM
1647 /* Copy registers */
1648 sp -= sizeof(struct pt_regs);
1649 childregs = (struct pt_regs *) sp;
ab75819d 1650 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1651 /* kernel thread */
58254e10 1652 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1653 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1654 /* function */
1655 if (usp)
1656 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1657#ifdef CONFIG_PPC64
b5e2fc1c 1658 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1659 childregs->softe = IRQS_ENABLED;
06d67d54 1660#endif
6eca8933 1661 childregs->gpr[15] = kthread_arg;
14cf11af 1662 p->thread.regs = NULL; /* no user register state */
138d1ce8 1663 ti->flags |= _TIF_RESTOREALL;
58254e10 1664 f = ret_from_kernel_thread;
14cf11af 1665 } else {
6eca8933 1666 /* user thread */
afa86fc4 1667 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1668 CHECK_FULL_REGS(regs);
1669 *childregs = *regs;
ea516b11
AV
1670 if (usp)
1671 childregs->gpr[1] = usp;
14cf11af 1672 p->thread.regs = childregs;
58254e10 1673 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1674 if (clone_flags & CLONE_SETTLS) {
1675#ifdef CONFIG_PPC64
9904b005 1676 if (!is_32bit_task())
06d67d54
PM
1677 childregs->gpr[13] = childregs->gpr[6];
1678 else
1679#endif
1680 childregs->gpr[2] = childregs->gpr[6];
1681 }
58254e10
AV
1682
1683 f = ret_from_fork;
14cf11af 1684 }
d272f667 1685 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1686 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1687
1688 /*
1689 * The way this works is that at some point in the future
1690 * some task will call _switch to switch to the new task.
1691 * That will pop off the stack frame created below and start
1692 * the new task running at ret_from_fork. The new task will
1693 * do some house keeping and then return from the fork or clone
1694 * system call, using the stack frame created above.
1695 */
af945cf4 1696 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1697 sp -= sizeof(struct pt_regs);
1698 kregs = (struct pt_regs *) sp;
1699 sp -= STACK_FRAME_OVERHEAD;
1700 p->thread.ksp = sp;
cbc9565e 1701#ifdef CONFIG_PPC32
85218827
KG
1702 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1703 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1704#endif
28d170ab
ON
1705#ifdef CONFIG_HAVE_HW_BREAKPOINT
1706 p->thread.ptrace_bps[0] = NULL;
1707#endif
1708
18461960
PM
1709 p->thread.fp_save_area = NULL;
1710#ifdef CONFIG_ALTIVEC
1711 p->thread.vr_save_area = NULL;
1712#endif
1713
cec15488
ME
1714 setup_ksp_vsid(p, sp);
1715
efcac658
AK
1716#ifdef CONFIG_PPC64
1717 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1718 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1719 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1720 }
92779245 1721 if (cpu_has_feature(CPU_FTR_HAS_PPR))
4c2de74c 1722 childregs->ppr = DEFAULT_PPR;
ec233ede
SB
1723
1724 p->thread.tidr = 0;
efcac658 1725#endif
7cedd601 1726 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1727 return 0;
1728}
1729
5434ae74
NP
1730void preload_new_slb_context(unsigned long start, unsigned long sp);
1731
14cf11af
PM
1732/*
1733 * Set up a thread for executing a new program
1734 */
06d67d54 1735void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1736{
90eac727
ME
1737#ifdef CONFIG_PPC64
1738 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74
NP
1739
1740#ifdef CONFIG_PPC_BOOK3S_64
1741 preload_new_slb_context(start, sp);
1742#endif
90eac727
ME
1743#endif
1744
06d67d54
PM
1745 /*
1746 * If we exec out of a kernel thread then thread.regs will not be
1747 * set. Do it now.
1748 */
1749 if (!current->thread.regs) {
0cec6fd1
AV
1750 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1751 current->thread.regs = regs - 1;
06d67d54
PM
1752 }
1753
8e96a87c
CB
1754#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1755 /*
1756 * Clear any transactional state, we're exec()ing. The cause is
1757 * not important as there will never be a recheckpoint so it's not
1758 * user visible.
1759 */
1760 if (MSR_TM_SUSPENDED(mfmsr()))
1761 tm_reclaim_current(0);
1762#endif
1763
14cf11af
PM
1764 memset(regs->gpr, 0, sizeof(regs->gpr));
1765 regs->ctr = 0;
1766 regs->link = 0;
1767 regs->xer = 0;
1768 regs->ccr = 0;
14cf11af 1769 regs->gpr[1] = sp;
06d67d54 1770
474f8196
RM
1771 /*
1772 * We have just cleared all the nonvolatile GPRs, so make
1773 * FULL_REGS(regs) return true. This is necessary to allow
1774 * ptrace to examine the thread immediately after exec.
1775 */
1776 regs->trap &= ~1UL;
1777
06d67d54
PM
1778#ifdef CONFIG_PPC32
1779 regs->mq = 0;
1780 regs->nip = start;
14cf11af 1781 regs->msr = MSR_USER;
06d67d54 1782#else
9904b005 1783 if (!is_32bit_task()) {
94af3abf 1784 unsigned long entry;
06d67d54 1785
94af3abf
RR
1786 if (is_elf2_task()) {
1787 /* Look ma, no function descriptors! */
1788 entry = start;
06d67d54 1789
94af3abf
RR
1790 /*
1791 * Ulrich says:
1792 * The latest iteration of the ABI requires that when
1793 * calling a function (at its global entry point),
1794 * the caller must ensure r12 holds the entry point
1795 * address (so that the function can quickly
1796 * establish addressability).
1797 */
1798 regs->gpr[12] = start;
1799 /* Make sure that's restored on entry to userspace. */
1800 set_thread_flag(TIF_RESTOREALL);
1801 } else {
1802 unsigned long toc;
1803
1804 /* start is a relocated pointer to the function
1805 * descriptor for the elf _start routine. The first
1806 * entry in the function descriptor is the entry
1807 * address of _start and the second entry is the TOC
1808 * value we need to use.
1809 */
1810 __get_user(entry, (unsigned long __user *)start);
1811 __get_user(toc, (unsigned long __user *)start+1);
1812
1813 /* Check whether the e_entry function descriptor entries
1814 * need to be relocated before we can use them.
1815 */
1816 if (load_addr != 0) {
1817 entry += load_addr;
1818 toc += load_addr;
1819 }
1820 regs->gpr[2] = toc;
06d67d54
PM
1821 }
1822 regs->nip = entry;
06d67d54 1823 regs->msr = MSR_USER64;
d4bf9a78
SR
1824 } else {
1825 regs->nip = start;
1826 regs->gpr[2] = 0;
1827 regs->msr = MSR_USER32;
06d67d54
PM
1828 }
1829#endif
ce48b210
MN
1830#ifdef CONFIG_VSX
1831 current->thread.used_vsr = 0;
1832#endif
5434ae74 1833 current->thread.load_slb = 0;
1195892c 1834 current->thread.load_fp = 0;
de79f7b9 1835 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1836 current->thread.fp_save_area = NULL;
14cf11af 1837#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1838 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1839 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1840 current->thread.vr_save_area = NULL;
14cf11af
PM
1841 current->thread.vrsave = 0;
1842 current->thread.used_vr = 0;
1195892c 1843 current->thread.load_vec = 0;
14cf11af
PM
1844#endif /* CONFIG_ALTIVEC */
1845#ifdef CONFIG_SPE
1846 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1847 current->thread.acc = 0;
1848 current->thread.spefscr = 0;
1849 current->thread.used_spe = 0;
1850#endif /* CONFIG_SPE */
bc2a9408 1851#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1852 current->thread.tm_tfhar = 0;
1853 current->thread.tm_texasr = 0;
1854 current->thread.tm_tfiar = 0;
7f22ced4 1855 current->thread.load_tm = 0;
bc2a9408 1856#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1857
1858 thread_pkey_regs_init(&current->thread);
14cf11af 1859}
e1802b06 1860EXPORT_SYMBOL(start_thread);
14cf11af
PM
1861
1862#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1863 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1864
1865int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1866{
1867 struct pt_regs *regs = tsk->thread.regs;
1868
1869 /* This is a bit hairy. If we are an SPE enabled processor
1870 * (have embedded fp) we store the IEEE exception enable flags in
1871 * fpexc_mode. fpexc_mode is also used for setting FP exception
1872 * mode (asyn, precise, disabled) for 'Classic' FP. */
1873 if (val & PR_FP_EXC_SW_ENABLE) {
1874#ifdef CONFIG_SPE
5e14d21e 1875 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1876 /*
1877 * When the sticky exception bits are set
1878 * directly by userspace, it must call prctl
1879 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1880 * in the existing prctl settings) or
1881 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1882 * the bits being set). <fenv.h> functions
1883 * saving and restoring the whole
1884 * floating-point environment need to do so
1885 * anyway to restore the prctl settings from
1886 * the saved environment.
1887 */
1888 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1889 tsk->thread.fpexc_mode = val &
1890 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1891 return 0;
1892 } else {
1893 return -EINVAL;
1894 }
14cf11af
PM
1895#else
1896 return -EINVAL;
1897#endif
14cf11af 1898 }
06d67d54
PM
1899
1900 /* on a CONFIG_SPE this does not hurt us. The bits that
1901 * __pack_fe01 use do not overlap with bits used for
1902 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1903 * on CONFIG_SPE implementations are reserved so writing to
1904 * them does not change anything */
1905 if (val > PR_FP_EXC_PRECISE)
1906 return -EINVAL;
1907 tsk->thread.fpexc_mode = __pack_fe01(val);
1908 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1909 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1910 | tsk->thread.fpexc_mode;
14cf11af
PM
1911 return 0;
1912}
1913
1914int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1915{
1916 unsigned int val;
1917
1918 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1919#ifdef CONFIG_SPE
640e9225
JM
1920 if (cpu_has_feature(CPU_FTR_SPE)) {
1921 /*
1922 * When the sticky exception bits are set
1923 * directly by userspace, it must call prctl
1924 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1925 * in the existing prctl settings) or
1926 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1927 * the bits being set). <fenv.h> functions
1928 * saving and restoring the whole
1929 * floating-point environment need to do so
1930 * anyway to restore the prctl settings from
1931 * the saved environment.
1932 */
1933 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1934 val = tsk->thread.fpexc_mode;
640e9225 1935 } else
5e14d21e 1936 return -EINVAL;
14cf11af
PM
1937#else
1938 return -EINVAL;
1939#endif
1940 else
1941 val = __unpack_fe01(tsk->thread.fpexc_mode);
1942 return put_user(val, (unsigned int __user *) adr);
1943}
1944
fab5db97
PM
1945int set_endian(struct task_struct *tsk, unsigned int val)
1946{
1947 struct pt_regs *regs = tsk->thread.regs;
1948
1949 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1950 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1951 return -EINVAL;
1952
1953 if (regs == NULL)
1954 return -EINVAL;
1955
1956 if (val == PR_ENDIAN_BIG)
1957 regs->msr &= ~MSR_LE;
1958 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1959 regs->msr |= MSR_LE;
1960 else
1961 return -EINVAL;
1962
1963 return 0;
1964}
1965
1966int get_endian(struct task_struct *tsk, unsigned long adr)
1967{
1968 struct pt_regs *regs = tsk->thread.regs;
1969 unsigned int val;
1970
1971 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1972 !cpu_has_feature(CPU_FTR_REAL_LE))
1973 return -EINVAL;
1974
1975 if (regs == NULL)
1976 return -EINVAL;
1977
1978 if (regs->msr & MSR_LE) {
1979 if (cpu_has_feature(CPU_FTR_REAL_LE))
1980 val = PR_ENDIAN_LITTLE;
1981 else
1982 val = PR_ENDIAN_PPC_LITTLE;
1983 } else
1984 val = PR_ENDIAN_BIG;
1985
1986 return put_user(val, (unsigned int __user *)adr);
1987}
1988
e9370ae1
PM
1989int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1990{
1991 tsk->thread.align_ctl = val;
1992 return 0;
1993}
1994
1995int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1996{
1997 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1998}
1999
bb72c481
PM
2000static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2001 unsigned long nbytes)
2002{
2003 unsigned long stack_page;
2004 unsigned long cpu = task_cpu(p);
2005
2006 /*
2007 * Avoid crashing if the stack has overflowed and corrupted
2008 * task_cpu(p), which is in the thread_info struct.
2009 */
2010 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2011 stack_page = (unsigned long) hardirq_ctx[cpu];
2012 if (sp >= stack_page + sizeof(struct thread_struct)
2013 && sp <= stack_page + THREAD_SIZE - nbytes)
2014 return 1;
2015
2016 stack_page = (unsigned long) softirq_ctx[cpu];
2017 if (sp >= stack_page + sizeof(struct thread_struct)
2018 && sp <= stack_page + THREAD_SIZE - nbytes)
2019 return 1;
2020 }
2021 return 0;
2022}
2023
2f25194d 2024int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2025 unsigned long nbytes)
2026{
0cec6fd1 2027 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
2028
2029 if (sp >= stack_page + sizeof(struct thread_struct)
2030 && sp <= stack_page + THREAD_SIZE - nbytes)
2031 return 1;
2032
bb72c481 2033 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2034}
2035
2f25194d
AB
2036EXPORT_SYMBOL(validate_sp);
2037
14cf11af
PM
2038unsigned long get_wchan(struct task_struct *p)
2039{
2040 unsigned long ip, sp;
2041 int count = 0;
2042
2043 if (!p || p == current || p->state == TASK_RUNNING)
2044 return 0;
2045
2046 sp = p->thread.ksp;
ec2b36b9 2047 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2048 return 0;
2049
2050 do {
2051 sp = *(unsigned long *)sp;
4ca360f3
KC
2052 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2053 p->state == TASK_RUNNING)
14cf11af
PM
2054 return 0;
2055 if (count > 0) {
ec2b36b9 2056 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2057 if (!in_sched_functions(ip))
2058 return ip;
2059 }
2060 } while (count++ < 16);
2061 return 0;
2062}
06d67d54 2063
c4d04be1 2064static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2065
2066void show_stack(struct task_struct *tsk, unsigned long *stack)
2067{
2068 unsigned long sp, ip, lr, newsp;
2069 int count = 0;
2070 int firstframe = 1;
6794c782
SR
2071#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2072 int curr_frame = current->curr_ret_stack;
2073 extern void return_to_handler(void);
9135c3cc 2074 unsigned long rth = (unsigned long)return_to_handler;
6794c782 2075#endif
06d67d54
PM
2076
2077 sp = (unsigned long) stack;
2078 if (tsk == NULL)
2079 tsk = current;
2080 if (sp == 0) {
2081 if (tsk == current)
acf620ec 2082 sp = current_stack_pointer();
06d67d54
PM
2083 else
2084 sp = tsk->thread.ksp;
2085 }
2086
2087 lr = 0;
2088 printk("Call Trace:\n");
2089 do {
ec2b36b9 2090 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2091 return;
2092
2093 stack = (unsigned long *) sp;
2094 newsp = stack[0];
ec2b36b9 2095 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2096 if (!firstframe || ip != lr) {
058c78f4 2097 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2098#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2099 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 2100 pr_cont(" (%pS)",
6794c782
SR
2101 (void *)current->ret_stack[curr_frame].ret);
2102 curr_frame--;
2103 }
2104#endif
06d67d54 2105 if (firstframe)
9a1f490f
ME
2106 pr_cont(" (unreliable)");
2107 pr_cont("\n");
06d67d54
PM
2108 }
2109 firstframe = 0;
2110
2111 /*
2112 * See if this is an exception frame.
2113 * We look for the "regshere" marker in the current frame.
2114 */
ec2b36b9
BH
2115 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2116 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2117 struct pt_regs *regs = (struct pt_regs *)
2118 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2119 lr = regs->link;
9be9be2e 2120 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2121 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2122 firstframe = 1;
2123 }
2124
2125 sp = newsp;
2126 } while (count++ < kstack_depth_to_print);
2127}
2128
cb2c9b27 2129#ifdef CONFIG_PPC64
fe1952fc 2130/* Called with hard IRQs off */
0e37739b 2131void notrace __ppc64_runlatch_on(void)
cb2c9b27 2132{
fe1952fc 2133 struct thread_info *ti = current_thread_info();
cb2c9b27 2134
d1d0d5ff
NP
2135 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2136 /*
2137 * Least significant bit (RUN) is the only writable bit of
2138 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2139 * earliest ISA where this is the case, but it's convenient.
2140 */
2141 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2142 } else {
2143 unsigned long ctrl;
2144
2145 /*
2146 * Some architectures (e.g., Cell) have writable fields other
2147 * than RUN, so do the read-modify-write.
2148 */
2149 ctrl = mfspr(SPRN_CTRLF);
2150 ctrl |= CTRL_RUNLATCH;
2151 mtspr(SPRN_CTRLT, ctrl);
2152 }
cb2c9b27 2153
fae2e0fb 2154 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2155}
2156
fe1952fc 2157/* Called with hard IRQs off */
0e37739b 2158void notrace __ppc64_runlatch_off(void)
cb2c9b27 2159{
fe1952fc 2160 struct thread_info *ti = current_thread_info();
cb2c9b27 2161
fae2e0fb 2162 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2163
d1d0d5ff
NP
2164 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2165 mtspr(SPRN_CTRLT, 0);
2166 } else {
2167 unsigned long ctrl;
2168
2169 ctrl = mfspr(SPRN_CTRLF);
2170 ctrl &= ~CTRL_RUNLATCH;
2171 mtspr(SPRN_CTRLT, ctrl);
2172 }
cb2c9b27 2173}
fe1952fc 2174#endif /* CONFIG_PPC64 */
f6a61680 2175
d839088c
AB
2176unsigned long arch_align_stack(unsigned long sp)
2177{
2178 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2179 sp -= get_random_int() & ~PAGE_MASK;
2180 return sp & ~0xf;
2181}
912f9ee2
AB
2182
2183static inline unsigned long brk_rnd(void)
2184{
2185 unsigned long rnd = 0;
2186
2187 /* 8MB for 32bit, 1GB for 64bit */
2188 if (is_32bit_task())
5ef11c35 2189 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2190 else
5ef11c35 2191 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2192
2193 return rnd << PAGE_SHIFT;
2194}
2195
2196unsigned long arch_randomize_brk(struct mm_struct *mm)
2197{
8bbde7a7
AB
2198 unsigned long base = mm->brk;
2199 unsigned long ret;
2200
4e003747 2201#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2202 /*
2203 * If we are using 1TB segments and we are allowed to randomise
2204 * the heap, we can put it above 1TB so it is backed by a 1TB
2205 * segment. Otherwise the heap will be in the bottom 1TB
2206 * which always uses 256MB segments and this may result in a
caca285e
AK
2207 * performance penalty. We don't need to worry about radix. For
2208 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2209 */
2210 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2211 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2212#endif
2213
2214 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2215
2216 if (ret < mm->brk)
2217 return mm->brk;
2218
2219 return ret;
2220}
501cb16d 2221