]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Add TIDR CPU feature for POWER9
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
06bb53b3 45#include <linux/pkeys.h>
14cf11af
PM
46
47#include <asm/pgtable.h>
14cf11af
PM
48#include <asm/io.h>
49#include <asm/processor.h>
50#include <asm/mmu.h>
51#include <asm/prom.h>
76032de8 52#include <asm/machdep.h>
c6622f63 53#include <asm/time.h>
ae3a197e 54#include <asm/runlatch.h>
a7f31841 55#include <asm/syscalls.h>
ae3a197e 56#include <asm/switch_to.h>
fb09692e 57#include <asm/tm.h>
ae3a197e 58#include <asm/debug.h>
06d67d54
PM
59#ifdef CONFIG_PPC64
60#include <asm/firmware.h>
c2e480ba 61#include <asm/hw_irq.h>
06d67d54 62#endif
7cedd601 63#include <asm/code-patching.h>
7f92bc56 64#include <asm/exec.h>
5d31a96e 65#include <asm/livepatch.h>
b92a226e 66#include <asm/cpu_has_feature.h>
0545d543 67#include <asm/asm-prototypes.h>
5d31a96e 68
d6a61bfc
LM
69#include <linux/kprobes.h>
70#include <linux/kdebug.h>
14cf11af 71
8b3c34cf
MN
72/* Transactional Memory debug */
73#ifdef TM_DEBUG_SW
74#define TM_DEBUG(x...) printk(KERN_INFO x)
75#else
76#define TM_DEBUG(x...) do { } while(0)
77#endif
78
14cf11af
PM
79extern unsigned long _get_SP(void);
80
d31626f7 81#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
82/*
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
86 */
87bool tm_suspend_disabled __ro_after_init = false;
88
b86fd2bd 89static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
90{
91 /*
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
96 */
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
101 set_thread_flag(TIF_RESTORE_TM);
102 }
d31626f7 103}
dc16b553
CB
104
105static inline bool msr_tm_active(unsigned long msr)
106{
107 return MSR_TM_ACTIVE(msr);
108}
a7771176
CB
109
110static bool tm_active_with_fp(struct task_struct *tsk)
111{
112 return msr_tm_active(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_FP);
114}
115
116static bool tm_active_with_altivec(struct task_struct *tsk)
117{
118 return msr_tm_active(tsk->thread.regs->msr) &&
119 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120}
d31626f7 121#else
dc16b553 122static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 123static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
124static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
126#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
3eb5d588
AB
128bool strict_msr_control;
129EXPORT_SYMBOL(strict_msr_control);
130
131static int __init enable_strict_msr_control(char *str)
132{
133 strict_msr_control = true;
134 pr_info("Enabling strict facility control\n");
135
136 return 0;
137}
138early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
3cee070a 140unsigned long msr_check_and_set(unsigned long bits)
98da581e 141{
a0e72cf1
AB
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
98da581e 144
a0e72cf1 145 newmsr = oldmsr | bits;
98da581e 146
98da581e 147#ifdef CONFIG_VSX
a0e72cf1 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
149 newmsr |= MSR_VSX;
150#endif
a0e72cf1 151
98da581e
AB
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
3cee070a
CB
154
155 return newmsr;
a0e72cf1 156}
d1c72112 157EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 158
3eb5d588 159void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
160{
161 unsigned long oldmsr = mfmsr();
162 unsigned long newmsr;
163
164 newmsr = oldmsr & ~bits;
165
166#ifdef CONFIG_VSX
167 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
168 newmsr &= ~MSR_VSX;
169#endif
170
171 if (oldmsr != newmsr)
172 mtmsr_isync(newmsr);
173}
3eb5d588 174EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
175
176#ifdef CONFIG_PPC_FPU
1cdf039b 177static void __giveup_fpu(struct task_struct *tsk)
8792468d 178{
8eb98037
AB
179 unsigned long msr;
180
8792468d 181 save_fpu(tsk);
8eb98037
AB
182 msr = tsk->thread.regs->msr;
183 msr &= ~MSR_FP;
8792468d
CB
184#ifdef CONFIG_VSX
185 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 186 msr &= ~MSR_VSX;
8792468d 187#endif
8eb98037 188 tsk->thread.regs->msr = msr;
8792468d
CB
189}
190
a0e72cf1
AB
191void giveup_fpu(struct task_struct *tsk)
192{
193 check_if_tm_restore_required(tsk);
194
195 msr_check_and_set(MSR_FP);
98da581e 196 __giveup_fpu(tsk);
a0e72cf1 197 msr_check_and_clear(MSR_FP);
98da581e
AB
198}
199EXPORT_SYMBOL(giveup_fpu);
200
14cf11af
PM
201/*
202 * Make sure the floating-point register state in the
203 * the thread_struct is up to date for task tsk.
204 */
205void flush_fp_to_thread(struct task_struct *tsk)
206{
207 if (tsk->thread.regs) {
208 /*
209 * We need to disable preemption here because if we didn't,
210 * another process could get scheduled after the regs->msr
211 * test but before we have finished saving the FP registers
212 * to the thread_struct. That process could take over the
213 * FPU, and then when we get scheduled again we would store
214 * bogus values for the remaining FP registers.
215 */
216 preempt_disable();
217 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
218 /*
219 * This should only ever be called for current or
220 * for a stopped child process. Since we save away
af1bbc3d 221 * the FP register state on context switch,
14cf11af
PM
222 * there is something wrong if a stopped child appears
223 * to still have its FP state in the CPU registers.
224 */
225 BUG_ON(tsk != current);
b86fd2bd 226 giveup_fpu(tsk);
14cf11af
PM
227 }
228 preempt_enable();
229 }
230}
de56a948 231EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
232
233void enable_kernel_fp(void)
234{
e909fb83
CB
235 unsigned long cpumsr;
236
14cf11af
PM
237 WARN_ON(preemptible());
238
e909fb83 239 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 240
d64d02ce
AB
241 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
242 check_if_tm_restore_required(current);
e909fb83
CB
243 /*
244 * If a thread has already been reclaimed then the
245 * checkpointed registers are on the CPU but have definitely
246 * been saved by the reclaim code. Don't need to and *cannot*
247 * giveup as this would save to the 'live' structure not the
248 * checkpointed structure.
249 */
250 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
251 return;
a0e72cf1 252 __giveup_fpu(current);
d64d02ce 253 }
14cf11af
PM
254}
255EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 256
6a303833
BH
257static int restore_fp(struct task_struct *tsk)
258{
a7771176 259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
260 load_fp_state(&current->thread.fp_state);
261 current->thread.load_fp++;
262 return 1;
263 }
264 return 0;
265}
266#else
267static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 268#endif /* CONFIG_PPC_FPU */
14cf11af 269
14cf11af 270#ifdef CONFIG_ALTIVEC
70fe3d98
CB
271#define loadvec(thr) ((thr).load_vec)
272
6f515d84
CB
273static void __giveup_altivec(struct task_struct *tsk)
274{
8eb98037
AB
275 unsigned long msr;
276
6f515d84 277 save_altivec(tsk);
8eb98037
AB
278 msr = tsk->thread.regs->msr;
279 msr &= ~MSR_VEC;
6f515d84
CB
280#ifdef CONFIG_VSX
281 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 282 msr &= ~MSR_VSX;
6f515d84 283#endif
8eb98037 284 tsk->thread.regs->msr = msr;
6f515d84
CB
285}
286
98da581e
AB
287void giveup_altivec(struct task_struct *tsk)
288{
98da581e
AB
289 check_if_tm_restore_required(tsk);
290
a0e72cf1 291 msr_check_and_set(MSR_VEC);
98da581e 292 __giveup_altivec(tsk);
a0e72cf1 293 msr_check_and_clear(MSR_VEC);
98da581e
AB
294}
295EXPORT_SYMBOL(giveup_altivec);
296
14cf11af
PM
297void enable_kernel_altivec(void)
298{
e909fb83
CB
299 unsigned long cpumsr;
300
14cf11af
PM
301 WARN_ON(preemptible());
302
e909fb83 303 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 304
d64d02ce
AB
305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 check_if_tm_restore_required(current);
e909fb83
CB
307 /*
308 * If a thread has already been reclaimed then the
309 * checkpointed registers are on the CPU but have definitely
310 * been saved by the reclaim code. Don't need to and *cannot*
311 * giveup as this would save to the 'live' structure not the
312 * checkpointed structure.
313 */
314 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
315 return;
a0e72cf1 316 __giveup_altivec(current);
d64d02ce 317 }
14cf11af
PM
318}
319EXPORT_SYMBOL(enable_kernel_altivec);
320
321/*
322 * Make sure the VMX/Altivec register state in the
323 * the thread_struct is up to date for task tsk.
324 */
325void flush_altivec_to_thread(struct task_struct *tsk)
326{
327 if (tsk->thread.regs) {
328 preempt_disable();
329 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 330 BUG_ON(tsk != current);
b86fd2bd 331 giveup_altivec(tsk);
14cf11af
PM
332 }
333 preempt_enable();
334 }
335}
de56a948 336EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
337
338static int restore_altivec(struct task_struct *tsk)
339{
dc16b553 340 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 341 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
342 load_vr_state(&tsk->thread.vr_state);
343 tsk->thread.used_vr = 1;
344 tsk->thread.load_vec++;
345
346 return 1;
347 }
348 return 0;
349}
350#else
351#define loadvec(thr) 0
352static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
353#endif /* CONFIG_ALTIVEC */
354
ce48b210 355#ifdef CONFIG_VSX
bf6a4d5b 356static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 357{
dc801081
BH
358 unsigned long msr = tsk->thread.regs->msr;
359
360 /*
361 * We should never be ssetting MSR_VSX without also setting
362 * MSR_FP and MSR_VEC
363 */
364 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365
366 /* __giveup_fpu will clear MSR_VSX */
367 if (msr & MSR_FP)
a7d623d4 368 __giveup_fpu(tsk);
dc801081 369 if (msr & MSR_VEC)
a7d623d4 370 __giveup_altivec(tsk);
bf6a4d5b
CB
371}
372
373static void giveup_vsx(struct task_struct *tsk)
374{
375 check_if_tm_restore_required(tsk);
376
377 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 378 __giveup_vsx(tsk);
a0e72cf1 379 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 380}
bf6a4d5b 381
ce48b210
MN
382void enable_kernel_vsx(void)
383{
e909fb83
CB
384 unsigned long cpumsr;
385
ce48b210
MN
386 WARN_ON(preemptible());
387
e909fb83 388 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 389
5a69aec9
BH
390 if (current->thread.regs &&
391 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 392 check_if_tm_restore_required(current);
e909fb83
CB
393 /*
394 * If a thread has already been reclaimed then the
395 * checkpointed registers are on the CPU but have definitely
396 * been saved by the reclaim code. Don't need to and *cannot*
397 * giveup as this would save to the 'live' structure not the
398 * checkpointed structure.
399 */
400 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
401 return;
a0e72cf1 402 __giveup_vsx(current);
611b0e5c 403 }
ce48b210
MN
404}
405EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
406
407void flush_vsx_to_thread(struct task_struct *tsk)
408{
409 if (tsk->thread.regs) {
410 preempt_disable();
5a69aec9 411 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 412 BUG_ON(tsk != current);
ce48b210
MN
413 giveup_vsx(tsk);
414 }
415 preempt_enable();
416 }
417}
de56a948 418EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
419
420static int restore_vsx(struct task_struct *tsk)
421{
422 if (cpu_has_feature(CPU_FTR_VSX)) {
423 tsk->thread.used_vsr = 1;
424 return 1;
425 }
426
427 return 0;
428}
429#else
430static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
431#endif /* CONFIG_VSX */
432
14cf11af 433#ifdef CONFIG_SPE
98da581e
AB
434void giveup_spe(struct task_struct *tsk)
435{
98da581e
AB
436 check_if_tm_restore_required(tsk);
437
a0e72cf1 438 msr_check_and_set(MSR_SPE);
98da581e 439 __giveup_spe(tsk);
a0e72cf1 440 msr_check_and_clear(MSR_SPE);
98da581e
AB
441}
442EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
443
444void enable_kernel_spe(void)
445{
446 WARN_ON(preemptible());
447
a0e72cf1 448 msr_check_and_set(MSR_SPE);
611b0e5c 449
d64d02ce
AB
450 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451 check_if_tm_restore_required(current);
a0e72cf1 452 __giveup_spe(current);
d64d02ce 453 }
14cf11af
PM
454}
455EXPORT_SYMBOL(enable_kernel_spe);
456
457void flush_spe_to_thread(struct task_struct *tsk)
458{
459 if (tsk->thread.regs) {
460 preempt_disable();
461 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 462 BUG_ON(tsk != current);
685659ee 463 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 464 giveup_spe(tsk);
14cf11af
PM
465 }
466 preempt_enable();
467 }
468}
14cf11af
PM
469#endif /* CONFIG_SPE */
470
c2085059
AB
471static unsigned long msr_all_available;
472
473static int __init init_msr_all_available(void)
474{
475#ifdef CONFIG_PPC_FPU
476 msr_all_available |= MSR_FP;
477#endif
478#ifdef CONFIG_ALTIVEC
479 if (cpu_has_feature(CPU_FTR_ALTIVEC))
480 msr_all_available |= MSR_VEC;
481#endif
482#ifdef CONFIG_VSX
483 if (cpu_has_feature(CPU_FTR_VSX))
484 msr_all_available |= MSR_VSX;
485#endif
486#ifdef CONFIG_SPE
487 if (cpu_has_feature(CPU_FTR_SPE))
488 msr_all_available |= MSR_SPE;
489#endif
490
491 return 0;
492}
493early_initcall(init_msr_all_available);
494
495void giveup_all(struct task_struct *tsk)
496{
497 unsigned long usermsr;
498
499 if (!tsk->thread.regs)
500 return;
501
502 usermsr = tsk->thread.regs->msr;
503
504 if ((usermsr & msr_all_available) == 0)
505 return;
506
507 msr_check_and_set(msr_all_available);
b0f16b46 508 check_if_tm_restore_required(tsk);
c2085059 509
96c79b6b
BH
510 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511
c2085059
AB
512#ifdef CONFIG_PPC_FPU
513 if (usermsr & MSR_FP)
514 __giveup_fpu(tsk);
515#endif
516#ifdef CONFIG_ALTIVEC
517 if (usermsr & MSR_VEC)
518 __giveup_altivec(tsk);
519#endif
c2085059
AB
520#ifdef CONFIG_SPE
521 if (usermsr & MSR_SPE)
522 __giveup_spe(tsk);
523#endif
524
525 msr_check_and_clear(msr_all_available);
526}
527EXPORT_SYMBOL(giveup_all);
528
70fe3d98
CB
529void restore_math(struct pt_regs *regs)
530{
531 unsigned long msr;
532
dc16b553
CB
533 if (!msr_tm_active(regs->msr) &&
534 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
535 return;
536
537 msr = regs->msr;
538 msr_check_and_set(msr_all_available);
539
540 /*
541 * Only reload if the bit is not set in the user MSR, the bit BEING set
542 * indicates that the registers are hot
543 */
544 if ((!(msr & MSR_FP)) && restore_fp(current))
545 msr |= MSR_FP | current->thread.fpexc_mode;
546
547 if ((!(msr & MSR_VEC)) && restore_altivec(current))
548 msr |= MSR_VEC;
549
550 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551 restore_vsx(current)) {
552 msr |= MSR_VSX;
553 }
554
555 msr_check_and_clear(msr_all_available);
556
557 regs->msr = msr;
558}
559
1cdf039b 560static void save_all(struct task_struct *tsk)
de2a20aa
CB
561{
562 unsigned long usermsr;
563
564 if (!tsk->thread.regs)
565 return;
566
567 usermsr = tsk->thread.regs->msr;
568
569 if ((usermsr & msr_all_available) == 0)
570 return;
571
572 msr_check_and_set(msr_all_available);
573
96c79b6b
BH
574 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575
576 if (usermsr & MSR_FP)
577 save_fpu(tsk);
578
579 if (usermsr & MSR_VEC)
580 save_altivec(tsk);
de2a20aa
CB
581
582 if (usermsr & MSR_SPE)
583 __giveup_spe(tsk);
584
585 msr_check_and_clear(msr_all_available);
586}
587
579e633e
AB
588void flush_all_to_thread(struct task_struct *tsk)
589{
590 if (tsk->thread.regs) {
591 preempt_disable();
592 BUG_ON(tsk != current);
de2a20aa 593 save_all(tsk);
579e633e
AB
594
595#ifdef CONFIG_SPE
596 if (tsk->thread.regs->msr & MSR_SPE)
597 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
598#endif
599
600 preempt_enable();
601 }
602}
603EXPORT_SYMBOL(flush_all_to_thread);
604
3bffb652
DK
605#ifdef CONFIG_PPC_ADV_DEBUG_REGS
606void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 607 unsigned long error_code, int breakpt)
3bffb652 608{
47355040 609 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
610 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
611 11, SIGSEGV) == NOTIFY_STOP)
612 return;
613
614 /* Deliver the signal to userspace */
f71dd7dc
EB
615 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
616 (void __user *)address);
3bffb652
DK
617}
618#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 619void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
620 unsigned long error_code)
621{
622 siginfo_t info;
623
41ab5266 624 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
625 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
626 11, SIGSEGV) == NOTIFY_STOP)
627 return;
628
9422de3e 629 if (debugger_break_match(regs))
d6a61bfc
LM
630 return;
631
9422de3e
MN
632 /* Clear the breakpoint */
633 hw_breakpoint_disable();
d6a61bfc
LM
634
635 /* Deliver the signal to userspace */
636 info.si_signo = SIGTRAP;
637 info.si_errno = 0;
638 info.si_code = TRAP_HWBKPT;
639 info.si_addr = (void __user *)address;
640 force_sig_info(SIGTRAP, &info, current);
641}
3bffb652 642#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 643
9422de3e 644static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 645
3bffb652
DK
646#ifdef CONFIG_PPC_ADV_DEBUG_REGS
647/*
648 * Set the debug registers back to their default "safe" values.
649 */
650static void set_debug_reg_defaults(struct thread_struct *thread)
651{
51ae8d4a 652 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 653#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 654 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 655#endif
51ae8d4a 656 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 657#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 658 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 659#endif
51ae8d4a 660 thread->debug.dbcr0 = 0;
3bffb652
DK
661#ifdef CONFIG_BOOKE
662 /*
663 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
664 */
51ae8d4a 665 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
666 DBCR1_IAC3US | DBCR1_IAC4US;
667 /*
668 * Force Data Address Compare User/Supervisor bits to be User-only
669 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
670 */
51ae8d4a 671 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 672#else
51ae8d4a 673 thread->debug.dbcr1 = 0;
3bffb652
DK
674#endif
675}
676
f5f97210 677static void prime_debug_regs(struct debug_reg *debug)
3bffb652 678{
6cecf76b
SW
679 /*
680 * We could have inherited MSR_DE from userspace, since
681 * it doesn't get cleared on exception entry. Make sure
682 * MSR_DE is clear before we enable any debug events.
683 */
684 mtmsr(mfmsr() & ~MSR_DE);
685
f5f97210
SW
686 mtspr(SPRN_IAC1, debug->iac1);
687 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 688#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
689 mtspr(SPRN_IAC3, debug->iac3);
690 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 691#endif
f5f97210
SW
692 mtspr(SPRN_DAC1, debug->dac1);
693 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 694#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
695 mtspr(SPRN_DVC1, debug->dvc1);
696 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 697#endif
f5f97210
SW
698 mtspr(SPRN_DBCR0, debug->dbcr0);
699 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 700#ifdef CONFIG_BOOKE
f5f97210 701 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
702#endif
703}
704/*
705 * Unless neither the old or new thread are making use of the
706 * debug registers, set the debug registers from the values
707 * stored in the new thread.
708 */
f5f97210 709void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 710{
51ae8d4a 711 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
712 || (new_debug->dbcr0 & DBCR0_IDM))
713 prime_debug_regs(new_debug);
3bffb652 714}
3743c9b8 715EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 716#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 717#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
718static void set_debug_reg_defaults(struct thread_struct *thread)
719{
9422de3e
MN
720 thread->hw_brk.address = 0;
721 thread->hw_brk.type = 0;
252988cb
NP
722 if (ppc_breakpoint_available())
723 set_breakpoint(&thread->hw_brk);
3bffb652 724}
e0780b72 725#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
726#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
727
172ae2e7 728#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
729static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730{
d6a61bfc 731 mtspr(SPRN_DAC1, dabr);
221c185d
DK
732#ifdef CONFIG_PPC_47x
733 isync();
734#endif
9422de3e
MN
735 return 0;
736}
c6c9eace 737#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
738static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739{
c6c9eace 740 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
741 if (cpu_has_feature(CPU_FTR_DABRX))
742 mtspr(SPRN_DABRX, dabrx);
cab0af98 743 return 0;
14cf11af 744}
4ad8622d
CL
745#elif defined(CONFIG_PPC_8xx)
746static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747{
748 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
749 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
750 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
751
752 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
753 lctrl1 |= 0xa0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
755 lctrl1 |= 0xf0000;
756 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
757 lctrl2 = 0;
758
759 mtspr(SPRN_LCTRL2, 0);
760 mtspr(SPRN_CMPE, addr);
761 mtspr(SPRN_CMPF, addr + 4);
762 mtspr(SPRN_LCTRL1, lctrl1);
763 mtspr(SPRN_LCTRL2, lctrl2);
764
765 return 0;
766}
9422de3e
MN
767#else
768static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
769{
770 return -EINVAL;
771}
772#endif
773
774static inline int set_dabr(struct arch_hw_breakpoint *brk)
775{
776 unsigned long dabr, dabrx;
777
778 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
779 dabrx = ((brk->type >> 3) & 0x7);
780
781 if (ppc_md.set_dabr)
782 return ppc_md.set_dabr(dabr, dabrx);
783
784 return __set_dabr(dabr, dabrx);
785}
786
bf99de36
MN
787static inline int set_dawr(struct arch_hw_breakpoint *brk)
788{
05d694ea 789 unsigned long dawr, dawrx, mrd;
bf99de36
MN
790
791 dawr = brk->address;
792
793 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
794 << (63 - 58); //* read/write bits */
795 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
796 << (63 - 59); //* translate */
797 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
798 >> 3; //* PRIM bits */
05d694ea
MN
799 /* dawr length is stored in field MDR bits 48:53. Matches range in
800 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
801 0b111111=64DW.
802 brk->len is in bytes.
803 This aligns up to double word size, shifts and does the bias.
804 */
805 mrd = ((brk->len + 7) >> 3) - 1;
806 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
807
808 if (ppc_md.set_dawr)
809 return ppc_md.set_dawr(dawr, dawrx);
810 mtspr(SPRN_DAWR, dawr);
811 mtspr(SPRN_DAWRX, dawrx);
812 return 0;
813}
814
21f58507 815void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 816{
69111bac 817 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 818
bf99de36 819 if (cpu_has_feature(CPU_FTR_DAWR))
252988cb 820 // Power8 or later
04c32a51 821 set_dawr(brk);
252988cb
NP
822 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
823 // Power7 or earlier
04c32a51 824 set_dabr(brk);
252988cb
NP
825 else
826 // Shouldn't happen due to higher level checks
827 WARN_ON_ONCE(1);
9422de3e 828}
14cf11af 829
21f58507
PG
830void set_breakpoint(struct arch_hw_breakpoint *brk)
831{
832 preempt_disable();
833 __set_breakpoint(brk);
834 preempt_enable();
835}
836
404b27d6
MN
837/* Check if we have DAWR or DABR hardware */
838bool ppc_breakpoint_available(void)
839{
840 if (cpu_has_feature(CPU_FTR_DAWR))
841 return true; /* POWER8 DAWR */
842 if (cpu_has_feature(CPU_FTR_ARCH_207S))
843 return false; /* POWER9 with DAWR disabled */
844 /* DABR: Everything but POWER8 and POWER9 */
845 return true;
846}
847EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
848
9422de3e
MN
849static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
850 struct arch_hw_breakpoint *b)
851{
852 if (a->address != b->address)
853 return false;
854 if (a->type != b->type)
855 return false;
856 if (a->len != b->len)
857 return false;
858 return true;
859}
d31626f7 860
fb09692e 861#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
862
863static inline bool tm_enabled(struct task_struct *tsk)
864{
865 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
866}
867
d31626f7
PM
868static void tm_reclaim_thread(struct thread_struct *thr,
869 struct thread_info *ti, uint8_t cause)
870{
7f821fc9
MN
871 /*
872 * Use the current MSR TM suspended bit to track if we have
873 * checkpointed state outstanding.
874 * On signal delivery, we'd normally reclaim the checkpointed
875 * state to obtain stack pointer (see:get_tm_stackpointer()).
876 * This will then directly return to userspace without going
877 * through __switch_to(). However, if the stack frame is bad,
878 * we need to exit this thread which calls __switch_to() which
879 * will again attempt to reclaim the already saved tm state.
880 * Hence we need to check that we've not already reclaimed
881 * this state.
882 * We do this using the current MSR, rather tracking it in
883 * some specific thread_struct bit, as it has the additional
027dfac6 884 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
885 */
886 if (!MSR_TM_SUSPENDED(mfmsr()))
887 return;
888
91381b9c
CB
889 giveup_all(container_of(thr, struct task_struct, thread));
890
eb5c3f1c
CB
891 tm_reclaim(thr, cause);
892
f48e91e8
MN
893 /*
894 * If we are in a transaction and FP is off then we can't have
895 * used FP inside that transaction. Hence the checkpointed
896 * state is the same as the live state. We need to copy the
897 * live state to the checkpointed state so that when the
898 * transaction is restored, the checkpointed state is correct
899 * and the aborted transaction sees the correct state. We use
900 * ckpt_regs.msr here as that's what tm_reclaim will use to
901 * determine if it's going to write the checkpointed state or
902 * not. So either this will write the checkpointed registers,
903 * or reclaim will. Similarly for VMX.
904 */
905 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
906 memcpy(&thr->ckfp_state, &thr->fp_state,
907 sizeof(struct thread_fp_state));
908 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
909 memcpy(&thr->ckvr_state, &thr->vr_state,
910 sizeof(struct thread_vr_state));
d31626f7
PM
911}
912
913void tm_reclaim_current(uint8_t cause)
914{
915 tm_enable();
916 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
917}
918
fb09692e
MN
919static inline void tm_reclaim_task(struct task_struct *tsk)
920{
921 /* We have to work out if we're switching from/to a task that's in the
922 * middle of a transaction.
923 *
924 * In switching we need to maintain a 2nd register state as
925 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
926 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
927 * ckvr_state
fb09692e
MN
928 *
929 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
930 */
931 struct thread_struct *thr = &tsk->thread;
932
933 if (!thr->regs)
934 return;
935
936 if (!MSR_TM_ACTIVE(thr->regs->msr))
937 goto out_and_saveregs;
938
92fb8690
MN
939 WARN_ON(tm_suspend_disabled);
940
fb09692e
MN
941 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
942 "ccr=%lx, msr=%lx, trap=%lx)\n",
943 tsk->pid, thr->regs->nip,
944 thr->regs->ccr, thr->regs->msr,
945 thr->regs->trap);
946
d31626f7 947 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
948
949 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
950 tsk->pid);
951
952out_and_saveregs:
953 /* Always save the regs here, even if a transaction's not active.
954 * This context-switches a thread's TM info SPRs. We do it here to
955 * be consistent with the restore path (in recheckpoint) which
956 * cannot happen later in _switch().
957 */
958 tm_save_sprs(thr);
959}
960
eb5c3f1c 961extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 962
eb5c3f1c 963void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
964{
965 unsigned long flags;
966
5d176f75
CB
967 if (!(thread->regs->msr & MSR_TM))
968 return;
969
e6b8fd02
MN
970 /* We really can't be interrupted here as the TEXASR registers can't
971 * change and later in the trecheckpoint code, we have a userspace R1.
972 * So let's hard disable over this region.
973 */
974 local_irq_save(flags);
975 hard_irq_disable();
976
977 /* The TM SPRs are restored here, so that TEXASR.FS can be set
978 * before the trecheckpoint and no explosion occurs.
979 */
980 tm_restore_sprs(thread);
981
eb5c3f1c 982 __tm_recheckpoint(thread);
e6b8fd02
MN
983
984 local_irq_restore(flags);
985}
986
bc2a9408 987static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 988{
fb09692e
MN
989 if (!cpu_has_feature(CPU_FTR_TM))
990 return;
991
992 /* Recheckpoint the registers of the thread we're about to switch to.
993 *
994 * If the task was using FP, we non-lazily reload both the original and
995 * the speculative FP register states. This is because the kernel
996 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 997 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
998 * need to be restored.
999 */
5d176f75 1000 if (!tm_enabled(new))
fb09692e
MN
1001 return;
1002
e6b8fd02
MN
1003 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1004 tm_restore_sprs(&new->thread);
fb09692e 1005 return;
e6b8fd02 1006 }
fb09692e 1007 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1008 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1009 new->pid, new->thread.regs->msr);
fb09692e 1010
eb5c3f1c 1011 tm_recheckpoint(&new->thread);
fb09692e 1012
dc310669
CB
1013 /*
1014 * The checkpointed state has been restored but the live state has
1015 * not, ensure all the math functionality is turned off to trigger
1016 * restore_math() to reload.
1017 */
1018 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1019
1020 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1021 "(kernel msr 0x%lx)\n",
1022 new->pid, mfmsr());
1023}
1024
dc310669
CB
1025static inline void __switch_to_tm(struct task_struct *prev,
1026 struct task_struct *new)
fb09692e
MN
1027{
1028 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1029 if (tm_enabled(prev) || tm_enabled(new))
1030 tm_enable();
1031
1032 if (tm_enabled(prev)) {
1033 prev->thread.load_tm++;
1034 tm_reclaim_task(prev);
1035 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1036 prev->thread.regs->msr &= ~MSR_TM;
1037 }
1038
dc310669 1039 tm_recheckpoint_new_task(new);
fb09692e
MN
1040 }
1041}
d31626f7
PM
1042
1043/*
1044 * This is called if we are on the way out to userspace and the
1045 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1046 * FP and/or vector state and does so if necessary.
1047 * If userspace is inside a transaction (whether active or
1048 * suspended) and FP/VMX/VSX instructions have ever been enabled
1049 * inside that transaction, then we have to keep them enabled
1050 * and keep the FP/VMX/VSX state loaded while ever the transaction
1051 * continues. The reason is that if we didn't, and subsequently
1052 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1053 * we don't know whether it's the same transaction, and thus we
1054 * don't know which of the checkpointed state and the transactional
1055 * state to use.
1056 */
1057void restore_tm_state(struct pt_regs *regs)
1058{
1059 unsigned long msr_diff;
1060
dc310669
CB
1061 /*
1062 * This is the only moment we should clear TIF_RESTORE_TM as
1063 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1064 * again, anything else could lead to an incorrect ckpt_msr being
1065 * saved and therefore incorrect signal contexts.
1066 */
d31626f7
PM
1067 clear_thread_flag(TIF_RESTORE_TM);
1068 if (!MSR_TM_ACTIVE(regs->msr))
1069 return;
1070
829023df 1071 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1072 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1073
dc16b553
CB
1074 /* Ensure that restore_math() will restore */
1075 if (msr_diff & MSR_FP)
1076 current->thread.load_fp = 1;
39715bf9 1077#ifdef CONFIG_ALTIVEC
dc16b553
CB
1078 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1079 current->thread.load_vec = 1;
1080#endif
70fe3d98
CB
1081 restore_math(regs);
1082
d31626f7
PM
1083 regs->msr |= msr_diff;
1084}
1085
fb09692e
MN
1086#else
1087#define tm_recheckpoint_new_task(new)
dc310669 1088#define __switch_to_tm(prev, new)
fb09692e 1089#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1090
152d523e
AB
1091static inline void save_sprs(struct thread_struct *t)
1092{
1093#ifdef CONFIG_ALTIVEC
01d7c2a2 1094 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1095 t->vrsave = mfspr(SPRN_VRSAVE);
1096#endif
1097#ifdef CONFIG_PPC_BOOK3S_64
1098 if (cpu_has_feature(CPU_FTR_DSCR))
1099 t->dscr = mfspr(SPRN_DSCR);
1100
1101 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1102 t->bescr = mfspr(SPRN_BESCR);
1103 t->ebbhr = mfspr(SPRN_EBBHR);
1104 t->ebbrr = mfspr(SPRN_EBBRR);
1105
1106 t->fscr = mfspr(SPRN_FSCR);
1107
1108 /*
1109 * Note that the TAR is not available for use in the kernel.
1110 * (To provide this, the TAR should be backed up/restored on
1111 * exception entry/exit instead, and be in pt_regs. FIXME,
1112 * this should be in pt_regs anyway (for debug).)
1113 */
1114 t->tar = mfspr(SPRN_TAR);
1115 }
1116#endif
06bb53b3
RP
1117
1118 thread_pkey_regs_save(t);
152d523e
AB
1119}
1120
1121static inline void restore_sprs(struct thread_struct *old_thread,
1122 struct thread_struct *new_thread)
1123{
1124#ifdef CONFIG_ALTIVEC
1125 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1126 old_thread->vrsave != new_thread->vrsave)
1127 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1128#endif
1129#ifdef CONFIG_PPC_BOOK3S_64
1130 if (cpu_has_feature(CPU_FTR_DSCR)) {
1131 u64 dscr = get_paca()->dscr_default;
b57bd2de 1132 if (new_thread->dscr_inherit)
152d523e 1133 dscr = new_thread->dscr;
152d523e
AB
1134
1135 if (old_thread->dscr != dscr)
1136 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1137 }
1138
1139 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1140 if (old_thread->bescr != new_thread->bescr)
1141 mtspr(SPRN_BESCR, new_thread->bescr);
1142 if (old_thread->ebbhr != new_thread->ebbhr)
1143 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1144 if (old_thread->ebbrr != new_thread->ebbrr)
1145 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1146
b57bd2de
MN
1147 if (old_thread->fscr != new_thread->fscr)
1148 mtspr(SPRN_FSCR, new_thread->fscr);
1149
152d523e
AB
1150 if (old_thread->tar != new_thread->tar)
1151 mtspr(SPRN_TAR, new_thread->tar);
1152 }
ec233ede
SB
1153
1154 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1155 old_thread->tidr != new_thread->tidr)
1156 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1157#endif
06bb53b3
RP
1158
1159 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1160}
1161
07d2a628
NP
1162#ifdef CONFIG_PPC_BOOK3S_64
1163#define CP_SIZE 128
1164static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1165#endif
1166
14cf11af
PM
1167struct task_struct *__switch_to(struct task_struct *prev,
1168 struct task_struct *new)
1169{
1170 struct thread_struct *new_thread, *old_thread;
14cf11af 1171 struct task_struct *last;
d6bf29b4
PZ
1172#ifdef CONFIG_PPC_BOOK3S_64
1173 struct ppc64_tlb_batch *batch;
1174#endif
14cf11af 1175
152d523e
AB
1176 new_thread = &new->thread;
1177 old_thread = &current->thread;
1178
7ba5fef7
MN
1179 WARN_ON(!irqs_disabled());
1180
4e003747 1181#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1182 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1183 if (batch->active) {
1184 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1185 if (batch->index)
1186 __flush_tlb_pending(batch);
1187 batch->active = 0;
1188 }
4e003747 1189#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1190
f3d885cc
AB
1191#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1192 switch_booke_debug_regs(&new->thread.debug);
1193#else
1194/*
1195 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1196 * schedule DABR
1197 */
1198#ifndef CONFIG_HAVE_HW_BREAKPOINT
1199 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1200 __set_breakpoint(&new->thread.hw_brk);
1201#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1202#endif
1203
1204 /*
1205 * We need to save SPRs before treclaim/trecheckpoint as these will
1206 * change a number of them.
1207 */
1208 save_sprs(&prev->thread);
1209
f3d885cc
AB
1210 /* Save FPU, Altivec, VSX and SPE state */
1211 giveup_all(prev);
1212
dc310669
CB
1213 __switch_to_tm(prev, new);
1214
e4c0fc5f
NP
1215 if (!radix_enabled()) {
1216 /*
1217 * We can't take a PMU exception inside _switch() since there
1218 * is a window where the kernel stack SLB and the kernel stack
1219 * are out of sync. Hard disable here.
1220 */
1221 hard_irq_disable();
1222 }
bc2a9408 1223
20dbe670
AB
1224 /*
1225 * Call restore_sprs() before calling _switch(). If we move it after
1226 * _switch() then we miss out on calling it for new tasks. The reason
1227 * for this is we manually create a stack frame for new tasks that
1228 * directly returns through ret_from_fork() or
1229 * ret_from_kernel_thread(). See copy_thread() for details.
1230 */
f3d885cc
AB
1231 restore_sprs(old_thread, new_thread);
1232
20dbe670
AB
1233 last = _switch(old_thread, new_thread);
1234
4e003747 1235#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1236 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1237 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1238 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1239 batch->active = 1;
1240 }
70fe3d98 1241
07d2a628 1242 if (current_thread_info()->task->thread.regs) {
70fe3d98 1243 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1244
1245 /*
1246 * The copy-paste buffer can only store into foreign real
1247 * addresses, so unprivileged processes can not see the
1248 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1249 * mappings. If the new process has the foreign real address
1250 * mappings, we must issue a cp_abort to clear any state and
1251 * prevent snooping, corruption or a covert channel.
1252 *
1253 * DD1 allows paste into normal system memory so we do an
1254 * unpaired copy, rather than cp_abort, to clear the buffer,
1255 * since cp_abort is quite expensive.
07d2a628 1256 */
9d2a4d71
SB
1257 if (current_thread_info()->task->thread.used_vas) {
1258 asm volatile(PPC_CP_ABORT);
1259 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
07d2a628
NP
1260 asm volatile(PPC_COPY(%0, %1)
1261 : : "r"(dummy_copy_buffer), "r"(0));
1262 }
1263 }
4e003747 1264#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1265
14cf11af
PM
1266 return last;
1267}
1268
06d67d54
PM
1269static int instructions_to_print = 16;
1270
06d67d54
PM
1271static void show_instructions(struct pt_regs *regs)
1272{
1273 int i;
1274 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1275 sizeof(int));
1276
1277 printk("Instruction dump:");
1278
1279 for (i = 0; i < instructions_to_print; i++) {
1280 int instr;
1281
1282 if (!(i % 8))
2ffd04de 1283 pr_cont("\n");
06d67d54 1284
0de2d820
SW
1285#if !defined(CONFIG_BOOKE)
1286 /* If executing with the IMMU off, adjust pc rather
1287 * than print XXXXXXXX.
1288 */
1289 if (!(regs->msr & MSR_IR))
1290 pc = (unsigned long)phys_to_virt(pc);
1291#endif
1292
00ae36de 1293 if (!__kernel_text_address(pc) ||
7b051f66 1294 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1295 pr_cont("XXXXXXXX ");
06d67d54
PM
1296 } else {
1297 if (regs->nip == pc)
2ffd04de 1298 pr_cont("<%08x> ", instr);
06d67d54 1299 else
2ffd04de 1300 pr_cont("%08x ", instr);
06d67d54
PM
1301 }
1302
1303 pc += sizeof(int);
1304 }
1305
2ffd04de 1306 pr_cont("\n");
06d67d54
PM
1307}
1308
801c0b2c 1309struct regbit {
06d67d54
PM
1310 unsigned long bit;
1311 const char *name;
801c0b2c
MN
1312};
1313
1314static struct regbit msr_bits[] = {
3bfd0c9c
AB
1315#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1316 {MSR_SF, "SF"},
1317 {MSR_HV, "HV"},
1318#endif
1319 {MSR_VEC, "VEC"},
1320 {MSR_VSX, "VSX"},
1321#ifdef CONFIG_BOOKE
1322 {MSR_CE, "CE"},
1323#endif
06d67d54
PM
1324 {MSR_EE, "EE"},
1325 {MSR_PR, "PR"},
1326 {MSR_FP, "FP"},
1327 {MSR_ME, "ME"},
3bfd0c9c 1328#ifdef CONFIG_BOOKE
1b98326b 1329 {MSR_DE, "DE"},
3bfd0c9c
AB
1330#else
1331 {MSR_SE, "SE"},
1332 {MSR_BE, "BE"},
1333#endif
06d67d54
PM
1334 {MSR_IR, "IR"},
1335 {MSR_DR, "DR"},
3bfd0c9c
AB
1336 {MSR_PMM, "PMM"},
1337#ifndef CONFIG_BOOKE
1338 {MSR_RI, "RI"},
1339 {MSR_LE, "LE"},
1340#endif
06d67d54
PM
1341 {0, NULL}
1342};
1343
801c0b2c 1344static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1345{
801c0b2c 1346 const char *s = "";
06d67d54 1347
06d67d54
PM
1348 for (; bits->bit; ++bits)
1349 if (val & bits->bit) {
db5ba5ae 1350 pr_cont("%s%s", s, bits->name);
801c0b2c 1351 s = sep;
06d67d54 1352 }
801c0b2c
MN
1353}
1354
1355#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1356static struct regbit msr_tm_bits[] = {
1357 {MSR_TS_T, "T"},
1358 {MSR_TS_S, "S"},
1359 {MSR_TM, "E"},
1360 {0, NULL}
1361};
1362
1363static void print_tm_bits(unsigned long val)
1364{
1365/*
1366 * This only prints something if at least one of the TM bit is set.
1367 * Inside the TM[], the output means:
1368 * E: Enabled (bit 32)
1369 * S: Suspended (bit 33)
1370 * T: Transactional (bit 34)
1371 */
1372 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1373 pr_cont(",TM[");
801c0b2c 1374 print_bits(val, msr_tm_bits, "");
db5ba5ae 1375 pr_cont("]");
801c0b2c
MN
1376 }
1377}
1378#else
1379static void print_tm_bits(unsigned long val) {}
1380#endif
1381
1382static void print_msr_bits(unsigned long val)
1383{
db5ba5ae 1384 pr_cont("<");
801c0b2c
MN
1385 print_bits(val, msr_bits, ",");
1386 print_tm_bits(val);
db5ba5ae 1387 pr_cont(">");
06d67d54
PM
1388}
1389
1390#ifdef CONFIG_PPC64
f6f7dde3 1391#define REG "%016lx"
06d67d54
PM
1392#define REGS_PER_LINE 4
1393#define LAST_VOLATILE 13
1394#else
f6f7dde3 1395#define REG "%08lx"
06d67d54
PM
1396#define REGS_PER_LINE 8
1397#define LAST_VOLATILE 12
1398#endif
1399
14cf11af
PM
1400void show_regs(struct pt_regs * regs)
1401{
1402 int i, trap;
1403
a43cb95d
TH
1404 show_regs_print_info(KERN_DEFAULT);
1405
a6036100 1406 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1407 regs->nip, regs->link, regs->ctr);
182dc9c7 1408 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1409 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1410 printk("MSR: "REG" ", regs->msr);
801c0b2c 1411 print_msr_bits(regs->msr);
f6fc73fb 1412 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1413 trap = TRAP(regs);
2271db20 1414 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1415 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1416 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1417#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1418 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1419#else
7dae865f 1420 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1421#endif
1422#ifdef CONFIG_PPC64
3130a7bb 1423 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1424#endif
1425#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1426 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1427 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1428#endif
14cf11af
PM
1429
1430 for (i = 0; i < 32; i++) {
06d67d54 1431 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1432 pr_cont("\nGPR%02d: ", i);
1433 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1434 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1435 break;
1436 }
7dae865f 1437 pr_cont("\n");
14cf11af
PM
1438#ifdef CONFIG_KALLSYMS
1439 /*
1440 * Lookup NIP late so we have the best change of getting the
1441 * above info out without failing
1442 */
058c78f4
BH
1443 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1444 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1445#endif
14cf11af 1446 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1447 if (!user_mode(regs))
1448 show_instructions(regs);
14cf11af
PM
1449}
1450
14cf11af
PM
1451void flush_thread(void)
1452{
e0780b72 1453#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1454 flush_ptrace_hw_breakpoint(current);
e0780b72 1455#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1456 set_debug_reg_defaults(&current->thread);
e0780b72 1457#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1458}
1459
9d2a4d71
SB
1460int set_thread_uses_vas(void)
1461{
1462#ifdef CONFIG_PPC_BOOK3S_64
1463 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1464 return -EINVAL;
1465
1466 current->thread.used_vas = 1;
1467
1468 /*
1469 * Even a process that has no foreign real address mapping can use
1470 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1471 * to clear any pending COPY and prevent a covert channel.
1472 *
1473 * __switch_to() will issue CP_ABORT on future context switches.
1474 */
1475 asm volatile(PPC_CP_ABORT);
1476
1477#endif /* CONFIG_PPC_BOOK3S_64 */
1478 return 0;
1479}
1480
ec233ede
SB
1481#ifdef CONFIG_PPC64
1482static DEFINE_SPINLOCK(vas_thread_id_lock);
1483static DEFINE_IDA(vas_thread_ida);
1484
1485/*
1486 * We need to assign a unique thread id to each thread in a process.
1487 *
1488 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1489 * is intended to be used to direct an ASB_Notify from the hardware to the
1490 * thread, when a suitable event occurs in the system.
1491 *
1492 * One such event is a "paste" instruction in the context of Fast Thread
1493 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1494 * (VAS) in POWER9.
1495 *
1496 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1497 * the problem is that task_pid_nr() is not yet available copy_thread() is
1498 * called. Fixing that would require changing more intrusive arch-neutral
1499 * code in code path in copy_process()?.
1500 *
1501 * Further, to assign unique TIDRs within each process, we need an atomic
1502 * field (or an IDR) in task_struct, which again intrudes into the arch-
1503 * neutral code. So try to assign globally unique TIDRs for now.
1504 *
1505 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1506 * For now, only threads that expect to be notified by the VAS
1507 * hardware need a TIDR value and we assign values > 0 for those.
1508 */
1509#define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1510static int assign_thread_tidr(void)
1511{
1512 int index;
1513 int err;
384dfd62 1514 unsigned long flags;
ec233ede
SB
1515
1516again:
1517 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1518 return -ENOMEM;
1519
384dfd62 1520 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1521 err = ida_get_new_above(&vas_thread_ida, 1, &index);
384dfd62 1522 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1523
1524 if (err == -EAGAIN)
1525 goto again;
1526 else if (err)
1527 return err;
1528
1529 if (index > MAX_THREAD_CONTEXT) {
384dfd62 1530 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1531 ida_remove(&vas_thread_ida, index);
384dfd62 1532 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1533 return -ENOMEM;
1534 }
1535
1536 return index;
1537}
1538
1539static void free_thread_tidr(int id)
1540{
384dfd62
SB
1541 unsigned long flags;
1542
1543 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1544 ida_remove(&vas_thread_ida, id);
384dfd62 1545 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1546}
1547
1548/*
1549 * Clear any TIDR value assigned to this thread.
1550 */
1551void clear_thread_tidr(struct task_struct *t)
1552{
1553 if (!t->thread.tidr)
1554 return;
1555
1556 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1557 WARN_ON_ONCE(1);
1558 return;
1559 }
1560
1561 mtspr(SPRN_TIDR, 0);
1562 free_thread_tidr(t->thread.tidr);
1563 t->thread.tidr = 0;
1564}
1565
1566void arch_release_task_struct(struct task_struct *t)
1567{
1568 clear_thread_tidr(t);
1569}
1570
1571/*
1572 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1573 * structure. For now, we only support setting TIDR for 'current' task.
1574 */
1575int set_thread_tidr(struct task_struct *t)
1576{
aca7573f
VJ
1577 int rc;
1578
ec233ede
SB
1579 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1580 return -EINVAL;
1581
1582 if (t != current)
1583 return -EINVAL;
1584
7e4d4233
VJ
1585 if (t->thread.tidr)
1586 return 0;
1587
aca7573f
VJ
1588 rc = assign_thread_tidr();
1589 if (rc < 0)
1590 return rc;
ec233ede 1591
aca7573f 1592 t->thread.tidr = rc;
ec233ede
SB
1593 mtspr(SPRN_TIDR, t->thread.tidr);
1594
1595 return 0;
1596}
b1db5513 1597EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1598
1599#endif /* CONFIG_PPC64 */
1600
14cf11af
PM
1601void
1602release_thread(struct task_struct *t)
1603{
1604}
1605
1606/*
55ccf3fe
SS
1607 * this gets called so that we can store coprocessor state into memory and
1608 * copy the current task into the new thread.
14cf11af 1609 */
55ccf3fe 1610int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1611{
579e633e 1612 flush_all_to_thread(src);
621b5060
MN
1613 /*
1614 * Flush TM state out so we can copy it. __switch_to_tm() does this
1615 * flush but it removes the checkpointed state from the current CPU and
1616 * transitions the CPU out of TM mode. Hence we need to call
1617 * tm_recheckpoint_new_task() (on the same task) to restore the
1618 * checkpointed state back and the TM mode.
5d176f75
CB
1619 *
1620 * Can't pass dst because it isn't ready. Doesn't matter, passing
1621 * dst is only important for __switch_to()
621b5060 1622 */
dc310669 1623 __switch_to_tm(src, src);
330a1eb7 1624
55ccf3fe 1625 *dst = *src;
330a1eb7
ME
1626
1627 clear_task_ebb(dst);
1628
55ccf3fe 1629 return 0;
14cf11af
PM
1630}
1631
cec15488
ME
1632static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1633{
4e003747 1634#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1635 unsigned long sp_vsid;
1636 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1637
caca285e
AK
1638 if (radix_enabled())
1639 return;
1640
cec15488
ME
1641 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1642 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1643 << SLB_VSID_SHIFT_1T;
1644 else
1645 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1646 << SLB_VSID_SHIFT;
1647 sp_vsid |= SLB_VSID_KERNEL | llp;
1648 p->thread.ksp_vsid = sp_vsid;
1649#endif
1650}
1651
14cf11af
PM
1652/*
1653 * Copy a thread..
1654 */
efcac658 1655
6eca8933
AD
1656/*
1657 * Copy architecture-specific thread state
1658 */
6f2c55b8 1659int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1660 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1661{
1662 struct pt_regs *childregs, *kregs;
1663 extern void ret_from_fork(void);
58254e10
AV
1664 extern void ret_from_kernel_thread(void);
1665 void (*f)(void);
0cec6fd1 1666 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1667 struct thread_info *ti = task_thread_info(p);
1668
1669 klp_init_thread_info(ti);
14cf11af 1670
14cf11af
PM
1671 /* Copy registers */
1672 sp -= sizeof(struct pt_regs);
1673 childregs = (struct pt_regs *) sp;
ab75819d 1674 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1675 /* kernel thread */
58254e10 1676 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1677 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1678 /* function */
1679 if (usp)
1680 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1681#ifdef CONFIG_PPC64
b5e2fc1c 1682 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1683 childregs->softe = IRQS_ENABLED;
06d67d54 1684#endif
6eca8933 1685 childregs->gpr[15] = kthread_arg;
14cf11af 1686 p->thread.regs = NULL; /* no user register state */
138d1ce8 1687 ti->flags |= _TIF_RESTOREALL;
58254e10 1688 f = ret_from_kernel_thread;
14cf11af 1689 } else {
6eca8933 1690 /* user thread */
afa86fc4 1691 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1692 CHECK_FULL_REGS(regs);
1693 *childregs = *regs;
ea516b11
AV
1694 if (usp)
1695 childregs->gpr[1] = usp;
14cf11af 1696 p->thread.regs = childregs;
58254e10 1697 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1698 if (clone_flags & CLONE_SETTLS) {
1699#ifdef CONFIG_PPC64
9904b005 1700 if (!is_32bit_task())
06d67d54
PM
1701 childregs->gpr[13] = childregs->gpr[6];
1702 else
1703#endif
1704 childregs->gpr[2] = childregs->gpr[6];
1705 }
58254e10
AV
1706
1707 f = ret_from_fork;
14cf11af 1708 }
d272f667 1709 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1710 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1711
1712 /*
1713 * The way this works is that at some point in the future
1714 * some task will call _switch to switch to the new task.
1715 * That will pop off the stack frame created below and start
1716 * the new task running at ret_from_fork. The new task will
1717 * do some house keeping and then return from the fork or clone
1718 * system call, using the stack frame created above.
1719 */
af945cf4 1720 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1721 sp -= sizeof(struct pt_regs);
1722 kregs = (struct pt_regs *) sp;
1723 sp -= STACK_FRAME_OVERHEAD;
1724 p->thread.ksp = sp;
cbc9565e 1725#ifdef CONFIG_PPC32
85218827
KG
1726 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1727 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1728#endif
28d170ab
ON
1729#ifdef CONFIG_HAVE_HW_BREAKPOINT
1730 p->thread.ptrace_bps[0] = NULL;
1731#endif
1732
18461960
PM
1733 p->thread.fp_save_area = NULL;
1734#ifdef CONFIG_ALTIVEC
1735 p->thread.vr_save_area = NULL;
1736#endif
1737
cec15488
ME
1738 setup_ksp_vsid(p, sp);
1739
efcac658
AK
1740#ifdef CONFIG_PPC64
1741 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1742 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1743 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1744 }
92779245
HM
1745 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1746 p->thread.ppr = INIT_PPR;
ec233ede
SB
1747
1748 p->thread.tidr = 0;
efcac658 1749#endif
7cedd601 1750 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1751 return 0;
1752}
1753
1754/*
1755 * Set up a thread for executing a new program
1756 */
06d67d54 1757void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1758{
90eac727
ME
1759#ifdef CONFIG_PPC64
1760 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1761#endif
1762
06d67d54
PM
1763 /*
1764 * If we exec out of a kernel thread then thread.regs will not be
1765 * set. Do it now.
1766 */
1767 if (!current->thread.regs) {
0cec6fd1
AV
1768 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1769 current->thread.regs = regs - 1;
06d67d54
PM
1770 }
1771
8e96a87c
CB
1772#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1773 /*
1774 * Clear any transactional state, we're exec()ing. The cause is
1775 * not important as there will never be a recheckpoint so it's not
1776 * user visible.
1777 */
1778 if (MSR_TM_SUSPENDED(mfmsr()))
1779 tm_reclaim_current(0);
1780#endif
1781
14cf11af
PM
1782 memset(regs->gpr, 0, sizeof(regs->gpr));
1783 regs->ctr = 0;
1784 regs->link = 0;
1785 regs->xer = 0;
1786 regs->ccr = 0;
14cf11af 1787 regs->gpr[1] = sp;
06d67d54 1788
474f8196
RM
1789 /*
1790 * We have just cleared all the nonvolatile GPRs, so make
1791 * FULL_REGS(regs) return true. This is necessary to allow
1792 * ptrace to examine the thread immediately after exec.
1793 */
1794 regs->trap &= ~1UL;
1795
06d67d54
PM
1796#ifdef CONFIG_PPC32
1797 regs->mq = 0;
1798 regs->nip = start;
14cf11af 1799 regs->msr = MSR_USER;
06d67d54 1800#else
9904b005 1801 if (!is_32bit_task()) {
94af3abf 1802 unsigned long entry;
06d67d54 1803
94af3abf
RR
1804 if (is_elf2_task()) {
1805 /* Look ma, no function descriptors! */
1806 entry = start;
06d67d54 1807
94af3abf
RR
1808 /*
1809 * Ulrich says:
1810 * The latest iteration of the ABI requires that when
1811 * calling a function (at its global entry point),
1812 * the caller must ensure r12 holds the entry point
1813 * address (so that the function can quickly
1814 * establish addressability).
1815 */
1816 regs->gpr[12] = start;
1817 /* Make sure that's restored on entry to userspace. */
1818 set_thread_flag(TIF_RESTOREALL);
1819 } else {
1820 unsigned long toc;
1821
1822 /* start is a relocated pointer to the function
1823 * descriptor for the elf _start routine. The first
1824 * entry in the function descriptor is the entry
1825 * address of _start and the second entry is the TOC
1826 * value we need to use.
1827 */
1828 __get_user(entry, (unsigned long __user *)start);
1829 __get_user(toc, (unsigned long __user *)start+1);
1830
1831 /* Check whether the e_entry function descriptor entries
1832 * need to be relocated before we can use them.
1833 */
1834 if (load_addr != 0) {
1835 entry += load_addr;
1836 toc += load_addr;
1837 }
1838 regs->gpr[2] = toc;
06d67d54
PM
1839 }
1840 regs->nip = entry;
06d67d54 1841 regs->msr = MSR_USER64;
d4bf9a78
SR
1842 } else {
1843 regs->nip = start;
1844 regs->gpr[2] = 0;
1845 regs->msr = MSR_USER32;
06d67d54
PM
1846 }
1847#endif
ce48b210
MN
1848#ifdef CONFIG_VSX
1849 current->thread.used_vsr = 0;
1850#endif
1195892c 1851 current->thread.load_fp = 0;
de79f7b9 1852 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1853 current->thread.fp_save_area = NULL;
14cf11af 1854#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1855 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1856 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1857 current->thread.vr_save_area = NULL;
14cf11af
PM
1858 current->thread.vrsave = 0;
1859 current->thread.used_vr = 0;
1195892c 1860 current->thread.load_vec = 0;
14cf11af
PM
1861#endif /* CONFIG_ALTIVEC */
1862#ifdef CONFIG_SPE
1863 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1864 current->thread.acc = 0;
1865 current->thread.spefscr = 0;
1866 current->thread.used_spe = 0;
1867#endif /* CONFIG_SPE */
bc2a9408 1868#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1869 current->thread.tm_tfhar = 0;
1870 current->thread.tm_texasr = 0;
1871 current->thread.tm_tfiar = 0;
7f22ced4 1872 current->thread.load_tm = 0;
bc2a9408 1873#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1874
1875 thread_pkey_regs_init(&current->thread);
14cf11af 1876}
e1802b06 1877EXPORT_SYMBOL(start_thread);
14cf11af
PM
1878
1879#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1880 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1881
1882int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1883{
1884 struct pt_regs *regs = tsk->thread.regs;
1885
1886 /* This is a bit hairy. If we are an SPE enabled processor
1887 * (have embedded fp) we store the IEEE exception enable flags in
1888 * fpexc_mode. fpexc_mode is also used for setting FP exception
1889 * mode (asyn, precise, disabled) for 'Classic' FP. */
1890 if (val & PR_FP_EXC_SW_ENABLE) {
1891#ifdef CONFIG_SPE
5e14d21e 1892 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1893 /*
1894 * When the sticky exception bits are set
1895 * directly by userspace, it must call prctl
1896 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1897 * in the existing prctl settings) or
1898 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1899 * the bits being set). <fenv.h> functions
1900 * saving and restoring the whole
1901 * floating-point environment need to do so
1902 * anyway to restore the prctl settings from
1903 * the saved environment.
1904 */
1905 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1906 tsk->thread.fpexc_mode = val &
1907 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1908 return 0;
1909 } else {
1910 return -EINVAL;
1911 }
14cf11af
PM
1912#else
1913 return -EINVAL;
1914#endif
14cf11af 1915 }
06d67d54
PM
1916
1917 /* on a CONFIG_SPE this does not hurt us. The bits that
1918 * __pack_fe01 use do not overlap with bits used for
1919 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1920 * on CONFIG_SPE implementations are reserved so writing to
1921 * them does not change anything */
1922 if (val > PR_FP_EXC_PRECISE)
1923 return -EINVAL;
1924 tsk->thread.fpexc_mode = __pack_fe01(val);
1925 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1926 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1927 | tsk->thread.fpexc_mode;
14cf11af
PM
1928 return 0;
1929}
1930
1931int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1932{
1933 unsigned int val;
1934
1935 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1936#ifdef CONFIG_SPE
640e9225
JM
1937 if (cpu_has_feature(CPU_FTR_SPE)) {
1938 /*
1939 * When the sticky exception bits are set
1940 * directly by userspace, it must call prctl
1941 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1942 * in the existing prctl settings) or
1943 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1944 * the bits being set). <fenv.h> functions
1945 * saving and restoring the whole
1946 * floating-point environment need to do so
1947 * anyway to restore the prctl settings from
1948 * the saved environment.
1949 */
1950 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1951 val = tsk->thread.fpexc_mode;
640e9225 1952 } else
5e14d21e 1953 return -EINVAL;
14cf11af
PM
1954#else
1955 return -EINVAL;
1956#endif
1957 else
1958 val = __unpack_fe01(tsk->thread.fpexc_mode);
1959 return put_user(val, (unsigned int __user *) adr);
1960}
1961
fab5db97
PM
1962int set_endian(struct task_struct *tsk, unsigned int val)
1963{
1964 struct pt_regs *regs = tsk->thread.regs;
1965
1966 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1967 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1968 return -EINVAL;
1969
1970 if (regs == NULL)
1971 return -EINVAL;
1972
1973 if (val == PR_ENDIAN_BIG)
1974 regs->msr &= ~MSR_LE;
1975 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1976 regs->msr |= MSR_LE;
1977 else
1978 return -EINVAL;
1979
1980 return 0;
1981}
1982
1983int get_endian(struct task_struct *tsk, unsigned long adr)
1984{
1985 struct pt_regs *regs = tsk->thread.regs;
1986 unsigned int val;
1987
1988 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1989 !cpu_has_feature(CPU_FTR_REAL_LE))
1990 return -EINVAL;
1991
1992 if (regs == NULL)
1993 return -EINVAL;
1994
1995 if (regs->msr & MSR_LE) {
1996 if (cpu_has_feature(CPU_FTR_REAL_LE))
1997 val = PR_ENDIAN_LITTLE;
1998 else
1999 val = PR_ENDIAN_PPC_LITTLE;
2000 } else
2001 val = PR_ENDIAN_BIG;
2002
2003 return put_user(val, (unsigned int __user *)adr);
2004}
2005
e9370ae1
PM
2006int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2007{
2008 tsk->thread.align_ctl = val;
2009 return 0;
2010}
2011
2012int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2013{
2014 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2015}
2016
bb72c481
PM
2017static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2018 unsigned long nbytes)
2019{
2020 unsigned long stack_page;
2021 unsigned long cpu = task_cpu(p);
2022
2023 /*
2024 * Avoid crashing if the stack has overflowed and corrupted
2025 * task_cpu(p), which is in the thread_info struct.
2026 */
2027 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2028 stack_page = (unsigned long) hardirq_ctx[cpu];
2029 if (sp >= stack_page + sizeof(struct thread_struct)
2030 && sp <= stack_page + THREAD_SIZE - nbytes)
2031 return 1;
2032
2033 stack_page = (unsigned long) softirq_ctx[cpu];
2034 if (sp >= stack_page + sizeof(struct thread_struct)
2035 && sp <= stack_page + THREAD_SIZE - nbytes)
2036 return 1;
2037 }
2038 return 0;
2039}
2040
2f25194d 2041int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2042 unsigned long nbytes)
2043{
0cec6fd1 2044 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
2045
2046 if (sp >= stack_page + sizeof(struct thread_struct)
2047 && sp <= stack_page + THREAD_SIZE - nbytes)
2048 return 1;
2049
bb72c481 2050 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2051}
2052
2f25194d
AB
2053EXPORT_SYMBOL(validate_sp);
2054
14cf11af
PM
2055unsigned long get_wchan(struct task_struct *p)
2056{
2057 unsigned long ip, sp;
2058 int count = 0;
2059
2060 if (!p || p == current || p->state == TASK_RUNNING)
2061 return 0;
2062
2063 sp = p->thread.ksp;
ec2b36b9 2064 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2065 return 0;
2066
2067 do {
2068 sp = *(unsigned long *)sp;
4ca360f3
KC
2069 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2070 p->state == TASK_RUNNING)
14cf11af
PM
2071 return 0;
2072 if (count > 0) {
ec2b36b9 2073 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2074 if (!in_sched_functions(ip))
2075 return ip;
2076 }
2077 } while (count++ < 16);
2078 return 0;
2079}
06d67d54 2080
c4d04be1 2081static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2082
2083void show_stack(struct task_struct *tsk, unsigned long *stack)
2084{
2085 unsigned long sp, ip, lr, newsp;
2086 int count = 0;
2087 int firstframe = 1;
6794c782
SR
2088#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2089 int curr_frame = current->curr_ret_stack;
2090 extern void return_to_handler(void);
9135c3cc 2091 unsigned long rth = (unsigned long)return_to_handler;
6794c782 2092#endif
06d67d54
PM
2093
2094 sp = (unsigned long) stack;
2095 if (tsk == NULL)
2096 tsk = current;
2097 if (sp == 0) {
2098 if (tsk == current)
acf620ec 2099 sp = current_stack_pointer();
06d67d54
PM
2100 else
2101 sp = tsk->thread.ksp;
2102 }
2103
2104 lr = 0;
2105 printk("Call Trace:\n");
2106 do {
ec2b36b9 2107 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2108 return;
2109
2110 stack = (unsigned long *) sp;
2111 newsp = stack[0];
ec2b36b9 2112 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2113 if (!firstframe || ip != lr) {
058c78f4 2114 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2115#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2116 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 2117 pr_cont(" (%pS)",
6794c782
SR
2118 (void *)current->ret_stack[curr_frame].ret);
2119 curr_frame--;
2120 }
2121#endif
06d67d54 2122 if (firstframe)
9a1f490f
ME
2123 pr_cont(" (unreliable)");
2124 pr_cont("\n");
06d67d54
PM
2125 }
2126 firstframe = 0;
2127
2128 /*
2129 * See if this is an exception frame.
2130 * We look for the "regshere" marker in the current frame.
2131 */
ec2b36b9
BH
2132 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2133 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2134 struct pt_regs *regs = (struct pt_regs *)
2135 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2136 lr = regs->link;
9be9be2e 2137 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2138 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2139 firstframe = 1;
2140 }
2141
2142 sp = newsp;
2143 } while (count++ < kstack_depth_to_print);
2144}
2145
cb2c9b27 2146#ifdef CONFIG_PPC64
fe1952fc 2147/* Called with hard IRQs off */
0e37739b 2148void notrace __ppc64_runlatch_on(void)
cb2c9b27 2149{
fe1952fc 2150 struct thread_info *ti = current_thread_info();
cb2c9b27 2151
d1d0d5ff
NP
2152 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2153 /*
2154 * Least significant bit (RUN) is the only writable bit of
2155 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2156 * earliest ISA where this is the case, but it's convenient.
2157 */
2158 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2159 } else {
2160 unsigned long ctrl;
2161
2162 /*
2163 * Some architectures (e.g., Cell) have writable fields other
2164 * than RUN, so do the read-modify-write.
2165 */
2166 ctrl = mfspr(SPRN_CTRLF);
2167 ctrl |= CTRL_RUNLATCH;
2168 mtspr(SPRN_CTRLT, ctrl);
2169 }
cb2c9b27 2170
fae2e0fb 2171 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2172}
2173
fe1952fc 2174/* Called with hard IRQs off */
0e37739b 2175void notrace __ppc64_runlatch_off(void)
cb2c9b27 2176{
fe1952fc 2177 struct thread_info *ti = current_thread_info();
cb2c9b27 2178
fae2e0fb 2179 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2180
d1d0d5ff
NP
2181 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2182 mtspr(SPRN_CTRLT, 0);
2183 } else {
2184 unsigned long ctrl;
2185
2186 ctrl = mfspr(SPRN_CTRLF);
2187 ctrl &= ~CTRL_RUNLATCH;
2188 mtspr(SPRN_CTRLT, ctrl);
2189 }
cb2c9b27 2190}
fe1952fc 2191#endif /* CONFIG_PPC64 */
f6a61680 2192
d839088c
AB
2193unsigned long arch_align_stack(unsigned long sp)
2194{
2195 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2196 sp -= get_random_int() & ~PAGE_MASK;
2197 return sp & ~0xf;
2198}
912f9ee2
AB
2199
2200static inline unsigned long brk_rnd(void)
2201{
2202 unsigned long rnd = 0;
2203
2204 /* 8MB for 32bit, 1GB for 64bit */
2205 if (is_32bit_task())
5ef11c35 2206 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2207 else
5ef11c35 2208 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2209
2210 return rnd << PAGE_SHIFT;
2211}
2212
2213unsigned long arch_randomize_brk(struct mm_struct *mm)
2214{
8bbde7a7
AB
2215 unsigned long base = mm->brk;
2216 unsigned long ret;
2217
4e003747 2218#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2219 /*
2220 * If we are using 1TB segments and we are allowed to randomise
2221 * the heap, we can put it above 1TB so it is backed by a 1TB
2222 * segment. Otherwise the heap will be in the bottom 1TB
2223 * which always uses 256MB segments and this may result in a
caca285e
AK
2224 * performance penalty. We don't need to worry about radix. For
2225 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2226 */
2227 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2228 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2229#endif
2230
2231 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2232
2233 if (ret < mm->brk)
2234 return mm->brk;
2235
2236 return ret;
2237}
501cb16d 2238