]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Add check_if_tm_restore_required() to giveup_all()
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
7f92bc56 41#include <linux/elf-randomize.h>
14cf11af
PM
42
43#include <asm/pgtable.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
7cedd601 58#include <asm/code-patching.h>
7f92bc56 59#include <asm/exec.h>
5d31a96e 60#include <asm/livepatch.h>
b92a226e 61#include <asm/cpu_has_feature.h>
0545d543 62#include <asm/asm-prototypes.h>
5d31a96e 63
d6a61bfc
LM
64#include <linux/kprobes.h>
65#include <linux/kdebug.h>
14cf11af 66
8b3c34cf
MN
67/* Transactional Memory debug */
68#ifdef TM_DEBUG_SW
69#define TM_DEBUG(x...) printk(KERN_INFO x)
70#else
71#define TM_DEBUG(x...) do { } while(0)
72#endif
73
14cf11af
PM
74extern unsigned long _get_SP(void);
75
d31626f7 76#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 77static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
78{
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
89 set_thread_flag(TIF_RESTORE_TM);
90 }
d31626f7 91}
dc16b553
CB
92
93static inline bool msr_tm_active(unsigned long msr)
94{
95 return MSR_TM_ACTIVE(msr);
96}
d31626f7 97#else
dc16b553 98static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 99static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
100#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
3eb5d588
AB
102bool strict_msr_control;
103EXPORT_SYMBOL(strict_msr_control);
104
105static int __init enable_strict_msr_control(char *str)
106{
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111}
112early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
114void msr_check_and_set(unsigned long bits)
98da581e 115{
a0e72cf1
AB
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
98da581e 118
a0e72cf1 119 newmsr = oldmsr | bits;
98da581e 120
98da581e 121#ifdef CONFIG_VSX
a0e72cf1 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
123 newmsr |= MSR_VSX;
124#endif
a0e72cf1 125
98da581e
AB
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
a0e72cf1 128}
98da581e 129
3eb5d588 130void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
131{
132 unsigned long oldmsr = mfmsr();
133 unsigned long newmsr;
134
135 newmsr = oldmsr & ~bits;
136
137#ifdef CONFIG_VSX
138 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
139 newmsr &= ~MSR_VSX;
140#endif
141
142 if (oldmsr != newmsr)
143 mtmsr_isync(newmsr);
144}
3eb5d588 145EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
146
147#ifdef CONFIG_PPC_FPU
8792468d
CB
148void __giveup_fpu(struct task_struct *tsk)
149{
8eb98037
AB
150 unsigned long msr;
151
8792468d 152 save_fpu(tsk);
8eb98037
AB
153 msr = tsk->thread.regs->msr;
154 msr &= ~MSR_FP;
8792468d
CB
155#ifdef CONFIG_VSX
156 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 157 msr &= ~MSR_VSX;
8792468d 158#endif
8eb98037 159 tsk->thread.regs->msr = msr;
8792468d
CB
160}
161
a0e72cf1
AB
162void giveup_fpu(struct task_struct *tsk)
163{
164 check_if_tm_restore_required(tsk);
165
166 msr_check_and_set(MSR_FP);
98da581e 167 __giveup_fpu(tsk);
a0e72cf1 168 msr_check_and_clear(MSR_FP);
98da581e
AB
169}
170EXPORT_SYMBOL(giveup_fpu);
171
14cf11af
PM
172/*
173 * Make sure the floating-point register state in the
174 * the thread_struct is up to date for task tsk.
175 */
176void flush_fp_to_thread(struct task_struct *tsk)
177{
178 if (tsk->thread.regs) {
179 /*
180 * We need to disable preemption here because if we didn't,
181 * another process could get scheduled after the regs->msr
182 * test but before we have finished saving the FP registers
183 * to the thread_struct. That process could take over the
184 * FPU, and then when we get scheduled again we would store
185 * bogus values for the remaining FP registers.
186 */
187 preempt_disable();
188 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
189 /*
190 * This should only ever be called for current or
191 * for a stopped child process. Since we save away
af1bbc3d 192 * the FP register state on context switch,
14cf11af
PM
193 * there is something wrong if a stopped child appears
194 * to still have its FP state in the CPU registers.
195 */
196 BUG_ON(tsk != current);
b86fd2bd 197 giveup_fpu(tsk);
14cf11af
PM
198 }
199 preempt_enable();
200 }
201}
de56a948 202EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
203
204void enable_kernel_fp(void)
205{
206 WARN_ON(preemptible());
207
a0e72cf1 208 msr_check_and_set(MSR_FP);
611b0e5c 209
d64d02ce
AB
210 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
211 check_if_tm_restore_required(current);
a0e72cf1 212 __giveup_fpu(current);
d64d02ce 213 }
14cf11af
PM
214}
215EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98
CB
216
217static int restore_fp(struct task_struct *tsk) {
dc16b553 218 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
219 load_fp_state(&current->thread.fp_state);
220 current->thread.load_fp++;
221 return 1;
222 }
223 return 0;
224}
225#else
226static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 227#endif /* CONFIG_PPC_FPU */
14cf11af 228
14cf11af 229#ifdef CONFIG_ALTIVEC
70fe3d98
CB
230#define loadvec(thr) ((thr).load_vec)
231
6f515d84
CB
232static void __giveup_altivec(struct task_struct *tsk)
233{
8eb98037
AB
234 unsigned long msr;
235
6f515d84 236 save_altivec(tsk);
8eb98037
AB
237 msr = tsk->thread.regs->msr;
238 msr &= ~MSR_VEC;
6f515d84
CB
239#ifdef CONFIG_VSX
240 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 241 msr &= ~MSR_VSX;
6f515d84 242#endif
8eb98037 243 tsk->thread.regs->msr = msr;
6f515d84
CB
244}
245
98da581e
AB
246void giveup_altivec(struct task_struct *tsk)
247{
98da581e
AB
248 check_if_tm_restore_required(tsk);
249
a0e72cf1 250 msr_check_and_set(MSR_VEC);
98da581e 251 __giveup_altivec(tsk);
a0e72cf1 252 msr_check_and_clear(MSR_VEC);
98da581e
AB
253}
254EXPORT_SYMBOL(giveup_altivec);
255
14cf11af
PM
256void enable_kernel_altivec(void)
257{
258 WARN_ON(preemptible());
259
a0e72cf1 260 msr_check_and_set(MSR_VEC);
611b0e5c 261
d64d02ce
AB
262 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
263 check_if_tm_restore_required(current);
a0e72cf1 264 __giveup_altivec(current);
d64d02ce 265 }
14cf11af
PM
266}
267EXPORT_SYMBOL(enable_kernel_altivec);
268
269/*
270 * Make sure the VMX/Altivec register state in the
271 * the thread_struct is up to date for task tsk.
272 */
273void flush_altivec_to_thread(struct task_struct *tsk)
274{
275 if (tsk->thread.regs) {
276 preempt_disable();
277 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 278 BUG_ON(tsk != current);
b86fd2bd 279 giveup_altivec(tsk);
14cf11af
PM
280 }
281 preempt_enable();
282 }
283}
de56a948 284EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
285
286static int restore_altivec(struct task_struct *tsk)
287{
dc16b553
CB
288 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
289 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
290 load_vr_state(&tsk->thread.vr_state);
291 tsk->thread.used_vr = 1;
292 tsk->thread.load_vec++;
293
294 return 1;
295 }
296 return 0;
297}
298#else
299#define loadvec(thr) 0
300static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
301#endif /* CONFIG_ALTIVEC */
302
ce48b210 303#ifdef CONFIG_VSX
bf6a4d5b 304static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 305{
a7d623d4
AB
306 if (tsk->thread.regs->msr & MSR_FP)
307 __giveup_fpu(tsk);
308 if (tsk->thread.regs->msr & MSR_VEC)
309 __giveup_altivec(tsk);
bf6a4d5b
CB
310 tsk->thread.regs->msr &= ~MSR_VSX;
311}
312
313static void giveup_vsx(struct task_struct *tsk)
314{
315 check_if_tm_restore_required(tsk);
316
317 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 318 __giveup_vsx(tsk);
a0e72cf1 319 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 320}
bf6a4d5b
CB
321
322static void save_vsx(struct task_struct *tsk)
323{
324 if (tsk->thread.regs->msr & MSR_FP)
325 save_fpu(tsk);
326 if (tsk->thread.regs->msr & MSR_VEC)
327 save_altivec(tsk);
328}
a7d623d4 329
ce48b210
MN
330void enable_kernel_vsx(void)
331{
332 WARN_ON(preemptible());
333
a0e72cf1 334 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 335
a0e72cf1 336 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 337 check_if_tm_restore_required(current);
a0e72cf1
AB
338 if (current->thread.regs->msr & MSR_FP)
339 __giveup_fpu(current);
340 if (current->thread.regs->msr & MSR_VEC)
341 __giveup_altivec(current);
342 __giveup_vsx(current);
611b0e5c 343 }
ce48b210
MN
344}
345EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
346
347void flush_vsx_to_thread(struct task_struct *tsk)
348{
349 if (tsk->thread.regs) {
350 preempt_disable();
351 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 352 BUG_ON(tsk != current);
ce48b210
MN
353 giveup_vsx(tsk);
354 }
355 preempt_enable();
356 }
357}
de56a948 358EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
359
360static int restore_vsx(struct task_struct *tsk)
361{
362 if (cpu_has_feature(CPU_FTR_VSX)) {
363 tsk->thread.used_vsr = 1;
364 return 1;
365 }
366
367 return 0;
368}
369#else
370static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 371static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
372#endif /* CONFIG_VSX */
373
14cf11af 374#ifdef CONFIG_SPE
98da581e
AB
375void giveup_spe(struct task_struct *tsk)
376{
98da581e
AB
377 check_if_tm_restore_required(tsk);
378
a0e72cf1 379 msr_check_and_set(MSR_SPE);
98da581e 380 __giveup_spe(tsk);
a0e72cf1 381 msr_check_and_clear(MSR_SPE);
98da581e
AB
382}
383EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
384
385void enable_kernel_spe(void)
386{
387 WARN_ON(preemptible());
388
a0e72cf1 389 msr_check_and_set(MSR_SPE);
611b0e5c 390
d64d02ce
AB
391 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
392 check_if_tm_restore_required(current);
a0e72cf1 393 __giveup_spe(current);
d64d02ce 394 }
14cf11af
PM
395}
396EXPORT_SYMBOL(enable_kernel_spe);
397
398void flush_spe_to_thread(struct task_struct *tsk)
399{
400 if (tsk->thread.regs) {
401 preempt_disable();
402 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 403 BUG_ON(tsk != current);
685659ee 404 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 405 giveup_spe(tsk);
14cf11af
PM
406 }
407 preempt_enable();
408 }
409}
14cf11af
PM
410#endif /* CONFIG_SPE */
411
c2085059
AB
412static unsigned long msr_all_available;
413
414static int __init init_msr_all_available(void)
415{
416#ifdef CONFIG_PPC_FPU
417 msr_all_available |= MSR_FP;
418#endif
419#ifdef CONFIG_ALTIVEC
420 if (cpu_has_feature(CPU_FTR_ALTIVEC))
421 msr_all_available |= MSR_VEC;
422#endif
423#ifdef CONFIG_VSX
424 if (cpu_has_feature(CPU_FTR_VSX))
425 msr_all_available |= MSR_VSX;
426#endif
427#ifdef CONFIG_SPE
428 if (cpu_has_feature(CPU_FTR_SPE))
429 msr_all_available |= MSR_SPE;
430#endif
431
432 return 0;
433}
434early_initcall(init_msr_all_available);
435
436void giveup_all(struct task_struct *tsk)
437{
438 unsigned long usermsr;
439
440 if (!tsk->thread.regs)
441 return;
442
443 usermsr = tsk->thread.regs->msr;
444
445 if ((usermsr & msr_all_available) == 0)
446 return;
447
448 msr_check_and_set(msr_all_available);
b0f16b46 449 check_if_tm_restore_required(tsk);
c2085059
AB
450
451#ifdef CONFIG_PPC_FPU
452 if (usermsr & MSR_FP)
453 __giveup_fpu(tsk);
454#endif
455#ifdef CONFIG_ALTIVEC
456 if (usermsr & MSR_VEC)
457 __giveup_altivec(tsk);
458#endif
459#ifdef CONFIG_VSX
460 if (usermsr & MSR_VSX)
461 __giveup_vsx(tsk);
462#endif
463#ifdef CONFIG_SPE
464 if (usermsr & MSR_SPE)
465 __giveup_spe(tsk);
466#endif
467
468 msr_check_and_clear(msr_all_available);
469}
470EXPORT_SYMBOL(giveup_all);
471
70fe3d98
CB
472void restore_math(struct pt_regs *regs)
473{
474 unsigned long msr;
475
dc16b553
CB
476 if (!msr_tm_active(regs->msr) &&
477 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
478 return;
479
480 msr = regs->msr;
481 msr_check_and_set(msr_all_available);
482
483 /*
484 * Only reload if the bit is not set in the user MSR, the bit BEING set
485 * indicates that the registers are hot
486 */
487 if ((!(msr & MSR_FP)) && restore_fp(current))
488 msr |= MSR_FP | current->thread.fpexc_mode;
489
490 if ((!(msr & MSR_VEC)) && restore_altivec(current))
491 msr |= MSR_VEC;
492
493 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
494 restore_vsx(current)) {
495 msr |= MSR_VSX;
496 }
497
498 msr_check_and_clear(msr_all_available);
499
500 regs->msr = msr;
501}
502
de2a20aa
CB
503void save_all(struct task_struct *tsk)
504{
505 unsigned long usermsr;
506
507 if (!tsk->thread.regs)
508 return;
509
510 usermsr = tsk->thread.regs->msr;
511
512 if ((usermsr & msr_all_available) == 0)
513 return;
514
515 msr_check_and_set(msr_all_available);
516
bf6a4d5b
CB
517 /*
518 * Saving the way the register space is in hardware, save_vsx boils
519 * down to a save_fpu() and save_altivec()
520 */
521 if (usermsr & MSR_VSX) {
522 save_vsx(tsk);
523 } else {
524 if (usermsr & MSR_FP)
525 save_fpu(tsk);
526
527 if (usermsr & MSR_VEC)
528 save_altivec(tsk);
529 }
de2a20aa
CB
530
531 if (usermsr & MSR_SPE)
532 __giveup_spe(tsk);
533
534 msr_check_and_clear(msr_all_available);
535}
536
579e633e
AB
537void flush_all_to_thread(struct task_struct *tsk)
538{
539 if (tsk->thread.regs) {
540 preempt_disable();
541 BUG_ON(tsk != current);
de2a20aa 542 save_all(tsk);
579e633e
AB
543
544#ifdef CONFIG_SPE
545 if (tsk->thread.regs->msr & MSR_SPE)
546 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
547#endif
548
549 preempt_enable();
550 }
551}
552EXPORT_SYMBOL(flush_all_to_thread);
553
3bffb652
DK
554#ifdef CONFIG_PPC_ADV_DEBUG_REGS
555void do_send_trap(struct pt_regs *regs, unsigned long address,
556 unsigned long error_code, int signal_code, int breakpt)
557{
558 siginfo_t info;
559
41ab5266 560 current->thread.trap_nr = signal_code;
3bffb652
DK
561 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
562 11, SIGSEGV) == NOTIFY_STOP)
563 return;
564
565 /* Deliver the signal to userspace */
566 info.si_signo = SIGTRAP;
567 info.si_errno = breakpt; /* breakpoint or watchpoint id */
568 info.si_code = signal_code;
569 info.si_addr = (void __user *)address;
570 force_sig_info(SIGTRAP, &info, current);
571}
572#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 573void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
574 unsigned long error_code)
575{
576 siginfo_t info;
577
41ab5266 578 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
579 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
580 11, SIGSEGV) == NOTIFY_STOP)
581 return;
582
9422de3e 583 if (debugger_break_match(regs))
d6a61bfc
LM
584 return;
585
9422de3e
MN
586 /* Clear the breakpoint */
587 hw_breakpoint_disable();
d6a61bfc
LM
588
589 /* Deliver the signal to userspace */
590 info.si_signo = SIGTRAP;
591 info.si_errno = 0;
592 info.si_code = TRAP_HWBKPT;
593 info.si_addr = (void __user *)address;
594 force_sig_info(SIGTRAP, &info, current);
595}
3bffb652 596#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 597
9422de3e 598static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 599
3bffb652
DK
600#ifdef CONFIG_PPC_ADV_DEBUG_REGS
601/*
602 * Set the debug registers back to their default "safe" values.
603 */
604static void set_debug_reg_defaults(struct thread_struct *thread)
605{
51ae8d4a 606 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 607#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 608 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 609#endif
51ae8d4a 610 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 611#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 612 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 613#endif
51ae8d4a 614 thread->debug.dbcr0 = 0;
3bffb652
DK
615#ifdef CONFIG_BOOKE
616 /*
617 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
618 */
51ae8d4a 619 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
620 DBCR1_IAC3US | DBCR1_IAC4US;
621 /*
622 * Force Data Address Compare User/Supervisor bits to be User-only
623 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
624 */
51ae8d4a 625 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 626#else
51ae8d4a 627 thread->debug.dbcr1 = 0;
3bffb652
DK
628#endif
629}
630
f5f97210 631static void prime_debug_regs(struct debug_reg *debug)
3bffb652 632{
6cecf76b
SW
633 /*
634 * We could have inherited MSR_DE from userspace, since
635 * it doesn't get cleared on exception entry. Make sure
636 * MSR_DE is clear before we enable any debug events.
637 */
638 mtmsr(mfmsr() & ~MSR_DE);
639
f5f97210
SW
640 mtspr(SPRN_IAC1, debug->iac1);
641 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 642#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
643 mtspr(SPRN_IAC3, debug->iac3);
644 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 645#endif
f5f97210
SW
646 mtspr(SPRN_DAC1, debug->dac1);
647 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 648#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
649 mtspr(SPRN_DVC1, debug->dvc1);
650 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 651#endif
f5f97210
SW
652 mtspr(SPRN_DBCR0, debug->dbcr0);
653 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 654#ifdef CONFIG_BOOKE
f5f97210 655 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
656#endif
657}
658/*
659 * Unless neither the old or new thread are making use of the
660 * debug registers, set the debug registers from the values
661 * stored in the new thread.
662 */
f5f97210 663void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 664{
51ae8d4a 665 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
666 || (new_debug->dbcr0 & DBCR0_IDM))
667 prime_debug_regs(new_debug);
3bffb652 668}
3743c9b8 669EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 670#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 671#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
672static void set_debug_reg_defaults(struct thread_struct *thread)
673{
9422de3e
MN
674 thread->hw_brk.address = 0;
675 thread->hw_brk.type = 0;
b9818c33 676 set_breakpoint(&thread->hw_brk);
3bffb652 677}
e0780b72 678#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
679#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
680
172ae2e7 681#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
682static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
683{
d6a61bfc 684 mtspr(SPRN_DAC1, dabr);
221c185d
DK
685#ifdef CONFIG_PPC_47x
686 isync();
687#endif
9422de3e
MN
688 return 0;
689}
c6c9eace 690#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
691static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
692{
c6c9eace 693 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
694 if (cpu_has_feature(CPU_FTR_DABRX))
695 mtspr(SPRN_DABRX, dabrx);
cab0af98 696 return 0;
14cf11af 697}
9422de3e
MN
698#else
699static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
700{
701 return -EINVAL;
702}
703#endif
704
705static inline int set_dabr(struct arch_hw_breakpoint *brk)
706{
707 unsigned long dabr, dabrx;
708
709 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
710 dabrx = ((brk->type >> 3) & 0x7);
711
712 if (ppc_md.set_dabr)
713 return ppc_md.set_dabr(dabr, dabrx);
714
715 return __set_dabr(dabr, dabrx);
716}
717
bf99de36
MN
718static inline int set_dawr(struct arch_hw_breakpoint *brk)
719{
05d694ea 720 unsigned long dawr, dawrx, mrd;
bf99de36
MN
721
722 dawr = brk->address;
723
724 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
725 << (63 - 58); //* read/write bits */
726 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
727 << (63 - 59); //* translate */
728 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
729 >> 3; //* PRIM bits */
05d694ea
MN
730 /* dawr length is stored in field MDR bits 48:53. Matches range in
731 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
732 0b111111=64DW.
733 brk->len is in bytes.
734 This aligns up to double word size, shifts and does the bias.
735 */
736 mrd = ((brk->len + 7) >> 3) - 1;
737 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
738
739 if (ppc_md.set_dawr)
740 return ppc_md.set_dawr(dawr, dawrx);
741 mtspr(SPRN_DAWR, dawr);
742 mtspr(SPRN_DAWRX, dawrx);
743 return 0;
744}
745
21f58507 746void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 747{
69111bac 748 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 749
bf99de36 750 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
751 set_dawr(brk);
752 else
753 set_dabr(brk);
9422de3e 754}
14cf11af 755
21f58507
PG
756void set_breakpoint(struct arch_hw_breakpoint *brk)
757{
758 preempt_disable();
759 __set_breakpoint(brk);
760 preempt_enable();
761}
762
06d67d54
PM
763#ifdef CONFIG_PPC64
764DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 765#endif
14cf11af 766
9422de3e
MN
767static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
768 struct arch_hw_breakpoint *b)
769{
770 if (a->address != b->address)
771 return false;
772 if (a->type != b->type)
773 return false;
774 if (a->len != b->len)
775 return false;
776 return true;
777}
d31626f7 778
fb09692e 779#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
780static void tm_reclaim_thread(struct thread_struct *thr,
781 struct thread_info *ti, uint8_t cause)
782{
783 unsigned long msr_diff = 0;
784
785 /*
786 * If FP/VSX registers have been already saved to the
787 * thread_struct, move them to the transact_fp array.
788 * We clear the TIF_RESTORE_TM bit since after the reclaim
789 * the thread will no longer be transactional.
790 */
791 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
829023df 792 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
d31626f7
PM
793 if (msr_diff & MSR_FP)
794 memcpy(&thr->transact_fp, &thr->fp_state,
795 sizeof(struct thread_fp_state));
796 if (msr_diff & MSR_VEC)
797 memcpy(&thr->transact_vr, &thr->vr_state,
798 sizeof(struct thread_vr_state));
799 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
800 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
801 }
802
7f821fc9
MN
803 /*
804 * Use the current MSR TM suspended bit to track if we have
805 * checkpointed state outstanding.
806 * On signal delivery, we'd normally reclaim the checkpointed
807 * state to obtain stack pointer (see:get_tm_stackpointer()).
808 * This will then directly return to userspace without going
809 * through __switch_to(). However, if the stack frame is bad,
810 * we need to exit this thread which calls __switch_to() which
811 * will again attempt to reclaim the already saved tm state.
812 * Hence we need to check that we've not already reclaimed
813 * this state.
814 * We do this using the current MSR, rather tracking it in
815 * some specific thread_struct bit, as it has the additional
027dfac6 816 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
817 */
818 if (!MSR_TM_SUSPENDED(mfmsr()))
819 return;
820
d31626f7
PM
821 tm_reclaim(thr, thr->regs->msr, cause);
822
823 /* Having done the reclaim, we now have the checkpointed
824 * FP/VSX values in the registers. These might be valid
825 * even if we have previously called enable_kernel_fp() or
826 * flush_fp_to_thread(), so update thr->regs->msr to
827 * indicate their current validity.
828 */
829 thr->regs->msr |= msr_diff;
830}
831
832void tm_reclaim_current(uint8_t cause)
833{
834 tm_enable();
835 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
836}
837
fb09692e
MN
838static inline void tm_reclaim_task(struct task_struct *tsk)
839{
840 /* We have to work out if we're switching from/to a task that's in the
841 * middle of a transaction.
842 *
843 * In switching we need to maintain a 2nd register state as
844 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
845 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
846 * (current) FPRs into oldtask->thread.transact_fpr[].
847 *
848 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
849 */
850 struct thread_struct *thr = &tsk->thread;
851
852 if (!thr->regs)
853 return;
854
855 if (!MSR_TM_ACTIVE(thr->regs->msr))
856 goto out_and_saveregs;
857
858 /* Stash the original thread MSR, as giveup_fpu et al will
859 * modify it. We hold onto it to see whether the task used
d31626f7 860 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
829023df 861 * ckpt_regs.msr is already set.
fb09692e 862 */
d31626f7 863 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
829023df 864 thr->ckpt_regs.msr = thr->regs->msr;
fb09692e
MN
865
866 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
867 "ccr=%lx, msr=%lx, trap=%lx)\n",
868 tsk->pid, thr->regs->nip,
869 thr->regs->ccr, thr->regs->msr,
870 thr->regs->trap);
871
d31626f7 872 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
873
874 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
875 tsk->pid);
876
877out_and_saveregs:
878 /* Always save the regs here, even if a transaction's not active.
879 * This context-switches a thread's TM info SPRs. We do it here to
880 * be consistent with the restore path (in recheckpoint) which
881 * cannot happen later in _switch().
882 */
883 tm_save_sprs(thr);
884}
885
e6b8fd02
MN
886extern void __tm_recheckpoint(struct thread_struct *thread,
887 unsigned long orig_msr);
888
889void tm_recheckpoint(struct thread_struct *thread,
890 unsigned long orig_msr)
891{
892 unsigned long flags;
893
894 /* We really can't be interrupted here as the TEXASR registers can't
895 * change and later in the trecheckpoint code, we have a userspace R1.
896 * So let's hard disable over this region.
897 */
898 local_irq_save(flags);
899 hard_irq_disable();
900
901 /* The TM SPRs are restored here, so that TEXASR.FS can be set
902 * before the trecheckpoint and no explosion occurs.
903 */
904 tm_restore_sprs(thread);
905
906 __tm_recheckpoint(thread, orig_msr);
907
908 local_irq_restore(flags);
909}
910
bc2a9408 911static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
912{
913 unsigned long msr;
914
915 if (!cpu_has_feature(CPU_FTR_TM))
916 return;
917
918 /* Recheckpoint the registers of the thread we're about to switch to.
919 *
920 * If the task was using FP, we non-lazily reload both the original and
921 * the speculative FP register states. This is because the kernel
922 * doesn't see if/when a TM rollback occurs, so if we take an FP
923 * unavoidable later, we are unable to determine which set of FP regs
924 * need to be restored.
925 */
926 if (!new->thread.regs)
927 return;
928
e6b8fd02
MN
929 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
930 tm_restore_sprs(&new->thread);
fb09692e 931 return;
e6b8fd02 932 }
829023df 933 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
934 /* Recheckpoint to restore original checkpointed register state. */
935 TM_DEBUG("*** tm_recheckpoint of pid %d "
936 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
937 new->pid, new->thread.regs->msr, msr);
938
939 /* This loads the checkpointed FP/VEC state, if used */
940 tm_recheckpoint(&new->thread, msr);
941
942 /* This loads the speculative FP/VEC state, if used */
943 if (msr & MSR_FP) {
944 do_load_up_transact_fpu(&new->thread);
945 new->thread.regs->msr |=
946 (MSR_FP | new->thread.fpexc_mode);
947 }
f110c0c1 948#ifdef CONFIG_ALTIVEC
fb09692e
MN
949 if (msr & MSR_VEC) {
950 do_load_up_transact_altivec(&new->thread);
951 new->thread.regs->msr |= MSR_VEC;
952 }
f110c0c1 953#endif
fb09692e
MN
954 /* We may as well turn on VSX too since all the state is restored now */
955 if (msr & MSR_VSX)
956 new->thread.regs->msr |= MSR_VSX;
957
958 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
959 "(kernel msr 0x%lx)\n",
960 new->pid, mfmsr());
961}
962
963static inline void __switch_to_tm(struct task_struct *prev)
964{
965 if (cpu_has_feature(CPU_FTR_TM)) {
966 tm_enable();
967 tm_reclaim_task(prev);
968 }
969}
d31626f7
PM
970
971/*
972 * This is called if we are on the way out to userspace and the
973 * TIF_RESTORE_TM flag is set. It checks if we need to reload
974 * FP and/or vector state and does so if necessary.
975 * If userspace is inside a transaction (whether active or
976 * suspended) and FP/VMX/VSX instructions have ever been enabled
977 * inside that transaction, then we have to keep them enabled
978 * and keep the FP/VMX/VSX state loaded while ever the transaction
979 * continues. The reason is that if we didn't, and subsequently
980 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
981 * we don't know whether it's the same transaction, and thus we
982 * don't know which of the checkpointed state and the transactional
983 * state to use.
984 */
985void restore_tm_state(struct pt_regs *regs)
986{
987 unsigned long msr_diff;
988
989 clear_thread_flag(TIF_RESTORE_TM);
990 if (!MSR_TM_ACTIVE(regs->msr))
991 return;
992
829023df 993 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 994 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 995
dc16b553
CB
996 /* Ensure that restore_math() will restore */
997 if (msr_diff & MSR_FP)
998 current->thread.load_fp = 1;
999#ifdef CONFIG_ALIVEC
1000 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1001 current->thread.load_vec = 1;
1002#endif
70fe3d98
CB
1003 restore_math(regs);
1004
d31626f7
PM
1005 regs->msr |= msr_diff;
1006}
1007
fb09692e
MN
1008#else
1009#define tm_recheckpoint_new_task(new)
1010#define __switch_to_tm(prev)
1011#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1012
152d523e
AB
1013static inline void save_sprs(struct thread_struct *t)
1014{
1015#ifdef CONFIG_ALTIVEC
01d7c2a2 1016 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1017 t->vrsave = mfspr(SPRN_VRSAVE);
1018#endif
1019#ifdef CONFIG_PPC_BOOK3S_64
1020 if (cpu_has_feature(CPU_FTR_DSCR))
1021 t->dscr = mfspr(SPRN_DSCR);
1022
1023 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1024 t->bescr = mfspr(SPRN_BESCR);
1025 t->ebbhr = mfspr(SPRN_EBBHR);
1026 t->ebbrr = mfspr(SPRN_EBBRR);
1027
1028 t->fscr = mfspr(SPRN_FSCR);
1029
1030 /*
1031 * Note that the TAR is not available for use in the kernel.
1032 * (To provide this, the TAR should be backed up/restored on
1033 * exception entry/exit instead, and be in pt_regs. FIXME,
1034 * this should be in pt_regs anyway (for debug).)
1035 */
1036 t->tar = mfspr(SPRN_TAR);
1037 }
bd3ea317
JM
1038
1039 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1040 /* Conditionally save Load Monitor registers, if enabled */
1041 if (t->fscr & FSCR_LM) {
1042 t->lmrr = mfspr(SPRN_LMRR);
1043 t->lmser = mfspr(SPRN_LMSER);
1044 }
1045 }
152d523e
AB
1046#endif
1047}
1048
1049static inline void restore_sprs(struct thread_struct *old_thread,
1050 struct thread_struct *new_thread)
1051{
1052#ifdef CONFIG_ALTIVEC
1053 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1054 old_thread->vrsave != new_thread->vrsave)
1055 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1056#endif
1057#ifdef CONFIG_PPC_BOOK3S_64
1058 if (cpu_has_feature(CPU_FTR_DSCR)) {
1059 u64 dscr = get_paca()->dscr_default;
b57bd2de 1060 if (new_thread->dscr_inherit)
152d523e 1061 dscr = new_thread->dscr;
152d523e
AB
1062
1063 if (old_thread->dscr != dscr)
1064 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1065 }
1066
1067 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1068 if (old_thread->bescr != new_thread->bescr)
1069 mtspr(SPRN_BESCR, new_thread->bescr);
1070 if (old_thread->ebbhr != new_thread->ebbhr)
1071 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1072 if (old_thread->ebbrr != new_thread->ebbrr)
1073 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1074
b57bd2de
MN
1075 if (old_thread->fscr != new_thread->fscr)
1076 mtspr(SPRN_FSCR, new_thread->fscr);
1077
152d523e
AB
1078 if (old_thread->tar != new_thread->tar)
1079 mtspr(SPRN_TAR, new_thread->tar);
1080 }
bd3ea317
JM
1081
1082 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1083 /* Conditionally restore Load Monitor registers, if enabled */
1084 if (new_thread->fscr & FSCR_LM) {
1085 if (old_thread->lmrr != new_thread->lmrr)
1086 mtspr(SPRN_LMRR, new_thread->lmrr);
1087 if (old_thread->lmser != new_thread->lmser)
1088 mtspr(SPRN_LMSER, new_thread->lmser);
1089 }
1090 }
152d523e
AB
1091#endif
1092}
1093
14cf11af
PM
1094struct task_struct *__switch_to(struct task_struct *prev,
1095 struct task_struct *new)
1096{
1097 struct thread_struct *new_thread, *old_thread;
14cf11af 1098 struct task_struct *last;
d6bf29b4
PZ
1099#ifdef CONFIG_PPC_BOOK3S_64
1100 struct ppc64_tlb_batch *batch;
1101#endif
14cf11af 1102
152d523e
AB
1103 new_thread = &new->thread;
1104 old_thread = &current->thread;
1105
7ba5fef7
MN
1106 WARN_ON(!irqs_disabled());
1107
06d67d54
PM
1108#ifdef CONFIG_PPC64
1109 /*
1110 * Collect processor utilization data per process
1111 */
1112 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1113 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1114 long unsigned start_tb, current_tb;
1115 start_tb = old_thread->start_tb;
1116 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1117 old_thread->accum_tb += (current_tb - start_tb);
1118 new_thread->start_tb = current_tb;
1119 }
d6bf29b4
PZ
1120#endif /* CONFIG_PPC64 */
1121
caca285e 1122#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1123 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1124 if (batch->active) {
1125 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1126 if (batch->index)
1127 __flush_tlb_pending(batch);
1128 batch->active = 0;
1129 }
caca285e 1130#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1131
f3d885cc
AB
1132#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1133 switch_booke_debug_regs(&new->thread.debug);
1134#else
1135/*
1136 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1137 * schedule DABR
1138 */
1139#ifndef CONFIG_HAVE_HW_BREAKPOINT
1140 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1141 __set_breakpoint(&new->thread.hw_brk);
1142#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1143#endif
1144
1145 /*
1146 * We need to save SPRs before treclaim/trecheckpoint as these will
1147 * change a number of them.
1148 */
1149 save_sprs(&prev->thread);
1150
1151 __switch_to_tm(prev);
1152
1153 /* Save FPU, Altivec, VSX and SPE state */
1154 giveup_all(prev);
1155
44387e9f
AB
1156 /*
1157 * We can't take a PMU exception inside _switch() since there is a
1158 * window where the kernel stack SLB and the kernel stack are out
1159 * of sync. Hard disable here.
1160 */
1161 hard_irq_disable();
bc2a9408
MN
1162
1163 tm_recheckpoint_new_task(new);
1164
20dbe670
AB
1165 /*
1166 * Call restore_sprs() before calling _switch(). If we move it after
1167 * _switch() then we miss out on calling it for new tasks. The reason
1168 * for this is we manually create a stack frame for new tasks that
1169 * directly returns through ret_from_fork() or
1170 * ret_from_kernel_thread(). See copy_thread() for details.
1171 */
f3d885cc
AB
1172 restore_sprs(old_thread, new_thread);
1173
20dbe670
AB
1174 last = _switch(old_thread, new_thread);
1175
caca285e 1176#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1177 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1178 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1179 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1180 batch->active = 1;
1181 }
70fe3d98
CB
1182
1183 if (current_thread_info()->task->thread.regs)
1184 restore_math(current_thread_info()->task->thread.regs);
caca285e 1185#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1186
14cf11af
PM
1187 return last;
1188}
1189
06d67d54
PM
1190static int instructions_to_print = 16;
1191
06d67d54
PM
1192static void show_instructions(struct pt_regs *regs)
1193{
1194 int i;
1195 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1196 sizeof(int));
1197
1198 printk("Instruction dump:");
1199
1200 for (i = 0; i < instructions_to_print; i++) {
1201 int instr;
1202
1203 if (!(i % 8))
1204 printk("\n");
1205
0de2d820
SW
1206#if !defined(CONFIG_BOOKE)
1207 /* If executing with the IMMU off, adjust pc rather
1208 * than print XXXXXXXX.
1209 */
1210 if (!(regs->msr & MSR_IR))
1211 pc = (unsigned long)phys_to_virt(pc);
1212#endif
1213
00ae36de 1214 if (!__kernel_text_address(pc) ||
7b051f66 1215 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 1216 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
1217 } else {
1218 if (regs->nip == pc)
40c8cefa 1219 printk(KERN_CONT "<%08x> ", instr);
06d67d54 1220 else
40c8cefa 1221 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
1222 }
1223
1224 pc += sizeof(int);
1225 }
1226
1227 printk("\n");
1228}
1229
801c0b2c 1230struct regbit {
06d67d54
PM
1231 unsigned long bit;
1232 const char *name;
801c0b2c
MN
1233};
1234
1235static struct regbit msr_bits[] = {
3bfd0c9c
AB
1236#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1237 {MSR_SF, "SF"},
1238 {MSR_HV, "HV"},
1239#endif
1240 {MSR_VEC, "VEC"},
1241 {MSR_VSX, "VSX"},
1242#ifdef CONFIG_BOOKE
1243 {MSR_CE, "CE"},
1244#endif
06d67d54
PM
1245 {MSR_EE, "EE"},
1246 {MSR_PR, "PR"},
1247 {MSR_FP, "FP"},
1248 {MSR_ME, "ME"},
3bfd0c9c 1249#ifdef CONFIG_BOOKE
1b98326b 1250 {MSR_DE, "DE"},
3bfd0c9c
AB
1251#else
1252 {MSR_SE, "SE"},
1253 {MSR_BE, "BE"},
1254#endif
06d67d54
PM
1255 {MSR_IR, "IR"},
1256 {MSR_DR, "DR"},
3bfd0c9c
AB
1257 {MSR_PMM, "PMM"},
1258#ifndef CONFIG_BOOKE
1259 {MSR_RI, "RI"},
1260 {MSR_LE, "LE"},
1261#endif
06d67d54
PM
1262 {0, NULL}
1263};
1264
801c0b2c 1265static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1266{
801c0b2c 1267 const char *s = "";
06d67d54 1268
06d67d54
PM
1269 for (; bits->bit; ++bits)
1270 if (val & bits->bit) {
801c0b2c
MN
1271 printk("%s%s", s, bits->name);
1272 s = sep;
06d67d54 1273 }
801c0b2c
MN
1274}
1275
1276#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1277static struct regbit msr_tm_bits[] = {
1278 {MSR_TS_T, "T"},
1279 {MSR_TS_S, "S"},
1280 {MSR_TM, "E"},
1281 {0, NULL}
1282};
1283
1284static void print_tm_bits(unsigned long val)
1285{
1286/*
1287 * This only prints something if at least one of the TM bit is set.
1288 * Inside the TM[], the output means:
1289 * E: Enabled (bit 32)
1290 * S: Suspended (bit 33)
1291 * T: Transactional (bit 34)
1292 */
1293 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1294 printk(",TM[");
1295 print_bits(val, msr_tm_bits, "");
1296 printk("]");
1297 }
1298}
1299#else
1300static void print_tm_bits(unsigned long val) {}
1301#endif
1302
1303static void print_msr_bits(unsigned long val)
1304{
1305 printk("<");
1306 print_bits(val, msr_bits, ",");
1307 print_tm_bits(val);
06d67d54
PM
1308 printk(">");
1309}
1310
1311#ifdef CONFIG_PPC64
f6f7dde3 1312#define REG "%016lx"
06d67d54
PM
1313#define REGS_PER_LINE 4
1314#define LAST_VOLATILE 13
1315#else
f6f7dde3 1316#define REG "%08lx"
06d67d54
PM
1317#define REGS_PER_LINE 8
1318#define LAST_VOLATILE 12
1319#endif
1320
14cf11af
PM
1321void show_regs(struct pt_regs * regs)
1322{
1323 int i, trap;
1324
a43cb95d
TH
1325 show_regs_print_info(KERN_DEFAULT);
1326
06d67d54
PM
1327 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1328 regs->nip, regs->link, regs->ctr);
1329 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1330 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1331 printk("MSR: "REG" ", regs->msr);
801c0b2c 1332 print_msr_bits(regs->msr);
f6f7dde3 1333 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1334 trap = TRAP(regs);
5115a026 1335 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1336 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1337 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1338#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1339 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1340#else
9db8bcfd
AB
1341 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1342#endif
1343#ifdef CONFIG_PPC64
1344 printk("SOFTE: %ld ", regs->softe);
1345#endif
1346#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1347 if (MSR_TM_ACTIVE(regs->msr))
1348 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1349#endif
14cf11af
PM
1350
1351 for (i = 0; i < 32; i++) {
06d67d54 1352 if ((i % REGS_PER_LINE) == 0)
a2367194 1353 printk("\nGPR%02d: ", i);
06d67d54
PM
1354 printk(REG " ", regs->gpr[i]);
1355 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1356 break;
1357 }
1358 printk("\n");
1359#ifdef CONFIG_KALLSYMS
1360 /*
1361 * Lookup NIP late so we have the best change of getting the
1362 * above info out without failing
1363 */
058c78f4
BH
1364 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1365 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1366#endif
14cf11af 1367 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1368 if (!user_mode(regs))
1369 show_instructions(regs);
14cf11af
PM
1370}
1371
14cf11af
PM
1372void flush_thread(void)
1373{
e0780b72 1374#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1375 flush_ptrace_hw_breakpoint(current);
e0780b72 1376#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1377 set_debug_reg_defaults(&current->thread);
e0780b72 1378#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1379}
1380
1381void
1382release_thread(struct task_struct *t)
1383{
1384}
1385
1386/*
55ccf3fe
SS
1387 * this gets called so that we can store coprocessor state into memory and
1388 * copy the current task into the new thread.
14cf11af 1389 */
55ccf3fe 1390int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1391{
579e633e 1392 flush_all_to_thread(src);
621b5060
MN
1393 /*
1394 * Flush TM state out so we can copy it. __switch_to_tm() does this
1395 * flush but it removes the checkpointed state from the current CPU and
1396 * transitions the CPU out of TM mode. Hence we need to call
1397 * tm_recheckpoint_new_task() (on the same task) to restore the
1398 * checkpointed state back and the TM mode.
1399 */
1400 __switch_to_tm(src);
1401 tm_recheckpoint_new_task(src);
330a1eb7 1402
55ccf3fe 1403 *dst = *src;
330a1eb7
ME
1404
1405 clear_task_ebb(dst);
1406
55ccf3fe 1407 return 0;
14cf11af
PM
1408}
1409
cec15488
ME
1410static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1411{
1412#ifdef CONFIG_PPC_STD_MMU_64
1413 unsigned long sp_vsid;
1414 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1415
caca285e
AK
1416 if (radix_enabled())
1417 return;
1418
cec15488
ME
1419 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1420 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1421 << SLB_VSID_SHIFT_1T;
1422 else
1423 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1424 << SLB_VSID_SHIFT;
1425 sp_vsid |= SLB_VSID_KERNEL | llp;
1426 p->thread.ksp_vsid = sp_vsid;
1427#endif
1428}
1429
14cf11af
PM
1430/*
1431 * Copy a thread..
1432 */
efcac658 1433
6eca8933
AD
1434/*
1435 * Copy architecture-specific thread state
1436 */
6f2c55b8 1437int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1438 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1439{
1440 struct pt_regs *childregs, *kregs;
1441 extern void ret_from_fork(void);
58254e10
AV
1442 extern void ret_from_kernel_thread(void);
1443 void (*f)(void);
0cec6fd1 1444 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1445 struct thread_info *ti = task_thread_info(p);
1446
1447 klp_init_thread_info(ti);
14cf11af 1448
14cf11af
PM
1449 /* Copy registers */
1450 sp -= sizeof(struct pt_regs);
1451 childregs = (struct pt_regs *) sp;
ab75819d 1452 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1453 /* kernel thread */
58254e10 1454 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1455 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1456 /* function */
1457 if (usp)
1458 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1459#ifdef CONFIG_PPC64
b5e2fc1c 1460 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1461 childregs->softe = 1;
06d67d54 1462#endif
6eca8933 1463 childregs->gpr[15] = kthread_arg;
14cf11af 1464 p->thread.regs = NULL; /* no user register state */
138d1ce8 1465 ti->flags |= _TIF_RESTOREALL;
58254e10 1466 f = ret_from_kernel_thread;
14cf11af 1467 } else {
6eca8933 1468 /* user thread */
afa86fc4 1469 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1470 CHECK_FULL_REGS(regs);
1471 *childregs = *regs;
ea516b11
AV
1472 if (usp)
1473 childregs->gpr[1] = usp;
14cf11af 1474 p->thread.regs = childregs;
58254e10 1475 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1476 if (clone_flags & CLONE_SETTLS) {
1477#ifdef CONFIG_PPC64
9904b005 1478 if (!is_32bit_task())
06d67d54
PM
1479 childregs->gpr[13] = childregs->gpr[6];
1480 else
1481#endif
1482 childregs->gpr[2] = childregs->gpr[6];
1483 }
58254e10
AV
1484
1485 f = ret_from_fork;
14cf11af 1486 }
d272f667 1487 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1488 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1489
1490 /*
1491 * The way this works is that at some point in the future
1492 * some task will call _switch to switch to the new task.
1493 * That will pop off the stack frame created below and start
1494 * the new task running at ret_from_fork. The new task will
1495 * do some house keeping and then return from the fork or clone
1496 * system call, using the stack frame created above.
1497 */
af945cf4 1498 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1499 sp -= sizeof(struct pt_regs);
1500 kregs = (struct pt_regs *) sp;
1501 sp -= STACK_FRAME_OVERHEAD;
1502 p->thread.ksp = sp;
cbc9565e 1503#ifdef CONFIG_PPC32
85218827
KG
1504 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1505 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1506#endif
28d170ab
ON
1507#ifdef CONFIG_HAVE_HW_BREAKPOINT
1508 p->thread.ptrace_bps[0] = NULL;
1509#endif
1510
18461960
PM
1511 p->thread.fp_save_area = NULL;
1512#ifdef CONFIG_ALTIVEC
1513 p->thread.vr_save_area = NULL;
1514#endif
1515
cec15488
ME
1516 setup_ksp_vsid(p, sp);
1517
efcac658
AK
1518#ifdef CONFIG_PPC64
1519 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1520 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1521 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1522 }
92779245
HM
1523 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1524 p->thread.ppr = INIT_PPR;
efcac658 1525#endif
7cedd601 1526 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1527 return 0;
1528}
1529
1530/*
1531 * Set up a thread for executing a new program
1532 */
06d67d54 1533void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1534{
90eac727
ME
1535#ifdef CONFIG_PPC64
1536 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1537#endif
1538
06d67d54
PM
1539 /*
1540 * If we exec out of a kernel thread then thread.regs will not be
1541 * set. Do it now.
1542 */
1543 if (!current->thread.regs) {
0cec6fd1
AV
1544 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1545 current->thread.regs = regs - 1;
06d67d54
PM
1546 }
1547
8e96a87c
CB
1548#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1549 /*
1550 * Clear any transactional state, we're exec()ing. The cause is
1551 * not important as there will never be a recheckpoint so it's not
1552 * user visible.
1553 */
1554 if (MSR_TM_SUSPENDED(mfmsr()))
1555 tm_reclaim_current(0);
1556#endif
1557
14cf11af
PM
1558 memset(regs->gpr, 0, sizeof(regs->gpr));
1559 regs->ctr = 0;
1560 regs->link = 0;
1561 regs->xer = 0;
1562 regs->ccr = 0;
14cf11af 1563 regs->gpr[1] = sp;
06d67d54 1564
474f8196
RM
1565 /*
1566 * We have just cleared all the nonvolatile GPRs, so make
1567 * FULL_REGS(regs) return true. This is necessary to allow
1568 * ptrace to examine the thread immediately after exec.
1569 */
1570 regs->trap &= ~1UL;
1571
06d67d54
PM
1572#ifdef CONFIG_PPC32
1573 regs->mq = 0;
1574 regs->nip = start;
14cf11af 1575 regs->msr = MSR_USER;
06d67d54 1576#else
9904b005 1577 if (!is_32bit_task()) {
94af3abf 1578 unsigned long entry;
06d67d54 1579
94af3abf
RR
1580 if (is_elf2_task()) {
1581 /* Look ma, no function descriptors! */
1582 entry = start;
06d67d54 1583
94af3abf
RR
1584 /*
1585 * Ulrich says:
1586 * The latest iteration of the ABI requires that when
1587 * calling a function (at its global entry point),
1588 * the caller must ensure r12 holds the entry point
1589 * address (so that the function can quickly
1590 * establish addressability).
1591 */
1592 regs->gpr[12] = start;
1593 /* Make sure that's restored on entry to userspace. */
1594 set_thread_flag(TIF_RESTOREALL);
1595 } else {
1596 unsigned long toc;
1597
1598 /* start is a relocated pointer to the function
1599 * descriptor for the elf _start routine. The first
1600 * entry in the function descriptor is the entry
1601 * address of _start and the second entry is the TOC
1602 * value we need to use.
1603 */
1604 __get_user(entry, (unsigned long __user *)start);
1605 __get_user(toc, (unsigned long __user *)start+1);
1606
1607 /* Check whether the e_entry function descriptor entries
1608 * need to be relocated before we can use them.
1609 */
1610 if (load_addr != 0) {
1611 entry += load_addr;
1612 toc += load_addr;
1613 }
1614 regs->gpr[2] = toc;
06d67d54
PM
1615 }
1616 regs->nip = entry;
06d67d54 1617 regs->msr = MSR_USER64;
d4bf9a78
SR
1618 } else {
1619 regs->nip = start;
1620 regs->gpr[2] = 0;
1621 regs->msr = MSR_USER32;
06d67d54
PM
1622 }
1623#endif
ce48b210
MN
1624#ifdef CONFIG_VSX
1625 current->thread.used_vsr = 0;
1626#endif
de79f7b9 1627 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1628 current->thread.fp_save_area = NULL;
14cf11af 1629#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1630 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1631 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1632 current->thread.vr_save_area = NULL;
14cf11af
PM
1633 current->thread.vrsave = 0;
1634 current->thread.used_vr = 0;
1635#endif /* CONFIG_ALTIVEC */
1636#ifdef CONFIG_SPE
1637 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1638 current->thread.acc = 0;
1639 current->thread.spefscr = 0;
1640 current->thread.used_spe = 0;
1641#endif /* CONFIG_SPE */
bc2a9408
MN
1642#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1643 if (cpu_has_feature(CPU_FTR_TM))
1644 regs->msr |= MSR_TM;
1645 current->thread.tm_tfhar = 0;
1646 current->thread.tm_texasr = 0;
1647 current->thread.tm_tfiar = 0;
1648#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1649}
e1802b06 1650EXPORT_SYMBOL(start_thread);
14cf11af
PM
1651
1652#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1653 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1654
1655int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1656{
1657 struct pt_regs *regs = tsk->thread.regs;
1658
1659 /* This is a bit hairy. If we are an SPE enabled processor
1660 * (have embedded fp) we store the IEEE exception enable flags in
1661 * fpexc_mode. fpexc_mode is also used for setting FP exception
1662 * mode (asyn, precise, disabled) for 'Classic' FP. */
1663 if (val & PR_FP_EXC_SW_ENABLE) {
1664#ifdef CONFIG_SPE
5e14d21e 1665 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1666 /*
1667 * When the sticky exception bits are set
1668 * directly by userspace, it must call prctl
1669 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1670 * in the existing prctl settings) or
1671 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1672 * the bits being set). <fenv.h> functions
1673 * saving and restoring the whole
1674 * floating-point environment need to do so
1675 * anyway to restore the prctl settings from
1676 * the saved environment.
1677 */
1678 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1679 tsk->thread.fpexc_mode = val &
1680 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1681 return 0;
1682 } else {
1683 return -EINVAL;
1684 }
14cf11af
PM
1685#else
1686 return -EINVAL;
1687#endif
14cf11af 1688 }
06d67d54
PM
1689
1690 /* on a CONFIG_SPE this does not hurt us. The bits that
1691 * __pack_fe01 use do not overlap with bits used for
1692 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1693 * on CONFIG_SPE implementations are reserved so writing to
1694 * them does not change anything */
1695 if (val > PR_FP_EXC_PRECISE)
1696 return -EINVAL;
1697 tsk->thread.fpexc_mode = __pack_fe01(val);
1698 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1699 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1700 | tsk->thread.fpexc_mode;
14cf11af
PM
1701 return 0;
1702}
1703
1704int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1705{
1706 unsigned int val;
1707
1708 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1709#ifdef CONFIG_SPE
640e9225
JM
1710 if (cpu_has_feature(CPU_FTR_SPE)) {
1711 /*
1712 * When the sticky exception bits are set
1713 * directly by userspace, it must call prctl
1714 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1715 * in the existing prctl settings) or
1716 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1717 * the bits being set). <fenv.h> functions
1718 * saving and restoring the whole
1719 * floating-point environment need to do so
1720 * anyway to restore the prctl settings from
1721 * the saved environment.
1722 */
1723 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1724 val = tsk->thread.fpexc_mode;
640e9225 1725 } else
5e14d21e 1726 return -EINVAL;
14cf11af
PM
1727#else
1728 return -EINVAL;
1729#endif
1730 else
1731 val = __unpack_fe01(tsk->thread.fpexc_mode);
1732 return put_user(val, (unsigned int __user *) adr);
1733}
1734
fab5db97
PM
1735int set_endian(struct task_struct *tsk, unsigned int val)
1736{
1737 struct pt_regs *regs = tsk->thread.regs;
1738
1739 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1740 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1741 return -EINVAL;
1742
1743 if (regs == NULL)
1744 return -EINVAL;
1745
1746 if (val == PR_ENDIAN_BIG)
1747 regs->msr &= ~MSR_LE;
1748 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1749 regs->msr |= MSR_LE;
1750 else
1751 return -EINVAL;
1752
1753 return 0;
1754}
1755
1756int get_endian(struct task_struct *tsk, unsigned long adr)
1757{
1758 struct pt_regs *regs = tsk->thread.regs;
1759 unsigned int val;
1760
1761 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1762 !cpu_has_feature(CPU_FTR_REAL_LE))
1763 return -EINVAL;
1764
1765 if (regs == NULL)
1766 return -EINVAL;
1767
1768 if (regs->msr & MSR_LE) {
1769 if (cpu_has_feature(CPU_FTR_REAL_LE))
1770 val = PR_ENDIAN_LITTLE;
1771 else
1772 val = PR_ENDIAN_PPC_LITTLE;
1773 } else
1774 val = PR_ENDIAN_BIG;
1775
1776 return put_user(val, (unsigned int __user *)adr);
1777}
1778
e9370ae1
PM
1779int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1780{
1781 tsk->thread.align_ctl = val;
1782 return 0;
1783}
1784
1785int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1786{
1787 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1788}
1789
bb72c481
PM
1790static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1791 unsigned long nbytes)
1792{
1793 unsigned long stack_page;
1794 unsigned long cpu = task_cpu(p);
1795
1796 /*
1797 * Avoid crashing if the stack has overflowed and corrupted
1798 * task_cpu(p), which is in the thread_info struct.
1799 */
1800 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1801 stack_page = (unsigned long) hardirq_ctx[cpu];
1802 if (sp >= stack_page + sizeof(struct thread_struct)
1803 && sp <= stack_page + THREAD_SIZE - nbytes)
1804 return 1;
1805
1806 stack_page = (unsigned long) softirq_ctx[cpu];
1807 if (sp >= stack_page + sizeof(struct thread_struct)
1808 && sp <= stack_page + THREAD_SIZE - nbytes)
1809 return 1;
1810 }
1811 return 0;
1812}
1813
2f25194d 1814int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1815 unsigned long nbytes)
1816{
0cec6fd1 1817 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1818
1819 if (sp >= stack_page + sizeof(struct thread_struct)
1820 && sp <= stack_page + THREAD_SIZE - nbytes)
1821 return 1;
1822
bb72c481 1823 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1824}
1825
2f25194d
AB
1826EXPORT_SYMBOL(validate_sp);
1827
14cf11af
PM
1828unsigned long get_wchan(struct task_struct *p)
1829{
1830 unsigned long ip, sp;
1831 int count = 0;
1832
1833 if (!p || p == current || p->state == TASK_RUNNING)
1834 return 0;
1835
1836 sp = p->thread.ksp;
ec2b36b9 1837 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1838 return 0;
1839
1840 do {
1841 sp = *(unsigned long *)sp;
ec2b36b9 1842 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1843 return 0;
1844 if (count > 0) {
ec2b36b9 1845 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1846 if (!in_sched_functions(ip))
1847 return ip;
1848 }
1849 } while (count++ < 16);
1850 return 0;
1851}
06d67d54 1852
c4d04be1 1853static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1854
1855void show_stack(struct task_struct *tsk, unsigned long *stack)
1856{
1857 unsigned long sp, ip, lr, newsp;
1858 int count = 0;
1859 int firstframe = 1;
6794c782
SR
1860#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1861 int curr_frame = current->curr_ret_stack;
1862 extern void return_to_handler(void);
9135c3cc 1863 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1864#endif
06d67d54
PM
1865
1866 sp = (unsigned long) stack;
1867 if (tsk == NULL)
1868 tsk = current;
1869 if (sp == 0) {
1870 if (tsk == current)
acf620ec 1871 sp = current_stack_pointer();
06d67d54
PM
1872 else
1873 sp = tsk->thread.ksp;
1874 }
1875
1876 lr = 0;
1877 printk("Call Trace:\n");
1878 do {
ec2b36b9 1879 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1880 return;
1881
1882 stack = (unsigned long *) sp;
1883 newsp = stack[0];
ec2b36b9 1884 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1885 if (!firstframe || ip != lr) {
058c78f4 1886 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1887#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1888 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1889 printk(" (%pS)",
1890 (void *)current->ret_stack[curr_frame].ret);
1891 curr_frame--;
1892 }
1893#endif
06d67d54
PM
1894 if (firstframe)
1895 printk(" (unreliable)");
1896 printk("\n");
1897 }
1898 firstframe = 0;
1899
1900 /*
1901 * See if this is an exception frame.
1902 * We look for the "regshere" marker in the current frame.
1903 */
ec2b36b9
BH
1904 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1905 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1906 struct pt_regs *regs = (struct pt_regs *)
1907 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1908 lr = regs->link;
9be9be2e 1909 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1910 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1911 firstframe = 1;
1912 }
1913
1914 sp = newsp;
1915 } while (count++ < kstack_depth_to_print);
1916}
1917
cb2c9b27 1918#ifdef CONFIG_PPC64
fe1952fc 1919/* Called with hard IRQs off */
0e37739b 1920void notrace __ppc64_runlatch_on(void)
cb2c9b27 1921{
fe1952fc 1922 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1923 unsigned long ctrl;
1924
fe1952fc
BH
1925 ctrl = mfspr(SPRN_CTRLF);
1926 ctrl |= CTRL_RUNLATCH;
1927 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1928
fae2e0fb 1929 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1930}
1931
fe1952fc 1932/* Called with hard IRQs off */
0e37739b 1933void notrace __ppc64_runlatch_off(void)
cb2c9b27 1934{
fe1952fc 1935 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1936 unsigned long ctrl;
1937
fae2e0fb 1938 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1939
4138d653
AB
1940 ctrl = mfspr(SPRN_CTRLF);
1941 ctrl &= ~CTRL_RUNLATCH;
1942 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1943}
fe1952fc 1944#endif /* CONFIG_PPC64 */
f6a61680 1945
d839088c
AB
1946unsigned long arch_align_stack(unsigned long sp)
1947{
1948 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1949 sp -= get_random_int() & ~PAGE_MASK;
1950 return sp & ~0xf;
1951}
912f9ee2
AB
1952
1953static inline unsigned long brk_rnd(void)
1954{
1955 unsigned long rnd = 0;
1956
1957 /* 8MB for 32bit, 1GB for 64bit */
1958 if (is_32bit_task())
5ef11c35 1959 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 1960 else
5ef11c35 1961 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
1962
1963 return rnd << PAGE_SHIFT;
1964}
1965
1966unsigned long arch_randomize_brk(struct mm_struct *mm)
1967{
8bbde7a7
AB
1968 unsigned long base = mm->brk;
1969 unsigned long ret;
1970
ce7a35c7 1971#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1972 /*
1973 * If we are using 1TB segments and we are allowed to randomise
1974 * the heap, we can put it above 1TB so it is backed by a 1TB
1975 * segment. Otherwise the heap will be in the bottom 1TB
1976 * which always uses 256MB segments and this may result in a
caca285e
AK
1977 * performance penalty. We don't need to worry about radix. For
1978 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
1979 */
1980 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1981 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1982#endif
1983
1984 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1985
1986 if (ret < mm->brk)
1987 return mm->brk;
1988
1989 return ret;
1990}
501cb16d 1991