]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Remove redundant mflr in _switch
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
d31626f7
PM
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 89 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 107 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
037f0eed 119#ifdef CONFIG_PPC_FPU
14cf11af
PM
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146#endif
d31626f7 147 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
148 }
149 preempt_enable();
150 }
151}
de56a948 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 153#endif /* CONFIG_PPC_FPU */
14cf11af
PM
154
155void enable_kernel_fp(void)
156{
157 WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 161 giveup_fpu_maybe_transactional(current);
14cf11af
PM
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164#else
d31626f7 165 giveup_fpu_maybe_transactional(last_task_used_math);
14cf11af
PM
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
14cf11af
PM
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173 WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 177 giveup_altivec_maybe_transactional(current);
14cf11af 178 else
35000870 179 giveup_altivec_notask();
14cf11af 180#else
d31626f7 181 giveup_altivec_maybe_transactional(last_task_used_altivec);
14cf11af
PM
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
d31626f7 198 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
204#endif /* CONFIG_ALTIVEC */
205
ce48b210 206#ifdef CONFIG_VSX
ce48b210
MN
207void enable_kernel_vsx(void)
208{
209 WARN_ON(preemptible());
210
211#ifdef CONFIG_SMP
212 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213 giveup_vsx(current);
214 else
215 giveup_vsx(NULL); /* just enable vsx for kernel - force */
216#else
217 giveup_vsx(last_task_used_vsx);
218#endif /* CONFIG_SMP */
219}
220EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210 221
7c292170
MN
222void giveup_vsx(struct task_struct *tsk)
223{
d31626f7
PM
224 giveup_fpu_maybe_transactional(tsk);
225 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
226 __giveup_vsx(tsk);
227}
e1802b06 228EXPORT_SYMBOL(giveup_vsx);
7c292170 229
ce48b210
MN
230void flush_vsx_to_thread(struct task_struct *tsk)
231{
232 if (tsk->thread.regs) {
233 preempt_disable();
234 if (tsk->thread.regs->msr & MSR_VSX) {
235#ifdef CONFIG_SMP
236 BUG_ON(tsk != current);
237#endif
238 giveup_vsx(tsk);
239 }
240 preempt_enable();
241 }
242}
de56a948 243EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
244#endif /* CONFIG_VSX */
245
14cf11af
PM
246#ifdef CONFIG_SPE
247
248void enable_kernel_spe(void)
249{
250 WARN_ON(preemptible());
251
252#ifdef CONFIG_SMP
253 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254 giveup_spe(current);
255 else
256 giveup_spe(NULL); /* just enable SPE for kernel - force */
257#else
258 giveup_spe(last_task_used_spe);
259#endif /* __SMP __ */
260}
261EXPORT_SYMBOL(enable_kernel_spe);
262
263void flush_spe_to_thread(struct task_struct *tsk)
264{
265 if (tsk->thread.regs) {
266 preempt_disable();
267 if (tsk->thread.regs->msr & MSR_SPE) {
268#ifdef CONFIG_SMP
269 BUG_ON(tsk != current);
270#endif
685659ee 271 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 272 giveup_spe(tsk);
14cf11af
PM
273 }
274 preempt_enable();
275 }
276}
14cf11af
PM
277#endif /* CONFIG_SPE */
278
5388fb10 279#ifndef CONFIG_SMP
48abec07
PM
280/*
281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282 * and the current task has some state, discard it.
283 */
5388fb10 284void discard_lazy_cpu_state(void)
48abec07 285{
48abec07
PM
286 preempt_disable();
287 if (last_task_used_math == current)
288 last_task_used_math = NULL;
289#ifdef CONFIG_ALTIVEC
290 if (last_task_used_altivec == current)
291 last_task_used_altivec = NULL;
292#endif /* CONFIG_ALTIVEC */
ce48b210
MN
293#ifdef CONFIG_VSX
294 if (last_task_used_vsx == current)
295 last_task_used_vsx = NULL;
296#endif /* CONFIG_VSX */
48abec07
PM
297#ifdef CONFIG_SPE
298 if (last_task_used_spe == current)
299 last_task_used_spe = NULL;
300#endif
301 preempt_enable();
48abec07 302}
5388fb10 303#endif /* CONFIG_SMP */
48abec07 304
3bffb652
DK
305#ifdef CONFIG_PPC_ADV_DEBUG_REGS
306void do_send_trap(struct pt_regs *regs, unsigned long address,
307 unsigned long error_code, int signal_code, int breakpt)
308{
309 siginfo_t info;
310
41ab5266 311 current->thread.trap_nr = signal_code;
3bffb652
DK
312 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313 11, SIGSEGV) == NOTIFY_STOP)
314 return;
315
316 /* Deliver the signal to userspace */
317 info.si_signo = SIGTRAP;
318 info.si_errno = breakpt; /* breakpoint or watchpoint id */
319 info.si_code = signal_code;
320 info.si_addr = (void __user *)address;
321 force_sig_info(SIGTRAP, &info, current);
322}
323#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 324void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
325 unsigned long error_code)
326{
327 siginfo_t info;
328
41ab5266 329 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
330 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331 11, SIGSEGV) == NOTIFY_STOP)
332 return;
333
9422de3e 334 if (debugger_break_match(regs))
d6a61bfc
LM
335 return;
336
9422de3e
MN
337 /* Clear the breakpoint */
338 hw_breakpoint_disable();
d6a61bfc
LM
339
340 /* Deliver the signal to userspace */
341 info.si_signo = SIGTRAP;
342 info.si_errno = 0;
343 info.si_code = TRAP_HWBKPT;
344 info.si_addr = (void __user *)address;
345 force_sig_info(SIGTRAP, &info, current);
346}
3bffb652 347#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 348
9422de3e 349static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 350
3bffb652
DK
351#ifdef CONFIG_PPC_ADV_DEBUG_REGS
352/*
353 * Set the debug registers back to their default "safe" values.
354 */
355static void set_debug_reg_defaults(struct thread_struct *thread)
356{
51ae8d4a 357 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 358#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 359 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 360#endif
51ae8d4a 361 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 362#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 363 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 364#endif
51ae8d4a 365 thread->debug.dbcr0 = 0;
3bffb652
DK
366#ifdef CONFIG_BOOKE
367 /*
368 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369 */
51ae8d4a 370 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
371 DBCR1_IAC3US | DBCR1_IAC4US;
372 /*
373 * Force Data Address Compare User/Supervisor bits to be User-only
374 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375 */
51ae8d4a 376 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 377#else
51ae8d4a 378 thread->debug.dbcr1 = 0;
3bffb652
DK
379#endif
380}
381
f5f97210 382static void prime_debug_regs(struct debug_reg *debug)
3bffb652 383{
6cecf76b
SW
384 /*
385 * We could have inherited MSR_DE from userspace, since
386 * it doesn't get cleared on exception entry. Make sure
387 * MSR_DE is clear before we enable any debug events.
388 */
389 mtmsr(mfmsr() & ~MSR_DE);
390
f5f97210
SW
391 mtspr(SPRN_IAC1, debug->iac1);
392 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 393#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
394 mtspr(SPRN_IAC3, debug->iac3);
395 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 396#endif
f5f97210
SW
397 mtspr(SPRN_DAC1, debug->dac1);
398 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 399#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
400 mtspr(SPRN_DVC1, debug->dvc1);
401 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 402#endif
f5f97210
SW
403 mtspr(SPRN_DBCR0, debug->dbcr0);
404 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 405#ifdef CONFIG_BOOKE
f5f97210 406 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
407#endif
408}
409/*
410 * Unless neither the old or new thread are making use of the
411 * debug registers, set the debug registers from the values
412 * stored in the new thread.
413 */
f5f97210 414void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 415{
51ae8d4a 416 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
417 || (new_debug->dbcr0 & DBCR0_IDM))
418 prime_debug_regs(new_debug);
3bffb652 419}
3743c9b8 420EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 421#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 422#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
423static void set_debug_reg_defaults(struct thread_struct *thread)
424{
9422de3e
MN
425 thread->hw_brk.address = 0;
426 thread->hw_brk.type = 0;
b9818c33 427 set_breakpoint(&thread->hw_brk);
3bffb652 428}
e0780b72 429#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
430#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
431
172ae2e7 432#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
433static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434{
d6a61bfc 435 mtspr(SPRN_DAC1, dabr);
221c185d
DK
436#ifdef CONFIG_PPC_47x
437 isync();
438#endif
9422de3e
MN
439 return 0;
440}
c6c9eace 441#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
442static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443{
c6c9eace 444 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
445 if (cpu_has_feature(CPU_FTR_DABRX))
446 mtspr(SPRN_DABRX, dabrx);
cab0af98 447 return 0;
14cf11af 448}
9422de3e
MN
449#else
450static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451{
452 return -EINVAL;
453}
454#endif
455
456static inline int set_dabr(struct arch_hw_breakpoint *brk)
457{
458 unsigned long dabr, dabrx;
459
460 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461 dabrx = ((brk->type >> 3) & 0x7);
462
463 if (ppc_md.set_dabr)
464 return ppc_md.set_dabr(dabr, dabrx);
465
466 return __set_dabr(dabr, dabrx);
467}
468
bf99de36
MN
469static inline int set_dawr(struct arch_hw_breakpoint *brk)
470{
05d694ea 471 unsigned long dawr, dawrx, mrd;
bf99de36
MN
472
473 dawr = brk->address;
474
475 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476 << (63 - 58); //* read/write bits */
477 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478 << (63 - 59); //* translate */
479 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480 >> 3; //* PRIM bits */
05d694ea
MN
481 /* dawr length is stored in field MDR bits 48:53. Matches range in
482 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483 0b111111=64DW.
484 brk->len is in bytes.
485 This aligns up to double word size, shifts and does the bias.
486 */
487 mrd = ((brk->len + 7) >> 3) - 1;
488 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
489
490 if (ppc_md.set_dawr)
491 return ppc_md.set_dawr(dawr, dawrx);
492 mtspr(SPRN_DAWR, dawr);
493 mtspr(SPRN_DAWRX, dawrx);
494 return 0;
495}
496
21f58507 497void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 498{
69111bac 499 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 500
bf99de36 501 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
502 set_dawr(brk);
503 else
504 set_dabr(brk);
9422de3e 505}
14cf11af 506
21f58507
PG
507void set_breakpoint(struct arch_hw_breakpoint *brk)
508{
509 preempt_disable();
510 __set_breakpoint(brk);
511 preempt_enable();
512}
513
06d67d54
PM
514#ifdef CONFIG_PPC64
515DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 516#endif
14cf11af 517
9422de3e
MN
518static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519 struct arch_hw_breakpoint *b)
520{
521 if (a->address != b->address)
522 return false;
523 if (a->type != b->type)
524 return false;
525 if (a->len != b->len)
526 return false;
527 return true;
528}
d31626f7 529
fb09692e 530#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
531static void tm_reclaim_thread(struct thread_struct *thr,
532 struct thread_info *ti, uint8_t cause)
533{
534 unsigned long msr_diff = 0;
535
536 /*
537 * If FP/VSX registers have been already saved to the
538 * thread_struct, move them to the transact_fp array.
539 * We clear the TIF_RESTORE_TM bit since after the reclaim
540 * the thread will no longer be transactional.
541 */
542 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
829023df 543 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
d31626f7
PM
544 if (msr_diff & MSR_FP)
545 memcpy(&thr->transact_fp, &thr->fp_state,
546 sizeof(struct thread_fp_state));
547 if (msr_diff & MSR_VEC)
548 memcpy(&thr->transact_vr, &thr->vr_state,
549 sizeof(struct thread_vr_state));
550 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552 }
553
554 tm_reclaim(thr, thr->regs->msr, cause);
555
556 /* Having done the reclaim, we now have the checkpointed
557 * FP/VSX values in the registers. These might be valid
558 * even if we have previously called enable_kernel_fp() or
559 * flush_fp_to_thread(), so update thr->regs->msr to
560 * indicate their current validity.
561 */
562 thr->regs->msr |= msr_diff;
563}
564
565void tm_reclaim_current(uint8_t cause)
566{
567 tm_enable();
568 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
569}
570
fb09692e
MN
571static inline void tm_reclaim_task(struct task_struct *tsk)
572{
573 /* We have to work out if we're switching from/to a task that's in the
574 * middle of a transaction.
575 *
576 * In switching we need to maintain a 2nd register state as
577 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
578 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
579 * (current) FPRs into oldtask->thread.transact_fpr[].
580 *
581 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
582 */
583 struct thread_struct *thr = &tsk->thread;
584
585 if (!thr->regs)
586 return;
587
588 if (!MSR_TM_ACTIVE(thr->regs->msr))
589 goto out_and_saveregs;
590
591 /* Stash the original thread MSR, as giveup_fpu et al will
592 * modify it. We hold onto it to see whether the task used
d31626f7 593 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
829023df 594 * ckpt_regs.msr is already set.
fb09692e 595 */
d31626f7 596 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
829023df 597 thr->ckpt_regs.msr = thr->regs->msr;
fb09692e
MN
598
599 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
600 "ccr=%lx, msr=%lx, trap=%lx)\n",
601 tsk->pid, thr->regs->nip,
602 thr->regs->ccr, thr->regs->msr,
603 thr->regs->trap);
604
d31626f7 605 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
606
607 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
608 tsk->pid);
609
610out_and_saveregs:
611 /* Always save the regs here, even if a transaction's not active.
612 * This context-switches a thread's TM info SPRs. We do it here to
613 * be consistent with the restore path (in recheckpoint) which
614 * cannot happen later in _switch().
615 */
616 tm_save_sprs(thr);
617}
618
e6b8fd02
MN
619extern void __tm_recheckpoint(struct thread_struct *thread,
620 unsigned long orig_msr);
621
622void tm_recheckpoint(struct thread_struct *thread,
623 unsigned long orig_msr)
624{
625 unsigned long flags;
626
627 /* We really can't be interrupted here as the TEXASR registers can't
628 * change and later in the trecheckpoint code, we have a userspace R1.
629 * So let's hard disable over this region.
630 */
631 local_irq_save(flags);
632 hard_irq_disable();
633
634 /* The TM SPRs are restored here, so that TEXASR.FS can be set
635 * before the trecheckpoint and no explosion occurs.
636 */
637 tm_restore_sprs(thread);
638
639 __tm_recheckpoint(thread, orig_msr);
640
641 local_irq_restore(flags);
642}
643
bc2a9408 644static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
645{
646 unsigned long msr;
647
648 if (!cpu_has_feature(CPU_FTR_TM))
649 return;
650
651 /* Recheckpoint the registers of the thread we're about to switch to.
652 *
653 * If the task was using FP, we non-lazily reload both the original and
654 * the speculative FP register states. This is because the kernel
655 * doesn't see if/when a TM rollback occurs, so if we take an FP
656 * unavoidable later, we are unable to determine which set of FP regs
657 * need to be restored.
658 */
659 if (!new->thread.regs)
660 return;
661
e6b8fd02
MN
662 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
663 tm_restore_sprs(&new->thread);
fb09692e 664 return;
e6b8fd02 665 }
829023df 666 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
667 /* Recheckpoint to restore original checkpointed register state. */
668 TM_DEBUG("*** tm_recheckpoint of pid %d "
669 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
670 new->pid, new->thread.regs->msr, msr);
671
672 /* This loads the checkpointed FP/VEC state, if used */
673 tm_recheckpoint(&new->thread, msr);
674
675 /* This loads the speculative FP/VEC state, if used */
676 if (msr & MSR_FP) {
677 do_load_up_transact_fpu(&new->thread);
678 new->thread.regs->msr |=
679 (MSR_FP | new->thread.fpexc_mode);
680 }
f110c0c1 681#ifdef CONFIG_ALTIVEC
fb09692e
MN
682 if (msr & MSR_VEC) {
683 do_load_up_transact_altivec(&new->thread);
684 new->thread.regs->msr |= MSR_VEC;
685 }
f110c0c1 686#endif
fb09692e
MN
687 /* We may as well turn on VSX too since all the state is restored now */
688 if (msr & MSR_VSX)
689 new->thread.regs->msr |= MSR_VSX;
690
691 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
692 "(kernel msr 0x%lx)\n",
693 new->pid, mfmsr());
694}
695
696static inline void __switch_to_tm(struct task_struct *prev)
697{
698 if (cpu_has_feature(CPU_FTR_TM)) {
699 tm_enable();
700 tm_reclaim_task(prev);
701 }
702}
d31626f7
PM
703
704/*
705 * This is called if we are on the way out to userspace and the
706 * TIF_RESTORE_TM flag is set. It checks if we need to reload
707 * FP and/or vector state and does so if necessary.
708 * If userspace is inside a transaction (whether active or
709 * suspended) and FP/VMX/VSX instructions have ever been enabled
710 * inside that transaction, then we have to keep them enabled
711 * and keep the FP/VMX/VSX state loaded while ever the transaction
712 * continues. The reason is that if we didn't, and subsequently
713 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
714 * we don't know whether it's the same transaction, and thus we
715 * don't know which of the checkpointed state and the transactional
716 * state to use.
717 */
718void restore_tm_state(struct pt_regs *regs)
719{
720 unsigned long msr_diff;
721
722 clear_thread_flag(TIF_RESTORE_TM);
723 if (!MSR_TM_ACTIVE(regs->msr))
724 return;
725
829023df 726 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7
PM
727 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
728 if (msr_diff & MSR_FP) {
729 fp_enable();
730 load_fp_state(&current->thread.fp_state);
731 regs->msr |= current->thread.fpexc_mode;
732 }
733 if (msr_diff & MSR_VEC) {
734 vec_enable();
735 load_vr_state(&current->thread.vr_state);
736 }
737 regs->msr |= msr_diff;
738}
739
fb09692e
MN
740#else
741#define tm_recheckpoint_new_task(new)
742#define __switch_to_tm(prev)
743#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 744
152d523e
AB
745static inline void save_sprs(struct thread_struct *t)
746{
747#ifdef CONFIG_ALTIVEC
748 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
749 t->vrsave = mfspr(SPRN_VRSAVE);
750#endif
751#ifdef CONFIG_PPC_BOOK3S_64
752 if (cpu_has_feature(CPU_FTR_DSCR))
753 t->dscr = mfspr(SPRN_DSCR);
754
755 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
756 t->bescr = mfspr(SPRN_BESCR);
757 t->ebbhr = mfspr(SPRN_EBBHR);
758 t->ebbrr = mfspr(SPRN_EBBRR);
759
760 t->fscr = mfspr(SPRN_FSCR);
761
762 /*
763 * Note that the TAR is not available for use in the kernel.
764 * (To provide this, the TAR should be backed up/restored on
765 * exception entry/exit instead, and be in pt_regs. FIXME,
766 * this should be in pt_regs anyway (for debug).)
767 */
768 t->tar = mfspr(SPRN_TAR);
769 }
770#endif
771}
772
773static inline void restore_sprs(struct thread_struct *old_thread,
774 struct thread_struct *new_thread)
775{
776#ifdef CONFIG_ALTIVEC
777 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
778 old_thread->vrsave != new_thread->vrsave)
779 mtspr(SPRN_VRSAVE, new_thread->vrsave);
780#endif
781#ifdef CONFIG_PPC_BOOK3S_64
782 if (cpu_has_feature(CPU_FTR_DSCR)) {
783 u64 dscr = get_paca()->dscr_default;
784 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
785
786 if (new_thread->dscr_inherit) {
787 dscr = new_thread->dscr;
788 fscr |= FSCR_DSCR;
789 }
790
791 if (old_thread->dscr != dscr)
792 mtspr(SPRN_DSCR, dscr);
793
794 if (old_thread->fscr != fscr)
795 mtspr(SPRN_FSCR, fscr);
796 }
797
798 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
799 if (old_thread->bescr != new_thread->bescr)
800 mtspr(SPRN_BESCR, new_thread->bescr);
801 if (old_thread->ebbhr != new_thread->ebbhr)
802 mtspr(SPRN_EBBHR, new_thread->ebbhr);
803 if (old_thread->ebbrr != new_thread->ebbrr)
804 mtspr(SPRN_EBBRR, new_thread->ebbrr);
805
806 if (old_thread->tar != new_thread->tar)
807 mtspr(SPRN_TAR, new_thread->tar);
808 }
809#endif
810}
811
14cf11af
PM
812struct task_struct *__switch_to(struct task_struct *prev,
813 struct task_struct *new)
814{
815 struct thread_struct *new_thread, *old_thread;
14cf11af 816 struct task_struct *last;
d6bf29b4
PZ
817#ifdef CONFIG_PPC_BOOK3S_64
818 struct ppc64_tlb_batch *batch;
819#endif
14cf11af 820
152d523e
AB
821 new_thread = &new->thread;
822 old_thread = &current->thread;
823
7ba5fef7
MN
824 WARN_ON(!irqs_disabled());
825
152d523e
AB
826 /*
827 * We need to save SPRs before treclaim/trecheckpoint as these will
828 * change a number of them.
c2d52644 829 */
152d523e 830 save_sprs(&prev->thread);
c2d52644 831
bc2a9408
MN
832 __switch_to_tm(prev);
833
14cf11af
PM
834#ifdef CONFIG_SMP
835 /* avoid complexity of lazy save/restore of fpu
836 * by just saving it every time we switch out if
837 * this task used the fpu during the last quantum.
838 *
839 * If it tries to use the fpu again, it'll trap and
840 * reload its fp regs. So we don't have to do a restore
841 * every switch, just a save.
842 * -- Cort
843 */
844 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
845 giveup_fpu(prev);
846#ifdef CONFIG_ALTIVEC
847 /*
848 * If the previous thread used altivec in the last quantum
849 * (thus changing altivec regs) then save them.
850 * We used to check the VRSAVE register but not all apps
851 * set it, so we don't rely on it now (and in fact we need
852 * to save & restore VSCR even if VRSAVE == 0). -- paulus
853 *
854 * On SMP we always save/restore altivec regs just to avoid the
855 * complexity of changing processors.
856 * -- Cort
857 */
858 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
859 giveup_altivec(prev);
14cf11af 860#endif /* CONFIG_ALTIVEC */
ce48b210
MN
861#ifdef CONFIG_VSX
862 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
863 /* VMX and FPU registers are already save here */
864 __giveup_vsx(prev);
ce48b210 865#endif /* CONFIG_VSX */
14cf11af
PM
866#ifdef CONFIG_SPE
867 /*
868 * If the previous thread used spe in the last quantum
869 * (thus changing spe regs) then save them.
870 *
871 * On SMP we always save/restore spe regs just to avoid the
872 * complexity of changing processors.
873 */
874 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
875 giveup_spe(prev);
c0c0d996
PM
876#endif /* CONFIG_SPE */
877
878#else /* CONFIG_SMP */
879#ifdef CONFIG_ALTIVEC
880 /* Avoid the trap. On smp this this never happens since
881 * we don't set last_task_used_altivec -- Cort
882 */
883 if (new->thread.regs && last_task_used_altivec == new)
884 new->thread.regs->msr |= MSR_VEC;
885#endif /* CONFIG_ALTIVEC */
ce48b210
MN
886#ifdef CONFIG_VSX
887 if (new->thread.regs && last_task_used_vsx == new)
888 new->thread.regs->msr |= MSR_VSX;
889#endif /* CONFIG_VSX */
c0c0d996 890#ifdef CONFIG_SPE
14cf11af
PM
891 /* Avoid the trap. On smp this this never happens since
892 * we don't set last_task_used_spe
893 */
894 if (new->thread.regs && last_task_used_spe == new)
895 new->thread.regs->msr |= MSR_SPE;
896#endif /* CONFIG_SPE */
c0c0d996 897
14cf11af
PM
898#endif /* CONFIG_SMP */
899
172ae2e7 900#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 901 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 902#else
5aae8a53
P
903/*
904 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
905 * schedule DABR
906 */
907#ifndef CONFIG_HAVE_HW_BREAKPOINT
69111bac 908 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
21f58507 909 __set_breakpoint(&new->thread.hw_brk);
5aae8a53 910#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
911#endif
912
06d67d54
PM
913#ifdef CONFIG_PPC64
914 /*
915 * Collect processor utilization data per process
916 */
917 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 918 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
919 long unsigned start_tb, current_tb;
920 start_tb = old_thread->start_tb;
921 cu->current_tb = current_tb = mfspr(SPRN_PURR);
922 old_thread->accum_tb += (current_tb - start_tb);
923 new_thread->start_tb = current_tb;
924 }
d6bf29b4
PZ
925#endif /* CONFIG_PPC64 */
926
927#ifdef CONFIG_PPC_BOOK3S_64
69111bac 928 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
929 if (batch->active) {
930 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
931 if (batch->index)
932 __flush_tlb_pending(batch);
933 batch->active = 0;
934 }
935#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 936
44387e9f
AB
937 /*
938 * We can't take a PMU exception inside _switch() since there is a
939 * window where the kernel stack SLB and the kernel stack are out
940 * of sync. Hard disable here.
941 */
942 hard_irq_disable();
bc2a9408
MN
943
944 tm_recheckpoint_new_task(new);
945
14cf11af
PM
946 last = _switch(old_thread, new_thread);
947
152d523e
AB
948 /* Need to recalculate these after calling _switch() */
949 old_thread = &last->thread;
950 new_thread = &current->thread;
951
d6bf29b4
PZ
952#ifdef CONFIG_PPC_BOOK3S_64
953 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
954 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 955 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
956 batch->active = 1;
957 }
958#endif /* CONFIG_PPC_BOOK3S_64 */
959
152d523e
AB
960 restore_sprs(old_thread, new_thread);
961
14cf11af
PM
962 return last;
963}
964
06d67d54
PM
965static int instructions_to_print = 16;
966
06d67d54
PM
967static void show_instructions(struct pt_regs *regs)
968{
969 int i;
970 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
971 sizeof(int));
972
973 printk("Instruction dump:");
974
975 for (i = 0; i < instructions_to_print; i++) {
976 int instr;
977
978 if (!(i % 8))
979 printk("\n");
980
0de2d820
SW
981#if !defined(CONFIG_BOOKE)
982 /* If executing with the IMMU off, adjust pc rather
983 * than print XXXXXXXX.
984 */
985 if (!(regs->msr & MSR_IR))
986 pc = (unsigned long)phys_to_virt(pc);
987#endif
988
00ae36de 989 if (!__kernel_text_address(pc) ||
7b051f66 990 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 991 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
992 } else {
993 if (regs->nip == pc)
40c8cefa 994 printk(KERN_CONT "<%08x> ", instr);
06d67d54 995 else
40c8cefa 996 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
997 }
998
999 pc += sizeof(int);
1000 }
1001
1002 printk("\n");
1003}
1004
1005static struct regbit {
1006 unsigned long bit;
1007 const char *name;
1008} msr_bits[] = {
3bfd0c9c
AB
1009#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1010 {MSR_SF, "SF"},
1011 {MSR_HV, "HV"},
1012#endif
1013 {MSR_VEC, "VEC"},
1014 {MSR_VSX, "VSX"},
1015#ifdef CONFIG_BOOKE
1016 {MSR_CE, "CE"},
1017#endif
06d67d54
PM
1018 {MSR_EE, "EE"},
1019 {MSR_PR, "PR"},
1020 {MSR_FP, "FP"},
1021 {MSR_ME, "ME"},
3bfd0c9c 1022#ifdef CONFIG_BOOKE
1b98326b 1023 {MSR_DE, "DE"},
3bfd0c9c
AB
1024#else
1025 {MSR_SE, "SE"},
1026 {MSR_BE, "BE"},
1027#endif
06d67d54
PM
1028 {MSR_IR, "IR"},
1029 {MSR_DR, "DR"},
3bfd0c9c
AB
1030 {MSR_PMM, "PMM"},
1031#ifndef CONFIG_BOOKE
1032 {MSR_RI, "RI"},
1033 {MSR_LE, "LE"},
1034#endif
06d67d54
PM
1035 {0, NULL}
1036};
1037
1038static void printbits(unsigned long val, struct regbit *bits)
1039{
1040 const char *sep = "";
1041
1042 printk("<");
1043 for (; bits->bit; ++bits)
1044 if (val & bits->bit) {
1045 printk("%s%s", sep, bits->name);
1046 sep = ",";
1047 }
1048 printk(">");
1049}
1050
1051#ifdef CONFIG_PPC64
f6f7dde3 1052#define REG "%016lx"
06d67d54
PM
1053#define REGS_PER_LINE 4
1054#define LAST_VOLATILE 13
1055#else
f6f7dde3 1056#define REG "%08lx"
06d67d54
PM
1057#define REGS_PER_LINE 8
1058#define LAST_VOLATILE 12
1059#endif
1060
14cf11af
PM
1061void show_regs(struct pt_regs * regs)
1062{
1063 int i, trap;
1064
a43cb95d
TH
1065 show_regs_print_info(KERN_DEFAULT);
1066
06d67d54
PM
1067 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1068 regs->nip, regs->link, regs->ctr);
1069 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1070 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
1071 printk("MSR: "REG" ", regs->msr);
1072 printbits(regs->msr, msr_bits);
f6f7dde3 1073 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1074 trap = TRAP(regs);
5115a026 1075 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1076 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1077 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1078#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1079 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1080#else
9db8bcfd
AB
1081 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1082#endif
1083#ifdef CONFIG_PPC64
1084 printk("SOFTE: %ld ", regs->softe);
1085#endif
1086#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1087 if (MSR_TM_ACTIVE(regs->msr))
1088 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1089#endif
14cf11af
PM
1090
1091 for (i = 0; i < 32; i++) {
06d67d54 1092 if ((i % REGS_PER_LINE) == 0)
a2367194 1093 printk("\nGPR%02d: ", i);
06d67d54
PM
1094 printk(REG " ", regs->gpr[i]);
1095 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1096 break;
1097 }
1098 printk("\n");
1099#ifdef CONFIG_KALLSYMS
1100 /*
1101 * Lookup NIP late so we have the best change of getting the
1102 * above info out without failing
1103 */
058c78f4
BH
1104 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1105 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1106#endif
14cf11af 1107 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1108 if (!user_mode(regs))
1109 show_instructions(regs);
14cf11af
PM
1110}
1111
1112void exit_thread(void)
1113{
48abec07 1114 discard_lazy_cpu_state();
14cf11af
PM
1115}
1116
1117void flush_thread(void)
1118{
48abec07 1119 discard_lazy_cpu_state();
14cf11af 1120
e0780b72 1121#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1122 flush_ptrace_hw_breakpoint(current);
e0780b72 1123#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1124 set_debug_reg_defaults(&current->thread);
e0780b72 1125#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1126}
1127
1128void
1129release_thread(struct task_struct *t)
1130{
1131}
1132
1133/*
55ccf3fe
SS
1134 * this gets called so that we can store coprocessor state into memory and
1135 * copy the current task into the new thread.
14cf11af 1136 */
55ccf3fe 1137int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1138{
55ccf3fe
SS
1139 flush_fp_to_thread(src);
1140 flush_altivec_to_thread(src);
1141 flush_vsx_to_thread(src);
1142 flush_spe_to_thread(src);
621b5060
MN
1143 /*
1144 * Flush TM state out so we can copy it. __switch_to_tm() does this
1145 * flush but it removes the checkpointed state from the current CPU and
1146 * transitions the CPU out of TM mode. Hence we need to call
1147 * tm_recheckpoint_new_task() (on the same task) to restore the
1148 * checkpointed state back and the TM mode.
1149 */
1150 __switch_to_tm(src);
1151 tm_recheckpoint_new_task(src);
330a1eb7 1152
55ccf3fe 1153 *dst = *src;
330a1eb7
ME
1154
1155 clear_task_ebb(dst);
1156
55ccf3fe 1157 return 0;
14cf11af
PM
1158}
1159
cec15488
ME
1160static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1161{
1162#ifdef CONFIG_PPC_STD_MMU_64
1163 unsigned long sp_vsid;
1164 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1165
1166 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1167 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1168 << SLB_VSID_SHIFT_1T;
1169 else
1170 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1171 << SLB_VSID_SHIFT;
1172 sp_vsid |= SLB_VSID_KERNEL | llp;
1173 p->thread.ksp_vsid = sp_vsid;
1174#endif
1175}
1176
14cf11af
PM
1177/*
1178 * Copy a thread..
1179 */
efcac658 1180
6eca8933
AD
1181/*
1182 * Copy architecture-specific thread state
1183 */
6f2c55b8 1184int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1185 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1186{
1187 struct pt_regs *childregs, *kregs;
1188 extern void ret_from_fork(void);
58254e10
AV
1189 extern void ret_from_kernel_thread(void);
1190 void (*f)(void);
0cec6fd1 1191 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1192
14cf11af
PM
1193 /* Copy registers */
1194 sp -= sizeof(struct pt_regs);
1195 childregs = (struct pt_regs *) sp;
ab75819d 1196 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1197 /* kernel thread */
138d1ce8 1198 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1199 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1200 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1201 /* function */
1202 if (usp)
1203 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1204#ifdef CONFIG_PPC64
b5e2fc1c 1205 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1206 childregs->softe = 1;
06d67d54 1207#endif
6eca8933 1208 childregs->gpr[15] = kthread_arg;
14cf11af 1209 p->thread.regs = NULL; /* no user register state */
138d1ce8 1210 ti->flags |= _TIF_RESTOREALL;
58254e10 1211 f = ret_from_kernel_thread;
14cf11af 1212 } else {
6eca8933 1213 /* user thread */
afa86fc4 1214 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1215 CHECK_FULL_REGS(regs);
1216 *childregs = *regs;
ea516b11
AV
1217 if (usp)
1218 childregs->gpr[1] = usp;
14cf11af 1219 p->thread.regs = childregs;
58254e10 1220 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1221 if (clone_flags & CLONE_SETTLS) {
1222#ifdef CONFIG_PPC64
9904b005 1223 if (!is_32bit_task())
06d67d54
PM
1224 childregs->gpr[13] = childregs->gpr[6];
1225 else
1226#endif
1227 childregs->gpr[2] = childregs->gpr[6];
1228 }
58254e10
AV
1229
1230 f = ret_from_fork;
14cf11af 1231 }
14cf11af 1232 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1233
1234 /*
1235 * The way this works is that at some point in the future
1236 * some task will call _switch to switch to the new task.
1237 * That will pop off the stack frame created below and start
1238 * the new task running at ret_from_fork. The new task will
1239 * do some house keeping and then return from the fork or clone
1240 * system call, using the stack frame created above.
1241 */
af945cf4 1242 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1243 sp -= sizeof(struct pt_regs);
1244 kregs = (struct pt_regs *) sp;
1245 sp -= STACK_FRAME_OVERHEAD;
1246 p->thread.ksp = sp;
cbc9565e 1247#ifdef CONFIG_PPC32
85218827
KG
1248 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1249 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1250#endif
28d170ab
ON
1251#ifdef CONFIG_HAVE_HW_BREAKPOINT
1252 p->thread.ptrace_bps[0] = NULL;
1253#endif
1254
18461960
PM
1255 p->thread.fp_save_area = NULL;
1256#ifdef CONFIG_ALTIVEC
1257 p->thread.vr_save_area = NULL;
1258#endif
1259
cec15488
ME
1260 setup_ksp_vsid(p, sp);
1261
efcac658
AK
1262#ifdef CONFIG_PPC64
1263 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1264 p->thread.dscr_inherit = current->thread.dscr_inherit;
1265 p->thread.dscr = current->thread.dscr;
efcac658 1266 }
92779245
HM
1267 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1268 p->thread.ppr = INIT_PPR;
efcac658 1269#endif
7cedd601 1270 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1271 return 0;
1272}
1273
1274/*
1275 * Set up a thread for executing a new program
1276 */
06d67d54 1277void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1278{
90eac727
ME
1279#ifdef CONFIG_PPC64
1280 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1281#endif
1282
06d67d54
PM
1283 /*
1284 * If we exec out of a kernel thread then thread.regs will not be
1285 * set. Do it now.
1286 */
1287 if (!current->thread.regs) {
0cec6fd1
AV
1288 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1289 current->thread.regs = regs - 1;
06d67d54
PM
1290 }
1291
14cf11af
PM
1292 memset(regs->gpr, 0, sizeof(regs->gpr));
1293 regs->ctr = 0;
1294 regs->link = 0;
1295 regs->xer = 0;
1296 regs->ccr = 0;
14cf11af 1297 regs->gpr[1] = sp;
06d67d54 1298
474f8196
RM
1299 /*
1300 * We have just cleared all the nonvolatile GPRs, so make
1301 * FULL_REGS(regs) return true. This is necessary to allow
1302 * ptrace to examine the thread immediately after exec.
1303 */
1304 regs->trap &= ~1UL;
1305
06d67d54
PM
1306#ifdef CONFIG_PPC32
1307 regs->mq = 0;
1308 regs->nip = start;
14cf11af 1309 regs->msr = MSR_USER;
06d67d54 1310#else
9904b005 1311 if (!is_32bit_task()) {
94af3abf 1312 unsigned long entry;
06d67d54 1313
94af3abf
RR
1314 if (is_elf2_task()) {
1315 /* Look ma, no function descriptors! */
1316 entry = start;
06d67d54 1317
94af3abf
RR
1318 /*
1319 * Ulrich says:
1320 * The latest iteration of the ABI requires that when
1321 * calling a function (at its global entry point),
1322 * the caller must ensure r12 holds the entry point
1323 * address (so that the function can quickly
1324 * establish addressability).
1325 */
1326 regs->gpr[12] = start;
1327 /* Make sure that's restored on entry to userspace. */
1328 set_thread_flag(TIF_RESTOREALL);
1329 } else {
1330 unsigned long toc;
1331
1332 /* start is a relocated pointer to the function
1333 * descriptor for the elf _start routine. The first
1334 * entry in the function descriptor is the entry
1335 * address of _start and the second entry is the TOC
1336 * value we need to use.
1337 */
1338 __get_user(entry, (unsigned long __user *)start);
1339 __get_user(toc, (unsigned long __user *)start+1);
1340
1341 /* Check whether the e_entry function descriptor entries
1342 * need to be relocated before we can use them.
1343 */
1344 if (load_addr != 0) {
1345 entry += load_addr;
1346 toc += load_addr;
1347 }
1348 regs->gpr[2] = toc;
06d67d54
PM
1349 }
1350 regs->nip = entry;
06d67d54 1351 regs->msr = MSR_USER64;
d4bf9a78
SR
1352 } else {
1353 regs->nip = start;
1354 regs->gpr[2] = 0;
1355 regs->msr = MSR_USER32;
06d67d54
PM
1356 }
1357#endif
48abec07 1358 discard_lazy_cpu_state();
ce48b210
MN
1359#ifdef CONFIG_VSX
1360 current->thread.used_vsr = 0;
1361#endif
de79f7b9 1362 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1363 current->thread.fp_save_area = NULL;
14cf11af 1364#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1365 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1366 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1367 current->thread.vr_save_area = NULL;
14cf11af
PM
1368 current->thread.vrsave = 0;
1369 current->thread.used_vr = 0;
1370#endif /* CONFIG_ALTIVEC */
1371#ifdef CONFIG_SPE
1372 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1373 current->thread.acc = 0;
1374 current->thread.spefscr = 0;
1375 current->thread.used_spe = 0;
1376#endif /* CONFIG_SPE */
bc2a9408
MN
1377#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1378 if (cpu_has_feature(CPU_FTR_TM))
1379 regs->msr |= MSR_TM;
1380 current->thread.tm_tfhar = 0;
1381 current->thread.tm_texasr = 0;
1382 current->thread.tm_tfiar = 0;
1383#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1384}
e1802b06 1385EXPORT_SYMBOL(start_thread);
14cf11af
PM
1386
1387#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1388 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1389
1390int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1391{
1392 struct pt_regs *regs = tsk->thread.regs;
1393
1394 /* This is a bit hairy. If we are an SPE enabled processor
1395 * (have embedded fp) we store the IEEE exception enable flags in
1396 * fpexc_mode. fpexc_mode is also used for setting FP exception
1397 * mode (asyn, precise, disabled) for 'Classic' FP. */
1398 if (val & PR_FP_EXC_SW_ENABLE) {
1399#ifdef CONFIG_SPE
5e14d21e 1400 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1401 /*
1402 * When the sticky exception bits are set
1403 * directly by userspace, it must call prctl
1404 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1405 * in the existing prctl settings) or
1406 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1407 * the bits being set). <fenv.h> functions
1408 * saving and restoring the whole
1409 * floating-point environment need to do so
1410 * anyway to restore the prctl settings from
1411 * the saved environment.
1412 */
1413 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1414 tsk->thread.fpexc_mode = val &
1415 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1416 return 0;
1417 } else {
1418 return -EINVAL;
1419 }
14cf11af
PM
1420#else
1421 return -EINVAL;
1422#endif
14cf11af 1423 }
06d67d54
PM
1424
1425 /* on a CONFIG_SPE this does not hurt us. The bits that
1426 * __pack_fe01 use do not overlap with bits used for
1427 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1428 * on CONFIG_SPE implementations are reserved so writing to
1429 * them does not change anything */
1430 if (val > PR_FP_EXC_PRECISE)
1431 return -EINVAL;
1432 tsk->thread.fpexc_mode = __pack_fe01(val);
1433 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1434 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1435 | tsk->thread.fpexc_mode;
14cf11af
PM
1436 return 0;
1437}
1438
1439int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1440{
1441 unsigned int val;
1442
1443 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1444#ifdef CONFIG_SPE
640e9225
JM
1445 if (cpu_has_feature(CPU_FTR_SPE)) {
1446 /*
1447 * When the sticky exception bits are set
1448 * directly by userspace, it must call prctl
1449 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1450 * in the existing prctl settings) or
1451 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1452 * the bits being set). <fenv.h> functions
1453 * saving and restoring the whole
1454 * floating-point environment need to do so
1455 * anyway to restore the prctl settings from
1456 * the saved environment.
1457 */
1458 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1459 val = tsk->thread.fpexc_mode;
640e9225 1460 } else
5e14d21e 1461 return -EINVAL;
14cf11af
PM
1462#else
1463 return -EINVAL;
1464#endif
1465 else
1466 val = __unpack_fe01(tsk->thread.fpexc_mode);
1467 return put_user(val, (unsigned int __user *) adr);
1468}
1469
fab5db97
PM
1470int set_endian(struct task_struct *tsk, unsigned int val)
1471{
1472 struct pt_regs *regs = tsk->thread.regs;
1473
1474 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1475 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1476 return -EINVAL;
1477
1478 if (regs == NULL)
1479 return -EINVAL;
1480
1481 if (val == PR_ENDIAN_BIG)
1482 regs->msr &= ~MSR_LE;
1483 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1484 regs->msr |= MSR_LE;
1485 else
1486 return -EINVAL;
1487
1488 return 0;
1489}
1490
1491int get_endian(struct task_struct *tsk, unsigned long adr)
1492{
1493 struct pt_regs *regs = tsk->thread.regs;
1494 unsigned int val;
1495
1496 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1497 !cpu_has_feature(CPU_FTR_REAL_LE))
1498 return -EINVAL;
1499
1500 if (regs == NULL)
1501 return -EINVAL;
1502
1503 if (regs->msr & MSR_LE) {
1504 if (cpu_has_feature(CPU_FTR_REAL_LE))
1505 val = PR_ENDIAN_LITTLE;
1506 else
1507 val = PR_ENDIAN_PPC_LITTLE;
1508 } else
1509 val = PR_ENDIAN_BIG;
1510
1511 return put_user(val, (unsigned int __user *)adr);
1512}
1513
e9370ae1
PM
1514int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1515{
1516 tsk->thread.align_ctl = val;
1517 return 0;
1518}
1519
1520int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1521{
1522 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1523}
1524
bb72c481
PM
1525static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1526 unsigned long nbytes)
1527{
1528 unsigned long stack_page;
1529 unsigned long cpu = task_cpu(p);
1530
1531 /*
1532 * Avoid crashing if the stack has overflowed and corrupted
1533 * task_cpu(p), which is in the thread_info struct.
1534 */
1535 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1536 stack_page = (unsigned long) hardirq_ctx[cpu];
1537 if (sp >= stack_page + sizeof(struct thread_struct)
1538 && sp <= stack_page + THREAD_SIZE - nbytes)
1539 return 1;
1540
1541 stack_page = (unsigned long) softirq_ctx[cpu];
1542 if (sp >= stack_page + sizeof(struct thread_struct)
1543 && sp <= stack_page + THREAD_SIZE - nbytes)
1544 return 1;
1545 }
1546 return 0;
1547}
1548
2f25194d 1549int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1550 unsigned long nbytes)
1551{
0cec6fd1 1552 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1553
1554 if (sp >= stack_page + sizeof(struct thread_struct)
1555 && sp <= stack_page + THREAD_SIZE - nbytes)
1556 return 1;
1557
bb72c481 1558 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1559}
1560
2f25194d
AB
1561EXPORT_SYMBOL(validate_sp);
1562
14cf11af
PM
1563unsigned long get_wchan(struct task_struct *p)
1564{
1565 unsigned long ip, sp;
1566 int count = 0;
1567
1568 if (!p || p == current || p->state == TASK_RUNNING)
1569 return 0;
1570
1571 sp = p->thread.ksp;
ec2b36b9 1572 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1573 return 0;
1574
1575 do {
1576 sp = *(unsigned long *)sp;
ec2b36b9 1577 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1578 return 0;
1579 if (count > 0) {
ec2b36b9 1580 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1581 if (!in_sched_functions(ip))
1582 return ip;
1583 }
1584 } while (count++ < 16);
1585 return 0;
1586}
06d67d54 1587
c4d04be1 1588static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1589
1590void show_stack(struct task_struct *tsk, unsigned long *stack)
1591{
1592 unsigned long sp, ip, lr, newsp;
1593 int count = 0;
1594 int firstframe = 1;
6794c782
SR
1595#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1596 int curr_frame = current->curr_ret_stack;
1597 extern void return_to_handler(void);
9135c3cc 1598 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1599#endif
06d67d54
PM
1600
1601 sp = (unsigned long) stack;
1602 if (tsk == NULL)
1603 tsk = current;
1604 if (sp == 0) {
1605 if (tsk == current)
acf620ec 1606 sp = current_stack_pointer();
06d67d54
PM
1607 else
1608 sp = tsk->thread.ksp;
1609 }
1610
1611 lr = 0;
1612 printk("Call Trace:\n");
1613 do {
ec2b36b9 1614 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1615 return;
1616
1617 stack = (unsigned long *) sp;
1618 newsp = stack[0];
ec2b36b9 1619 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1620 if (!firstframe || ip != lr) {
058c78f4 1621 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1622#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1623 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1624 printk(" (%pS)",
1625 (void *)current->ret_stack[curr_frame].ret);
1626 curr_frame--;
1627 }
1628#endif
06d67d54
PM
1629 if (firstframe)
1630 printk(" (unreliable)");
1631 printk("\n");
1632 }
1633 firstframe = 0;
1634
1635 /*
1636 * See if this is an exception frame.
1637 * We look for the "regshere" marker in the current frame.
1638 */
ec2b36b9
BH
1639 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1640 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1641 struct pt_regs *regs = (struct pt_regs *)
1642 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1643 lr = regs->link;
9be9be2e 1644 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1645 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1646 firstframe = 1;
1647 }
1648
1649 sp = newsp;
1650 } while (count++ < kstack_depth_to_print);
1651}
1652
cb2c9b27 1653#ifdef CONFIG_PPC64
fe1952fc 1654/* Called with hard IRQs off */
0e37739b 1655void notrace __ppc64_runlatch_on(void)
cb2c9b27 1656{
fe1952fc 1657 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1658 unsigned long ctrl;
1659
fe1952fc
BH
1660 ctrl = mfspr(SPRN_CTRLF);
1661 ctrl |= CTRL_RUNLATCH;
1662 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1663
fae2e0fb 1664 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1665}
1666
fe1952fc 1667/* Called with hard IRQs off */
0e37739b 1668void notrace __ppc64_runlatch_off(void)
cb2c9b27 1669{
fe1952fc 1670 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1671 unsigned long ctrl;
1672
fae2e0fb 1673 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1674
4138d653
AB
1675 ctrl = mfspr(SPRN_CTRLF);
1676 ctrl &= ~CTRL_RUNLATCH;
1677 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1678}
fe1952fc 1679#endif /* CONFIG_PPC64 */
f6a61680 1680
d839088c
AB
1681unsigned long arch_align_stack(unsigned long sp)
1682{
1683 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1684 sp -= get_random_int() & ~PAGE_MASK;
1685 return sp & ~0xf;
1686}
912f9ee2
AB
1687
1688static inline unsigned long brk_rnd(void)
1689{
1690 unsigned long rnd = 0;
1691
1692 /* 8MB for 32bit, 1GB for 64bit */
1693 if (is_32bit_task())
1694 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1695 else
1696 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1697
1698 return rnd << PAGE_SHIFT;
1699}
1700
1701unsigned long arch_randomize_brk(struct mm_struct *mm)
1702{
8bbde7a7
AB
1703 unsigned long base = mm->brk;
1704 unsigned long ret;
1705
ce7a35c7 1706#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1707 /*
1708 * If we are using 1TB segments and we are allowed to randomise
1709 * the heap, we can put it above 1TB so it is backed by a 1TB
1710 * segment. Otherwise the heap will be in the bottom 1TB
1711 * which always uses 256MB segments and this may result in a
1712 * performance penalty.
1713 */
1714 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1715 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1716#endif
1717
1718 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1719
1720 if (ret < mm->brk)
1721 return mm->brk;
1722
1723 return ret;
1724}
501cb16d 1725