]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: tm: Always use fp_state and vr_state to store live registers
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
7f92bc56 41#include <linux/elf-randomize.h>
14cf11af
PM
42
43#include <asm/pgtable.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
7cedd601 58#include <asm/code-patching.h>
7f92bc56 59#include <asm/exec.h>
5d31a96e 60#include <asm/livepatch.h>
b92a226e 61#include <asm/cpu_has_feature.h>
0545d543 62#include <asm/asm-prototypes.h>
5d31a96e 63
d6a61bfc
LM
64#include <linux/kprobes.h>
65#include <linux/kdebug.h>
14cf11af 66
8b3c34cf
MN
67/* Transactional Memory debug */
68#ifdef TM_DEBUG_SW
69#define TM_DEBUG(x...) printk(KERN_INFO x)
70#else
71#define TM_DEBUG(x...) do { } while(0)
72#endif
73
14cf11af
PM
74extern unsigned long _get_SP(void);
75
d31626f7 76#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 77static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
78{
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
89 set_thread_flag(TIF_RESTORE_TM);
90 }
d31626f7 91}
dc16b553
CB
92
93static inline bool msr_tm_active(unsigned long msr)
94{
95 return MSR_TM_ACTIVE(msr);
96}
d31626f7 97#else
dc16b553 98static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 99static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
100#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
3eb5d588
AB
102bool strict_msr_control;
103EXPORT_SYMBOL(strict_msr_control);
104
105static int __init enable_strict_msr_control(char *str)
106{
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111}
112early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
3cee070a 114unsigned long msr_check_and_set(unsigned long bits)
98da581e 115{
a0e72cf1
AB
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
98da581e 118
a0e72cf1 119 newmsr = oldmsr | bits;
98da581e 120
98da581e 121#ifdef CONFIG_VSX
a0e72cf1 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
123 newmsr |= MSR_VSX;
124#endif
a0e72cf1 125
98da581e
AB
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
3cee070a
CB
128
129 return newmsr;
a0e72cf1 130}
98da581e 131
3eb5d588 132void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
133{
134 unsigned long oldmsr = mfmsr();
135 unsigned long newmsr;
136
137 newmsr = oldmsr & ~bits;
138
139#ifdef CONFIG_VSX
140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 newmsr &= ~MSR_VSX;
142#endif
143
144 if (oldmsr != newmsr)
145 mtmsr_isync(newmsr);
146}
3eb5d588 147EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
148
149#ifdef CONFIG_PPC_FPU
8792468d
CB
150void __giveup_fpu(struct task_struct *tsk)
151{
8eb98037
AB
152 unsigned long msr;
153
8792468d 154 save_fpu(tsk);
8eb98037
AB
155 msr = tsk->thread.regs->msr;
156 msr &= ~MSR_FP;
8792468d
CB
157#ifdef CONFIG_VSX
158 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 159 msr &= ~MSR_VSX;
8792468d 160#endif
8eb98037 161 tsk->thread.regs->msr = msr;
8792468d
CB
162}
163
a0e72cf1
AB
164void giveup_fpu(struct task_struct *tsk)
165{
166 check_if_tm_restore_required(tsk);
167
168 msr_check_and_set(MSR_FP);
98da581e 169 __giveup_fpu(tsk);
a0e72cf1 170 msr_check_and_clear(MSR_FP);
98da581e
AB
171}
172EXPORT_SYMBOL(giveup_fpu);
173
14cf11af
PM
174/*
175 * Make sure the floating-point register state in the
176 * the thread_struct is up to date for task tsk.
177 */
178void flush_fp_to_thread(struct task_struct *tsk)
179{
180 if (tsk->thread.regs) {
181 /*
182 * We need to disable preemption here because if we didn't,
183 * another process could get scheduled after the regs->msr
184 * test but before we have finished saving the FP registers
185 * to the thread_struct. That process could take over the
186 * FPU, and then when we get scheduled again we would store
187 * bogus values for the remaining FP registers.
188 */
189 preempt_disable();
190 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
191 /*
192 * This should only ever be called for current or
193 * for a stopped child process. Since we save away
af1bbc3d 194 * the FP register state on context switch,
14cf11af
PM
195 * there is something wrong if a stopped child appears
196 * to still have its FP state in the CPU registers.
197 */
198 BUG_ON(tsk != current);
b86fd2bd 199 giveup_fpu(tsk);
14cf11af
PM
200 }
201 preempt_enable();
202 }
203}
de56a948 204EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
205
206void enable_kernel_fp(void)
207{
e909fb83
CB
208 unsigned long cpumsr;
209
14cf11af
PM
210 WARN_ON(preemptible());
211
e909fb83 212 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 213
d64d02ce
AB
214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 check_if_tm_restore_required(current);
e909fb83
CB
216 /*
217 * If a thread has already been reclaimed then the
218 * checkpointed registers are on the CPU but have definitely
219 * been saved by the reclaim code. Don't need to and *cannot*
220 * giveup as this would save to the 'live' structure not the
221 * checkpointed structure.
222 */
223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 return;
a0e72cf1 225 __giveup_fpu(current);
d64d02ce 226 }
14cf11af
PM
227}
228EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98
CB
229
230static int restore_fp(struct task_struct *tsk) {
dc16b553 231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
232 load_fp_state(&current->thread.fp_state);
233 current->thread.load_fp++;
234 return 1;
235 }
236 return 0;
237}
238#else
239static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 240#endif /* CONFIG_PPC_FPU */
14cf11af 241
14cf11af 242#ifdef CONFIG_ALTIVEC
70fe3d98
CB
243#define loadvec(thr) ((thr).load_vec)
244
6f515d84
CB
245static void __giveup_altivec(struct task_struct *tsk)
246{
8eb98037
AB
247 unsigned long msr;
248
6f515d84 249 save_altivec(tsk);
8eb98037
AB
250 msr = tsk->thread.regs->msr;
251 msr &= ~MSR_VEC;
6f515d84
CB
252#ifdef CONFIG_VSX
253 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 254 msr &= ~MSR_VSX;
6f515d84 255#endif
8eb98037 256 tsk->thread.regs->msr = msr;
6f515d84
CB
257}
258
98da581e
AB
259void giveup_altivec(struct task_struct *tsk)
260{
98da581e
AB
261 check_if_tm_restore_required(tsk);
262
a0e72cf1 263 msr_check_and_set(MSR_VEC);
98da581e 264 __giveup_altivec(tsk);
a0e72cf1 265 msr_check_and_clear(MSR_VEC);
98da581e
AB
266}
267EXPORT_SYMBOL(giveup_altivec);
268
14cf11af
PM
269void enable_kernel_altivec(void)
270{
e909fb83
CB
271 unsigned long cpumsr;
272
14cf11af
PM
273 WARN_ON(preemptible());
274
e909fb83 275 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 276
d64d02ce
AB
277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 check_if_tm_restore_required(current);
e909fb83
CB
279 /*
280 * If a thread has already been reclaimed then the
281 * checkpointed registers are on the CPU but have definitely
282 * been saved by the reclaim code. Don't need to and *cannot*
283 * giveup as this would save to the 'live' structure not the
284 * checkpointed structure.
285 */
286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 return;
a0e72cf1 288 __giveup_altivec(current);
d64d02ce 289 }
14cf11af
PM
290}
291EXPORT_SYMBOL(enable_kernel_altivec);
292
293/*
294 * Make sure the VMX/Altivec register state in the
295 * the thread_struct is up to date for task tsk.
296 */
297void flush_altivec_to_thread(struct task_struct *tsk)
298{
299 if (tsk->thread.regs) {
300 preempt_disable();
301 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 302 BUG_ON(tsk != current);
b86fd2bd 303 giveup_altivec(tsk);
14cf11af
PM
304 }
305 preempt_enable();
306 }
307}
de56a948 308EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
309
310static int restore_altivec(struct task_struct *tsk)
311{
dc16b553
CB
312 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
314 load_vr_state(&tsk->thread.vr_state);
315 tsk->thread.used_vr = 1;
316 tsk->thread.load_vec++;
317
318 return 1;
319 }
320 return 0;
321}
322#else
323#define loadvec(thr) 0
324static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
325#endif /* CONFIG_ALTIVEC */
326
ce48b210 327#ifdef CONFIG_VSX
bf6a4d5b 328static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 329{
a7d623d4
AB
330 if (tsk->thread.regs->msr & MSR_FP)
331 __giveup_fpu(tsk);
332 if (tsk->thread.regs->msr & MSR_VEC)
333 __giveup_altivec(tsk);
bf6a4d5b
CB
334 tsk->thread.regs->msr &= ~MSR_VSX;
335}
336
337static void giveup_vsx(struct task_struct *tsk)
338{
339 check_if_tm_restore_required(tsk);
340
341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 342 __giveup_vsx(tsk);
a0e72cf1 343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 344}
bf6a4d5b
CB
345
346static void save_vsx(struct task_struct *tsk)
347{
348 if (tsk->thread.regs->msr & MSR_FP)
349 save_fpu(tsk);
350 if (tsk->thread.regs->msr & MSR_VEC)
351 save_altivec(tsk);
352}
a7d623d4 353
ce48b210
MN
354void enable_kernel_vsx(void)
355{
e909fb83
CB
356 unsigned long cpumsr;
357
ce48b210
MN
358 WARN_ON(preemptible());
359
e909fb83 360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 361
a0e72cf1 362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 363 check_if_tm_restore_required(current);
e909fb83
CB
364 /*
365 * If a thread has already been reclaimed then the
366 * checkpointed registers are on the CPU but have definitely
367 * been saved by the reclaim code. Don't need to and *cannot*
368 * giveup as this would save to the 'live' structure not the
369 * checkpointed structure.
370 */
371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 return;
a0e72cf1
AB
373 if (current->thread.regs->msr & MSR_FP)
374 __giveup_fpu(current);
375 if (current->thread.regs->msr & MSR_VEC)
376 __giveup_altivec(current);
377 __giveup_vsx(current);
611b0e5c 378 }
ce48b210
MN
379}
380EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
381
382void flush_vsx_to_thread(struct task_struct *tsk)
383{
384 if (tsk->thread.regs) {
385 preempt_disable();
386 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 387 BUG_ON(tsk != current);
ce48b210
MN
388 giveup_vsx(tsk);
389 }
390 preempt_enable();
391 }
392}
de56a948 393EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
394
395static int restore_vsx(struct task_struct *tsk)
396{
397 if (cpu_has_feature(CPU_FTR_VSX)) {
398 tsk->thread.used_vsr = 1;
399 return 1;
400 }
401
402 return 0;
403}
404#else
405static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 406static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
407#endif /* CONFIG_VSX */
408
14cf11af 409#ifdef CONFIG_SPE
98da581e
AB
410void giveup_spe(struct task_struct *tsk)
411{
98da581e
AB
412 check_if_tm_restore_required(tsk);
413
a0e72cf1 414 msr_check_and_set(MSR_SPE);
98da581e 415 __giveup_spe(tsk);
a0e72cf1 416 msr_check_and_clear(MSR_SPE);
98da581e
AB
417}
418EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
419
420void enable_kernel_spe(void)
421{
422 WARN_ON(preemptible());
423
a0e72cf1 424 msr_check_and_set(MSR_SPE);
611b0e5c 425
d64d02ce
AB
426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 check_if_tm_restore_required(current);
a0e72cf1 428 __giveup_spe(current);
d64d02ce 429 }
14cf11af
PM
430}
431EXPORT_SYMBOL(enable_kernel_spe);
432
433void flush_spe_to_thread(struct task_struct *tsk)
434{
435 if (tsk->thread.regs) {
436 preempt_disable();
437 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 438 BUG_ON(tsk != current);
685659ee 439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 440 giveup_spe(tsk);
14cf11af
PM
441 }
442 preempt_enable();
443 }
444}
14cf11af
PM
445#endif /* CONFIG_SPE */
446
c2085059
AB
447static unsigned long msr_all_available;
448
449static int __init init_msr_all_available(void)
450{
451#ifdef CONFIG_PPC_FPU
452 msr_all_available |= MSR_FP;
453#endif
454#ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 msr_all_available |= MSR_VEC;
457#endif
458#ifdef CONFIG_VSX
459 if (cpu_has_feature(CPU_FTR_VSX))
460 msr_all_available |= MSR_VSX;
461#endif
462#ifdef CONFIG_SPE
463 if (cpu_has_feature(CPU_FTR_SPE))
464 msr_all_available |= MSR_SPE;
465#endif
466
467 return 0;
468}
469early_initcall(init_msr_all_available);
470
471void giveup_all(struct task_struct *tsk)
472{
473 unsigned long usermsr;
474
475 if (!tsk->thread.regs)
476 return;
477
478 usermsr = tsk->thread.regs->msr;
479
480 if ((usermsr & msr_all_available) == 0)
481 return;
482
483 msr_check_and_set(msr_all_available);
b0f16b46 484 check_if_tm_restore_required(tsk);
c2085059
AB
485
486#ifdef CONFIG_PPC_FPU
487 if (usermsr & MSR_FP)
488 __giveup_fpu(tsk);
489#endif
490#ifdef CONFIG_ALTIVEC
491 if (usermsr & MSR_VEC)
492 __giveup_altivec(tsk);
493#endif
494#ifdef CONFIG_VSX
495 if (usermsr & MSR_VSX)
496 __giveup_vsx(tsk);
497#endif
498#ifdef CONFIG_SPE
499 if (usermsr & MSR_SPE)
500 __giveup_spe(tsk);
501#endif
502
503 msr_check_and_clear(msr_all_available);
504}
505EXPORT_SYMBOL(giveup_all);
506
70fe3d98
CB
507void restore_math(struct pt_regs *regs)
508{
509 unsigned long msr;
510
dc16b553
CB
511 if (!msr_tm_active(regs->msr) &&
512 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
513 return;
514
515 msr = regs->msr;
516 msr_check_and_set(msr_all_available);
517
518 /*
519 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 * indicates that the registers are hot
521 */
522 if ((!(msr & MSR_FP)) && restore_fp(current))
523 msr |= MSR_FP | current->thread.fpexc_mode;
524
525 if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 msr |= MSR_VEC;
527
528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 restore_vsx(current)) {
530 msr |= MSR_VSX;
531 }
532
533 msr_check_and_clear(msr_all_available);
534
535 regs->msr = msr;
536}
537
de2a20aa
CB
538void save_all(struct task_struct *tsk)
539{
540 unsigned long usermsr;
541
542 if (!tsk->thread.regs)
543 return;
544
545 usermsr = tsk->thread.regs->msr;
546
547 if ((usermsr & msr_all_available) == 0)
548 return;
549
550 msr_check_and_set(msr_all_available);
551
bf6a4d5b
CB
552 /*
553 * Saving the way the register space is in hardware, save_vsx boils
554 * down to a save_fpu() and save_altivec()
555 */
556 if (usermsr & MSR_VSX) {
557 save_vsx(tsk);
558 } else {
559 if (usermsr & MSR_FP)
560 save_fpu(tsk);
561
562 if (usermsr & MSR_VEC)
563 save_altivec(tsk);
564 }
de2a20aa
CB
565
566 if (usermsr & MSR_SPE)
567 __giveup_spe(tsk);
568
569 msr_check_and_clear(msr_all_available);
570}
571
579e633e
AB
572void flush_all_to_thread(struct task_struct *tsk)
573{
574 if (tsk->thread.regs) {
575 preempt_disable();
576 BUG_ON(tsk != current);
de2a20aa 577 save_all(tsk);
579e633e
AB
578
579#ifdef CONFIG_SPE
580 if (tsk->thread.regs->msr & MSR_SPE)
581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582#endif
583
584 preempt_enable();
585 }
586}
587EXPORT_SYMBOL(flush_all_to_thread);
588
3bffb652
DK
589#ifdef CONFIG_PPC_ADV_DEBUG_REGS
590void do_send_trap(struct pt_regs *regs, unsigned long address,
591 unsigned long error_code, int signal_code, int breakpt)
592{
593 siginfo_t info;
594
41ab5266 595 current->thread.trap_nr = signal_code;
3bffb652
DK
596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 11, SIGSEGV) == NOTIFY_STOP)
598 return;
599
600 /* Deliver the signal to userspace */
601 info.si_signo = SIGTRAP;
602 info.si_errno = breakpt; /* breakpoint or watchpoint id */
603 info.si_code = signal_code;
604 info.si_addr = (void __user *)address;
605 force_sig_info(SIGTRAP, &info, current);
606}
607#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 608void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
609 unsigned long error_code)
610{
611 siginfo_t info;
612
41ab5266 613 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
9422de3e 618 if (debugger_break_match(regs))
d6a61bfc
LM
619 return;
620
9422de3e
MN
621 /* Clear the breakpoint */
622 hw_breakpoint_disable();
d6a61bfc
LM
623
624 /* Deliver the signal to userspace */
625 info.si_signo = SIGTRAP;
626 info.si_errno = 0;
627 info.si_code = TRAP_HWBKPT;
628 info.si_addr = (void __user *)address;
629 force_sig_info(SIGTRAP, &info, current);
630}
3bffb652 631#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 632
9422de3e 633static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 634
3bffb652
DK
635#ifdef CONFIG_PPC_ADV_DEBUG_REGS
636/*
637 * Set the debug registers back to their default "safe" values.
638 */
639static void set_debug_reg_defaults(struct thread_struct *thread)
640{
51ae8d4a 641 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 642#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 643 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 644#endif
51ae8d4a 645 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 646#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 648#endif
51ae8d4a 649 thread->debug.dbcr0 = 0;
3bffb652
DK
650#ifdef CONFIG_BOOKE
651 /*
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 */
51ae8d4a 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
655 DBCR1_IAC3US | DBCR1_IAC4US;
656 /*
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 */
51ae8d4a 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 661#else
51ae8d4a 662 thread->debug.dbcr1 = 0;
3bffb652
DK
663#endif
664}
665
f5f97210 666static void prime_debug_regs(struct debug_reg *debug)
3bffb652 667{
6cecf76b
SW
668 /*
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
672 */
673 mtmsr(mfmsr() & ~MSR_DE);
674
f5f97210
SW
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 677#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 680#endif
f5f97210
SW
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 683#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 686#endif
f5f97210
SW
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 689#ifdef CONFIG_BOOKE
f5f97210 690 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
691#endif
692}
693/*
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
697 */
f5f97210 698void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 699{
51ae8d4a 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
3bffb652 703}
3743c9b8 704EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 705#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 706#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
707static void set_debug_reg_defaults(struct thread_struct *thread)
708{
9422de3e
MN
709 thread->hw_brk.address = 0;
710 thread->hw_brk.type = 0;
b9818c33 711 set_breakpoint(&thread->hw_brk);
3bffb652 712}
e0780b72 713#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
714#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
715
172ae2e7 716#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
717static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718{
d6a61bfc 719 mtspr(SPRN_DAC1, dabr);
221c185d
DK
720#ifdef CONFIG_PPC_47x
721 isync();
722#endif
9422de3e
MN
723 return 0;
724}
c6c9eace 725#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
726static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727{
c6c9eace 728 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
729 if (cpu_has_feature(CPU_FTR_DABRX))
730 mtspr(SPRN_DABRX, dabrx);
cab0af98 731 return 0;
14cf11af 732}
9422de3e
MN
733#else
734static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735{
736 return -EINVAL;
737}
738#endif
739
740static inline int set_dabr(struct arch_hw_breakpoint *brk)
741{
742 unsigned long dabr, dabrx;
743
744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
745 dabrx = ((brk->type >> 3) & 0x7);
746
747 if (ppc_md.set_dabr)
748 return ppc_md.set_dabr(dabr, dabrx);
749
750 return __set_dabr(dabr, dabrx);
751}
752
bf99de36
MN
753static inline int set_dawr(struct arch_hw_breakpoint *brk)
754{
05d694ea 755 unsigned long dawr, dawrx, mrd;
bf99de36
MN
756
757 dawr = brk->address;
758
759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
760 << (63 - 58); //* read/write bits */
761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
762 << (63 - 59); //* translate */
763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
764 >> 3; //* PRIM bits */
05d694ea
MN
765 /* dawr length is stored in field MDR bits 48:53. Matches range in
766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
767 0b111111=64DW.
768 brk->len is in bytes.
769 This aligns up to double word size, shifts and does the bias.
770 */
771 mrd = ((brk->len + 7) >> 3) - 1;
772 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
773
774 if (ppc_md.set_dawr)
775 return ppc_md.set_dawr(dawr, dawrx);
776 mtspr(SPRN_DAWR, dawr);
777 mtspr(SPRN_DAWRX, dawrx);
778 return 0;
779}
780
21f58507 781void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 782{
69111bac 783 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 784
bf99de36 785 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
786 set_dawr(brk);
787 else
788 set_dabr(brk);
9422de3e 789}
14cf11af 790
21f58507
PG
791void set_breakpoint(struct arch_hw_breakpoint *brk)
792{
793 preempt_disable();
794 __set_breakpoint(brk);
795 preempt_enable();
796}
797
06d67d54
PM
798#ifdef CONFIG_PPC64
799DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 800#endif
14cf11af 801
9422de3e
MN
802static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
803 struct arch_hw_breakpoint *b)
804{
805 if (a->address != b->address)
806 return false;
807 if (a->type != b->type)
808 return false;
809 if (a->len != b->len)
810 return false;
811 return true;
812}
d31626f7 813
fb09692e 814#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
815static void tm_reclaim_thread(struct thread_struct *thr,
816 struct thread_info *ti, uint8_t cause)
817{
7f821fc9
MN
818 /*
819 * Use the current MSR TM suspended bit to track if we have
820 * checkpointed state outstanding.
821 * On signal delivery, we'd normally reclaim the checkpointed
822 * state to obtain stack pointer (see:get_tm_stackpointer()).
823 * This will then directly return to userspace without going
824 * through __switch_to(). However, if the stack frame is bad,
825 * we need to exit this thread which calls __switch_to() which
826 * will again attempt to reclaim the already saved tm state.
827 * Hence we need to check that we've not already reclaimed
828 * this state.
829 * We do this using the current MSR, rather tracking it in
830 * some specific thread_struct bit, as it has the additional
027dfac6 831 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
832 */
833 if (!MSR_TM_SUSPENDED(mfmsr()))
834 return;
835
dc310669 836 giveup_all(container_of(thr, struct task_struct, thread));
d31626f7 837
dc310669 838 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
d31626f7
PM
839}
840
841void tm_reclaim_current(uint8_t cause)
842{
843 tm_enable();
844 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
845}
846
fb09692e
MN
847static inline void tm_reclaim_task(struct task_struct *tsk)
848{
849 /* We have to work out if we're switching from/to a task that's in the
850 * middle of a transaction.
851 *
852 * In switching we need to maintain a 2nd register state as
853 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
854 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
855 * (current) FPRs into oldtask->thread.transact_fpr[].
856 *
857 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
858 */
859 struct thread_struct *thr = &tsk->thread;
860
861 if (!thr->regs)
862 return;
863
864 if (!MSR_TM_ACTIVE(thr->regs->msr))
865 goto out_and_saveregs;
866
fb09692e
MN
867 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
868 "ccr=%lx, msr=%lx, trap=%lx)\n",
869 tsk->pid, thr->regs->nip,
870 thr->regs->ccr, thr->regs->msr,
871 thr->regs->trap);
872
d31626f7 873 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
874
875 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
876 tsk->pid);
877
878out_and_saveregs:
879 /* Always save the regs here, even if a transaction's not active.
880 * This context-switches a thread's TM info SPRs. We do it here to
881 * be consistent with the restore path (in recheckpoint) which
882 * cannot happen later in _switch().
883 */
884 tm_save_sprs(thr);
885}
886
e6b8fd02
MN
887extern void __tm_recheckpoint(struct thread_struct *thread,
888 unsigned long orig_msr);
889
890void tm_recheckpoint(struct thread_struct *thread,
891 unsigned long orig_msr)
892{
893 unsigned long flags;
894
895 /* We really can't be interrupted here as the TEXASR registers can't
896 * change and later in the trecheckpoint code, we have a userspace R1.
897 * So let's hard disable over this region.
898 */
899 local_irq_save(flags);
900 hard_irq_disable();
901
902 /* The TM SPRs are restored here, so that TEXASR.FS can be set
903 * before the trecheckpoint and no explosion occurs.
904 */
905 tm_restore_sprs(thread);
906
907 __tm_recheckpoint(thread, orig_msr);
908
909 local_irq_restore(flags);
910}
911
bc2a9408 912static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
913{
914 unsigned long msr;
915
916 if (!cpu_has_feature(CPU_FTR_TM))
917 return;
918
919 /* Recheckpoint the registers of the thread we're about to switch to.
920 *
921 * If the task was using FP, we non-lazily reload both the original and
922 * the speculative FP register states. This is because the kernel
923 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 924 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
925 * need to be restored.
926 */
927 if (!new->thread.regs)
928 return;
929
e6b8fd02
MN
930 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
931 tm_restore_sprs(&new->thread);
fb09692e 932 return;
e6b8fd02 933 }
829023df 934 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
935 /* Recheckpoint to restore original checkpointed register state. */
936 TM_DEBUG("*** tm_recheckpoint of pid %d "
937 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
938 new->pid, new->thread.regs->msr, msr);
939
fb09692e
MN
940 tm_recheckpoint(&new->thread, msr);
941
dc310669
CB
942 /*
943 * The checkpointed state has been restored but the live state has
944 * not, ensure all the math functionality is turned off to trigger
945 * restore_math() to reload.
946 */
947 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
948
949 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
950 "(kernel msr 0x%lx)\n",
951 new->pid, mfmsr());
952}
953
dc310669
CB
954static inline void __switch_to_tm(struct task_struct *prev,
955 struct task_struct *new)
fb09692e
MN
956{
957 if (cpu_has_feature(CPU_FTR_TM)) {
958 tm_enable();
959 tm_reclaim_task(prev);
dc310669 960 tm_recheckpoint_new_task(new);
fb09692e
MN
961 }
962}
d31626f7
PM
963
964/*
965 * This is called if we are on the way out to userspace and the
966 * TIF_RESTORE_TM flag is set. It checks if we need to reload
967 * FP and/or vector state and does so if necessary.
968 * If userspace is inside a transaction (whether active or
969 * suspended) and FP/VMX/VSX instructions have ever been enabled
970 * inside that transaction, then we have to keep them enabled
971 * and keep the FP/VMX/VSX state loaded while ever the transaction
972 * continues. The reason is that if we didn't, and subsequently
973 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
974 * we don't know whether it's the same transaction, and thus we
975 * don't know which of the checkpointed state and the transactional
976 * state to use.
977 */
978void restore_tm_state(struct pt_regs *regs)
979{
980 unsigned long msr_diff;
981
dc310669
CB
982 /*
983 * This is the only moment we should clear TIF_RESTORE_TM as
984 * it is here that ckpt_regs.msr and pt_regs.msr become the same
985 * again, anything else could lead to an incorrect ckpt_msr being
986 * saved and therefore incorrect signal contexts.
987 */
d31626f7
PM
988 clear_thread_flag(TIF_RESTORE_TM);
989 if (!MSR_TM_ACTIVE(regs->msr))
990 return;
991
829023df 992 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 993 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 994
dc16b553
CB
995 /* Ensure that restore_math() will restore */
996 if (msr_diff & MSR_FP)
997 current->thread.load_fp = 1;
998#ifdef CONFIG_ALIVEC
999 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1000 current->thread.load_vec = 1;
1001#endif
70fe3d98
CB
1002 restore_math(regs);
1003
d31626f7
PM
1004 regs->msr |= msr_diff;
1005}
1006
fb09692e
MN
1007#else
1008#define tm_recheckpoint_new_task(new)
dc310669 1009#define __switch_to_tm(prev, new)
fb09692e 1010#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1011
152d523e
AB
1012static inline void save_sprs(struct thread_struct *t)
1013{
1014#ifdef CONFIG_ALTIVEC
01d7c2a2 1015 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1016 t->vrsave = mfspr(SPRN_VRSAVE);
1017#endif
1018#ifdef CONFIG_PPC_BOOK3S_64
1019 if (cpu_has_feature(CPU_FTR_DSCR))
1020 t->dscr = mfspr(SPRN_DSCR);
1021
1022 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1023 t->bescr = mfspr(SPRN_BESCR);
1024 t->ebbhr = mfspr(SPRN_EBBHR);
1025 t->ebbrr = mfspr(SPRN_EBBRR);
1026
1027 t->fscr = mfspr(SPRN_FSCR);
1028
1029 /*
1030 * Note that the TAR is not available for use in the kernel.
1031 * (To provide this, the TAR should be backed up/restored on
1032 * exception entry/exit instead, and be in pt_regs. FIXME,
1033 * this should be in pt_regs anyway (for debug).)
1034 */
1035 t->tar = mfspr(SPRN_TAR);
1036 }
bd3ea317
JM
1037
1038 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1039 /* Conditionally save Load Monitor registers, if enabled */
1040 if (t->fscr & FSCR_LM) {
1041 t->lmrr = mfspr(SPRN_LMRR);
1042 t->lmser = mfspr(SPRN_LMSER);
1043 }
1044 }
152d523e
AB
1045#endif
1046}
1047
1048static inline void restore_sprs(struct thread_struct *old_thread,
1049 struct thread_struct *new_thread)
1050{
1051#ifdef CONFIG_ALTIVEC
1052 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1053 old_thread->vrsave != new_thread->vrsave)
1054 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1055#endif
1056#ifdef CONFIG_PPC_BOOK3S_64
1057 if (cpu_has_feature(CPU_FTR_DSCR)) {
1058 u64 dscr = get_paca()->dscr_default;
b57bd2de 1059 if (new_thread->dscr_inherit)
152d523e 1060 dscr = new_thread->dscr;
152d523e
AB
1061
1062 if (old_thread->dscr != dscr)
1063 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1064 }
1065
1066 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1067 if (old_thread->bescr != new_thread->bescr)
1068 mtspr(SPRN_BESCR, new_thread->bescr);
1069 if (old_thread->ebbhr != new_thread->ebbhr)
1070 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1071 if (old_thread->ebbrr != new_thread->ebbrr)
1072 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1073
b57bd2de
MN
1074 if (old_thread->fscr != new_thread->fscr)
1075 mtspr(SPRN_FSCR, new_thread->fscr);
1076
152d523e
AB
1077 if (old_thread->tar != new_thread->tar)
1078 mtspr(SPRN_TAR, new_thread->tar);
1079 }
bd3ea317
JM
1080
1081 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1082 /* Conditionally restore Load Monitor registers, if enabled */
1083 if (new_thread->fscr & FSCR_LM) {
1084 if (old_thread->lmrr != new_thread->lmrr)
1085 mtspr(SPRN_LMRR, new_thread->lmrr);
1086 if (old_thread->lmser != new_thread->lmser)
1087 mtspr(SPRN_LMSER, new_thread->lmser);
1088 }
1089 }
152d523e
AB
1090#endif
1091}
1092
14cf11af
PM
1093struct task_struct *__switch_to(struct task_struct *prev,
1094 struct task_struct *new)
1095{
1096 struct thread_struct *new_thread, *old_thread;
14cf11af 1097 struct task_struct *last;
d6bf29b4
PZ
1098#ifdef CONFIG_PPC_BOOK3S_64
1099 struct ppc64_tlb_batch *batch;
1100#endif
14cf11af 1101
152d523e
AB
1102 new_thread = &new->thread;
1103 old_thread = &current->thread;
1104
7ba5fef7
MN
1105 WARN_ON(!irqs_disabled());
1106
06d67d54
PM
1107#ifdef CONFIG_PPC64
1108 /*
1109 * Collect processor utilization data per process
1110 */
1111 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1112 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1113 long unsigned start_tb, current_tb;
1114 start_tb = old_thread->start_tb;
1115 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1116 old_thread->accum_tb += (current_tb - start_tb);
1117 new_thread->start_tb = current_tb;
1118 }
d6bf29b4
PZ
1119#endif /* CONFIG_PPC64 */
1120
caca285e 1121#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1122 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1123 if (batch->active) {
1124 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1125 if (batch->index)
1126 __flush_tlb_pending(batch);
1127 batch->active = 0;
1128 }
caca285e 1129#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1130
f3d885cc
AB
1131#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1132 switch_booke_debug_regs(&new->thread.debug);
1133#else
1134/*
1135 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1136 * schedule DABR
1137 */
1138#ifndef CONFIG_HAVE_HW_BREAKPOINT
1139 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1140 __set_breakpoint(&new->thread.hw_brk);
1141#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1142#endif
1143
1144 /*
1145 * We need to save SPRs before treclaim/trecheckpoint as these will
1146 * change a number of them.
1147 */
1148 save_sprs(&prev->thread);
1149
f3d885cc
AB
1150 /* Save FPU, Altivec, VSX and SPE state */
1151 giveup_all(prev);
1152
dc310669
CB
1153 __switch_to_tm(prev, new);
1154
44387e9f
AB
1155 /*
1156 * We can't take a PMU exception inside _switch() since there is a
1157 * window where the kernel stack SLB and the kernel stack are out
1158 * of sync. Hard disable here.
1159 */
1160 hard_irq_disable();
bc2a9408 1161
20dbe670
AB
1162 /*
1163 * Call restore_sprs() before calling _switch(). If we move it after
1164 * _switch() then we miss out on calling it for new tasks. The reason
1165 * for this is we manually create a stack frame for new tasks that
1166 * directly returns through ret_from_fork() or
1167 * ret_from_kernel_thread(). See copy_thread() for details.
1168 */
f3d885cc
AB
1169 restore_sprs(old_thread, new_thread);
1170
20dbe670
AB
1171 last = _switch(old_thread, new_thread);
1172
caca285e 1173#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1174 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1175 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1176 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1177 batch->active = 1;
1178 }
70fe3d98
CB
1179
1180 if (current_thread_info()->task->thread.regs)
1181 restore_math(current_thread_info()->task->thread.regs);
caca285e 1182#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1183
14cf11af
PM
1184 return last;
1185}
1186
06d67d54
PM
1187static int instructions_to_print = 16;
1188
06d67d54
PM
1189static void show_instructions(struct pt_regs *regs)
1190{
1191 int i;
1192 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1193 sizeof(int));
1194
1195 printk("Instruction dump:");
1196
1197 for (i = 0; i < instructions_to_print; i++) {
1198 int instr;
1199
1200 if (!(i % 8))
1201 printk("\n");
1202
0de2d820
SW
1203#if !defined(CONFIG_BOOKE)
1204 /* If executing with the IMMU off, adjust pc rather
1205 * than print XXXXXXXX.
1206 */
1207 if (!(regs->msr & MSR_IR))
1208 pc = (unsigned long)phys_to_virt(pc);
1209#endif
1210
00ae36de 1211 if (!__kernel_text_address(pc) ||
7b051f66 1212 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 1213 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
1214 } else {
1215 if (regs->nip == pc)
40c8cefa 1216 printk(KERN_CONT "<%08x> ", instr);
06d67d54 1217 else
40c8cefa 1218 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
1219 }
1220
1221 pc += sizeof(int);
1222 }
1223
1224 printk("\n");
1225}
1226
801c0b2c 1227struct regbit {
06d67d54
PM
1228 unsigned long bit;
1229 const char *name;
801c0b2c
MN
1230};
1231
1232static struct regbit msr_bits[] = {
3bfd0c9c
AB
1233#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1234 {MSR_SF, "SF"},
1235 {MSR_HV, "HV"},
1236#endif
1237 {MSR_VEC, "VEC"},
1238 {MSR_VSX, "VSX"},
1239#ifdef CONFIG_BOOKE
1240 {MSR_CE, "CE"},
1241#endif
06d67d54
PM
1242 {MSR_EE, "EE"},
1243 {MSR_PR, "PR"},
1244 {MSR_FP, "FP"},
1245 {MSR_ME, "ME"},
3bfd0c9c 1246#ifdef CONFIG_BOOKE
1b98326b 1247 {MSR_DE, "DE"},
3bfd0c9c
AB
1248#else
1249 {MSR_SE, "SE"},
1250 {MSR_BE, "BE"},
1251#endif
06d67d54
PM
1252 {MSR_IR, "IR"},
1253 {MSR_DR, "DR"},
3bfd0c9c
AB
1254 {MSR_PMM, "PMM"},
1255#ifndef CONFIG_BOOKE
1256 {MSR_RI, "RI"},
1257 {MSR_LE, "LE"},
1258#endif
06d67d54
PM
1259 {0, NULL}
1260};
1261
801c0b2c 1262static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1263{
801c0b2c 1264 const char *s = "";
06d67d54 1265
06d67d54
PM
1266 for (; bits->bit; ++bits)
1267 if (val & bits->bit) {
801c0b2c
MN
1268 printk("%s%s", s, bits->name);
1269 s = sep;
06d67d54 1270 }
801c0b2c
MN
1271}
1272
1273#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1274static struct regbit msr_tm_bits[] = {
1275 {MSR_TS_T, "T"},
1276 {MSR_TS_S, "S"},
1277 {MSR_TM, "E"},
1278 {0, NULL}
1279};
1280
1281static void print_tm_bits(unsigned long val)
1282{
1283/*
1284 * This only prints something if at least one of the TM bit is set.
1285 * Inside the TM[], the output means:
1286 * E: Enabled (bit 32)
1287 * S: Suspended (bit 33)
1288 * T: Transactional (bit 34)
1289 */
1290 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1291 printk(",TM[");
1292 print_bits(val, msr_tm_bits, "");
1293 printk("]");
1294 }
1295}
1296#else
1297static void print_tm_bits(unsigned long val) {}
1298#endif
1299
1300static void print_msr_bits(unsigned long val)
1301{
1302 printk("<");
1303 print_bits(val, msr_bits, ",");
1304 print_tm_bits(val);
06d67d54
PM
1305 printk(">");
1306}
1307
1308#ifdef CONFIG_PPC64
f6f7dde3 1309#define REG "%016lx"
06d67d54
PM
1310#define REGS_PER_LINE 4
1311#define LAST_VOLATILE 13
1312#else
f6f7dde3 1313#define REG "%08lx"
06d67d54
PM
1314#define REGS_PER_LINE 8
1315#define LAST_VOLATILE 12
1316#endif
1317
14cf11af
PM
1318void show_regs(struct pt_regs * regs)
1319{
1320 int i, trap;
1321
a43cb95d
TH
1322 show_regs_print_info(KERN_DEFAULT);
1323
06d67d54
PM
1324 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1325 regs->nip, regs->link, regs->ctr);
1326 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1327 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1328 printk("MSR: "REG" ", regs->msr);
801c0b2c 1329 print_msr_bits(regs->msr);
f6f7dde3 1330 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1331 trap = TRAP(regs);
5115a026 1332 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1333 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1334 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1335#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1336 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1337#else
9db8bcfd
AB
1338 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1339#endif
1340#ifdef CONFIG_PPC64
1341 printk("SOFTE: %ld ", regs->softe);
1342#endif
1343#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1344 if (MSR_TM_ACTIVE(regs->msr))
1345 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1346#endif
14cf11af
PM
1347
1348 for (i = 0; i < 32; i++) {
06d67d54 1349 if ((i % REGS_PER_LINE) == 0)
a2367194 1350 printk("\nGPR%02d: ", i);
06d67d54
PM
1351 printk(REG " ", regs->gpr[i]);
1352 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1353 break;
1354 }
1355 printk("\n");
1356#ifdef CONFIG_KALLSYMS
1357 /*
1358 * Lookup NIP late so we have the best change of getting the
1359 * above info out without failing
1360 */
058c78f4
BH
1361 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1362 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1363#endif
14cf11af 1364 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1365 if (!user_mode(regs))
1366 show_instructions(regs);
14cf11af
PM
1367}
1368
14cf11af
PM
1369void flush_thread(void)
1370{
e0780b72 1371#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1372 flush_ptrace_hw_breakpoint(current);
e0780b72 1373#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1374 set_debug_reg_defaults(&current->thread);
e0780b72 1375#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1376}
1377
1378void
1379release_thread(struct task_struct *t)
1380{
1381}
1382
1383/*
55ccf3fe
SS
1384 * this gets called so that we can store coprocessor state into memory and
1385 * copy the current task into the new thread.
14cf11af 1386 */
55ccf3fe 1387int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1388{
579e633e 1389 flush_all_to_thread(src);
621b5060
MN
1390 /*
1391 * Flush TM state out so we can copy it. __switch_to_tm() does this
1392 * flush but it removes the checkpointed state from the current CPU and
1393 * transitions the CPU out of TM mode. Hence we need to call
1394 * tm_recheckpoint_new_task() (on the same task) to restore the
1395 * checkpointed state back and the TM mode.
1396 */
dc310669 1397 __switch_to_tm(src, src);
330a1eb7 1398
55ccf3fe 1399 *dst = *src;
330a1eb7
ME
1400
1401 clear_task_ebb(dst);
1402
55ccf3fe 1403 return 0;
14cf11af
PM
1404}
1405
cec15488
ME
1406static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1407{
1408#ifdef CONFIG_PPC_STD_MMU_64
1409 unsigned long sp_vsid;
1410 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1411
caca285e
AK
1412 if (radix_enabled())
1413 return;
1414
cec15488
ME
1415 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1416 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1417 << SLB_VSID_SHIFT_1T;
1418 else
1419 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1420 << SLB_VSID_SHIFT;
1421 sp_vsid |= SLB_VSID_KERNEL | llp;
1422 p->thread.ksp_vsid = sp_vsid;
1423#endif
1424}
1425
14cf11af
PM
1426/*
1427 * Copy a thread..
1428 */
efcac658 1429
6eca8933
AD
1430/*
1431 * Copy architecture-specific thread state
1432 */
6f2c55b8 1433int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1434 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1435{
1436 struct pt_regs *childregs, *kregs;
1437 extern void ret_from_fork(void);
58254e10
AV
1438 extern void ret_from_kernel_thread(void);
1439 void (*f)(void);
0cec6fd1 1440 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1441 struct thread_info *ti = task_thread_info(p);
1442
1443 klp_init_thread_info(ti);
14cf11af 1444
14cf11af
PM
1445 /* Copy registers */
1446 sp -= sizeof(struct pt_regs);
1447 childregs = (struct pt_regs *) sp;
ab75819d 1448 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1449 /* kernel thread */
58254e10 1450 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1451 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1452 /* function */
1453 if (usp)
1454 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1455#ifdef CONFIG_PPC64
b5e2fc1c 1456 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1457 childregs->softe = 1;
06d67d54 1458#endif
6eca8933 1459 childregs->gpr[15] = kthread_arg;
14cf11af 1460 p->thread.regs = NULL; /* no user register state */
138d1ce8 1461 ti->flags |= _TIF_RESTOREALL;
58254e10 1462 f = ret_from_kernel_thread;
14cf11af 1463 } else {
6eca8933 1464 /* user thread */
afa86fc4 1465 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1466 CHECK_FULL_REGS(regs);
1467 *childregs = *regs;
ea516b11
AV
1468 if (usp)
1469 childregs->gpr[1] = usp;
14cf11af 1470 p->thread.regs = childregs;
58254e10 1471 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1472 if (clone_flags & CLONE_SETTLS) {
1473#ifdef CONFIG_PPC64
9904b005 1474 if (!is_32bit_task())
06d67d54
PM
1475 childregs->gpr[13] = childregs->gpr[6];
1476 else
1477#endif
1478 childregs->gpr[2] = childregs->gpr[6];
1479 }
58254e10
AV
1480
1481 f = ret_from_fork;
14cf11af 1482 }
d272f667 1483 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1484 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1485
1486 /*
1487 * The way this works is that at some point in the future
1488 * some task will call _switch to switch to the new task.
1489 * That will pop off the stack frame created below and start
1490 * the new task running at ret_from_fork. The new task will
1491 * do some house keeping and then return from the fork or clone
1492 * system call, using the stack frame created above.
1493 */
af945cf4 1494 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1495 sp -= sizeof(struct pt_regs);
1496 kregs = (struct pt_regs *) sp;
1497 sp -= STACK_FRAME_OVERHEAD;
1498 p->thread.ksp = sp;
cbc9565e 1499#ifdef CONFIG_PPC32
85218827
KG
1500 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1501 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1502#endif
28d170ab
ON
1503#ifdef CONFIG_HAVE_HW_BREAKPOINT
1504 p->thread.ptrace_bps[0] = NULL;
1505#endif
1506
18461960
PM
1507 p->thread.fp_save_area = NULL;
1508#ifdef CONFIG_ALTIVEC
1509 p->thread.vr_save_area = NULL;
1510#endif
1511
cec15488
ME
1512 setup_ksp_vsid(p, sp);
1513
efcac658
AK
1514#ifdef CONFIG_PPC64
1515 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1516 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1517 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1518 }
92779245
HM
1519 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1520 p->thread.ppr = INIT_PPR;
efcac658 1521#endif
7cedd601 1522 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1523 return 0;
1524}
1525
1526/*
1527 * Set up a thread for executing a new program
1528 */
06d67d54 1529void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1530{
90eac727
ME
1531#ifdef CONFIG_PPC64
1532 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1533#endif
1534
06d67d54
PM
1535 /*
1536 * If we exec out of a kernel thread then thread.regs will not be
1537 * set. Do it now.
1538 */
1539 if (!current->thread.regs) {
0cec6fd1
AV
1540 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1541 current->thread.regs = regs - 1;
06d67d54
PM
1542 }
1543
8e96a87c
CB
1544#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1545 /*
1546 * Clear any transactional state, we're exec()ing. The cause is
1547 * not important as there will never be a recheckpoint so it's not
1548 * user visible.
1549 */
1550 if (MSR_TM_SUSPENDED(mfmsr()))
1551 tm_reclaim_current(0);
1552#endif
1553
14cf11af
PM
1554 memset(regs->gpr, 0, sizeof(regs->gpr));
1555 regs->ctr = 0;
1556 regs->link = 0;
1557 regs->xer = 0;
1558 regs->ccr = 0;
14cf11af 1559 regs->gpr[1] = sp;
06d67d54 1560
474f8196
RM
1561 /*
1562 * We have just cleared all the nonvolatile GPRs, so make
1563 * FULL_REGS(regs) return true. This is necessary to allow
1564 * ptrace to examine the thread immediately after exec.
1565 */
1566 regs->trap &= ~1UL;
1567
06d67d54
PM
1568#ifdef CONFIG_PPC32
1569 regs->mq = 0;
1570 regs->nip = start;
14cf11af 1571 regs->msr = MSR_USER;
06d67d54 1572#else
9904b005 1573 if (!is_32bit_task()) {
94af3abf 1574 unsigned long entry;
06d67d54 1575
94af3abf
RR
1576 if (is_elf2_task()) {
1577 /* Look ma, no function descriptors! */
1578 entry = start;
06d67d54 1579
94af3abf
RR
1580 /*
1581 * Ulrich says:
1582 * The latest iteration of the ABI requires that when
1583 * calling a function (at its global entry point),
1584 * the caller must ensure r12 holds the entry point
1585 * address (so that the function can quickly
1586 * establish addressability).
1587 */
1588 regs->gpr[12] = start;
1589 /* Make sure that's restored on entry to userspace. */
1590 set_thread_flag(TIF_RESTOREALL);
1591 } else {
1592 unsigned long toc;
1593
1594 /* start is a relocated pointer to the function
1595 * descriptor for the elf _start routine. The first
1596 * entry in the function descriptor is the entry
1597 * address of _start and the second entry is the TOC
1598 * value we need to use.
1599 */
1600 __get_user(entry, (unsigned long __user *)start);
1601 __get_user(toc, (unsigned long __user *)start+1);
1602
1603 /* Check whether the e_entry function descriptor entries
1604 * need to be relocated before we can use them.
1605 */
1606 if (load_addr != 0) {
1607 entry += load_addr;
1608 toc += load_addr;
1609 }
1610 regs->gpr[2] = toc;
06d67d54
PM
1611 }
1612 regs->nip = entry;
06d67d54 1613 regs->msr = MSR_USER64;
d4bf9a78
SR
1614 } else {
1615 regs->nip = start;
1616 regs->gpr[2] = 0;
1617 regs->msr = MSR_USER32;
06d67d54
PM
1618 }
1619#endif
ce48b210
MN
1620#ifdef CONFIG_VSX
1621 current->thread.used_vsr = 0;
1622#endif
de79f7b9 1623 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1624 current->thread.fp_save_area = NULL;
14cf11af 1625#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1626 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1627 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1628 current->thread.vr_save_area = NULL;
14cf11af
PM
1629 current->thread.vrsave = 0;
1630 current->thread.used_vr = 0;
1631#endif /* CONFIG_ALTIVEC */
1632#ifdef CONFIG_SPE
1633 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1634 current->thread.acc = 0;
1635 current->thread.spefscr = 0;
1636 current->thread.used_spe = 0;
1637#endif /* CONFIG_SPE */
bc2a9408
MN
1638#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1639 if (cpu_has_feature(CPU_FTR_TM))
1640 regs->msr |= MSR_TM;
1641 current->thread.tm_tfhar = 0;
1642 current->thread.tm_texasr = 0;
1643 current->thread.tm_tfiar = 0;
1644#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1645}
e1802b06 1646EXPORT_SYMBOL(start_thread);
14cf11af
PM
1647
1648#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1649 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1650
1651int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1652{
1653 struct pt_regs *regs = tsk->thread.regs;
1654
1655 /* This is a bit hairy. If we are an SPE enabled processor
1656 * (have embedded fp) we store the IEEE exception enable flags in
1657 * fpexc_mode. fpexc_mode is also used for setting FP exception
1658 * mode (asyn, precise, disabled) for 'Classic' FP. */
1659 if (val & PR_FP_EXC_SW_ENABLE) {
1660#ifdef CONFIG_SPE
5e14d21e 1661 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1662 /*
1663 * When the sticky exception bits are set
1664 * directly by userspace, it must call prctl
1665 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1666 * in the existing prctl settings) or
1667 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1668 * the bits being set). <fenv.h> functions
1669 * saving and restoring the whole
1670 * floating-point environment need to do so
1671 * anyway to restore the prctl settings from
1672 * the saved environment.
1673 */
1674 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1675 tsk->thread.fpexc_mode = val &
1676 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1677 return 0;
1678 } else {
1679 return -EINVAL;
1680 }
14cf11af
PM
1681#else
1682 return -EINVAL;
1683#endif
14cf11af 1684 }
06d67d54
PM
1685
1686 /* on a CONFIG_SPE this does not hurt us. The bits that
1687 * __pack_fe01 use do not overlap with bits used for
1688 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1689 * on CONFIG_SPE implementations are reserved so writing to
1690 * them does not change anything */
1691 if (val > PR_FP_EXC_PRECISE)
1692 return -EINVAL;
1693 tsk->thread.fpexc_mode = __pack_fe01(val);
1694 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1695 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1696 | tsk->thread.fpexc_mode;
14cf11af
PM
1697 return 0;
1698}
1699
1700int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1701{
1702 unsigned int val;
1703
1704 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1705#ifdef CONFIG_SPE
640e9225
JM
1706 if (cpu_has_feature(CPU_FTR_SPE)) {
1707 /*
1708 * When the sticky exception bits are set
1709 * directly by userspace, it must call prctl
1710 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1711 * in the existing prctl settings) or
1712 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1713 * the bits being set). <fenv.h> functions
1714 * saving and restoring the whole
1715 * floating-point environment need to do so
1716 * anyway to restore the prctl settings from
1717 * the saved environment.
1718 */
1719 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1720 val = tsk->thread.fpexc_mode;
640e9225 1721 } else
5e14d21e 1722 return -EINVAL;
14cf11af
PM
1723#else
1724 return -EINVAL;
1725#endif
1726 else
1727 val = __unpack_fe01(tsk->thread.fpexc_mode);
1728 return put_user(val, (unsigned int __user *) adr);
1729}
1730
fab5db97
PM
1731int set_endian(struct task_struct *tsk, unsigned int val)
1732{
1733 struct pt_regs *regs = tsk->thread.regs;
1734
1735 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1736 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1737 return -EINVAL;
1738
1739 if (regs == NULL)
1740 return -EINVAL;
1741
1742 if (val == PR_ENDIAN_BIG)
1743 regs->msr &= ~MSR_LE;
1744 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1745 regs->msr |= MSR_LE;
1746 else
1747 return -EINVAL;
1748
1749 return 0;
1750}
1751
1752int get_endian(struct task_struct *tsk, unsigned long adr)
1753{
1754 struct pt_regs *regs = tsk->thread.regs;
1755 unsigned int val;
1756
1757 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1758 !cpu_has_feature(CPU_FTR_REAL_LE))
1759 return -EINVAL;
1760
1761 if (regs == NULL)
1762 return -EINVAL;
1763
1764 if (regs->msr & MSR_LE) {
1765 if (cpu_has_feature(CPU_FTR_REAL_LE))
1766 val = PR_ENDIAN_LITTLE;
1767 else
1768 val = PR_ENDIAN_PPC_LITTLE;
1769 } else
1770 val = PR_ENDIAN_BIG;
1771
1772 return put_user(val, (unsigned int __user *)adr);
1773}
1774
e9370ae1
PM
1775int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1776{
1777 tsk->thread.align_ctl = val;
1778 return 0;
1779}
1780
1781int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1782{
1783 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1784}
1785
bb72c481
PM
1786static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1787 unsigned long nbytes)
1788{
1789 unsigned long stack_page;
1790 unsigned long cpu = task_cpu(p);
1791
1792 /*
1793 * Avoid crashing if the stack has overflowed and corrupted
1794 * task_cpu(p), which is in the thread_info struct.
1795 */
1796 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1797 stack_page = (unsigned long) hardirq_ctx[cpu];
1798 if (sp >= stack_page + sizeof(struct thread_struct)
1799 && sp <= stack_page + THREAD_SIZE - nbytes)
1800 return 1;
1801
1802 stack_page = (unsigned long) softirq_ctx[cpu];
1803 if (sp >= stack_page + sizeof(struct thread_struct)
1804 && sp <= stack_page + THREAD_SIZE - nbytes)
1805 return 1;
1806 }
1807 return 0;
1808}
1809
2f25194d 1810int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1811 unsigned long nbytes)
1812{
0cec6fd1 1813 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1814
1815 if (sp >= stack_page + sizeof(struct thread_struct)
1816 && sp <= stack_page + THREAD_SIZE - nbytes)
1817 return 1;
1818
bb72c481 1819 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1820}
1821
2f25194d
AB
1822EXPORT_SYMBOL(validate_sp);
1823
14cf11af
PM
1824unsigned long get_wchan(struct task_struct *p)
1825{
1826 unsigned long ip, sp;
1827 int count = 0;
1828
1829 if (!p || p == current || p->state == TASK_RUNNING)
1830 return 0;
1831
1832 sp = p->thread.ksp;
ec2b36b9 1833 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1834 return 0;
1835
1836 do {
1837 sp = *(unsigned long *)sp;
ec2b36b9 1838 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1839 return 0;
1840 if (count > 0) {
ec2b36b9 1841 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1842 if (!in_sched_functions(ip))
1843 return ip;
1844 }
1845 } while (count++ < 16);
1846 return 0;
1847}
06d67d54 1848
c4d04be1 1849static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1850
1851void show_stack(struct task_struct *tsk, unsigned long *stack)
1852{
1853 unsigned long sp, ip, lr, newsp;
1854 int count = 0;
1855 int firstframe = 1;
6794c782
SR
1856#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1857 int curr_frame = current->curr_ret_stack;
1858 extern void return_to_handler(void);
9135c3cc 1859 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1860#endif
06d67d54
PM
1861
1862 sp = (unsigned long) stack;
1863 if (tsk == NULL)
1864 tsk = current;
1865 if (sp == 0) {
1866 if (tsk == current)
acf620ec 1867 sp = current_stack_pointer();
06d67d54
PM
1868 else
1869 sp = tsk->thread.ksp;
1870 }
1871
1872 lr = 0;
1873 printk("Call Trace:\n");
1874 do {
ec2b36b9 1875 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1876 return;
1877
1878 stack = (unsigned long *) sp;
1879 newsp = stack[0];
ec2b36b9 1880 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1881 if (!firstframe || ip != lr) {
058c78f4 1882 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1883#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1884 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1885 printk(" (%pS)",
1886 (void *)current->ret_stack[curr_frame].ret);
1887 curr_frame--;
1888 }
1889#endif
06d67d54
PM
1890 if (firstframe)
1891 printk(" (unreliable)");
1892 printk("\n");
1893 }
1894 firstframe = 0;
1895
1896 /*
1897 * See if this is an exception frame.
1898 * We look for the "regshere" marker in the current frame.
1899 */
ec2b36b9
BH
1900 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1901 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1902 struct pt_regs *regs = (struct pt_regs *)
1903 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1904 lr = regs->link;
9be9be2e 1905 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1906 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1907 firstframe = 1;
1908 }
1909
1910 sp = newsp;
1911 } while (count++ < kstack_depth_to_print);
1912}
1913
cb2c9b27 1914#ifdef CONFIG_PPC64
fe1952fc 1915/* Called with hard IRQs off */
0e37739b 1916void notrace __ppc64_runlatch_on(void)
cb2c9b27 1917{
fe1952fc 1918 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1919 unsigned long ctrl;
1920
fe1952fc
BH
1921 ctrl = mfspr(SPRN_CTRLF);
1922 ctrl |= CTRL_RUNLATCH;
1923 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1924
fae2e0fb 1925 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1926}
1927
fe1952fc 1928/* Called with hard IRQs off */
0e37739b 1929void notrace __ppc64_runlatch_off(void)
cb2c9b27 1930{
fe1952fc 1931 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1932 unsigned long ctrl;
1933
fae2e0fb 1934 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1935
4138d653
AB
1936 ctrl = mfspr(SPRN_CTRLF);
1937 ctrl &= ~CTRL_RUNLATCH;
1938 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1939}
fe1952fc 1940#endif /* CONFIG_PPC64 */
f6a61680 1941
d839088c
AB
1942unsigned long arch_align_stack(unsigned long sp)
1943{
1944 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1945 sp -= get_random_int() & ~PAGE_MASK;
1946 return sp & ~0xf;
1947}
912f9ee2
AB
1948
1949static inline unsigned long brk_rnd(void)
1950{
1951 unsigned long rnd = 0;
1952
1953 /* 8MB for 32bit, 1GB for 64bit */
1954 if (is_32bit_task())
5ef11c35 1955 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 1956 else
5ef11c35 1957 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
1958
1959 return rnd << PAGE_SHIFT;
1960}
1961
1962unsigned long arch_randomize_brk(struct mm_struct *mm)
1963{
8bbde7a7
AB
1964 unsigned long base = mm->brk;
1965 unsigned long ret;
1966
ce7a35c7 1967#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1968 /*
1969 * If we are using 1TB segments and we are allowed to randomise
1970 * the heap, we can put it above 1TB so it is backed by a 1TB
1971 * segment. Otherwise the heap will be in the bottom 1TB
1972 * which always uses 256MB segments and this may result in a
caca285e
AK
1973 * performance penalty. We don't need to worry about radix. For
1974 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
1975 */
1976 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1977 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1978#endif
1979
1980 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1981
1982 if (ret < mm->brk)
1983 return mm->brk;
1984
1985 return ret;
1986}
501cb16d 1987