]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc/pseries: export timebase register sample in lparcfg
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
06bb53b3 45#include <linux/pkeys.h>
fb2d9505 46#include <linux/seq_buf.h>
14cf11af
PM
47
48#include <asm/pgtable.h>
14cf11af
PM
49#include <asm/io.h>
50#include <asm/processor.h>
51#include <asm/mmu.h>
52#include <asm/prom.h>
76032de8 53#include <asm/machdep.h>
c6622f63 54#include <asm/time.h>
ae3a197e 55#include <asm/runlatch.h>
a7f31841 56#include <asm/syscalls.h>
ae3a197e 57#include <asm/switch_to.h>
fb09692e 58#include <asm/tm.h>
ae3a197e 59#include <asm/debug.h>
06d67d54
PM
60#ifdef CONFIG_PPC64
61#include <asm/firmware.h>
c2e480ba 62#include <asm/hw_irq.h>
06d67d54 63#endif
7cedd601 64#include <asm/code-patching.h>
7f92bc56 65#include <asm/exec.h>
5d31a96e 66#include <asm/livepatch.h>
b92a226e 67#include <asm/cpu_has_feature.h>
0545d543 68#include <asm/asm-prototypes.h>
c9386bfd 69#include <asm/stacktrace.h>
5d31a96e 70
d6a61bfc
LM
71#include <linux/kprobes.h>
72#include <linux/kdebug.h>
14cf11af 73
8b3c34cf
MN
74/* Transactional Memory debug */
75#ifdef TM_DEBUG_SW
76#define TM_DEBUG(x...) printk(KERN_INFO x)
77#else
78#define TM_DEBUG(x...) do { } while(0)
79#endif
80
14cf11af
PM
81extern unsigned long _get_SP(void);
82
d31626f7 83#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
84/*
85 * Are we running in "Suspend disabled" mode? If so we have to block any
86 * sigreturn that would get us into suspended state, and we also warn in some
87 * other paths that we should never reach with suspend disabled.
88 */
89bool tm_suspend_disabled __ro_after_init = false;
90
b86fd2bd 91static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
92{
93 /*
94 * If we are saving the current thread's registers, and the
95 * thread is in a transactional state, set the TIF_RESTORE_TM
96 * bit so that we know to restore the registers before
97 * returning to userspace.
98 */
99 if (tsk == current && tsk->thread.regs &&
100 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
103 set_thread_flag(TIF_RESTORE_TM);
104 }
d31626f7 105}
dc16b553 106
a7771176
CB
107static bool tm_active_with_fp(struct task_struct *tsk)
108{
5c784c84 109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
110 (tsk->thread.ckpt_regs.msr & MSR_FP);
111}
112
113static bool tm_active_with_altivec(struct task_struct *tsk)
114{
5c784c84 115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
116 (tsk->thread.ckpt_regs.msr & MSR_VEC);
117}
d31626f7 118#else
b86fd2bd 119static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
120static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
122#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123
3eb5d588
AB
124bool strict_msr_control;
125EXPORT_SYMBOL(strict_msr_control);
126
127static int __init enable_strict_msr_control(char *str)
128{
129 strict_msr_control = true;
130 pr_info("Enabling strict facility control\n");
131
132 return 0;
133}
134early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135
3cee070a 136unsigned long msr_check_and_set(unsigned long bits)
98da581e 137{
a0e72cf1
AB
138 unsigned long oldmsr = mfmsr();
139 unsigned long newmsr;
98da581e 140
a0e72cf1 141 newmsr = oldmsr | bits;
98da581e 142
98da581e 143#ifdef CONFIG_VSX
a0e72cf1 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
145 newmsr |= MSR_VSX;
146#endif
a0e72cf1 147
98da581e
AB
148 if (oldmsr != newmsr)
149 mtmsr_isync(newmsr);
3cee070a
CB
150
151 return newmsr;
a0e72cf1 152}
d1c72112 153EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 154
3eb5d588 155void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
156{
157 unsigned long oldmsr = mfmsr();
158 unsigned long newmsr;
159
160 newmsr = oldmsr & ~bits;
161
162#ifdef CONFIG_VSX
163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164 newmsr &= ~MSR_VSX;
165#endif
166
167 if (oldmsr != newmsr)
168 mtmsr_isync(newmsr);
169}
3eb5d588 170EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
171
172#ifdef CONFIG_PPC_FPU
1cdf039b 173static void __giveup_fpu(struct task_struct *tsk)
8792468d 174{
8eb98037
AB
175 unsigned long msr;
176
8792468d 177 save_fpu(tsk);
8eb98037
AB
178 msr = tsk->thread.regs->msr;
179 msr &= ~MSR_FP;
8792468d
CB
180#ifdef CONFIG_VSX
181 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 182 msr &= ~MSR_VSX;
8792468d 183#endif
8eb98037 184 tsk->thread.regs->msr = msr;
8792468d
CB
185}
186
a0e72cf1
AB
187void giveup_fpu(struct task_struct *tsk)
188{
189 check_if_tm_restore_required(tsk);
190
191 msr_check_and_set(MSR_FP);
98da581e 192 __giveup_fpu(tsk);
a0e72cf1 193 msr_check_and_clear(MSR_FP);
98da581e
AB
194}
195EXPORT_SYMBOL(giveup_fpu);
196
14cf11af
PM
197/*
198 * Make sure the floating-point register state in the
199 * the thread_struct is up to date for task tsk.
200 */
201void flush_fp_to_thread(struct task_struct *tsk)
202{
203 if (tsk->thread.regs) {
204 /*
205 * We need to disable preemption here because if we didn't,
206 * another process could get scheduled after the regs->msr
207 * test but before we have finished saving the FP registers
208 * to the thread_struct. That process could take over the
209 * FPU, and then when we get scheduled again we would store
210 * bogus values for the remaining FP registers.
211 */
212 preempt_disable();
213 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
214 /*
215 * This should only ever be called for current or
216 * for a stopped child process. Since we save away
af1bbc3d 217 * the FP register state on context switch,
14cf11af
PM
218 * there is something wrong if a stopped child appears
219 * to still have its FP state in the CPU registers.
220 */
221 BUG_ON(tsk != current);
b86fd2bd 222 giveup_fpu(tsk);
14cf11af
PM
223 }
224 preempt_enable();
225 }
226}
de56a948 227EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
228
229void enable_kernel_fp(void)
230{
e909fb83
CB
231 unsigned long cpumsr;
232
14cf11af
PM
233 WARN_ON(preemptible());
234
e909fb83 235 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 236
d64d02ce
AB
237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238 check_if_tm_restore_required(current);
e909fb83
CB
239 /*
240 * If a thread has already been reclaimed then the
241 * checkpointed registers are on the CPU but have definitely
242 * been saved by the reclaim code. Don't need to and *cannot*
243 * giveup as this would save to the 'live' structure not the
244 * checkpointed structure.
245 */
5c784c84
BL
246 if (!MSR_TM_ACTIVE(cpumsr) &&
247 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 248 return;
a0e72cf1 249 __giveup_fpu(current);
d64d02ce 250 }
14cf11af
PM
251}
252EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 253
6a303833
BH
254static int restore_fp(struct task_struct *tsk)
255{
a7771176 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
257 load_fp_state(&current->thread.fp_state);
258 current->thread.load_fp++;
259 return 1;
260 }
261 return 0;
262}
263#else
264static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 265#endif /* CONFIG_PPC_FPU */
14cf11af 266
14cf11af 267#ifdef CONFIG_ALTIVEC
70fe3d98
CB
268#define loadvec(thr) ((thr).load_vec)
269
6f515d84
CB
270static void __giveup_altivec(struct task_struct *tsk)
271{
8eb98037
AB
272 unsigned long msr;
273
6f515d84 274 save_altivec(tsk);
8eb98037
AB
275 msr = tsk->thread.regs->msr;
276 msr &= ~MSR_VEC;
6f515d84
CB
277#ifdef CONFIG_VSX
278 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 279 msr &= ~MSR_VSX;
6f515d84 280#endif
8eb98037 281 tsk->thread.regs->msr = msr;
6f515d84
CB
282}
283
98da581e
AB
284void giveup_altivec(struct task_struct *tsk)
285{
98da581e
AB
286 check_if_tm_restore_required(tsk);
287
a0e72cf1 288 msr_check_and_set(MSR_VEC);
98da581e 289 __giveup_altivec(tsk);
a0e72cf1 290 msr_check_and_clear(MSR_VEC);
98da581e
AB
291}
292EXPORT_SYMBOL(giveup_altivec);
293
14cf11af
PM
294void enable_kernel_altivec(void)
295{
e909fb83
CB
296 unsigned long cpumsr;
297
14cf11af
PM
298 WARN_ON(preemptible());
299
e909fb83 300 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 301
d64d02ce
AB
302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 check_if_tm_restore_required(current);
e909fb83
CB
304 /*
305 * If a thread has already been reclaimed then the
306 * checkpointed registers are on the CPU but have definitely
307 * been saved by the reclaim code. Don't need to and *cannot*
308 * giveup as this would save to the 'live' structure not the
309 * checkpointed structure.
310 */
5c784c84
BL
311 if (!MSR_TM_ACTIVE(cpumsr) &&
312 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 313 return;
a0e72cf1 314 __giveup_altivec(current);
d64d02ce 315 }
14cf11af
PM
316}
317EXPORT_SYMBOL(enable_kernel_altivec);
318
319/*
320 * Make sure the VMX/Altivec register state in the
321 * the thread_struct is up to date for task tsk.
322 */
323void flush_altivec_to_thread(struct task_struct *tsk)
324{
325 if (tsk->thread.regs) {
326 preempt_disable();
327 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 328 BUG_ON(tsk != current);
b86fd2bd 329 giveup_altivec(tsk);
14cf11af
PM
330 }
331 preempt_enable();
332 }
333}
de56a948 334EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
335
336static int restore_altivec(struct task_struct *tsk)
337{
dc16b553 338 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
340 load_vr_state(&tsk->thread.vr_state);
341 tsk->thread.used_vr = 1;
342 tsk->thread.load_vec++;
343
344 return 1;
345 }
346 return 0;
347}
348#else
349#define loadvec(thr) 0
350static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
351#endif /* CONFIG_ALTIVEC */
352
ce48b210 353#ifdef CONFIG_VSX
bf6a4d5b 354static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 355{
dc801081
BH
356 unsigned long msr = tsk->thread.regs->msr;
357
358 /*
359 * We should never be ssetting MSR_VSX without also setting
360 * MSR_FP and MSR_VEC
361 */
362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363
364 /* __giveup_fpu will clear MSR_VSX */
365 if (msr & MSR_FP)
a7d623d4 366 __giveup_fpu(tsk);
dc801081 367 if (msr & MSR_VEC)
a7d623d4 368 __giveup_altivec(tsk);
bf6a4d5b
CB
369}
370
371static void giveup_vsx(struct task_struct *tsk)
372{
373 check_if_tm_restore_required(tsk);
374
375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 376 __giveup_vsx(tsk);
a0e72cf1 377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 378}
bf6a4d5b 379
ce48b210
MN
380void enable_kernel_vsx(void)
381{
e909fb83
CB
382 unsigned long cpumsr;
383
ce48b210
MN
384 WARN_ON(preemptible());
385
e909fb83 386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 387
5a69aec9
BH
388 if (current->thread.regs &&
389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 390 check_if_tm_restore_required(current);
e909fb83
CB
391 /*
392 * If a thread has already been reclaimed then the
393 * checkpointed registers are on the CPU but have definitely
394 * been saved by the reclaim code. Don't need to and *cannot*
395 * giveup as this would save to the 'live' structure not the
396 * checkpointed structure.
397 */
5c784c84
BL
398 if (!MSR_TM_ACTIVE(cpumsr) &&
399 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 400 return;
a0e72cf1 401 __giveup_vsx(current);
611b0e5c 402 }
ce48b210
MN
403}
404EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
405
406void flush_vsx_to_thread(struct task_struct *tsk)
407{
408 if (tsk->thread.regs) {
409 preempt_disable();
5a69aec9 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 411 BUG_ON(tsk != current);
ce48b210
MN
412 giveup_vsx(tsk);
413 }
414 preempt_enable();
415 }
416}
de56a948 417EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
418
419static int restore_vsx(struct task_struct *tsk)
420{
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
424 }
425
426 return 0;
427}
428#else
429static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
430#endif /* CONFIG_VSX */
431
14cf11af 432#ifdef CONFIG_SPE
98da581e
AB
433void giveup_spe(struct task_struct *tsk)
434{
98da581e
AB
435 check_if_tm_restore_required(tsk);
436
a0e72cf1 437 msr_check_and_set(MSR_SPE);
98da581e 438 __giveup_spe(tsk);
a0e72cf1 439 msr_check_and_clear(MSR_SPE);
98da581e
AB
440}
441EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
442
443void enable_kernel_spe(void)
444{
445 WARN_ON(preemptible());
446
a0e72cf1 447 msr_check_and_set(MSR_SPE);
611b0e5c 448
d64d02ce
AB
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
a0e72cf1 451 __giveup_spe(current);
d64d02ce 452 }
14cf11af
PM
453}
454EXPORT_SYMBOL(enable_kernel_spe);
455
456void flush_spe_to_thread(struct task_struct *tsk)
457{
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 461 BUG_ON(tsk != current);
685659ee 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 463 giveup_spe(tsk);
14cf11af
PM
464 }
465 preempt_enable();
466 }
467}
14cf11af
PM
468#endif /* CONFIG_SPE */
469
c2085059
AB
470static unsigned long msr_all_available;
471
472static int __init init_msr_all_available(void)
473{
474#ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476#endif
477#ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480#endif
481#ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484#endif
485#ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488#endif
489
490 return 0;
491}
492early_initcall(init_msr_all_available);
493
494void giveup_all(struct task_struct *tsk)
495{
496 unsigned long usermsr;
497
498 if (!tsk->thread.regs)
499 return;
500
501 usermsr = tsk->thread.regs->msr;
502
503 if ((usermsr & msr_all_available) == 0)
504 return;
505
506 msr_check_and_set(msr_all_available);
b0f16b46 507 check_if_tm_restore_required(tsk);
c2085059 508
96c79b6b
BH
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
c2085059
AB
511#ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514#endif
515#ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518#endif
c2085059
AB
519#ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522#endif
523
524 msr_check_and_clear(msr_all_available);
525}
526EXPORT_SYMBOL(giveup_all);
527
70fe3d98
CB
528void restore_math(struct pt_regs *regs)
529{
530 unsigned long msr;
531
5c784c84 532 if (!MSR_TM_ACTIVE(regs->msr) &&
dc16b553 533 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
534 return;
535
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
538
539 /*
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
542 */
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
545
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
548
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
552 }
553
554 msr_check_and_clear(msr_all_available);
555
556 regs->msr = msr;
557}
558
1cdf039b 559static void save_all(struct task_struct *tsk)
de2a20aa
CB
560{
561 unsigned long usermsr;
562
563 if (!tsk->thread.regs)
564 return;
565
566 usermsr = tsk->thread.regs->msr;
567
568 if ((usermsr & msr_all_available) == 0)
569 return;
570
571 msr_check_and_set(msr_all_available);
572
96c79b6b
BH
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
577
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
de2a20aa
CB
580
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
583
584 msr_check_and_clear(msr_all_available);
c76662e8 585 thread_pkey_regs_save(&tsk->thread);
de2a20aa
CB
586}
587
579e633e
AB
588void flush_all_to_thread(struct task_struct *tsk)
589{
590 if (tsk->thread.regs) {
591 preempt_disable();
592 BUG_ON(tsk != current);
579e633e
AB
593#ifdef CONFIG_SPE
594 if (tsk->thread.regs->msr & MSR_SPE)
595 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
596#endif
e9013785 597 save_all(tsk);
579e633e
AB
598
599 preempt_enable();
600 }
601}
602EXPORT_SYMBOL(flush_all_to_thread);
603
3bffb652
DK
604#ifdef CONFIG_PPC_ADV_DEBUG_REGS
605void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 606 unsigned long error_code, int breakpt)
3bffb652 607{
47355040 608 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
f71dd7dc
EB
614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 (void __user *)address);
3bffb652
DK
616}
617#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 618void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
619 unsigned long error_code)
620{
41ab5266 621 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 11, SIGSEGV) == NOTIFY_STOP)
624 return;
625
9422de3e 626 if (debugger_break_match(regs))
d6a61bfc
LM
627 return;
628
9422de3e
MN
629 /* Clear the breakpoint */
630 hw_breakpoint_disable();
d6a61bfc
LM
631
632 /* Deliver the signal to userspace */
f383d8b4 633 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
d6a61bfc 634}
3bffb652 635#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 636
9422de3e 637static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 638
3bffb652
DK
639#ifdef CONFIG_PPC_ADV_DEBUG_REGS
640/*
641 * Set the debug registers back to their default "safe" values.
642 */
643static void set_debug_reg_defaults(struct thread_struct *thread)
644{
51ae8d4a 645 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 646#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 647 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 648#endif
51ae8d4a 649 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 650#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 651 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 652#endif
51ae8d4a 653 thread->debug.dbcr0 = 0;
3bffb652
DK
654#ifdef CONFIG_BOOKE
655 /*
656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657 */
51ae8d4a 658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
659 DBCR1_IAC3US | DBCR1_IAC4US;
660 /*
661 * Force Data Address Compare User/Supervisor bits to be User-only
662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663 */
51ae8d4a 664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 665#else
51ae8d4a 666 thread->debug.dbcr1 = 0;
3bffb652
DK
667#endif
668}
669
f5f97210 670static void prime_debug_regs(struct debug_reg *debug)
3bffb652 671{
6cecf76b
SW
672 /*
673 * We could have inherited MSR_DE from userspace, since
674 * it doesn't get cleared on exception entry. Make sure
675 * MSR_DE is clear before we enable any debug events.
676 */
677 mtmsr(mfmsr() & ~MSR_DE);
678
f5f97210
SW
679 mtspr(SPRN_IAC1, debug->iac1);
680 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 681#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
682 mtspr(SPRN_IAC3, debug->iac3);
683 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 684#endif
f5f97210
SW
685 mtspr(SPRN_DAC1, debug->dac1);
686 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 687#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
688 mtspr(SPRN_DVC1, debug->dvc1);
689 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 690#endif
f5f97210
SW
691 mtspr(SPRN_DBCR0, debug->dbcr0);
692 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 693#ifdef CONFIG_BOOKE
f5f97210 694 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
695#endif
696}
697/*
698 * Unless neither the old or new thread are making use of the
699 * debug registers, set the debug registers from the values
700 * stored in the new thread.
701 */
f5f97210 702void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 703{
51ae8d4a 704 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
705 || (new_debug->dbcr0 & DBCR0_IDM))
706 prime_debug_regs(new_debug);
3bffb652 707}
3743c9b8 708EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 709#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 710#ifndef CONFIG_HAVE_HW_BREAKPOINT
b5ac51d7
CL
711static void set_breakpoint(struct arch_hw_breakpoint *brk)
712{
713 preempt_disable();
714 __set_breakpoint(brk);
715 preempt_enable();
716}
717
3bffb652
DK
718static void set_debug_reg_defaults(struct thread_struct *thread)
719{
9422de3e
MN
720 thread->hw_brk.address = 0;
721 thread->hw_brk.type = 0;
252988cb
NP
722 if (ppc_breakpoint_available())
723 set_breakpoint(&thread->hw_brk);
3bffb652 724}
e0780b72 725#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
726#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
727
172ae2e7 728#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
729static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730{
d6a61bfc 731 mtspr(SPRN_DAC1, dabr);
221c185d
DK
732#ifdef CONFIG_PPC_47x
733 isync();
734#endif
9422de3e
MN
735 return 0;
736}
c6c9eace 737#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
738static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739{
c6c9eace 740 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
741 if (cpu_has_feature(CPU_FTR_DABRX))
742 mtspr(SPRN_DABRX, dabrx);
cab0af98 743 return 0;
14cf11af 744}
4ad8622d
CL
745#elif defined(CONFIG_PPC_8xx)
746static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747{
748 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
749 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
750 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
751
752 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
753 lctrl1 |= 0xa0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
755 lctrl1 |= 0xf0000;
756 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
757 lctrl2 = 0;
758
759 mtspr(SPRN_LCTRL2, 0);
760 mtspr(SPRN_CMPE, addr);
761 mtspr(SPRN_CMPF, addr + 4);
762 mtspr(SPRN_LCTRL1, lctrl1);
763 mtspr(SPRN_LCTRL2, lctrl2);
764
765 return 0;
766}
9422de3e
MN
767#else
768static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
769{
770 return -EINVAL;
771}
772#endif
773
774static inline int set_dabr(struct arch_hw_breakpoint *brk)
775{
776 unsigned long dabr, dabrx;
777
778 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
779 dabrx = ((brk->type >> 3) & 0x7);
780
781 if (ppc_md.set_dabr)
782 return ppc_md.set_dabr(dabr, dabrx);
783
784 return __set_dabr(dabr, dabrx);
785}
786
bf99de36
MN
787static inline int set_dawr(struct arch_hw_breakpoint *brk)
788{
05d694ea 789 unsigned long dawr, dawrx, mrd;
bf99de36
MN
790
791 dawr = brk->address;
792
793 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
794 << (63 - 58); //* read/write bits */
795 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
796 << (63 - 59); //* translate */
797 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
798 >> 3; //* PRIM bits */
05d694ea
MN
799 /* dawr length is stored in field MDR bits 48:53. Matches range in
800 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
801 0b111111=64DW.
802 brk->len is in bytes.
803 This aligns up to double word size, shifts and does the bias.
804 */
805 mrd = ((brk->len + 7) >> 3) - 1;
806 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
807
808 if (ppc_md.set_dawr)
809 return ppc_md.set_dawr(dawr, dawrx);
810 mtspr(SPRN_DAWR, dawr);
811 mtspr(SPRN_DAWRX, dawrx);
812 return 0;
813}
814
21f58507 815void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 816{
69111bac 817 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 818
bf99de36 819 if (cpu_has_feature(CPU_FTR_DAWR))
252988cb 820 // Power8 or later
04c32a51 821 set_dawr(brk);
252988cb
NP
822 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
823 // Power7 or earlier
04c32a51 824 set_dabr(brk);
252988cb
NP
825 else
826 // Shouldn't happen due to higher level checks
827 WARN_ON_ONCE(1);
9422de3e 828}
14cf11af 829
404b27d6
MN
830/* Check if we have DAWR or DABR hardware */
831bool ppc_breakpoint_available(void)
832{
833 if (cpu_has_feature(CPU_FTR_DAWR))
834 return true; /* POWER8 DAWR */
835 if (cpu_has_feature(CPU_FTR_ARCH_207S))
836 return false; /* POWER9 with DAWR disabled */
837 /* DABR: Everything but POWER8 and POWER9 */
838 return true;
839}
840EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
841
9422de3e
MN
842static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
843 struct arch_hw_breakpoint *b)
844{
845 if (a->address != b->address)
846 return false;
847 if (a->type != b->type)
848 return false;
849 if (a->len != b->len)
850 return false;
851 return true;
852}
d31626f7 853
fb09692e 854#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
855
856static inline bool tm_enabled(struct task_struct *tsk)
857{
858 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
859}
860
edd00b83 861static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 862{
7f821fc9
MN
863 /*
864 * Use the current MSR TM suspended bit to track if we have
865 * checkpointed state outstanding.
866 * On signal delivery, we'd normally reclaim the checkpointed
867 * state to obtain stack pointer (see:get_tm_stackpointer()).
868 * This will then directly return to userspace without going
869 * through __switch_to(). However, if the stack frame is bad,
870 * we need to exit this thread which calls __switch_to() which
871 * will again attempt to reclaim the already saved tm state.
872 * Hence we need to check that we've not already reclaimed
873 * this state.
874 * We do this using the current MSR, rather tracking it in
875 * some specific thread_struct bit, as it has the additional
027dfac6 876 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
877 */
878 if (!MSR_TM_SUSPENDED(mfmsr()))
879 return;
880
91381b9c
CB
881 giveup_all(container_of(thr, struct task_struct, thread));
882
eb5c3f1c
CB
883 tm_reclaim(thr, cause);
884
f48e91e8
MN
885 /*
886 * If we are in a transaction and FP is off then we can't have
887 * used FP inside that transaction. Hence the checkpointed
888 * state is the same as the live state. We need to copy the
889 * live state to the checkpointed state so that when the
890 * transaction is restored, the checkpointed state is correct
891 * and the aborted transaction sees the correct state. We use
892 * ckpt_regs.msr here as that's what tm_reclaim will use to
893 * determine if it's going to write the checkpointed state or
894 * not. So either this will write the checkpointed registers,
895 * or reclaim will. Similarly for VMX.
896 */
897 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
898 memcpy(&thr->ckfp_state, &thr->fp_state,
899 sizeof(struct thread_fp_state));
900 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
901 memcpy(&thr->ckvr_state, &thr->vr_state,
902 sizeof(struct thread_vr_state));
d31626f7
PM
903}
904
905void tm_reclaim_current(uint8_t cause)
906{
907 tm_enable();
edd00b83 908 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
909}
910
fb09692e
MN
911static inline void tm_reclaim_task(struct task_struct *tsk)
912{
913 /* We have to work out if we're switching from/to a task that's in the
914 * middle of a transaction.
915 *
916 * In switching we need to maintain a 2nd register state as
917 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
918 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
919 * ckvr_state
fb09692e
MN
920 *
921 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
922 */
923 struct thread_struct *thr = &tsk->thread;
924
925 if (!thr->regs)
926 return;
927
928 if (!MSR_TM_ACTIVE(thr->regs->msr))
929 goto out_and_saveregs;
930
92fb8690
MN
931 WARN_ON(tm_suspend_disabled);
932
fb09692e
MN
933 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
934 "ccr=%lx, msr=%lx, trap=%lx)\n",
935 tsk->pid, thr->regs->nip,
936 thr->regs->ccr, thr->regs->msr,
937 thr->regs->trap);
938
edd00b83 939 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
940
941 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
942 tsk->pid);
943
944out_and_saveregs:
945 /* Always save the regs here, even if a transaction's not active.
946 * This context-switches a thread's TM info SPRs. We do it here to
947 * be consistent with the restore path (in recheckpoint) which
948 * cannot happen later in _switch().
949 */
950 tm_save_sprs(thr);
951}
952
eb5c3f1c 953extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 954
eb5c3f1c 955void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
956{
957 unsigned long flags;
958
5d176f75
CB
959 if (!(thread->regs->msr & MSR_TM))
960 return;
961
e6b8fd02
MN
962 /* We really can't be interrupted here as the TEXASR registers can't
963 * change and later in the trecheckpoint code, we have a userspace R1.
964 * So let's hard disable over this region.
965 */
966 local_irq_save(flags);
967 hard_irq_disable();
968
969 /* The TM SPRs are restored here, so that TEXASR.FS can be set
970 * before the trecheckpoint and no explosion occurs.
971 */
972 tm_restore_sprs(thread);
973
eb5c3f1c 974 __tm_recheckpoint(thread);
e6b8fd02
MN
975
976 local_irq_restore(flags);
977}
978
bc2a9408 979static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 980{
fb09692e
MN
981 if (!cpu_has_feature(CPU_FTR_TM))
982 return;
983
984 /* Recheckpoint the registers of the thread we're about to switch to.
985 *
986 * If the task was using FP, we non-lazily reload both the original and
987 * the speculative FP register states. This is because the kernel
988 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 989 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
990 * need to be restored.
991 */
5d176f75 992 if (!tm_enabled(new))
fb09692e
MN
993 return;
994
e6b8fd02
MN
995 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
996 tm_restore_sprs(&new->thread);
fb09692e 997 return;
e6b8fd02 998 }
fb09692e 999 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1000 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1001 new->pid, new->thread.regs->msr);
fb09692e 1002
eb5c3f1c 1003 tm_recheckpoint(&new->thread);
fb09692e 1004
dc310669
CB
1005 /*
1006 * The checkpointed state has been restored but the live state has
1007 * not, ensure all the math functionality is turned off to trigger
1008 * restore_math() to reload.
1009 */
1010 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1011
1012 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1013 "(kernel msr 0x%lx)\n",
1014 new->pid, mfmsr());
1015}
1016
dc310669
CB
1017static inline void __switch_to_tm(struct task_struct *prev,
1018 struct task_struct *new)
fb09692e
MN
1019{
1020 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1021 if (tm_enabled(prev) || tm_enabled(new))
1022 tm_enable();
1023
1024 if (tm_enabled(prev)) {
1025 prev->thread.load_tm++;
1026 tm_reclaim_task(prev);
1027 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1028 prev->thread.regs->msr &= ~MSR_TM;
1029 }
1030
dc310669 1031 tm_recheckpoint_new_task(new);
fb09692e
MN
1032 }
1033}
d31626f7
PM
1034
1035/*
1036 * This is called if we are on the way out to userspace and the
1037 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1038 * FP and/or vector state and does so if necessary.
1039 * If userspace is inside a transaction (whether active or
1040 * suspended) and FP/VMX/VSX instructions have ever been enabled
1041 * inside that transaction, then we have to keep them enabled
1042 * and keep the FP/VMX/VSX state loaded while ever the transaction
1043 * continues. The reason is that if we didn't, and subsequently
1044 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1045 * we don't know whether it's the same transaction, and thus we
1046 * don't know which of the checkpointed state and the transactional
1047 * state to use.
1048 */
1049void restore_tm_state(struct pt_regs *regs)
1050{
1051 unsigned long msr_diff;
1052
dc310669
CB
1053 /*
1054 * This is the only moment we should clear TIF_RESTORE_TM as
1055 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1056 * again, anything else could lead to an incorrect ckpt_msr being
1057 * saved and therefore incorrect signal contexts.
1058 */
d31626f7
PM
1059 clear_thread_flag(TIF_RESTORE_TM);
1060 if (!MSR_TM_ACTIVE(regs->msr))
1061 return;
1062
829023df 1063 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1064 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1065
dc16b553
CB
1066 /* Ensure that restore_math() will restore */
1067 if (msr_diff & MSR_FP)
1068 current->thread.load_fp = 1;
39715bf9 1069#ifdef CONFIG_ALTIVEC
dc16b553
CB
1070 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1071 current->thread.load_vec = 1;
1072#endif
70fe3d98
CB
1073 restore_math(regs);
1074
d31626f7
PM
1075 regs->msr |= msr_diff;
1076}
1077
fb09692e
MN
1078#else
1079#define tm_recheckpoint_new_task(new)
dc310669 1080#define __switch_to_tm(prev, new)
fb09692e 1081#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1082
152d523e
AB
1083static inline void save_sprs(struct thread_struct *t)
1084{
1085#ifdef CONFIG_ALTIVEC
01d7c2a2 1086 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1087 t->vrsave = mfspr(SPRN_VRSAVE);
1088#endif
1089#ifdef CONFIG_PPC_BOOK3S_64
1090 if (cpu_has_feature(CPU_FTR_DSCR))
1091 t->dscr = mfspr(SPRN_DSCR);
1092
1093 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1094 t->bescr = mfspr(SPRN_BESCR);
1095 t->ebbhr = mfspr(SPRN_EBBHR);
1096 t->ebbrr = mfspr(SPRN_EBBRR);
1097
1098 t->fscr = mfspr(SPRN_FSCR);
1099
1100 /*
1101 * Note that the TAR is not available for use in the kernel.
1102 * (To provide this, the TAR should be backed up/restored on
1103 * exception entry/exit instead, and be in pt_regs. FIXME,
1104 * this should be in pt_regs anyway (for debug).)
1105 */
1106 t->tar = mfspr(SPRN_TAR);
1107 }
1108#endif
06bb53b3
RP
1109
1110 thread_pkey_regs_save(t);
152d523e
AB
1111}
1112
1113static inline void restore_sprs(struct thread_struct *old_thread,
1114 struct thread_struct *new_thread)
1115{
1116#ifdef CONFIG_ALTIVEC
1117 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1118 old_thread->vrsave != new_thread->vrsave)
1119 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1120#endif
1121#ifdef CONFIG_PPC_BOOK3S_64
1122 if (cpu_has_feature(CPU_FTR_DSCR)) {
1123 u64 dscr = get_paca()->dscr_default;
b57bd2de 1124 if (new_thread->dscr_inherit)
152d523e 1125 dscr = new_thread->dscr;
152d523e
AB
1126
1127 if (old_thread->dscr != dscr)
1128 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1129 }
1130
1131 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1132 if (old_thread->bescr != new_thread->bescr)
1133 mtspr(SPRN_BESCR, new_thread->bescr);
1134 if (old_thread->ebbhr != new_thread->ebbhr)
1135 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1136 if (old_thread->ebbrr != new_thread->ebbrr)
1137 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1138
b57bd2de
MN
1139 if (old_thread->fscr != new_thread->fscr)
1140 mtspr(SPRN_FSCR, new_thread->fscr);
1141
152d523e
AB
1142 if (old_thread->tar != new_thread->tar)
1143 mtspr(SPRN_TAR, new_thread->tar);
1144 }
ec233ede 1145
3449f191 1146 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1147 old_thread->tidr != new_thread->tidr)
1148 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1149#endif
06bb53b3
RP
1150
1151 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1152}
1153
07d2a628
NP
1154#ifdef CONFIG_PPC_BOOK3S_64
1155#define CP_SIZE 128
1156static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1157#endif
1158
14cf11af
PM
1159struct task_struct *__switch_to(struct task_struct *prev,
1160 struct task_struct *new)
1161{
1162 struct thread_struct *new_thread, *old_thread;
14cf11af 1163 struct task_struct *last;
d6bf29b4
PZ
1164#ifdef CONFIG_PPC_BOOK3S_64
1165 struct ppc64_tlb_batch *batch;
1166#endif
14cf11af 1167
152d523e
AB
1168 new_thread = &new->thread;
1169 old_thread = &current->thread;
1170
7ba5fef7
MN
1171 WARN_ON(!irqs_disabled());
1172
4e003747 1173#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1174 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1175 if (batch->active) {
1176 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177 if (batch->index)
1178 __flush_tlb_pending(batch);
1179 batch->active = 0;
1180 }
4e003747 1181#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1182
f3d885cc
AB
1183#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184 switch_booke_debug_regs(&new->thread.debug);
1185#else
1186/*
1187 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188 * schedule DABR
1189 */
1190#ifndef CONFIG_HAVE_HW_BREAKPOINT
1191 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192 __set_breakpoint(&new->thread.hw_brk);
1193#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194#endif
1195
1196 /*
1197 * We need to save SPRs before treclaim/trecheckpoint as these will
1198 * change a number of them.
1199 */
1200 save_sprs(&prev->thread);
1201
f3d885cc
AB
1202 /* Save FPU, Altivec, VSX and SPE state */
1203 giveup_all(prev);
1204
dc310669
CB
1205 __switch_to_tm(prev, new);
1206
e4c0fc5f
NP
1207 if (!radix_enabled()) {
1208 /*
1209 * We can't take a PMU exception inside _switch() since there
1210 * is a window where the kernel stack SLB and the kernel stack
1211 * are out of sync. Hard disable here.
1212 */
1213 hard_irq_disable();
1214 }
bc2a9408 1215
20dbe670
AB
1216 /*
1217 * Call restore_sprs() before calling _switch(). If we move it after
1218 * _switch() then we miss out on calling it for new tasks. The reason
1219 * for this is we manually create a stack frame for new tasks that
1220 * directly returns through ret_from_fork() or
1221 * ret_from_kernel_thread(). See copy_thread() for details.
1222 */
f3d885cc
AB
1223 restore_sprs(old_thread, new_thread);
1224
20dbe670
AB
1225 last = _switch(old_thread, new_thread);
1226
4e003747 1227#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1228 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1230 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1231 batch->active = 1;
1232 }
70fe3d98 1233
07d2a628 1234 if (current_thread_info()->task->thread.regs) {
70fe3d98 1235 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1236
1237 /*
1238 * The copy-paste buffer can only store into foreign real
1239 * addresses, so unprivileged processes can not see the
1240 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1241 * mappings. If the new process has the foreign real address
1242 * mappings, we must issue a cp_abort to clear any state and
1243 * prevent snooping, corruption or a covert channel.
07d2a628 1244 */
2bf1071a 1245 if (current_thread_info()->task->thread.used_vas)
9d2a4d71 1246 asm volatile(PPC_CP_ABORT);
07d2a628 1247 }
4e003747 1248#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1249
14cf11af
PM
1250 return last;
1251}
1252
df13102f 1253#define NR_INSN_TO_PRINT 16
06d67d54 1254
06d67d54
PM
1255static void show_instructions(struct pt_regs *regs)
1256{
1257 int i;
df13102f 1258 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54
PM
1259
1260 printk("Instruction dump:");
1261
df13102f 1262 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1263 int instr;
1264
1265 if (!(i % 8))
2ffd04de 1266 pr_cont("\n");
06d67d54 1267
0de2d820
SW
1268#if !defined(CONFIG_BOOKE)
1269 /* If executing with the IMMU off, adjust pc rather
1270 * than print XXXXXXXX.
1271 */
1272 if (!(regs->msr & MSR_IR))
1273 pc = (unsigned long)phys_to_virt(pc);
1274#endif
1275
00ae36de 1276 if (!__kernel_text_address(pc) ||
3b35bd48 1277 probe_kernel_address((const void *)pc, instr)) {
2ffd04de 1278 pr_cont("XXXXXXXX ");
06d67d54
PM
1279 } else {
1280 if (regs->nip == pc)
2ffd04de 1281 pr_cont("<%08x> ", instr);
06d67d54 1282 else
2ffd04de 1283 pr_cont("%08x ", instr);
06d67d54
PM
1284 }
1285
1286 pc += sizeof(int);
1287 }
1288
2ffd04de 1289 pr_cont("\n");
06d67d54
PM
1290}
1291
88b0fe17
MOA
1292void show_user_instructions(struct pt_regs *regs)
1293{
1294 unsigned long pc;
df13102f 1295 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1296 struct seq_buf s;
1297 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1298
df13102f 1299 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1300
a932ed3b
ME
1301 /*
1302 * Make sure the NIP points at userspace, not kernel text/data or
1303 * elsewhere.
1304 */
df13102f 1305 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
a932ed3b
ME
1306 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1307 current->comm, current->pid);
1308 return;
1309 }
1310
fb2d9505 1311 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1312
fb2d9505
CL
1313 while (n) {
1314 int i;
88b0fe17 1315
fb2d9505 1316 seq_buf_clear(&s);
88b0fe17 1317
fb2d9505
CL
1318 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1319 int instr;
1320
1321 if (probe_kernel_address((const void *)pc, instr)) {
1322 seq_buf_printf(&s, "XXXXXXXX ");
1323 continue;
1324 }
1325 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1326 }
1327
fb2d9505
CL
1328 if (!seq_buf_has_overflowed(&s))
1329 pr_info("%s[%d]: code: %s\n", current->comm,
1330 current->pid, s.buffer);
88b0fe17 1331 }
88b0fe17
MOA
1332}
1333
801c0b2c 1334struct regbit {
06d67d54
PM
1335 unsigned long bit;
1336 const char *name;
801c0b2c
MN
1337};
1338
1339static struct regbit msr_bits[] = {
3bfd0c9c
AB
1340#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1341 {MSR_SF, "SF"},
1342 {MSR_HV, "HV"},
1343#endif
1344 {MSR_VEC, "VEC"},
1345 {MSR_VSX, "VSX"},
1346#ifdef CONFIG_BOOKE
1347 {MSR_CE, "CE"},
1348#endif
06d67d54
PM
1349 {MSR_EE, "EE"},
1350 {MSR_PR, "PR"},
1351 {MSR_FP, "FP"},
1352 {MSR_ME, "ME"},
3bfd0c9c 1353#ifdef CONFIG_BOOKE
1b98326b 1354 {MSR_DE, "DE"},
3bfd0c9c
AB
1355#else
1356 {MSR_SE, "SE"},
1357 {MSR_BE, "BE"},
1358#endif
06d67d54
PM
1359 {MSR_IR, "IR"},
1360 {MSR_DR, "DR"},
3bfd0c9c
AB
1361 {MSR_PMM, "PMM"},
1362#ifndef CONFIG_BOOKE
1363 {MSR_RI, "RI"},
1364 {MSR_LE, "LE"},
1365#endif
06d67d54
PM
1366 {0, NULL}
1367};
1368
801c0b2c 1369static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1370{
801c0b2c 1371 const char *s = "";
06d67d54 1372
06d67d54
PM
1373 for (; bits->bit; ++bits)
1374 if (val & bits->bit) {
db5ba5ae 1375 pr_cont("%s%s", s, bits->name);
801c0b2c 1376 s = sep;
06d67d54 1377 }
801c0b2c
MN
1378}
1379
1380#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381static struct regbit msr_tm_bits[] = {
1382 {MSR_TS_T, "T"},
1383 {MSR_TS_S, "S"},
1384 {MSR_TM, "E"},
1385 {0, NULL}
1386};
1387
1388static void print_tm_bits(unsigned long val)
1389{
1390/*
1391 * This only prints something if at least one of the TM bit is set.
1392 * Inside the TM[], the output means:
1393 * E: Enabled (bit 32)
1394 * S: Suspended (bit 33)
1395 * T: Transactional (bit 34)
1396 */
1397 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1398 pr_cont(",TM[");
801c0b2c 1399 print_bits(val, msr_tm_bits, "");
db5ba5ae 1400 pr_cont("]");
801c0b2c
MN
1401 }
1402}
1403#else
1404static void print_tm_bits(unsigned long val) {}
1405#endif
1406
1407static void print_msr_bits(unsigned long val)
1408{
db5ba5ae 1409 pr_cont("<");
801c0b2c
MN
1410 print_bits(val, msr_bits, ",");
1411 print_tm_bits(val);
db5ba5ae 1412 pr_cont(">");
06d67d54
PM
1413}
1414
1415#ifdef CONFIG_PPC64
f6f7dde3 1416#define REG "%016lx"
06d67d54
PM
1417#define REGS_PER_LINE 4
1418#define LAST_VOLATILE 13
1419#else
f6f7dde3 1420#define REG "%08lx"
06d67d54
PM
1421#define REGS_PER_LINE 8
1422#define LAST_VOLATILE 12
1423#endif
1424
14cf11af
PM
1425void show_regs(struct pt_regs * regs)
1426{
1427 int i, trap;
1428
a43cb95d
TH
1429 show_regs_print_info(KERN_DEFAULT);
1430
a6036100 1431 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1432 regs->nip, regs->link, regs->ctr);
182dc9c7 1433 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1434 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1435 printk("MSR: "REG" ", regs->msr);
801c0b2c 1436 print_msr_bits(regs->msr);
f6fc73fb 1437 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1438 trap = TRAP(regs);
2271db20 1439 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1440 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1441 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1442#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1443 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1444#else
7dae865f 1445 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1446#endif
1447#ifdef CONFIG_PPC64
3130a7bb 1448 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1449#endif
1450#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1451 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1452 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1453#endif
14cf11af
PM
1454
1455 for (i = 0; i < 32; i++) {
06d67d54 1456 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1457 pr_cont("\nGPR%02d: ", i);
1458 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1459 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1460 break;
1461 }
7dae865f 1462 pr_cont("\n");
14cf11af
PM
1463#ifdef CONFIG_KALLSYMS
1464 /*
1465 * Lookup NIP late so we have the best change of getting the
1466 * above info out without failing
1467 */
058c78f4
BH
1468 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1469 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1470#endif
14cf11af 1471 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1472 if (!user_mode(regs))
1473 show_instructions(regs);
14cf11af
PM
1474}
1475
14cf11af
PM
1476void flush_thread(void)
1477{
e0780b72 1478#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1479 flush_ptrace_hw_breakpoint(current);
e0780b72 1480#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1481 set_debug_reg_defaults(&current->thread);
e0780b72 1482#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1483}
1484
425d3314
NP
1485#ifdef CONFIG_PPC_BOOK3S_64
1486void arch_setup_new_exec(void)
1487{
1488 if (radix_enabled())
1489 return;
1490 hash__setup_new_exec();
1491}
1492#endif
1493
9d2a4d71
SB
1494int set_thread_uses_vas(void)
1495{
1496#ifdef CONFIG_PPC_BOOK3S_64
1497 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1498 return -EINVAL;
1499
1500 current->thread.used_vas = 1;
1501
1502 /*
1503 * Even a process that has no foreign real address mapping can use
1504 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1505 * to clear any pending COPY and prevent a covert channel.
1506 *
1507 * __switch_to() will issue CP_ABORT on future context switches.
1508 */
1509 asm volatile(PPC_CP_ABORT);
1510
1511#endif /* CONFIG_PPC_BOOK3S_64 */
1512 return 0;
1513}
1514
ec233ede 1515#ifdef CONFIG_PPC64
71cc64a8
AS
1516/**
1517 * Assign a TIDR (thread ID) for task @t and set it in the thread
1518 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1519 *
71cc64a8
AS
1520 * Since the TID value is a truncated form of it PID, it is possible
1521 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1522 * that 2 threads share the same TID and are waiting, one of the following
1523 * cases will happen:
ec233ede 1524 *
71cc64a8
AS
1525 * 1. The correct thread is running, the wrong thread is not
1526 * In this situation, the correct thread is woken and proceeds to pass it's
1527 * condition check.
ec233ede 1528 *
71cc64a8
AS
1529 * 2. Neither threads are running
1530 * In this situation, neither thread will be woken. When scheduled, the waiting
1531 * threads will execute either a wait, which will return immediately, followed
1532 * by a condition check, which will pass for the correct thread and fail
1533 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1534 *
71cc64a8
AS
1535 * 3. The wrong thread is running, the correct thread is not
1536 * The wrong thread will be woken, but will fail it's condition check and
1537 * re-execute wait. The correct thread, when scheduled, will execute either
1538 * it's condition check (which will pass), or wait, which returns immediately
1539 * when called the first time after the thread is scheduled, followed by it's
1540 * condition check (which will pass).
ec233ede 1541 *
71cc64a8
AS
1542 * 4. Both threads are running
1543 * Both threads will be woken. The wrong thread will fail it's condition check
1544 * and execute another wait, while the correct thread will pass it's condition
1545 * check.
1546 *
1547 * @t: the task to set the thread ID for
ec233ede
SB
1548 */
1549int set_thread_tidr(struct task_struct *t)
1550{
3449f191 1551 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1552 return -EINVAL;
1553
1554 if (t != current)
1555 return -EINVAL;
1556
7e4d4233
VJ
1557 if (t->thread.tidr)
1558 return 0;
1559
71cc64a8 1560 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1561 mtspr(SPRN_TIDR, t->thread.tidr);
1562
1563 return 0;
1564}
b1db5513 1565EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1566
1567#endif /* CONFIG_PPC64 */
1568
14cf11af
PM
1569void
1570release_thread(struct task_struct *t)
1571{
1572}
1573
1574/*
55ccf3fe
SS
1575 * this gets called so that we can store coprocessor state into memory and
1576 * copy the current task into the new thread.
14cf11af 1577 */
55ccf3fe 1578int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1579{
579e633e 1580 flush_all_to_thread(src);
621b5060
MN
1581 /*
1582 * Flush TM state out so we can copy it. __switch_to_tm() does this
1583 * flush but it removes the checkpointed state from the current CPU and
1584 * transitions the CPU out of TM mode. Hence we need to call
1585 * tm_recheckpoint_new_task() (on the same task) to restore the
1586 * checkpointed state back and the TM mode.
5d176f75
CB
1587 *
1588 * Can't pass dst because it isn't ready. Doesn't matter, passing
1589 * dst is only important for __switch_to()
621b5060 1590 */
dc310669 1591 __switch_to_tm(src, src);
330a1eb7 1592
55ccf3fe 1593 *dst = *src;
330a1eb7
ME
1594
1595 clear_task_ebb(dst);
1596
55ccf3fe 1597 return 0;
14cf11af
PM
1598}
1599
cec15488
ME
1600static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1601{
4e003747 1602#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1603 unsigned long sp_vsid;
1604 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1605
caca285e
AK
1606 if (radix_enabled())
1607 return;
1608
cec15488
ME
1609 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1610 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1611 << SLB_VSID_SHIFT_1T;
1612 else
1613 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1614 << SLB_VSID_SHIFT;
1615 sp_vsid |= SLB_VSID_KERNEL | llp;
1616 p->thread.ksp_vsid = sp_vsid;
1617#endif
1618}
1619
14cf11af
PM
1620/*
1621 * Copy a thread..
1622 */
efcac658 1623
6eca8933
AD
1624/*
1625 * Copy architecture-specific thread state
1626 */
6f2c55b8 1627int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1628 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1629{
1630 struct pt_regs *childregs, *kregs;
1631 extern void ret_from_fork(void);
58254e10
AV
1632 extern void ret_from_kernel_thread(void);
1633 void (*f)(void);
0cec6fd1 1634 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1635 struct thread_info *ti = task_thread_info(p);
1636
1637 klp_init_thread_info(ti);
14cf11af 1638
14cf11af
PM
1639 /* Copy registers */
1640 sp -= sizeof(struct pt_regs);
1641 childregs = (struct pt_regs *) sp;
ab75819d 1642 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1643 /* kernel thread */
58254e10 1644 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1645 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1646 /* function */
1647 if (usp)
1648 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1649#ifdef CONFIG_PPC64
b5e2fc1c 1650 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1651 childregs->softe = IRQS_ENABLED;
06d67d54 1652#endif
6eca8933 1653 childregs->gpr[15] = kthread_arg;
14cf11af 1654 p->thread.regs = NULL; /* no user register state */
138d1ce8 1655 ti->flags |= _TIF_RESTOREALL;
58254e10 1656 f = ret_from_kernel_thread;
14cf11af 1657 } else {
6eca8933 1658 /* user thread */
afa86fc4 1659 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1660 CHECK_FULL_REGS(regs);
1661 *childregs = *regs;
ea516b11
AV
1662 if (usp)
1663 childregs->gpr[1] = usp;
14cf11af 1664 p->thread.regs = childregs;
58254e10 1665 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1666 if (clone_flags & CLONE_SETTLS) {
1667#ifdef CONFIG_PPC64
9904b005 1668 if (!is_32bit_task())
06d67d54
PM
1669 childregs->gpr[13] = childregs->gpr[6];
1670 else
1671#endif
1672 childregs->gpr[2] = childregs->gpr[6];
1673 }
58254e10
AV
1674
1675 f = ret_from_fork;
14cf11af 1676 }
d272f667 1677 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1678 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1679
1680 /*
1681 * The way this works is that at some point in the future
1682 * some task will call _switch to switch to the new task.
1683 * That will pop off the stack frame created below and start
1684 * the new task running at ret_from_fork. The new task will
1685 * do some house keeping and then return from the fork or clone
1686 * system call, using the stack frame created above.
1687 */
af945cf4 1688 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1689 sp -= sizeof(struct pt_regs);
1690 kregs = (struct pt_regs *) sp;
1691 sp -= STACK_FRAME_OVERHEAD;
1692 p->thread.ksp = sp;
cbc9565e 1693#ifdef CONFIG_PPC32
85218827
KG
1694 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1695 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1696#endif
28d170ab
ON
1697#ifdef CONFIG_HAVE_HW_BREAKPOINT
1698 p->thread.ptrace_bps[0] = NULL;
1699#endif
1700
18461960
PM
1701 p->thread.fp_save_area = NULL;
1702#ifdef CONFIG_ALTIVEC
1703 p->thread.vr_save_area = NULL;
1704#endif
1705
cec15488
ME
1706 setup_ksp_vsid(p, sp);
1707
efcac658
AK
1708#ifdef CONFIG_PPC64
1709 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1710 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1711 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1712 }
92779245 1713 if (cpu_has_feature(CPU_FTR_HAS_PPR))
4c2de74c 1714 childregs->ppr = DEFAULT_PPR;
ec233ede
SB
1715
1716 p->thread.tidr = 0;
efcac658 1717#endif
7cedd601 1718 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1719 return 0;
1720}
1721
5434ae74
NP
1722void preload_new_slb_context(unsigned long start, unsigned long sp);
1723
14cf11af
PM
1724/*
1725 * Set up a thread for executing a new program
1726 */
06d67d54 1727void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1728{
90eac727
ME
1729#ifdef CONFIG_PPC64
1730 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74
NP
1731
1732#ifdef CONFIG_PPC_BOOK3S_64
1733 preload_new_slb_context(start, sp);
1734#endif
90eac727
ME
1735#endif
1736
06d67d54
PM
1737 /*
1738 * If we exec out of a kernel thread then thread.regs will not be
1739 * set. Do it now.
1740 */
1741 if (!current->thread.regs) {
0cec6fd1
AV
1742 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1743 current->thread.regs = regs - 1;
06d67d54
PM
1744 }
1745
8e96a87c
CB
1746#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1747 /*
1748 * Clear any transactional state, we're exec()ing. The cause is
1749 * not important as there will never be a recheckpoint so it's not
1750 * user visible.
1751 */
1752 if (MSR_TM_SUSPENDED(mfmsr()))
1753 tm_reclaim_current(0);
1754#endif
1755
14cf11af
PM
1756 memset(regs->gpr, 0, sizeof(regs->gpr));
1757 regs->ctr = 0;
1758 regs->link = 0;
1759 regs->xer = 0;
1760 regs->ccr = 0;
14cf11af 1761 regs->gpr[1] = sp;
06d67d54 1762
474f8196
RM
1763 /*
1764 * We have just cleared all the nonvolatile GPRs, so make
1765 * FULL_REGS(regs) return true. This is necessary to allow
1766 * ptrace to examine the thread immediately after exec.
1767 */
1768 regs->trap &= ~1UL;
1769
06d67d54
PM
1770#ifdef CONFIG_PPC32
1771 regs->mq = 0;
1772 regs->nip = start;
14cf11af 1773 regs->msr = MSR_USER;
06d67d54 1774#else
9904b005 1775 if (!is_32bit_task()) {
94af3abf 1776 unsigned long entry;
06d67d54 1777
94af3abf
RR
1778 if (is_elf2_task()) {
1779 /* Look ma, no function descriptors! */
1780 entry = start;
06d67d54 1781
94af3abf
RR
1782 /*
1783 * Ulrich says:
1784 * The latest iteration of the ABI requires that when
1785 * calling a function (at its global entry point),
1786 * the caller must ensure r12 holds the entry point
1787 * address (so that the function can quickly
1788 * establish addressability).
1789 */
1790 regs->gpr[12] = start;
1791 /* Make sure that's restored on entry to userspace. */
1792 set_thread_flag(TIF_RESTOREALL);
1793 } else {
1794 unsigned long toc;
1795
1796 /* start is a relocated pointer to the function
1797 * descriptor for the elf _start routine. The first
1798 * entry in the function descriptor is the entry
1799 * address of _start and the second entry is the TOC
1800 * value we need to use.
1801 */
1802 __get_user(entry, (unsigned long __user *)start);
1803 __get_user(toc, (unsigned long __user *)start+1);
1804
1805 /* Check whether the e_entry function descriptor entries
1806 * need to be relocated before we can use them.
1807 */
1808 if (load_addr != 0) {
1809 entry += load_addr;
1810 toc += load_addr;
1811 }
1812 regs->gpr[2] = toc;
06d67d54
PM
1813 }
1814 regs->nip = entry;
06d67d54 1815 regs->msr = MSR_USER64;
d4bf9a78
SR
1816 } else {
1817 regs->nip = start;
1818 regs->gpr[2] = 0;
1819 regs->msr = MSR_USER32;
06d67d54
PM
1820 }
1821#endif
ce48b210
MN
1822#ifdef CONFIG_VSX
1823 current->thread.used_vsr = 0;
1824#endif
5434ae74 1825 current->thread.load_slb = 0;
1195892c 1826 current->thread.load_fp = 0;
de79f7b9 1827 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1828 current->thread.fp_save_area = NULL;
14cf11af 1829#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1830 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1831 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1832 current->thread.vr_save_area = NULL;
14cf11af
PM
1833 current->thread.vrsave = 0;
1834 current->thread.used_vr = 0;
1195892c 1835 current->thread.load_vec = 0;
14cf11af
PM
1836#endif /* CONFIG_ALTIVEC */
1837#ifdef CONFIG_SPE
1838 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1839 current->thread.acc = 0;
1840 current->thread.spefscr = 0;
1841 current->thread.used_spe = 0;
1842#endif /* CONFIG_SPE */
bc2a9408 1843#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1844 current->thread.tm_tfhar = 0;
1845 current->thread.tm_texasr = 0;
1846 current->thread.tm_tfiar = 0;
7f22ced4 1847 current->thread.load_tm = 0;
bc2a9408 1848#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1849
1850 thread_pkey_regs_init(&current->thread);
14cf11af 1851}
e1802b06 1852EXPORT_SYMBOL(start_thread);
14cf11af
PM
1853
1854#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1855 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1856
1857int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1858{
1859 struct pt_regs *regs = tsk->thread.regs;
1860
1861 /* This is a bit hairy. If we are an SPE enabled processor
1862 * (have embedded fp) we store the IEEE exception enable flags in
1863 * fpexc_mode. fpexc_mode is also used for setting FP exception
1864 * mode (asyn, precise, disabled) for 'Classic' FP. */
1865 if (val & PR_FP_EXC_SW_ENABLE) {
1866#ifdef CONFIG_SPE
5e14d21e 1867 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1868 /*
1869 * When the sticky exception bits are set
1870 * directly by userspace, it must call prctl
1871 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1872 * in the existing prctl settings) or
1873 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1874 * the bits being set). <fenv.h> functions
1875 * saving and restoring the whole
1876 * floating-point environment need to do so
1877 * anyway to restore the prctl settings from
1878 * the saved environment.
1879 */
1880 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1881 tsk->thread.fpexc_mode = val &
1882 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1883 return 0;
1884 } else {
1885 return -EINVAL;
1886 }
14cf11af
PM
1887#else
1888 return -EINVAL;
1889#endif
14cf11af 1890 }
06d67d54
PM
1891
1892 /* on a CONFIG_SPE this does not hurt us. The bits that
1893 * __pack_fe01 use do not overlap with bits used for
1894 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1895 * on CONFIG_SPE implementations are reserved so writing to
1896 * them does not change anything */
1897 if (val > PR_FP_EXC_PRECISE)
1898 return -EINVAL;
1899 tsk->thread.fpexc_mode = __pack_fe01(val);
1900 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1901 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1902 | tsk->thread.fpexc_mode;
14cf11af
PM
1903 return 0;
1904}
1905
1906int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1907{
1908 unsigned int val;
1909
1910 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1911#ifdef CONFIG_SPE
640e9225
JM
1912 if (cpu_has_feature(CPU_FTR_SPE)) {
1913 /*
1914 * When the sticky exception bits are set
1915 * directly by userspace, it must call prctl
1916 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1917 * in the existing prctl settings) or
1918 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1919 * the bits being set). <fenv.h> functions
1920 * saving and restoring the whole
1921 * floating-point environment need to do so
1922 * anyway to restore the prctl settings from
1923 * the saved environment.
1924 */
1925 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1926 val = tsk->thread.fpexc_mode;
640e9225 1927 } else
5e14d21e 1928 return -EINVAL;
14cf11af
PM
1929#else
1930 return -EINVAL;
1931#endif
1932 else
1933 val = __unpack_fe01(tsk->thread.fpexc_mode);
1934 return put_user(val, (unsigned int __user *) adr);
1935}
1936
fab5db97
PM
1937int set_endian(struct task_struct *tsk, unsigned int val)
1938{
1939 struct pt_regs *regs = tsk->thread.regs;
1940
1941 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1942 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1943 return -EINVAL;
1944
1945 if (regs == NULL)
1946 return -EINVAL;
1947
1948 if (val == PR_ENDIAN_BIG)
1949 regs->msr &= ~MSR_LE;
1950 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1951 regs->msr |= MSR_LE;
1952 else
1953 return -EINVAL;
1954
1955 return 0;
1956}
1957
1958int get_endian(struct task_struct *tsk, unsigned long adr)
1959{
1960 struct pt_regs *regs = tsk->thread.regs;
1961 unsigned int val;
1962
1963 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1964 !cpu_has_feature(CPU_FTR_REAL_LE))
1965 return -EINVAL;
1966
1967 if (regs == NULL)
1968 return -EINVAL;
1969
1970 if (regs->msr & MSR_LE) {
1971 if (cpu_has_feature(CPU_FTR_REAL_LE))
1972 val = PR_ENDIAN_LITTLE;
1973 else
1974 val = PR_ENDIAN_PPC_LITTLE;
1975 } else
1976 val = PR_ENDIAN_BIG;
1977
1978 return put_user(val, (unsigned int __user *)adr);
1979}
1980
e9370ae1
PM
1981int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1982{
1983 tsk->thread.align_ctl = val;
1984 return 0;
1985}
1986
1987int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1988{
1989 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1990}
1991
bb72c481
PM
1992static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1993 unsigned long nbytes)
1994{
1995 unsigned long stack_page;
1996 unsigned long cpu = task_cpu(p);
1997
1998 /*
1999 * Avoid crashing if the stack has overflowed and corrupted
2000 * task_cpu(p), which is in the thread_info struct.
2001 */
2002 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2003 stack_page = (unsigned long) hardirq_ctx[cpu];
2004 if (sp >= stack_page + sizeof(struct thread_struct)
2005 && sp <= stack_page + THREAD_SIZE - nbytes)
2006 return 1;
2007
2008 stack_page = (unsigned long) softirq_ctx[cpu];
2009 if (sp >= stack_page + sizeof(struct thread_struct)
2010 && sp <= stack_page + THREAD_SIZE - nbytes)
2011 return 1;
2012 }
2013 return 0;
2014}
2015
2f25194d 2016int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2017 unsigned long nbytes)
2018{
0cec6fd1 2019 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
2020
2021 if (sp >= stack_page + sizeof(struct thread_struct)
2022 && sp <= stack_page + THREAD_SIZE - nbytes)
2023 return 1;
2024
bb72c481 2025 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2026}
2027
2f25194d
AB
2028EXPORT_SYMBOL(validate_sp);
2029
14cf11af
PM
2030unsigned long get_wchan(struct task_struct *p)
2031{
2032 unsigned long ip, sp;
2033 int count = 0;
2034
2035 if (!p || p == current || p->state == TASK_RUNNING)
2036 return 0;
2037
2038 sp = p->thread.ksp;
ec2b36b9 2039 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2040 return 0;
2041
2042 do {
2043 sp = *(unsigned long *)sp;
4ca360f3
KC
2044 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2045 p->state == TASK_RUNNING)
14cf11af
PM
2046 return 0;
2047 if (count > 0) {
ec2b36b9 2048 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2049 if (!in_sched_functions(ip))
2050 return ip;
2051 }
2052 } while (count++ < 16);
2053 return 0;
2054}
06d67d54 2055
c4d04be1 2056static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2057
2058void show_stack(struct task_struct *tsk, unsigned long *stack)
2059{
2060 unsigned long sp, ip, lr, newsp;
2061 int count = 0;
2062 int firstframe = 1;
6794c782 2063#ifdef CONFIG_FUNCTION_GRAPH_TRACER
0fad8bfe 2064 struct ftrace_ret_stack *ret_stack;
6794c782 2065 extern void return_to_handler(void);
9135c3cc 2066 unsigned long rth = (unsigned long)return_to_handler;
0fad8bfe 2067 int curr_frame = 0;
6794c782 2068#endif
06d67d54
PM
2069
2070 sp = (unsigned long) stack;
2071 if (tsk == NULL)
2072 tsk = current;
2073 if (sp == 0) {
2074 if (tsk == current)
acf620ec 2075 sp = current_stack_pointer();
06d67d54
PM
2076 else
2077 sp = tsk->thread.ksp;
2078 }
2079
2080 lr = 0;
2081 printk("Call Trace:\n");
2082 do {
ec2b36b9 2083 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2084 return;
2085
2086 stack = (unsigned long *) sp;
2087 newsp = stack[0];
ec2b36b9 2088 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2089 if (!firstframe || ip != lr) {
058c78f4 2090 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2091#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2092 if ((ip == rth) && curr_frame >= 0) {
0fad8bfe
SRV
2093 ret_stack = ftrace_graph_get_ret_stack(current,
2094 curr_frame++);
2095 if (ret_stack)
2096 pr_cont(" (%pS)",
2097 (void *)ret_stack->ret);
2098 else
2099 curr_frame = -1;
6794c782
SR
2100 }
2101#endif
06d67d54 2102 if (firstframe)
9a1f490f
ME
2103 pr_cont(" (unreliable)");
2104 pr_cont("\n");
06d67d54
PM
2105 }
2106 firstframe = 0;
2107
2108 /*
2109 * See if this is an exception frame.
2110 * We look for the "regshere" marker in the current frame.
2111 */
ec2b36b9
BH
2112 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2113 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2114 struct pt_regs *regs = (struct pt_regs *)
2115 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2116 lr = regs->link;
9be9be2e 2117 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2118 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2119 firstframe = 1;
2120 }
2121
2122 sp = newsp;
2123 } while (count++ < kstack_depth_to_print);
2124}
2125
cb2c9b27 2126#ifdef CONFIG_PPC64
fe1952fc 2127/* Called with hard IRQs off */
0e37739b 2128void notrace __ppc64_runlatch_on(void)
cb2c9b27 2129{
fe1952fc 2130 struct thread_info *ti = current_thread_info();
cb2c9b27 2131
d1d0d5ff
NP
2132 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2133 /*
2134 * Least significant bit (RUN) is the only writable bit of
2135 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2136 * earliest ISA where this is the case, but it's convenient.
2137 */
2138 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2139 } else {
2140 unsigned long ctrl;
2141
2142 /*
2143 * Some architectures (e.g., Cell) have writable fields other
2144 * than RUN, so do the read-modify-write.
2145 */
2146 ctrl = mfspr(SPRN_CTRLF);
2147 ctrl |= CTRL_RUNLATCH;
2148 mtspr(SPRN_CTRLT, ctrl);
2149 }
cb2c9b27 2150
fae2e0fb 2151 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2152}
2153
fe1952fc 2154/* Called with hard IRQs off */
0e37739b 2155void notrace __ppc64_runlatch_off(void)
cb2c9b27 2156{
fe1952fc 2157 struct thread_info *ti = current_thread_info();
cb2c9b27 2158
fae2e0fb 2159 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2160
d1d0d5ff
NP
2161 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2162 mtspr(SPRN_CTRLT, 0);
2163 } else {
2164 unsigned long ctrl;
2165
2166 ctrl = mfspr(SPRN_CTRLF);
2167 ctrl &= ~CTRL_RUNLATCH;
2168 mtspr(SPRN_CTRLT, ctrl);
2169 }
cb2c9b27 2170}
fe1952fc 2171#endif /* CONFIG_PPC64 */
f6a61680 2172
d839088c
AB
2173unsigned long arch_align_stack(unsigned long sp)
2174{
2175 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2176 sp -= get_random_int() & ~PAGE_MASK;
2177 return sp & ~0xf;
2178}
912f9ee2
AB
2179
2180static inline unsigned long brk_rnd(void)
2181{
2182 unsigned long rnd = 0;
2183
2184 /* 8MB for 32bit, 1GB for 64bit */
2185 if (is_32bit_task())
5ef11c35 2186 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2187 else
5ef11c35 2188 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2189
2190 return rnd << PAGE_SHIFT;
2191}
2192
2193unsigned long arch_randomize_brk(struct mm_struct *mm)
2194{
8bbde7a7
AB
2195 unsigned long base = mm->brk;
2196 unsigned long ret;
2197
4e003747 2198#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2199 /*
2200 * If we are using 1TB segments and we are allowed to randomise
2201 * the heap, we can put it above 1TB so it is backed by a 1TB
2202 * segment. Otherwise the heap will be in the bottom 1TB
2203 * which always uses 256MB segments and this may result in a
caca285e
AK
2204 * performance penalty. We don't need to worry about radix. For
2205 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2206 */
2207 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2208 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2209#endif
2210
2211 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2212
2213 if (ret < mm->brk)
2214 return mm->brk;
2215
2216 return ret;
2217}
501cb16d 2218