]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Fix missing newline before {
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
14cf11af
PM
45
46#include <asm/pgtable.h>
14cf11af
PM
47#include <asm/io.h>
48#include <asm/processor.h>
49#include <asm/mmu.h>
50#include <asm/prom.h>
76032de8 51#include <asm/machdep.h>
c6622f63 52#include <asm/time.h>
ae3a197e 53#include <asm/runlatch.h>
a7f31841 54#include <asm/syscalls.h>
ae3a197e 55#include <asm/switch_to.h>
fb09692e 56#include <asm/tm.h>
ae3a197e 57#include <asm/debug.h>
06d67d54
PM
58#ifdef CONFIG_PPC64
59#include <asm/firmware.h>
06d67d54 60#endif
7cedd601 61#include <asm/code-patching.h>
7f92bc56 62#include <asm/exec.h>
5d31a96e 63#include <asm/livepatch.h>
b92a226e 64#include <asm/cpu_has_feature.h>
0545d543 65#include <asm/asm-prototypes.h>
5d31a96e 66
d6a61bfc
LM
67#include <linux/kprobes.h>
68#include <linux/kdebug.h>
14cf11af 69
8b3c34cf
MN
70/* Transactional Memory debug */
71#ifdef TM_DEBUG_SW
72#define TM_DEBUG(x...) printk(KERN_INFO x)
73#else
74#define TM_DEBUG(x...) do { } while(0)
75#endif
76
14cf11af
PM
77extern unsigned long _get_SP(void);
78
d31626f7 79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 80static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
81{
82 /*
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
87 */
88 if (tsk == current && tsk->thread.regs &&
89 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
92 set_thread_flag(TIF_RESTORE_TM);
93 }
d31626f7 94}
dc16b553
CB
95
96static inline bool msr_tm_active(unsigned long msr)
97{
98 return MSR_TM_ACTIVE(msr);
99}
d31626f7 100#else
dc16b553 101static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 102static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
103#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
3eb5d588
AB
105bool strict_msr_control;
106EXPORT_SYMBOL(strict_msr_control);
107
108static int __init enable_strict_msr_control(char *str)
109{
110 strict_msr_control = true;
111 pr_info("Enabling strict facility control\n");
112
113 return 0;
114}
115early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
3cee070a 117unsigned long msr_check_and_set(unsigned long bits)
98da581e 118{
a0e72cf1
AB
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
98da581e 121
a0e72cf1 122 newmsr = oldmsr | bits;
98da581e 123
98da581e 124#ifdef CONFIG_VSX
a0e72cf1 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
126 newmsr |= MSR_VSX;
127#endif
a0e72cf1 128
98da581e
AB
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
3cee070a
CB
131
132 return newmsr;
a0e72cf1 133}
98da581e 134
3eb5d588 135void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142#ifdef CONFIG_VSX
143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 newmsr &= ~MSR_VSX;
145#endif
146
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
149}
3eb5d588 150EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
151
152#ifdef CONFIG_PPC_FPU
8792468d
CB
153void __giveup_fpu(struct task_struct *tsk)
154{
8eb98037
AB
155 unsigned long msr;
156
8792468d 157 save_fpu(tsk);
8eb98037
AB
158 msr = tsk->thread.regs->msr;
159 msr &= ~MSR_FP;
8792468d
CB
160#ifdef CONFIG_VSX
161 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 162 msr &= ~MSR_VSX;
8792468d 163#endif
8eb98037 164 tsk->thread.regs->msr = msr;
8792468d
CB
165}
166
a0e72cf1
AB
167void giveup_fpu(struct task_struct *tsk)
168{
169 check_if_tm_restore_required(tsk);
170
171 msr_check_and_set(MSR_FP);
98da581e 172 __giveup_fpu(tsk);
a0e72cf1 173 msr_check_and_clear(MSR_FP);
98da581e
AB
174}
175EXPORT_SYMBOL(giveup_fpu);
176
14cf11af
PM
177/*
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
180 */
181void flush_fp_to_thread(struct task_struct *tsk)
182{
183 if (tsk->thread.regs) {
184 /*
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
191 */
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
194 /*
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
af1bbc3d 197 * the FP register state on context switch,
14cf11af
PM
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
200 */
201 BUG_ON(tsk != current);
b86fd2bd 202 giveup_fpu(tsk);
14cf11af
PM
203 }
204 preempt_enable();
205 }
206}
de56a948 207EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
208
209void enable_kernel_fp(void)
210{
e909fb83
CB
211 unsigned long cpumsr;
212
14cf11af
PM
213 WARN_ON(preemptible());
214
e909fb83 215 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 216
d64d02ce
AB
217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 check_if_tm_restore_required(current);
e909fb83
CB
219 /*
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
225 */
226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 return;
a0e72cf1 228 __giveup_fpu(current);
d64d02ce 229 }
14cf11af
PM
230}
231EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 232
6a303833
BH
233static int restore_fp(struct task_struct *tsk)
234{
dc16b553 235 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
236 load_fp_state(&current->thread.fp_state);
237 current->thread.load_fp++;
238 return 1;
239 }
240 return 0;
241}
242#else
243static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 244#endif /* CONFIG_PPC_FPU */
14cf11af 245
14cf11af 246#ifdef CONFIG_ALTIVEC
70fe3d98
CB
247#define loadvec(thr) ((thr).load_vec)
248
6f515d84
CB
249static void __giveup_altivec(struct task_struct *tsk)
250{
8eb98037
AB
251 unsigned long msr;
252
6f515d84 253 save_altivec(tsk);
8eb98037
AB
254 msr = tsk->thread.regs->msr;
255 msr &= ~MSR_VEC;
6f515d84
CB
256#ifdef CONFIG_VSX
257 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 258 msr &= ~MSR_VSX;
6f515d84 259#endif
8eb98037 260 tsk->thread.regs->msr = msr;
6f515d84
CB
261}
262
98da581e
AB
263void giveup_altivec(struct task_struct *tsk)
264{
98da581e
AB
265 check_if_tm_restore_required(tsk);
266
a0e72cf1 267 msr_check_and_set(MSR_VEC);
98da581e 268 __giveup_altivec(tsk);
a0e72cf1 269 msr_check_and_clear(MSR_VEC);
98da581e
AB
270}
271EXPORT_SYMBOL(giveup_altivec);
272
14cf11af
PM
273void enable_kernel_altivec(void)
274{
e909fb83
CB
275 unsigned long cpumsr;
276
14cf11af
PM
277 WARN_ON(preemptible());
278
e909fb83 279 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 280
d64d02ce
AB
281 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
282 check_if_tm_restore_required(current);
e909fb83
CB
283 /*
284 * If a thread has already been reclaimed then the
285 * checkpointed registers are on the CPU but have definitely
286 * been saved by the reclaim code. Don't need to and *cannot*
287 * giveup as this would save to the 'live' structure not the
288 * checkpointed structure.
289 */
290 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
291 return;
a0e72cf1 292 __giveup_altivec(current);
d64d02ce 293 }
14cf11af
PM
294}
295EXPORT_SYMBOL(enable_kernel_altivec);
296
297/*
298 * Make sure the VMX/Altivec register state in the
299 * the thread_struct is up to date for task tsk.
300 */
301void flush_altivec_to_thread(struct task_struct *tsk)
302{
303 if (tsk->thread.regs) {
304 preempt_disable();
305 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 306 BUG_ON(tsk != current);
b86fd2bd 307 giveup_altivec(tsk);
14cf11af
PM
308 }
309 preempt_enable();
310 }
311}
de56a948 312EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
313
314static int restore_altivec(struct task_struct *tsk)
315{
dc16b553
CB
316 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
317 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
318 load_vr_state(&tsk->thread.vr_state);
319 tsk->thread.used_vr = 1;
320 tsk->thread.load_vec++;
321
322 return 1;
323 }
324 return 0;
325}
326#else
327#define loadvec(thr) 0
328static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
329#endif /* CONFIG_ALTIVEC */
330
ce48b210 331#ifdef CONFIG_VSX
bf6a4d5b 332static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 333{
a7d623d4
AB
334 if (tsk->thread.regs->msr & MSR_FP)
335 __giveup_fpu(tsk);
336 if (tsk->thread.regs->msr & MSR_VEC)
337 __giveup_altivec(tsk);
bf6a4d5b
CB
338 tsk->thread.regs->msr &= ~MSR_VSX;
339}
340
341static void giveup_vsx(struct task_struct *tsk)
342{
343 check_if_tm_restore_required(tsk);
344
345 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 346 __giveup_vsx(tsk);
a0e72cf1 347 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 348}
bf6a4d5b
CB
349
350static void save_vsx(struct task_struct *tsk)
351{
352 if (tsk->thread.regs->msr & MSR_FP)
353 save_fpu(tsk);
354 if (tsk->thread.regs->msr & MSR_VEC)
355 save_altivec(tsk);
356}
a7d623d4 357
ce48b210
MN
358void enable_kernel_vsx(void)
359{
e909fb83
CB
360 unsigned long cpumsr;
361
ce48b210
MN
362 WARN_ON(preemptible());
363
e909fb83 364 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 365
a0e72cf1 366 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 367 check_if_tm_restore_required(current);
e909fb83
CB
368 /*
369 * If a thread has already been reclaimed then the
370 * checkpointed registers are on the CPU but have definitely
371 * been saved by the reclaim code. Don't need to and *cannot*
372 * giveup as this would save to the 'live' structure not the
373 * checkpointed structure.
374 */
375 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
376 return;
a0e72cf1
AB
377 if (current->thread.regs->msr & MSR_FP)
378 __giveup_fpu(current);
379 if (current->thread.regs->msr & MSR_VEC)
380 __giveup_altivec(current);
381 __giveup_vsx(current);
611b0e5c 382 }
ce48b210
MN
383}
384EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
385
386void flush_vsx_to_thread(struct task_struct *tsk)
387{
388 if (tsk->thread.regs) {
389 preempt_disable();
390 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 391 BUG_ON(tsk != current);
ce48b210
MN
392 giveup_vsx(tsk);
393 }
394 preempt_enable();
395 }
396}
de56a948 397EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
398
399static int restore_vsx(struct task_struct *tsk)
400{
401 if (cpu_has_feature(CPU_FTR_VSX)) {
402 tsk->thread.used_vsr = 1;
403 return 1;
404 }
405
406 return 0;
407}
408#else
409static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 410static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
411#endif /* CONFIG_VSX */
412
14cf11af 413#ifdef CONFIG_SPE
98da581e
AB
414void giveup_spe(struct task_struct *tsk)
415{
98da581e
AB
416 check_if_tm_restore_required(tsk);
417
a0e72cf1 418 msr_check_and_set(MSR_SPE);
98da581e 419 __giveup_spe(tsk);
a0e72cf1 420 msr_check_and_clear(MSR_SPE);
98da581e
AB
421}
422EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
423
424void enable_kernel_spe(void)
425{
426 WARN_ON(preemptible());
427
a0e72cf1 428 msr_check_and_set(MSR_SPE);
611b0e5c 429
d64d02ce
AB
430 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
431 check_if_tm_restore_required(current);
a0e72cf1 432 __giveup_spe(current);
d64d02ce 433 }
14cf11af
PM
434}
435EXPORT_SYMBOL(enable_kernel_spe);
436
437void flush_spe_to_thread(struct task_struct *tsk)
438{
439 if (tsk->thread.regs) {
440 preempt_disable();
441 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 442 BUG_ON(tsk != current);
685659ee 443 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 444 giveup_spe(tsk);
14cf11af
PM
445 }
446 preempt_enable();
447 }
448}
14cf11af
PM
449#endif /* CONFIG_SPE */
450
c2085059
AB
451static unsigned long msr_all_available;
452
453static int __init init_msr_all_available(void)
454{
455#ifdef CONFIG_PPC_FPU
456 msr_all_available |= MSR_FP;
457#endif
458#ifdef CONFIG_ALTIVEC
459 if (cpu_has_feature(CPU_FTR_ALTIVEC))
460 msr_all_available |= MSR_VEC;
461#endif
462#ifdef CONFIG_VSX
463 if (cpu_has_feature(CPU_FTR_VSX))
464 msr_all_available |= MSR_VSX;
465#endif
466#ifdef CONFIG_SPE
467 if (cpu_has_feature(CPU_FTR_SPE))
468 msr_all_available |= MSR_SPE;
469#endif
470
471 return 0;
472}
473early_initcall(init_msr_all_available);
474
475void giveup_all(struct task_struct *tsk)
476{
477 unsigned long usermsr;
478
479 if (!tsk->thread.regs)
480 return;
481
482 usermsr = tsk->thread.regs->msr;
483
484 if ((usermsr & msr_all_available) == 0)
485 return;
486
487 msr_check_and_set(msr_all_available);
b0f16b46 488 check_if_tm_restore_required(tsk);
c2085059
AB
489
490#ifdef CONFIG_PPC_FPU
491 if (usermsr & MSR_FP)
492 __giveup_fpu(tsk);
493#endif
494#ifdef CONFIG_ALTIVEC
495 if (usermsr & MSR_VEC)
496 __giveup_altivec(tsk);
497#endif
498#ifdef CONFIG_VSX
499 if (usermsr & MSR_VSX)
500 __giveup_vsx(tsk);
501#endif
502#ifdef CONFIG_SPE
503 if (usermsr & MSR_SPE)
504 __giveup_spe(tsk);
505#endif
506
507 msr_check_and_clear(msr_all_available);
508}
509EXPORT_SYMBOL(giveup_all);
510
70fe3d98
CB
511void restore_math(struct pt_regs *regs)
512{
513 unsigned long msr;
514
bc4f65e4
NP
515 /*
516 * Syscall exit makes a similar initial check before branching
517 * to restore_math. Keep them in synch.
518 */
dc16b553
CB
519 if (!msr_tm_active(regs->msr) &&
520 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
521 return;
522
523 msr = regs->msr;
524 msr_check_and_set(msr_all_available);
525
526 /*
527 * Only reload if the bit is not set in the user MSR, the bit BEING set
528 * indicates that the registers are hot
529 */
530 if ((!(msr & MSR_FP)) && restore_fp(current))
531 msr |= MSR_FP | current->thread.fpexc_mode;
532
533 if ((!(msr & MSR_VEC)) && restore_altivec(current))
534 msr |= MSR_VEC;
535
536 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
537 restore_vsx(current)) {
538 msr |= MSR_VSX;
539 }
540
541 msr_check_and_clear(msr_all_available);
542
543 regs->msr = msr;
544}
545
de2a20aa
CB
546void save_all(struct task_struct *tsk)
547{
548 unsigned long usermsr;
549
550 if (!tsk->thread.regs)
551 return;
552
553 usermsr = tsk->thread.regs->msr;
554
555 if ((usermsr & msr_all_available) == 0)
556 return;
557
558 msr_check_and_set(msr_all_available);
559
bf6a4d5b
CB
560 /*
561 * Saving the way the register space is in hardware, save_vsx boils
562 * down to a save_fpu() and save_altivec()
563 */
564 if (usermsr & MSR_VSX) {
565 save_vsx(tsk);
566 } else {
567 if (usermsr & MSR_FP)
568 save_fpu(tsk);
569
570 if (usermsr & MSR_VEC)
571 save_altivec(tsk);
572 }
de2a20aa
CB
573
574 if (usermsr & MSR_SPE)
575 __giveup_spe(tsk);
576
577 msr_check_and_clear(msr_all_available);
578}
579
579e633e
AB
580void flush_all_to_thread(struct task_struct *tsk)
581{
582 if (tsk->thread.regs) {
583 preempt_disable();
584 BUG_ON(tsk != current);
de2a20aa 585 save_all(tsk);
579e633e
AB
586
587#ifdef CONFIG_SPE
588 if (tsk->thread.regs->msr & MSR_SPE)
589 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
590#endif
591
592 preempt_enable();
593 }
594}
595EXPORT_SYMBOL(flush_all_to_thread);
596
3bffb652
DK
597#ifdef CONFIG_PPC_ADV_DEBUG_REGS
598void do_send_trap(struct pt_regs *regs, unsigned long address,
599 unsigned long error_code, int signal_code, int breakpt)
600{
601 siginfo_t info;
602
41ab5266 603 current->thread.trap_nr = signal_code;
3bffb652
DK
604 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
605 11, SIGSEGV) == NOTIFY_STOP)
606 return;
607
608 /* Deliver the signal to userspace */
609 info.si_signo = SIGTRAP;
610 info.si_errno = breakpt; /* breakpoint or watchpoint id */
611 info.si_code = signal_code;
612 info.si_addr = (void __user *)address;
613 force_sig_info(SIGTRAP, &info, current);
614}
615#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 616void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
617 unsigned long error_code)
618{
619 siginfo_t info;
620
41ab5266 621 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 11, SIGSEGV) == NOTIFY_STOP)
624 return;
625
9422de3e 626 if (debugger_break_match(regs))
d6a61bfc
LM
627 return;
628
9422de3e
MN
629 /* Clear the breakpoint */
630 hw_breakpoint_disable();
d6a61bfc
LM
631
632 /* Deliver the signal to userspace */
633 info.si_signo = SIGTRAP;
634 info.si_errno = 0;
635 info.si_code = TRAP_HWBKPT;
636 info.si_addr = (void __user *)address;
637 force_sig_info(SIGTRAP, &info, current);
638}
3bffb652 639#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 640
9422de3e 641static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 642
3bffb652
DK
643#ifdef CONFIG_PPC_ADV_DEBUG_REGS
644/*
645 * Set the debug registers back to their default "safe" values.
646 */
647static void set_debug_reg_defaults(struct thread_struct *thread)
648{
51ae8d4a 649 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 650#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 651 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 652#endif
51ae8d4a 653 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 654#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 655 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 656#endif
51ae8d4a 657 thread->debug.dbcr0 = 0;
3bffb652
DK
658#ifdef CONFIG_BOOKE
659 /*
660 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
661 */
51ae8d4a 662 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
663 DBCR1_IAC3US | DBCR1_IAC4US;
664 /*
665 * Force Data Address Compare User/Supervisor bits to be User-only
666 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
667 */
51ae8d4a 668 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 669#else
51ae8d4a 670 thread->debug.dbcr1 = 0;
3bffb652
DK
671#endif
672}
673
f5f97210 674static void prime_debug_regs(struct debug_reg *debug)
3bffb652 675{
6cecf76b
SW
676 /*
677 * We could have inherited MSR_DE from userspace, since
678 * it doesn't get cleared on exception entry. Make sure
679 * MSR_DE is clear before we enable any debug events.
680 */
681 mtmsr(mfmsr() & ~MSR_DE);
682
f5f97210
SW
683 mtspr(SPRN_IAC1, debug->iac1);
684 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 685#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
686 mtspr(SPRN_IAC3, debug->iac3);
687 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 688#endif
f5f97210
SW
689 mtspr(SPRN_DAC1, debug->dac1);
690 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 691#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
692 mtspr(SPRN_DVC1, debug->dvc1);
693 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 694#endif
f5f97210
SW
695 mtspr(SPRN_DBCR0, debug->dbcr0);
696 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 697#ifdef CONFIG_BOOKE
f5f97210 698 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
699#endif
700}
701/*
702 * Unless neither the old or new thread are making use of the
703 * debug registers, set the debug registers from the values
704 * stored in the new thread.
705 */
f5f97210 706void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 707{
51ae8d4a 708 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
709 || (new_debug->dbcr0 & DBCR0_IDM))
710 prime_debug_regs(new_debug);
3bffb652 711}
3743c9b8 712EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 713#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 714#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
715static void set_debug_reg_defaults(struct thread_struct *thread)
716{
9422de3e
MN
717 thread->hw_brk.address = 0;
718 thread->hw_brk.type = 0;
b9818c33 719 set_breakpoint(&thread->hw_brk);
3bffb652 720}
e0780b72 721#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
722#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
723
172ae2e7 724#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
725static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
726{
d6a61bfc 727 mtspr(SPRN_DAC1, dabr);
221c185d
DK
728#ifdef CONFIG_PPC_47x
729 isync();
730#endif
9422de3e
MN
731 return 0;
732}
c6c9eace 733#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
734static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735{
c6c9eace 736 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
737 if (cpu_has_feature(CPU_FTR_DABRX))
738 mtspr(SPRN_DABRX, dabrx);
cab0af98 739 return 0;
14cf11af 740}
4ad8622d
CL
741#elif defined(CONFIG_PPC_8xx)
742static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743{
744 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
745 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
746 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
747
748 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
749 lctrl1 |= 0xa0000;
750 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
751 lctrl1 |= 0xf0000;
752 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
753 lctrl2 = 0;
754
755 mtspr(SPRN_LCTRL2, 0);
756 mtspr(SPRN_CMPE, addr);
757 mtspr(SPRN_CMPF, addr + 4);
758 mtspr(SPRN_LCTRL1, lctrl1);
759 mtspr(SPRN_LCTRL2, lctrl2);
760
761 return 0;
762}
9422de3e
MN
763#else
764static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
765{
766 return -EINVAL;
767}
768#endif
769
770static inline int set_dabr(struct arch_hw_breakpoint *brk)
771{
772 unsigned long dabr, dabrx;
773
774 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
775 dabrx = ((brk->type >> 3) & 0x7);
776
777 if (ppc_md.set_dabr)
778 return ppc_md.set_dabr(dabr, dabrx);
779
780 return __set_dabr(dabr, dabrx);
781}
782
bf99de36
MN
783static inline int set_dawr(struct arch_hw_breakpoint *brk)
784{
05d694ea 785 unsigned long dawr, dawrx, mrd;
bf99de36
MN
786
787 dawr = brk->address;
788
789 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
790 << (63 - 58); //* read/write bits */
791 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
792 << (63 - 59); //* translate */
793 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
794 >> 3; //* PRIM bits */
05d694ea
MN
795 /* dawr length is stored in field MDR bits 48:53. Matches range in
796 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
797 0b111111=64DW.
798 brk->len is in bytes.
799 This aligns up to double word size, shifts and does the bias.
800 */
801 mrd = ((brk->len + 7) >> 3) - 1;
802 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
803
804 if (ppc_md.set_dawr)
805 return ppc_md.set_dawr(dawr, dawrx);
806 mtspr(SPRN_DAWR, dawr);
807 mtspr(SPRN_DAWRX, dawrx);
808 return 0;
809}
810
21f58507 811void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 812{
69111bac 813 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 814
bf99de36 815 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
816 set_dawr(brk);
817 else
818 set_dabr(brk);
9422de3e 819}
14cf11af 820
21f58507
PG
821void set_breakpoint(struct arch_hw_breakpoint *brk)
822{
823 preempt_disable();
824 __set_breakpoint(brk);
825 preempt_enable();
826}
827
06d67d54
PM
828#ifdef CONFIG_PPC64
829DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 830#endif
14cf11af 831
9422de3e
MN
832static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
833 struct arch_hw_breakpoint *b)
834{
835 if (a->address != b->address)
836 return false;
837 if (a->type != b->type)
838 return false;
839 if (a->len != b->len)
840 return false;
841 return true;
842}
d31626f7 843
fb09692e 844#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
845
846static inline bool tm_enabled(struct task_struct *tsk)
847{
848 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
849}
850
d31626f7
PM
851static void tm_reclaim_thread(struct thread_struct *thr,
852 struct thread_info *ti, uint8_t cause)
853{
7f821fc9
MN
854 /*
855 * Use the current MSR TM suspended bit to track if we have
856 * checkpointed state outstanding.
857 * On signal delivery, we'd normally reclaim the checkpointed
858 * state to obtain stack pointer (see:get_tm_stackpointer()).
859 * This will then directly return to userspace without going
860 * through __switch_to(). However, if the stack frame is bad,
861 * we need to exit this thread which calls __switch_to() which
862 * will again attempt to reclaim the already saved tm state.
863 * Hence we need to check that we've not already reclaimed
864 * this state.
865 * We do this using the current MSR, rather tracking it in
866 * some specific thread_struct bit, as it has the additional
027dfac6 867 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
868 */
869 if (!MSR_TM_SUSPENDED(mfmsr()))
870 return;
871
f48e91e8
MN
872 /*
873 * If we are in a transaction and FP is off then we can't have
874 * used FP inside that transaction. Hence the checkpointed
875 * state is the same as the live state. We need to copy the
876 * live state to the checkpointed state so that when the
877 * transaction is restored, the checkpointed state is correct
878 * and the aborted transaction sees the correct state. We use
879 * ckpt_regs.msr here as that's what tm_reclaim will use to
880 * determine if it's going to write the checkpointed state or
881 * not. So either this will write the checkpointed registers,
882 * or reclaim will. Similarly for VMX.
883 */
884 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
885 memcpy(&thr->ckfp_state, &thr->fp_state,
886 sizeof(struct thread_fp_state));
887 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
888 memcpy(&thr->ckvr_state, &thr->vr_state,
889 sizeof(struct thread_vr_state));
890
dc310669 891 giveup_all(container_of(thr, struct task_struct, thread));
d31626f7 892
dc310669 893 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
d31626f7
PM
894}
895
896void tm_reclaim_current(uint8_t cause)
897{
898 tm_enable();
899 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
900}
901
fb09692e
MN
902static inline void tm_reclaim_task(struct task_struct *tsk)
903{
904 /* We have to work out if we're switching from/to a task that's in the
905 * middle of a transaction.
906 *
907 * In switching we need to maintain a 2nd register state as
908 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
909 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
910 * ckvr_state
fb09692e
MN
911 *
912 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
913 */
914 struct thread_struct *thr = &tsk->thread;
915
916 if (!thr->regs)
917 return;
918
919 if (!MSR_TM_ACTIVE(thr->regs->msr))
920 goto out_and_saveregs;
921
fb09692e
MN
922 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
923 "ccr=%lx, msr=%lx, trap=%lx)\n",
924 tsk->pid, thr->regs->nip,
925 thr->regs->ccr, thr->regs->msr,
926 thr->regs->trap);
927
d31626f7 928 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
929
930 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
931 tsk->pid);
932
933out_and_saveregs:
934 /* Always save the regs here, even if a transaction's not active.
935 * This context-switches a thread's TM info SPRs. We do it here to
936 * be consistent with the restore path (in recheckpoint) which
937 * cannot happen later in _switch().
938 */
939 tm_save_sprs(thr);
940}
941
e6b8fd02
MN
942extern void __tm_recheckpoint(struct thread_struct *thread,
943 unsigned long orig_msr);
944
945void tm_recheckpoint(struct thread_struct *thread,
946 unsigned long orig_msr)
947{
948 unsigned long flags;
949
5d176f75
CB
950 if (!(thread->regs->msr & MSR_TM))
951 return;
952
e6b8fd02
MN
953 /* We really can't be interrupted here as the TEXASR registers can't
954 * change and later in the trecheckpoint code, we have a userspace R1.
955 * So let's hard disable over this region.
956 */
957 local_irq_save(flags);
958 hard_irq_disable();
959
960 /* The TM SPRs are restored here, so that TEXASR.FS can be set
961 * before the trecheckpoint and no explosion occurs.
962 */
963 tm_restore_sprs(thread);
964
965 __tm_recheckpoint(thread, orig_msr);
966
967 local_irq_restore(flags);
968}
969
bc2a9408 970static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
971{
972 unsigned long msr;
973
974 if (!cpu_has_feature(CPU_FTR_TM))
975 return;
976
977 /* Recheckpoint the registers of the thread we're about to switch to.
978 *
979 * If the task was using FP, we non-lazily reload both the original and
980 * the speculative FP register states. This is because the kernel
981 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 982 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
983 * need to be restored.
984 */
5d176f75 985 if (!tm_enabled(new))
fb09692e
MN
986 return;
987
e6b8fd02
MN
988 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
989 tm_restore_sprs(&new->thread);
fb09692e 990 return;
e6b8fd02 991 }
829023df 992 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
993 /* Recheckpoint to restore original checkpointed register state. */
994 TM_DEBUG("*** tm_recheckpoint of pid %d "
995 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
996 new->pid, new->thread.regs->msr, msr);
997
fb09692e
MN
998 tm_recheckpoint(&new->thread, msr);
999
dc310669
CB
1000 /*
1001 * The checkpointed state has been restored but the live state has
1002 * not, ensure all the math functionality is turned off to trigger
1003 * restore_math() to reload.
1004 */
1005 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1006
1007 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1008 "(kernel msr 0x%lx)\n",
1009 new->pid, mfmsr());
1010}
1011
dc310669
CB
1012static inline void __switch_to_tm(struct task_struct *prev,
1013 struct task_struct *new)
fb09692e
MN
1014{
1015 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1016 if (tm_enabled(prev) || tm_enabled(new))
1017 tm_enable();
1018
1019 if (tm_enabled(prev)) {
1020 prev->thread.load_tm++;
1021 tm_reclaim_task(prev);
1022 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1023 prev->thread.regs->msr &= ~MSR_TM;
1024 }
1025
dc310669 1026 tm_recheckpoint_new_task(new);
fb09692e
MN
1027 }
1028}
d31626f7
PM
1029
1030/*
1031 * This is called if we are on the way out to userspace and the
1032 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1033 * FP and/or vector state and does so if necessary.
1034 * If userspace is inside a transaction (whether active or
1035 * suspended) and FP/VMX/VSX instructions have ever been enabled
1036 * inside that transaction, then we have to keep them enabled
1037 * and keep the FP/VMX/VSX state loaded while ever the transaction
1038 * continues. The reason is that if we didn't, and subsequently
1039 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1040 * we don't know whether it's the same transaction, and thus we
1041 * don't know which of the checkpointed state and the transactional
1042 * state to use.
1043 */
1044void restore_tm_state(struct pt_regs *regs)
1045{
1046 unsigned long msr_diff;
1047
dc310669
CB
1048 /*
1049 * This is the only moment we should clear TIF_RESTORE_TM as
1050 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1051 * again, anything else could lead to an incorrect ckpt_msr being
1052 * saved and therefore incorrect signal contexts.
1053 */
d31626f7
PM
1054 clear_thread_flag(TIF_RESTORE_TM);
1055 if (!MSR_TM_ACTIVE(regs->msr))
1056 return;
1057
829023df 1058 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1059 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1060
dc16b553
CB
1061 /* Ensure that restore_math() will restore */
1062 if (msr_diff & MSR_FP)
1063 current->thread.load_fp = 1;
39715bf9 1064#ifdef CONFIG_ALTIVEC
dc16b553
CB
1065 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1066 current->thread.load_vec = 1;
1067#endif
70fe3d98
CB
1068 restore_math(regs);
1069
d31626f7
PM
1070 regs->msr |= msr_diff;
1071}
1072
fb09692e
MN
1073#else
1074#define tm_recheckpoint_new_task(new)
dc310669 1075#define __switch_to_tm(prev, new)
fb09692e 1076#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1077
152d523e
AB
1078static inline void save_sprs(struct thread_struct *t)
1079{
1080#ifdef CONFIG_ALTIVEC
01d7c2a2 1081 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1082 t->vrsave = mfspr(SPRN_VRSAVE);
1083#endif
1084#ifdef CONFIG_PPC_BOOK3S_64
1085 if (cpu_has_feature(CPU_FTR_DSCR))
1086 t->dscr = mfspr(SPRN_DSCR);
1087
1088 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1089 t->bescr = mfspr(SPRN_BESCR);
1090 t->ebbhr = mfspr(SPRN_EBBHR);
1091 t->ebbrr = mfspr(SPRN_EBBRR);
1092
1093 t->fscr = mfspr(SPRN_FSCR);
1094
1095 /*
1096 * Note that the TAR is not available for use in the kernel.
1097 * (To provide this, the TAR should be backed up/restored on
1098 * exception entry/exit instead, and be in pt_regs. FIXME,
1099 * this should be in pt_regs anyway (for debug).)
1100 */
1101 t->tar = mfspr(SPRN_TAR);
1102 }
1103#endif
1104}
1105
1106static inline void restore_sprs(struct thread_struct *old_thread,
1107 struct thread_struct *new_thread)
1108{
1109#ifdef CONFIG_ALTIVEC
1110 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1111 old_thread->vrsave != new_thread->vrsave)
1112 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1113#endif
1114#ifdef CONFIG_PPC_BOOK3S_64
1115 if (cpu_has_feature(CPU_FTR_DSCR)) {
1116 u64 dscr = get_paca()->dscr_default;
b57bd2de 1117 if (new_thread->dscr_inherit)
152d523e 1118 dscr = new_thread->dscr;
152d523e
AB
1119
1120 if (old_thread->dscr != dscr)
1121 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1122 }
1123
1124 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1125 if (old_thread->bescr != new_thread->bescr)
1126 mtspr(SPRN_BESCR, new_thread->bescr);
1127 if (old_thread->ebbhr != new_thread->ebbhr)
1128 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1129 if (old_thread->ebbrr != new_thread->ebbrr)
1130 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1131
b57bd2de
MN
1132 if (old_thread->fscr != new_thread->fscr)
1133 mtspr(SPRN_FSCR, new_thread->fscr);
1134
152d523e
AB
1135 if (old_thread->tar != new_thread->tar)
1136 mtspr(SPRN_TAR, new_thread->tar);
1137 }
1138#endif
1139}
1140
07d2a628
NP
1141#ifdef CONFIG_PPC_BOOK3S_64
1142#define CP_SIZE 128
1143static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1144#endif
1145
14cf11af
PM
1146struct task_struct *__switch_to(struct task_struct *prev,
1147 struct task_struct *new)
1148{
1149 struct thread_struct *new_thread, *old_thread;
14cf11af 1150 struct task_struct *last;
d6bf29b4
PZ
1151#ifdef CONFIG_PPC_BOOK3S_64
1152 struct ppc64_tlb_batch *batch;
1153#endif
14cf11af 1154
152d523e
AB
1155 new_thread = &new->thread;
1156 old_thread = &current->thread;
1157
7ba5fef7
MN
1158 WARN_ON(!irqs_disabled());
1159
06d67d54
PM
1160#ifdef CONFIG_PPC64
1161 /*
1162 * Collect processor utilization data per process
1163 */
1164 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1165 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1166 long unsigned start_tb, current_tb;
1167 start_tb = old_thread->start_tb;
1168 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1169 old_thread->accum_tb += (current_tb - start_tb);
1170 new_thread->start_tb = current_tb;
1171 }
d6bf29b4
PZ
1172#endif /* CONFIG_PPC64 */
1173
caca285e 1174#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1175 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1176 if (batch->active) {
1177 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1178 if (batch->index)
1179 __flush_tlb_pending(batch);
1180 batch->active = 0;
1181 }
caca285e 1182#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1183
f3d885cc
AB
1184#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1185 switch_booke_debug_regs(&new->thread.debug);
1186#else
1187/*
1188 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1189 * schedule DABR
1190 */
1191#ifndef CONFIG_HAVE_HW_BREAKPOINT
1192 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1193 __set_breakpoint(&new->thread.hw_brk);
1194#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1195#endif
1196
1197 /*
1198 * We need to save SPRs before treclaim/trecheckpoint as these will
1199 * change a number of them.
1200 */
1201 save_sprs(&prev->thread);
1202
f3d885cc
AB
1203 /* Save FPU, Altivec, VSX and SPE state */
1204 giveup_all(prev);
1205
dc310669
CB
1206 __switch_to_tm(prev, new);
1207
e4c0fc5f
NP
1208 if (!radix_enabled()) {
1209 /*
1210 * We can't take a PMU exception inside _switch() since there
1211 * is a window where the kernel stack SLB and the kernel stack
1212 * are out of sync. Hard disable here.
1213 */
1214 hard_irq_disable();
1215 }
bc2a9408 1216
20dbe670
AB
1217 /*
1218 * Call restore_sprs() before calling _switch(). If we move it after
1219 * _switch() then we miss out on calling it for new tasks. The reason
1220 * for this is we manually create a stack frame for new tasks that
1221 * directly returns through ret_from_fork() or
1222 * ret_from_kernel_thread(). See copy_thread() for details.
1223 */
f3d885cc
AB
1224 restore_sprs(old_thread, new_thread);
1225
20dbe670
AB
1226 last = _switch(old_thread, new_thread);
1227
caca285e 1228#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1229 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1230 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1231 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1232 batch->active = 1;
1233 }
70fe3d98 1234
07d2a628 1235 if (current_thread_info()->task->thread.regs) {
70fe3d98 1236 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1237
1238 /*
1239 * The copy-paste buffer can only store into foreign real
1240 * addresses, so unprivileged processes can not see the
1241 * data or use it in any way unless they have foreign real
1242 * mappings. We don't have a VAS driver that allocates those
1243 * yet, so no cpabort is required.
1244 */
1245 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1246 /*
1247 * DD1 allows paste into normal system memory, so we
1248 * do an unpaired copy here to clear the buffer and
1249 * prevent a covert channel being set up.
1250 *
1251 * cpabort is not used because it is quite expensive.
1252 */
1253 asm volatile(PPC_COPY(%0, %1)
1254 : : "r"(dummy_copy_buffer), "r"(0));
1255 }
1256 }
caca285e 1257#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1258
14cf11af
PM
1259 return last;
1260}
1261
06d67d54
PM
1262static int instructions_to_print = 16;
1263
06d67d54
PM
1264static void show_instructions(struct pt_regs *regs)
1265{
1266 int i;
1267 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1268 sizeof(int));
1269
1270 printk("Instruction dump:");
1271
1272 for (i = 0; i < instructions_to_print; i++) {
1273 int instr;
1274
1275 if (!(i % 8))
2ffd04de 1276 pr_cont("\n");
06d67d54 1277
0de2d820
SW
1278#if !defined(CONFIG_BOOKE)
1279 /* If executing with the IMMU off, adjust pc rather
1280 * than print XXXXXXXX.
1281 */
1282 if (!(regs->msr & MSR_IR))
1283 pc = (unsigned long)phys_to_virt(pc);
1284#endif
1285
00ae36de 1286 if (!__kernel_text_address(pc) ||
7b051f66 1287 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1288 pr_cont("XXXXXXXX ");
06d67d54
PM
1289 } else {
1290 if (regs->nip == pc)
2ffd04de 1291 pr_cont("<%08x> ", instr);
06d67d54 1292 else
2ffd04de 1293 pr_cont("%08x ", instr);
06d67d54
PM
1294 }
1295
1296 pc += sizeof(int);
1297 }
1298
2ffd04de 1299 pr_cont("\n");
06d67d54
PM
1300}
1301
801c0b2c 1302struct regbit {
06d67d54
PM
1303 unsigned long bit;
1304 const char *name;
801c0b2c
MN
1305};
1306
1307static struct regbit msr_bits[] = {
3bfd0c9c
AB
1308#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1309 {MSR_SF, "SF"},
1310 {MSR_HV, "HV"},
1311#endif
1312 {MSR_VEC, "VEC"},
1313 {MSR_VSX, "VSX"},
1314#ifdef CONFIG_BOOKE
1315 {MSR_CE, "CE"},
1316#endif
06d67d54
PM
1317 {MSR_EE, "EE"},
1318 {MSR_PR, "PR"},
1319 {MSR_FP, "FP"},
1320 {MSR_ME, "ME"},
3bfd0c9c 1321#ifdef CONFIG_BOOKE
1b98326b 1322 {MSR_DE, "DE"},
3bfd0c9c
AB
1323#else
1324 {MSR_SE, "SE"},
1325 {MSR_BE, "BE"},
1326#endif
06d67d54
PM
1327 {MSR_IR, "IR"},
1328 {MSR_DR, "DR"},
3bfd0c9c
AB
1329 {MSR_PMM, "PMM"},
1330#ifndef CONFIG_BOOKE
1331 {MSR_RI, "RI"},
1332 {MSR_LE, "LE"},
1333#endif
06d67d54
PM
1334 {0, NULL}
1335};
1336
801c0b2c 1337static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1338{
801c0b2c 1339 const char *s = "";
06d67d54 1340
06d67d54
PM
1341 for (; bits->bit; ++bits)
1342 if (val & bits->bit) {
db5ba5ae 1343 pr_cont("%s%s", s, bits->name);
801c0b2c 1344 s = sep;
06d67d54 1345 }
801c0b2c
MN
1346}
1347
1348#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349static struct regbit msr_tm_bits[] = {
1350 {MSR_TS_T, "T"},
1351 {MSR_TS_S, "S"},
1352 {MSR_TM, "E"},
1353 {0, NULL}
1354};
1355
1356static void print_tm_bits(unsigned long val)
1357{
1358/*
1359 * This only prints something if at least one of the TM bit is set.
1360 * Inside the TM[], the output means:
1361 * E: Enabled (bit 32)
1362 * S: Suspended (bit 33)
1363 * T: Transactional (bit 34)
1364 */
1365 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1366 pr_cont(",TM[");
801c0b2c 1367 print_bits(val, msr_tm_bits, "");
db5ba5ae 1368 pr_cont("]");
801c0b2c
MN
1369 }
1370}
1371#else
1372static void print_tm_bits(unsigned long val) {}
1373#endif
1374
1375static void print_msr_bits(unsigned long val)
1376{
db5ba5ae 1377 pr_cont("<");
801c0b2c
MN
1378 print_bits(val, msr_bits, ",");
1379 print_tm_bits(val);
db5ba5ae 1380 pr_cont(">");
06d67d54
PM
1381}
1382
1383#ifdef CONFIG_PPC64
f6f7dde3 1384#define REG "%016lx"
06d67d54
PM
1385#define REGS_PER_LINE 4
1386#define LAST_VOLATILE 13
1387#else
f6f7dde3 1388#define REG "%08lx"
06d67d54
PM
1389#define REGS_PER_LINE 8
1390#define LAST_VOLATILE 12
1391#endif
1392
14cf11af
PM
1393void show_regs(struct pt_regs * regs)
1394{
1395 int i, trap;
1396
a43cb95d
TH
1397 show_regs_print_info(KERN_DEFAULT);
1398
06d67d54
PM
1399 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1400 regs->nip, regs->link, regs->ctr);
1401 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1402 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1403 printk("MSR: "REG" ", regs->msr);
801c0b2c 1404 print_msr_bits(regs->msr);
f6f7dde3 1405 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1406 trap = TRAP(regs);
5115a026 1407 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1408 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1409 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1410#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1411 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1412#else
7dae865f 1413 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1414#endif
1415#ifdef CONFIG_PPC64
7dae865f 1416 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1417#endif
1418#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1419 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1420 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1421#endif
14cf11af
PM
1422
1423 for (i = 0; i < 32; i++) {
06d67d54 1424 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1425 pr_cont("\nGPR%02d: ", i);
1426 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1427 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1428 break;
1429 }
7dae865f 1430 pr_cont("\n");
14cf11af
PM
1431#ifdef CONFIG_KALLSYMS
1432 /*
1433 * Lookup NIP late so we have the best change of getting the
1434 * above info out without failing
1435 */
058c78f4
BH
1436 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1437 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1438#endif
14cf11af 1439 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1440 if (!user_mode(regs))
1441 show_instructions(regs);
14cf11af
PM
1442}
1443
14cf11af
PM
1444void flush_thread(void)
1445{
e0780b72 1446#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1447 flush_ptrace_hw_breakpoint(current);
e0780b72 1448#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1449 set_debug_reg_defaults(&current->thread);
e0780b72 1450#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1451}
1452
1453void
1454release_thread(struct task_struct *t)
1455{
1456}
1457
1458/*
55ccf3fe
SS
1459 * this gets called so that we can store coprocessor state into memory and
1460 * copy the current task into the new thread.
14cf11af 1461 */
55ccf3fe 1462int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1463{
579e633e 1464 flush_all_to_thread(src);
621b5060
MN
1465 /*
1466 * Flush TM state out so we can copy it. __switch_to_tm() does this
1467 * flush but it removes the checkpointed state from the current CPU and
1468 * transitions the CPU out of TM mode. Hence we need to call
1469 * tm_recheckpoint_new_task() (on the same task) to restore the
1470 * checkpointed state back and the TM mode.
5d176f75
CB
1471 *
1472 * Can't pass dst because it isn't ready. Doesn't matter, passing
1473 * dst is only important for __switch_to()
621b5060 1474 */
dc310669 1475 __switch_to_tm(src, src);
330a1eb7 1476
55ccf3fe 1477 *dst = *src;
330a1eb7
ME
1478
1479 clear_task_ebb(dst);
1480
55ccf3fe 1481 return 0;
14cf11af
PM
1482}
1483
cec15488
ME
1484static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1485{
1486#ifdef CONFIG_PPC_STD_MMU_64
1487 unsigned long sp_vsid;
1488 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1489
caca285e
AK
1490 if (radix_enabled())
1491 return;
1492
cec15488
ME
1493 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1494 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1495 << SLB_VSID_SHIFT_1T;
1496 else
1497 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1498 << SLB_VSID_SHIFT;
1499 sp_vsid |= SLB_VSID_KERNEL | llp;
1500 p->thread.ksp_vsid = sp_vsid;
1501#endif
1502}
1503
14cf11af
PM
1504/*
1505 * Copy a thread..
1506 */
efcac658 1507
6eca8933
AD
1508/*
1509 * Copy architecture-specific thread state
1510 */
6f2c55b8 1511int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1512 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1513{
1514 struct pt_regs *childregs, *kregs;
1515 extern void ret_from_fork(void);
58254e10
AV
1516 extern void ret_from_kernel_thread(void);
1517 void (*f)(void);
0cec6fd1 1518 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1519 struct thread_info *ti = task_thread_info(p);
1520
1521 klp_init_thread_info(ti);
14cf11af 1522
14cf11af
PM
1523 /* Copy registers */
1524 sp -= sizeof(struct pt_regs);
1525 childregs = (struct pt_regs *) sp;
ab75819d 1526 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1527 /* kernel thread */
58254e10 1528 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1529 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1530 /* function */
1531 if (usp)
1532 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1533#ifdef CONFIG_PPC64
b5e2fc1c 1534 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1535 childregs->softe = 1;
06d67d54 1536#endif
6eca8933 1537 childregs->gpr[15] = kthread_arg;
14cf11af 1538 p->thread.regs = NULL; /* no user register state */
138d1ce8 1539 ti->flags |= _TIF_RESTOREALL;
58254e10 1540 f = ret_from_kernel_thread;
14cf11af 1541 } else {
6eca8933 1542 /* user thread */
afa86fc4 1543 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1544 CHECK_FULL_REGS(regs);
1545 *childregs = *regs;
ea516b11
AV
1546 if (usp)
1547 childregs->gpr[1] = usp;
14cf11af 1548 p->thread.regs = childregs;
58254e10 1549 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1550 if (clone_flags & CLONE_SETTLS) {
1551#ifdef CONFIG_PPC64
9904b005 1552 if (!is_32bit_task())
06d67d54
PM
1553 childregs->gpr[13] = childregs->gpr[6];
1554 else
1555#endif
1556 childregs->gpr[2] = childregs->gpr[6];
1557 }
58254e10
AV
1558
1559 f = ret_from_fork;
14cf11af 1560 }
d272f667 1561 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1562 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1563
1564 /*
1565 * The way this works is that at some point in the future
1566 * some task will call _switch to switch to the new task.
1567 * That will pop off the stack frame created below and start
1568 * the new task running at ret_from_fork. The new task will
1569 * do some house keeping and then return from the fork or clone
1570 * system call, using the stack frame created above.
1571 */
af945cf4 1572 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1573 sp -= sizeof(struct pt_regs);
1574 kregs = (struct pt_regs *) sp;
1575 sp -= STACK_FRAME_OVERHEAD;
1576 p->thread.ksp = sp;
cbc9565e 1577#ifdef CONFIG_PPC32
85218827
KG
1578 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1579 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1580#endif
28d170ab
ON
1581#ifdef CONFIG_HAVE_HW_BREAKPOINT
1582 p->thread.ptrace_bps[0] = NULL;
1583#endif
1584
18461960
PM
1585 p->thread.fp_save_area = NULL;
1586#ifdef CONFIG_ALTIVEC
1587 p->thread.vr_save_area = NULL;
1588#endif
1589
cec15488
ME
1590 setup_ksp_vsid(p, sp);
1591
efcac658
AK
1592#ifdef CONFIG_PPC64
1593 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1594 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1595 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1596 }
92779245
HM
1597 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1598 p->thread.ppr = INIT_PPR;
efcac658 1599#endif
7cedd601 1600 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1601 return 0;
1602}
1603
1604/*
1605 * Set up a thread for executing a new program
1606 */
06d67d54 1607void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1608{
90eac727
ME
1609#ifdef CONFIG_PPC64
1610 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1611#endif
1612
06d67d54
PM
1613 /*
1614 * If we exec out of a kernel thread then thread.regs will not be
1615 * set. Do it now.
1616 */
1617 if (!current->thread.regs) {
0cec6fd1
AV
1618 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1619 current->thread.regs = regs - 1;
06d67d54
PM
1620 }
1621
8e96a87c
CB
1622#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1623 /*
1624 * Clear any transactional state, we're exec()ing. The cause is
1625 * not important as there will never be a recheckpoint so it's not
1626 * user visible.
1627 */
1628 if (MSR_TM_SUSPENDED(mfmsr()))
1629 tm_reclaim_current(0);
1630#endif
1631
14cf11af
PM
1632 memset(regs->gpr, 0, sizeof(regs->gpr));
1633 regs->ctr = 0;
1634 regs->link = 0;
1635 regs->xer = 0;
1636 regs->ccr = 0;
14cf11af 1637 regs->gpr[1] = sp;
06d67d54 1638
474f8196
RM
1639 /*
1640 * We have just cleared all the nonvolatile GPRs, so make
1641 * FULL_REGS(regs) return true. This is necessary to allow
1642 * ptrace to examine the thread immediately after exec.
1643 */
1644 regs->trap &= ~1UL;
1645
06d67d54
PM
1646#ifdef CONFIG_PPC32
1647 regs->mq = 0;
1648 regs->nip = start;
14cf11af 1649 regs->msr = MSR_USER;
06d67d54 1650#else
9904b005 1651 if (!is_32bit_task()) {
94af3abf 1652 unsigned long entry;
06d67d54 1653
94af3abf
RR
1654 if (is_elf2_task()) {
1655 /* Look ma, no function descriptors! */
1656 entry = start;
06d67d54 1657
94af3abf
RR
1658 /*
1659 * Ulrich says:
1660 * The latest iteration of the ABI requires that when
1661 * calling a function (at its global entry point),
1662 * the caller must ensure r12 holds the entry point
1663 * address (so that the function can quickly
1664 * establish addressability).
1665 */
1666 regs->gpr[12] = start;
1667 /* Make sure that's restored on entry to userspace. */
1668 set_thread_flag(TIF_RESTOREALL);
1669 } else {
1670 unsigned long toc;
1671
1672 /* start is a relocated pointer to the function
1673 * descriptor for the elf _start routine. The first
1674 * entry in the function descriptor is the entry
1675 * address of _start and the second entry is the TOC
1676 * value we need to use.
1677 */
1678 __get_user(entry, (unsigned long __user *)start);
1679 __get_user(toc, (unsigned long __user *)start+1);
1680
1681 /* Check whether the e_entry function descriptor entries
1682 * need to be relocated before we can use them.
1683 */
1684 if (load_addr != 0) {
1685 entry += load_addr;
1686 toc += load_addr;
1687 }
1688 regs->gpr[2] = toc;
06d67d54
PM
1689 }
1690 regs->nip = entry;
06d67d54 1691 regs->msr = MSR_USER64;
d4bf9a78
SR
1692 } else {
1693 regs->nip = start;
1694 regs->gpr[2] = 0;
1695 regs->msr = MSR_USER32;
06d67d54
PM
1696 }
1697#endif
ce48b210
MN
1698#ifdef CONFIG_VSX
1699 current->thread.used_vsr = 0;
1700#endif
1195892c 1701 current->thread.load_fp = 0;
de79f7b9 1702 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1703 current->thread.fp_save_area = NULL;
14cf11af 1704#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1705 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1706 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1707 current->thread.vr_save_area = NULL;
14cf11af
PM
1708 current->thread.vrsave = 0;
1709 current->thread.used_vr = 0;
1195892c 1710 current->thread.load_vec = 0;
14cf11af
PM
1711#endif /* CONFIG_ALTIVEC */
1712#ifdef CONFIG_SPE
1713 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1714 current->thread.acc = 0;
1715 current->thread.spefscr = 0;
1716 current->thread.used_spe = 0;
1717#endif /* CONFIG_SPE */
bc2a9408 1718#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1719 current->thread.tm_tfhar = 0;
1720 current->thread.tm_texasr = 0;
1721 current->thread.tm_tfiar = 0;
7f22ced4 1722 current->thread.load_tm = 0;
bc2a9408 1723#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1724}
e1802b06 1725EXPORT_SYMBOL(start_thread);
14cf11af
PM
1726
1727#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1728 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1729
1730int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1731{
1732 struct pt_regs *regs = tsk->thread.regs;
1733
1734 /* This is a bit hairy. If we are an SPE enabled processor
1735 * (have embedded fp) we store the IEEE exception enable flags in
1736 * fpexc_mode. fpexc_mode is also used for setting FP exception
1737 * mode (asyn, precise, disabled) for 'Classic' FP. */
1738 if (val & PR_FP_EXC_SW_ENABLE) {
1739#ifdef CONFIG_SPE
5e14d21e 1740 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1741 /*
1742 * When the sticky exception bits are set
1743 * directly by userspace, it must call prctl
1744 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1745 * in the existing prctl settings) or
1746 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1747 * the bits being set). <fenv.h> functions
1748 * saving and restoring the whole
1749 * floating-point environment need to do so
1750 * anyway to restore the prctl settings from
1751 * the saved environment.
1752 */
1753 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1754 tsk->thread.fpexc_mode = val &
1755 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1756 return 0;
1757 } else {
1758 return -EINVAL;
1759 }
14cf11af
PM
1760#else
1761 return -EINVAL;
1762#endif
14cf11af 1763 }
06d67d54
PM
1764
1765 /* on a CONFIG_SPE this does not hurt us. The bits that
1766 * __pack_fe01 use do not overlap with bits used for
1767 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1768 * on CONFIG_SPE implementations are reserved so writing to
1769 * them does not change anything */
1770 if (val > PR_FP_EXC_PRECISE)
1771 return -EINVAL;
1772 tsk->thread.fpexc_mode = __pack_fe01(val);
1773 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1774 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1775 | tsk->thread.fpexc_mode;
14cf11af
PM
1776 return 0;
1777}
1778
1779int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1780{
1781 unsigned int val;
1782
1783 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1784#ifdef CONFIG_SPE
640e9225
JM
1785 if (cpu_has_feature(CPU_FTR_SPE)) {
1786 /*
1787 * When the sticky exception bits are set
1788 * directly by userspace, it must call prctl
1789 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1790 * in the existing prctl settings) or
1791 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1792 * the bits being set). <fenv.h> functions
1793 * saving and restoring the whole
1794 * floating-point environment need to do so
1795 * anyway to restore the prctl settings from
1796 * the saved environment.
1797 */
1798 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1799 val = tsk->thread.fpexc_mode;
640e9225 1800 } else
5e14d21e 1801 return -EINVAL;
14cf11af
PM
1802#else
1803 return -EINVAL;
1804#endif
1805 else
1806 val = __unpack_fe01(tsk->thread.fpexc_mode);
1807 return put_user(val, (unsigned int __user *) adr);
1808}
1809
fab5db97
PM
1810int set_endian(struct task_struct *tsk, unsigned int val)
1811{
1812 struct pt_regs *regs = tsk->thread.regs;
1813
1814 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1815 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1816 return -EINVAL;
1817
1818 if (regs == NULL)
1819 return -EINVAL;
1820
1821 if (val == PR_ENDIAN_BIG)
1822 regs->msr &= ~MSR_LE;
1823 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1824 regs->msr |= MSR_LE;
1825 else
1826 return -EINVAL;
1827
1828 return 0;
1829}
1830
1831int get_endian(struct task_struct *tsk, unsigned long adr)
1832{
1833 struct pt_regs *regs = tsk->thread.regs;
1834 unsigned int val;
1835
1836 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1837 !cpu_has_feature(CPU_FTR_REAL_LE))
1838 return -EINVAL;
1839
1840 if (regs == NULL)
1841 return -EINVAL;
1842
1843 if (regs->msr & MSR_LE) {
1844 if (cpu_has_feature(CPU_FTR_REAL_LE))
1845 val = PR_ENDIAN_LITTLE;
1846 else
1847 val = PR_ENDIAN_PPC_LITTLE;
1848 } else
1849 val = PR_ENDIAN_BIG;
1850
1851 return put_user(val, (unsigned int __user *)adr);
1852}
1853
e9370ae1
PM
1854int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1855{
1856 tsk->thread.align_ctl = val;
1857 return 0;
1858}
1859
1860int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1861{
1862 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1863}
1864
bb72c481
PM
1865static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1866 unsigned long nbytes)
1867{
1868 unsigned long stack_page;
1869 unsigned long cpu = task_cpu(p);
1870
1871 /*
1872 * Avoid crashing if the stack has overflowed and corrupted
1873 * task_cpu(p), which is in the thread_info struct.
1874 */
1875 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1876 stack_page = (unsigned long) hardirq_ctx[cpu];
1877 if (sp >= stack_page + sizeof(struct thread_struct)
1878 && sp <= stack_page + THREAD_SIZE - nbytes)
1879 return 1;
1880
1881 stack_page = (unsigned long) softirq_ctx[cpu];
1882 if (sp >= stack_page + sizeof(struct thread_struct)
1883 && sp <= stack_page + THREAD_SIZE - nbytes)
1884 return 1;
1885 }
1886 return 0;
1887}
1888
2f25194d 1889int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1890 unsigned long nbytes)
1891{
0cec6fd1 1892 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1893
1894 if (sp >= stack_page + sizeof(struct thread_struct)
1895 && sp <= stack_page + THREAD_SIZE - nbytes)
1896 return 1;
1897
bb72c481 1898 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1899}
1900
2f25194d
AB
1901EXPORT_SYMBOL(validate_sp);
1902
14cf11af
PM
1903unsigned long get_wchan(struct task_struct *p)
1904{
1905 unsigned long ip, sp;
1906 int count = 0;
1907
1908 if (!p || p == current || p->state == TASK_RUNNING)
1909 return 0;
1910
1911 sp = p->thread.ksp;
ec2b36b9 1912 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1913 return 0;
1914
1915 do {
1916 sp = *(unsigned long *)sp;
ec2b36b9 1917 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1918 return 0;
1919 if (count > 0) {
ec2b36b9 1920 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1921 if (!in_sched_functions(ip))
1922 return ip;
1923 }
1924 } while (count++ < 16);
1925 return 0;
1926}
06d67d54 1927
c4d04be1 1928static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1929
1930void show_stack(struct task_struct *tsk, unsigned long *stack)
1931{
1932 unsigned long sp, ip, lr, newsp;
1933 int count = 0;
1934 int firstframe = 1;
6794c782
SR
1935#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1936 int curr_frame = current->curr_ret_stack;
1937 extern void return_to_handler(void);
9135c3cc 1938 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1939#endif
06d67d54
PM
1940
1941 sp = (unsigned long) stack;
1942 if (tsk == NULL)
1943 tsk = current;
1944 if (sp == 0) {
1945 if (tsk == current)
acf620ec 1946 sp = current_stack_pointer();
06d67d54
PM
1947 else
1948 sp = tsk->thread.ksp;
1949 }
1950
1951 lr = 0;
1952 printk("Call Trace:\n");
1953 do {
ec2b36b9 1954 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1955 return;
1956
1957 stack = (unsigned long *) sp;
1958 newsp = stack[0];
ec2b36b9 1959 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1960 if (!firstframe || ip != lr) {
058c78f4 1961 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1962#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1963 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 1964 pr_cont(" (%pS)",
6794c782
SR
1965 (void *)current->ret_stack[curr_frame].ret);
1966 curr_frame--;
1967 }
1968#endif
06d67d54 1969 if (firstframe)
9a1f490f
ME
1970 pr_cont(" (unreliable)");
1971 pr_cont("\n");
06d67d54
PM
1972 }
1973 firstframe = 0;
1974
1975 /*
1976 * See if this is an exception frame.
1977 * We look for the "regshere" marker in the current frame.
1978 */
ec2b36b9
BH
1979 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1980 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1981 struct pt_regs *regs = (struct pt_regs *)
1982 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1983 lr = regs->link;
9be9be2e 1984 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1985 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1986 firstframe = 1;
1987 }
1988
1989 sp = newsp;
1990 } while (count++ < kstack_depth_to_print);
1991}
1992
cb2c9b27 1993#ifdef CONFIG_PPC64
fe1952fc 1994/* Called with hard IRQs off */
0e37739b 1995void notrace __ppc64_runlatch_on(void)
cb2c9b27 1996{
fe1952fc 1997 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1998 unsigned long ctrl;
1999
fe1952fc
BH
2000 ctrl = mfspr(SPRN_CTRLF);
2001 ctrl |= CTRL_RUNLATCH;
2002 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 2003
fae2e0fb 2004 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2005}
2006
fe1952fc 2007/* Called with hard IRQs off */
0e37739b 2008void notrace __ppc64_runlatch_off(void)
cb2c9b27 2009{
fe1952fc 2010 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
2011 unsigned long ctrl;
2012
fae2e0fb 2013 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2014
4138d653
AB
2015 ctrl = mfspr(SPRN_CTRLF);
2016 ctrl &= ~CTRL_RUNLATCH;
2017 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 2018}
fe1952fc 2019#endif /* CONFIG_PPC64 */
f6a61680 2020
d839088c
AB
2021unsigned long arch_align_stack(unsigned long sp)
2022{
2023 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2024 sp -= get_random_int() & ~PAGE_MASK;
2025 return sp & ~0xf;
2026}
912f9ee2
AB
2027
2028static inline unsigned long brk_rnd(void)
2029{
2030 unsigned long rnd = 0;
2031
2032 /* 8MB for 32bit, 1GB for 64bit */
2033 if (is_32bit_task())
5ef11c35 2034 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2035 else
5ef11c35 2036 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2037
2038 return rnd << PAGE_SHIFT;
2039}
2040
2041unsigned long arch_randomize_brk(struct mm_struct *mm)
2042{
8bbde7a7
AB
2043 unsigned long base = mm->brk;
2044 unsigned long ret;
2045
ce7a35c7 2046#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
2047 /*
2048 * If we are using 1TB segments and we are allowed to randomise
2049 * the heap, we can put it above 1TB so it is backed by a 1TB
2050 * segment. Otherwise the heap will be in the bottom 1TB
2051 * which always uses 256MB segments and this may result in a
caca285e
AK
2052 * performance penalty. We don't need to worry about radix. For
2053 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2054 */
2055 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2056 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2057#endif
2058
2059 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2060
2061 if (ret < mm->brk)
2062 return mm->brk;
2063
2064 return ret;
2065}
501cb16d 2066