]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Put FP/VSX and VR state into structures
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
037f0eed 77#ifdef CONFIG_PPC_FPU
14cf11af
PM
78/*
79 * Make sure the floating-point register state in the
80 * the thread_struct is up to date for task tsk.
81 */
82void flush_fp_to_thread(struct task_struct *tsk)
83{
84 if (tsk->thread.regs) {
85 /*
86 * We need to disable preemption here because if we didn't,
87 * another process could get scheduled after the regs->msr
88 * test but before we have finished saving the FP registers
89 * to the thread_struct. That process could take over the
90 * FPU, and then when we get scheduled again we would store
91 * bogus values for the remaining FP registers.
92 */
93 preempt_disable();
94 if (tsk->thread.regs->msr & MSR_FP) {
95#ifdef CONFIG_SMP
96 /*
97 * This should only ever be called for current or
98 * for a stopped child process. Since we save away
99 * the FP register state on context switch on SMP,
100 * there is something wrong if a stopped child appears
101 * to still have its FP state in the CPU registers.
102 */
103 BUG_ON(tsk != current);
104#endif
0ee6c15e 105 giveup_fpu(tsk);
14cf11af
PM
106 }
107 preempt_enable();
108 }
109}
de56a948 110EXPORT_SYMBOL_GPL(flush_fp_to_thread);
037f0eed 111#endif
14cf11af
PM
112
113void enable_kernel_fp(void)
114{
115 WARN_ON(preemptible());
116
117#ifdef CONFIG_SMP
118 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
119 giveup_fpu(current);
120 else
121 giveup_fpu(NULL); /* just enables FP for kernel */
122#else
123 giveup_fpu(last_task_used_math);
124#endif /* CONFIG_SMP */
125}
126EXPORT_SYMBOL(enable_kernel_fp);
127
14cf11af
PM
128#ifdef CONFIG_ALTIVEC
129void enable_kernel_altivec(void)
130{
131 WARN_ON(preemptible());
132
133#ifdef CONFIG_SMP
134 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135 giveup_altivec(current);
136 else
35000870 137 giveup_altivec_notask();
14cf11af
PM
138#else
139 giveup_altivec(last_task_used_altivec);
140#endif /* CONFIG_SMP */
141}
142EXPORT_SYMBOL(enable_kernel_altivec);
143
144/*
145 * Make sure the VMX/Altivec register state in the
146 * the thread_struct is up to date for task tsk.
147 */
148void flush_altivec_to_thread(struct task_struct *tsk)
149{
150 if (tsk->thread.regs) {
151 preempt_disable();
152 if (tsk->thread.regs->msr & MSR_VEC) {
153#ifdef CONFIG_SMP
154 BUG_ON(tsk != current);
155#endif
0ee6c15e 156 giveup_altivec(tsk);
14cf11af
PM
157 }
158 preempt_enable();
159 }
160}
de56a948 161EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
162#endif /* CONFIG_ALTIVEC */
163
ce48b210
MN
164#ifdef CONFIG_VSX
165#if 0
166/* not currently used, but some crazy RAID module might want to later */
167void enable_kernel_vsx(void)
168{
169 WARN_ON(preemptible());
170
171#ifdef CONFIG_SMP
172 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
173 giveup_vsx(current);
174 else
175 giveup_vsx(NULL); /* just enable vsx for kernel - force */
176#else
177 giveup_vsx(last_task_used_vsx);
178#endif /* CONFIG_SMP */
179}
180EXPORT_SYMBOL(enable_kernel_vsx);
181#endif
182
7c292170
MN
183void giveup_vsx(struct task_struct *tsk)
184{
185 giveup_fpu(tsk);
186 giveup_altivec(tsk);
187 __giveup_vsx(tsk);
188}
189
ce48b210
MN
190void flush_vsx_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VSX) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
198 giveup_vsx(tsk);
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
204#endif /* CONFIG_VSX */
205
14cf11af
PM
206#ifdef CONFIG_SPE
207
208void enable_kernel_spe(void)
209{
210 WARN_ON(preemptible());
211
212#ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
214 giveup_spe(current);
215 else
216 giveup_spe(NULL); /* just enable SPE for kernel - force */
217#else
218 giveup_spe(last_task_used_spe);
219#endif /* __SMP __ */
220}
221EXPORT_SYMBOL(enable_kernel_spe);
222
223void flush_spe_to_thread(struct task_struct *tsk)
224{
225 if (tsk->thread.regs) {
226 preempt_disable();
227 if (tsk->thread.regs->msr & MSR_SPE) {
228#ifdef CONFIG_SMP
229 BUG_ON(tsk != current);
230#endif
685659ee 231 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 232 giveup_spe(tsk);
14cf11af
PM
233 }
234 preempt_enable();
235 }
236}
14cf11af
PM
237#endif /* CONFIG_SPE */
238
5388fb10 239#ifndef CONFIG_SMP
48abec07
PM
240/*
241 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
242 * and the current task has some state, discard it.
243 */
5388fb10 244void discard_lazy_cpu_state(void)
48abec07 245{
48abec07
PM
246 preempt_disable();
247 if (last_task_used_math == current)
248 last_task_used_math = NULL;
249#ifdef CONFIG_ALTIVEC
250 if (last_task_used_altivec == current)
251 last_task_used_altivec = NULL;
252#endif /* CONFIG_ALTIVEC */
ce48b210
MN
253#ifdef CONFIG_VSX
254 if (last_task_used_vsx == current)
255 last_task_used_vsx = NULL;
256#endif /* CONFIG_VSX */
48abec07
PM
257#ifdef CONFIG_SPE
258 if (last_task_used_spe == current)
259 last_task_used_spe = NULL;
260#endif
261 preempt_enable();
48abec07 262}
5388fb10 263#endif /* CONFIG_SMP */
48abec07 264
3bffb652
DK
265#ifdef CONFIG_PPC_ADV_DEBUG_REGS
266void do_send_trap(struct pt_regs *regs, unsigned long address,
267 unsigned long error_code, int signal_code, int breakpt)
268{
269 siginfo_t info;
270
41ab5266 271 current->thread.trap_nr = signal_code;
3bffb652
DK
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
274 return;
275
276 /* Deliver the signal to userspace */
277 info.si_signo = SIGTRAP;
278 info.si_errno = breakpt; /* breakpoint or watchpoint id */
279 info.si_code = signal_code;
280 info.si_addr = (void __user *)address;
281 force_sig_info(SIGTRAP, &info, current);
282}
283#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 284void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
285 unsigned long error_code)
286{
287 siginfo_t info;
288
41ab5266 289 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
290 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
291 11, SIGSEGV) == NOTIFY_STOP)
292 return;
293
9422de3e 294 if (debugger_break_match(regs))
d6a61bfc
LM
295 return;
296
9422de3e
MN
297 /* Clear the breakpoint */
298 hw_breakpoint_disable();
d6a61bfc
LM
299
300 /* Deliver the signal to userspace */
301 info.si_signo = SIGTRAP;
302 info.si_errno = 0;
303 info.si_code = TRAP_HWBKPT;
304 info.si_addr = (void __user *)address;
305 force_sig_info(SIGTRAP, &info, current);
306}
3bffb652 307#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 308
9422de3e 309static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 310
3bffb652
DK
311#ifdef CONFIG_PPC_ADV_DEBUG_REGS
312/*
313 * Set the debug registers back to their default "safe" values.
314 */
315static void set_debug_reg_defaults(struct thread_struct *thread)
316{
317 thread->iac1 = thread->iac2 = 0;
318#if CONFIG_PPC_ADV_DEBUG_IACS > 2
319 thread->iac3 = thread->iac4 = 0;
320#endif
321 thread->dac1 = thread->dac2 = 0;
322#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
323 thread->dvc1 = thread->dvc2 = 0;
324#endif
325 thread->dbcr0 = 0;
326#ifdef CONFIG_BOOKE
327 /*
328 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
329 */
330 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
331 DBCR1_IAC3US | DBCR1_IAC4US;
332 /*
333 * Force Data Address Compare User/Supervisor bits to be User-only
334 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
335 */
336 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
337#else
338 thread->dbcr1 = 0;
339#endif
340}
341
342static void prime_debug_regs(struct thread_struct *thread)
343{
6cecf76b
SW
344 /*
345 * We could have inherited MSR_DE from userspace, since
346 * it doesn't get cleared on exception entry. Make sure
347 * MSR_DE is clear before we enable any debug events.
348 */
349 mtmsr(mfmsr() & ~MSR_DE);
350
3bffb652
DK
351 mtspr(SPRN_IAC1, thread->iac1);
352 mtspr(SPRN_IAC2, thread->iac2);
353#if CONFIG_PPC_ADV_DEBUG_IACS > 2
354 mtspr(SPRN_IAC3, thread->iac3);
355 mtspr(SPRN_IAC4, thread->iac4);
356#endif
357 mtspr(SPRN_DAC1, thread->dac1);
358 mtspr(SPRN_DAC2, thread->dac2);
359#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
360 mtspr(SPRN_DVC1, thread->dvc1);
361 mtspr(SPRN_DVC2, thread->dvc2);
362#endif
363 mtspr(SPRN_DBCR0, thread->dbcr0);
364 mtspr(SPRN_DBCR1, thread->dbcr1);
365#ifdef CONFIG_BOOKE
366 mtspr(SPRN_DBCR2, thread->dbcr2);
367#endif
368}
369/*
370 * Unless neither the old or new thread are making use of the
371 * debug registers, set the debug registers from the values
372 * stored in the new thread.
373 */
374static void switch_booke_debug_regs(struct thread_struct *new_thread)
375{
376 if ((current->thread.dbcr0 & DBCR0_IDM)
377 || (new_thread->dbcr0 & DBCR0_IDM))
378 prime_debug_regs(new_thread);
379}
380#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 381#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
382static void set_debug_reg_defaults(struct thread_struct *thread)
383{
9422de3e
MN
384 thread->hw_brk.address = 0;
385 thread->hw_brk.type = 0;
b9818c33 386 set_breakpoint(&thread->hw_brk);
3bffb652 387}
e0780b72 388#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
389#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
390
172ae2e7 391#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
392static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393{
d6a61bfc 394 mtspr(SPRN_DAC1, dabr);
221c185d
DK
395#ifdef CONFIG_PPC_47x
396 isync();
397#endif
9422de3e
MN
398 return 0;
399}
c6c9eace 400#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
401static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
402{
c6c9eace 403 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
404 if (cpu_has_feature(CPU_FTR_DABRX))
405 mtspr(SPRN_DABRX, dabrx);
cab0af98 406 return 0;
14cf11af 407}
9422de3e
MN
408#else
409static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
410{
411 return -EINVAL;
412}
413#endif
414
415static inline int set_dabr(struct arch_hw_breakpoint *brk)
416{
417 unsigned long dabr, dabrx;
418
419 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
420 dabrx = ((brk->type >> 3) & 0x7);
421
422 if (ppc_md.set_dabr)
423 return ppc_md.set_dabr(dabr, dabrx);
424
425 return __set_dabr(dabr, dabrx);
426}
427
bf99de36
MN
428static inline int set_dawr(struct arch_hw_breakpoint *brk)
429{
05d694ea 430 unsigned long dawr, dawrx, mrd;
bf99de36
MN
431
432 dawr = brk->address;
433
434 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
435 << (63 - 58); //* read/write bits */
436 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
437 << (63 - 59); //* translate */
438 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
439 >> 3; //* PRIM bits */
05d694ea
MN
440 /* dawr length is stored in field MDR bits 48:53. Matches range in
441 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
442 0b111111=64DW.
443 brk->len is in bytes.
444 This aligns up to double word size, shifts and does the bias.
445 */
446 mrd = ((brk->len + 7) >> 3) - 1;
447 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
448
449 if (ppc_md.set_dawr)
450 return ppc_md.set_dawr(dawr, dawrx);
451 mtspr(SPRN_DAWR, dawr);
452 mtspr(SPRN_DAWRX, dawrx);
453 return 0;
454}
455
b9818c33 456int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
457{
458 __get_cpu_var(current_brk) = *brk;
459
bf99de36
MN
460 if (cpu_has_feature(CPU_FTR_DAWR))
461 return set_dawr(brk);
462
9422de3e
MN
463 return set_dabr(brk);
464}
14cf11af 465
06d67d54
PM
466#ifdef CONFIG_PPC64
467DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 468#endif
14cf11af 469
9422de3e
MN
470static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
471 struct arch_hw_breakpoint *b)
472{
473 if (a->address != b->address)
474 return false;
475 if (a->type != b->type)
476 return false;
477 if (a->len != b->len)
478 return false;
479 return true;
480}
fb09692e
MN
481#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
482static inline void tm_reclaim_task(struct task_struct *tsk)
483{
484 /* We have to work out if we're switching from/to a task that's in the
485 * middle of a transaction.
486 *
487 * In switching we need to maintain a 2nd register state as
488 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
489 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
490 * (current) FPRs into oldtask->thread.transact_fpr[].
491 *
492 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
493 */
494 struct thread_struct *thr = &tsk->thread;
495
496 if (!thr->regs)
497 return;
498
499 if (!MSR_TM_ACTIVE(thr->regs->msr))
500 goto out_and_saveregs;
501
502 /* Stash the original thread MSR, as giveup_fpu et al will
503 * modify it. We hold onto it to see whether the task used
504 * FP & vector regs.
505 */
506 thr->tm_orig_msr = thr->regs->msr;
507
508 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
509 "ccr=%lx, msr=%lx, trap=%lx)\n",
510 tsk->pid, thr->regs->nip,
511 thr->regs->ccr, thr->regs->msr,
512 thr->regs->trap);
513
514 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
515
516 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
517 tsk->pid);
518
519out_and_saveregs:
520 /* Always save the regs here, even if a transaction's not active.
521 * This context-switches a thread's TM info SPRs. We do it here to
522 * be consistent with the restore path (in recheckpoint) which
523 * cannot happen later in _switch().
524 */
525 tm_save_sprs(thr);
526}
527
bc2a9408 528static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
529{
530 unsigned long msr;
531
532 if (!cpu_has_feature(CPU_FTR_TM))
533 return;
534
535 /* Recheckpoint the registers of the thread we're about to switch to.
536 *
537 * If the task was using FP, we non-lazily reload both the original and
538 * the speculative FP register states. This is because the kernel
539 * doesn't see if/when a TM rollback occurs, so if we take an FP
540 * unavoidable later, we are unable to determine which set of FP regs
541 * need to be restored.
542 */
543 if (!new->thread.regs)
544 return;
545
546 /* The TM SPRs are restored here, so that TEXASR.FS can be set
547 * before the trecheckpoint and no explosion occurs.
548 */
549 tm_restore_sprs(&new->thread);
550
551 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
552 return;
553 msr = new->thread.tm_orig_msr;
554 /* Recheckpoint to restore original checkpointed register state. */
555 TM_DEBUG("*** tm_recheckpoint of pid %d "
556 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
557 new->pid, new->thread.regs->msr, msr);
558
559 /* This loads the checkpointed FP/VEC state, if used */
560 tm_recheckpoint(&new->thread, msr);
561
562 /* This loads the speculative FP/VEC state, if used */
563 if (msr & MSR_FP) {
564 do_load_up_transact_fpu(&new->thread);
565 new->thread.regs->msr |=
566 (MSR_FP | new->thread.fpexc_mode);
567 }
f110c0c1 568#ifdef CONFIG_ALTIVEC
fb09692e
MN
569 if (msr & MSR_VEC) {
570 do_load_up_transact_altivec(&new->thread);
571 new->thread.regs->msr |= MSR_VEC;
572 }
f110c0c1 573#endif
fb09692e
MN
574 /* We may as well turn on VSX too since all the state is restored now */
575 if (msr & MSR_VSX)
576 new->thread.regs->msr |= MSR_VSX;
577
578 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
579 "(kernel msr 0x%lx)\n",
580 new->pid, mfmsr());
581}
582
583static inline void __switch_to_tm(struct task_struct *prev)
584{
585 if (cpu_has_feature(CPU_FTR_TM)) {
586 tm_enable();
587 tm_reclaim_task(prev);
588 }
589}
590#else
591#define tm_recheckpoint_new_task(new)
592#define __switch_to_tm(prev)
593#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 594
14cf11af
PM
595struct task_struct *__switch_to(struct task_struct *prev,
596 struct task_struct *new)
597{
598 struct thread_struct *new_thread, *old_thread;
599 unsigned long flags;
600 struct task_struct *last;
d6bf29b4
PZ
601#ifdef CONFIG_PPC_BOOK3S_64
602 struct ppc64_tlb_batch *batch;
603#endif
14cf11af 604
c2d52644
MN
605 /* Back up the TAR across context switches.
606 * Note that the TAR is not available for use in the kernel. (To
607 * provide this, the TAR should be backed up/restored on exception
608 * entry/exit instead, and be in pt_regs. FIXME, this should be in
609 * pt_regs anyway (for debug).)
610 * Save the TAR here before we do treclaim/trecheckpoint as these
611 * will change the TAR.
612 */
613 save_tar(&prev->thread);
614
bc2a9408
MN
615 __switch_to_tm(prev);
616
14cf11af
PM
617#ifdef CONFIG_SMP
618 /* avoid complexity of lazy save/restore of fpu
619 * by just saving it every time we switch out if
620 * this task used the fpu during the last quantum.
621 *
622 * If it tries to use the fpu again, it'll trap and
623 * reload its fp regs. So we don't have to do a restore
624 * every switch, just a save.
625 * -- Cort
626 */
627 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
628 giveup_fpu(prev);
629#ifdef CONFIG_ALTIVEC
630 /*
631 * If the previous thread used altivec in the last quantum
632 * (thus changing altivec regs) then save them.
633 * We used to check the VRSAVE register but not all apps
634 * set it, so we don't rely on it now (and in fact we need
635 * to save & restore VSCR even if VRSAVE == 0). -- paulus
636 *
637 * On SMP we always save/restore altivec regs just to avoid the
638 * complexity of changing processors.
639 * -- Cort
640 */
641 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
642 giveup_altivec(prev);
14cf11af 643#endif /* CONFIG_ALTIVEC */
ce48b210
MN
644#ifdef CONFIG_VSX
645 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
646 /* VMX and FPU registers are already save here */
647 __giveup_vsx(prev);
ce48b210 648#endif /* CONFIG_VSX */
14cf11af
PM
649#ifdef CONFIG_SPE
650 /*
651 * If the previous thread used spe in the last quantum
652 * (thus changing spe regs) then save them.
653 *
654 * On SMP we always save/restore spe regs just to avoid the
655 * complexity of changing processors.
656 */
657 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
658 giveup_spe(prev);
c0c0d996
PM
659#endif /* CONFIG_SPE */
660
661#else /* CONFIG_SMP */
662#ifdef CONFIG_ALTIVEC
663 /* Avoid the trap. On smp this this never happens since
664 * we don't set last_task_used_altivec -- Cort
665 */
666 if (new->thread.regs && last_task_used_altivec == new)
667 new->thread.regs->msr |= MSR_VEC;
668#endif /* CONFIG_ALTIVEC */
ce48b210
MN
669#ifdef CONFIG_VSX
670 if (new->thread.regs && last_task_used_vsx == new)
671 new->thread.regs->msr |= MSR_VSX;
672#endif /* CONFIG_VSX */
c0c0d996 673#ifdef CONFIG_SPE
14cf11af
PM
674 /* Avoid the trap. On smp this this never happens since
675 * we don't set last_task_used_spe
676 */
677 if (new->thread.regs && last_task_used_spe == new)
678 new->thread.regs->msr |= MSR_SPE;
679#endif /* CONFIG_SPE */
c0c0d996 680
14cf11af
PM
681#endif /* CONFIG_SMP */
682
172ae2e7 683#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 684 switch_booke_debug_regs(&new->thread);
c6c9eace 685#else
5aae8a53
P
686/*
687 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
688 * schedule DABR
689 */
690#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e 691 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 692 set_breakpoint(&new->thread.hw_brk);
5aae8a53 693#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
694#endif
695
c6c9eace 696
14cf11af
PM
697 new_thread = &new->thread;
698 old_thread = &current->thread;
06d67d54
PM
699
700#ifdef CONFIG_PPC64
701 /*
702 * Collect processor utilization data per process
703 */
704 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
705 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
706 long unsigned start_tb, current_tb;
707 start_tb = old_thread->start_tb;
708 cu->current_tb = current_tb = mfspr(SPRN_PURR);
709 old_thread->accum_tb += (current_tb - start_tb);
710 new_thread->start_tb = current_tb;
711 }
d6bf29b4
PZ
712#endif /* CONFIG_PPC64 */
713
714#ifdef CONFIG_PPC_BOOK3S_64
715 batch = &__get_cpu_var(ppc64_tlb_batch);
716 if (batch->active) {
717 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
718 if (batch->index)
719 __flush_tlb_pending(batch);
720 batch->active = 0;
721 }
722#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 723
14cf11af 724 local_irq_save(flags);
c6622f63 725
44387e9f
AB
726 /*
727 * We can't take a PMU exception inside _switch() since there is a
728 * window where the kernel stack SLB and the kernel stack are out
729 * of sync. Hard disable here.
730 */
731 hard_irq_disable();
bc2a9408
MN
732
733 tm_recheckpoint_new_task(new);
734
14cf11af
PM
735 last = _switch(old_thread, new_thread);
736
d6bf29b4
PZ
737#ifdef CONFIG_PPC_BOOK3S_64
738 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
739 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
740 batch = &__get_cpu_var(ppc64_tlb_batch);
741 batch->active = 1;
742 }
743#endif /* CONFIG_PPC_BOOK3S_64 */
744
14cf11af
PM
745 local_irq_restore(flags);
746
747 return last;
748}
749
06d67d54
PM
750static int instructions_to_print = 16;
751
06d67d54
PM
752static void show_instructions(struct pt_regs *regs)
753{
754 int i;
755 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
756 sizeof(int));
757
758 printk("Instruction dump:");
759
760 for (i = 0; i < instructions_to_print; i++) {
761 int instr;
762
763 if (!(i % 8))
764 printk("\n");
765
0de2d820
SW
766#if !defined(CONFIG_BOOKE)
767 /* If executing with the IMMU off, adjust pc rather
768 * than print XXXXXXXX.
769 */
770 if (!(regs->msr & MSR_IR))
771 pc = (unsigned long)phys_to_virt(pc);
772#endif
773
af308377
SR
774 /* We use __get_user here *only* to avoid an OOPS on a
775 * bad address because the pc *should* only be a
776 * kernel address.
777 */
00ae36de
AB
778 if (!__kernel_text_address(pc) ||
779 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 780 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
781 } else {
782 if (regs->nip == pc)
40c8cefa 783 printk(KERN_CONT "<%08x> ", instr);
06d67d54 784 else
40c8cefa 785 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
786 }
787
788 pc += sizeof(int);
789 }
790
791 printk("\n");
792}
793
794static struct regbit {
795 unsigned long bit;
796 const char *name;
797} msr_bits[] = {
3bfd0c9c
AB
798#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
799 {MSR_SF, "SF"},
800 {MSR_HV, "HV"},
801#endif
802 {MSR_VEC, "VEC"},
803 {MSR_VSX, "VSX"},
804#ifdef CONFIG_BOOKE
805 {MSR_CE, "CE"},
806#endif
06d67d54
PM
807 {MSR_EE, "EE"},
808 {MSR_PR, "PR"},
809 {MSR_FP, "FP"},
810 {MSR_ME, "ME"},
3bfd0c9c 811#ifdef CONFIG_BOOKE
1b98326b 812 {MSR_DE, "DE"},
3bfd0c9c
AB
813#else
814 {MSR_SE, "SE"},
815 {MSR_BE, "BE"},
816#endif
06d67d54
PM
817 {MSR_IR, "IR"},
818 {MSR_DR, "DR"},
3bfd0c9c
AB
819 {MSR_PMM, "PMM"},
820#ifndef CONFIG_BOOKE
821 {MSR_RI, "RI"},
822 {MSR_LE, "LE"},
823#endif
06d67d54
PM
824 {0, NULL}
825};
826
827static void printbits(unsigned long val, struct regbit *bits)
828{
829 const char *sep = "";
830
831 printk("<");
832 for (; bits->bit; ++bits)
833 if (val & bits->bit) {
834 printk("%s%s", sep, bits->name);
835 sep = ",";
836 }
837 printk(">");
838}
839
840#ifdef CONFIG_PPC64
f6f7dde3 841#define REG "%016lx"
06d67d54
PM
842#define REGS_PER_LINE 4
843#define LAST_VOLATILE 13
844#else
f6f7dde3 845#define REG "%08lx"
06d67d54
PM
846#define REGS_PER_LINE 8
847#define LAST_VOLATILE 12
848#endif
849
14cf11af
PM
850void show_regs(struct pt_regs * regs)
851{
852 int i, trap;
853
a43cb95d
TH
854 show_regs_print_info(KERN_DEFAULT);
855
06d67d54
PM
856 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
857 regs->nip, regs->link, regs->ctr);
858 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 859 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
860 printk("MSR: "REG" ", regs->msr);
861 printbits(regs->msr, msr_bits);
f6f7dde3 862 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
863#ifdef CONFIG_PPC64
864 printk("SOFTE: %ld\n", regs->softe);
865#endif
14cf11af 866 trap = TRAP(regs);
5115a026
MN
867 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
868 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 869 if (trap == 0x300 || trap == 0x600)
ba28c9aa 870#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
871 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
872#else
7071854b 873 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 874#endif
14cf11af
PM
875
876 for (i = 0; i < 32; i++) {
06d67d54 877 if ((i % REGS_PER_LINE) == 0)
a2367194 878 printk("\nGPR%02d: ", i);
06d67d54
PM
879 printk(REG " ", regs->gpr[i]);
880 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
881 break;
882 }
883 printk("\n");
884#ifdef CONFIG_KALLSYMS
885 /*
886 * Lookup NIP late so we have the best change of getting the
887 * above info out without failing
888 */
058c78f4
BH
889 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
890 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af 891#endif
afc07701
MN
892#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
893 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
894#endif
14cf11af 895 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
896 if (!user_mode(regs))
897 show_instructions(regs);
14cf11af
PM
898}
899
900void exit_thread(void)
901{
48abec07 902 discard_lazy_cpu_state();
14cf11af
PM
903}
904
905void flush_thread(void)
906{
48abec07 907 discard_lazy_cpu_state();
14cf11af 908
e0780b72 909#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 910 flush_ptrace_hw_breakpoint(current);
e0780b72 911#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 912 set_debug_reg_defaults(&current->thread);
e0780b72 913#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
914}
915
916void
917release_thread(struct task_struct *t)
918{
919}
920
921/*
55ccf3fe
SS
922 * this gets called so that we can store coprocessor state into memory and
923 * copy the current task into the new thread.
14cf11af 924 */
55ccf3fe 925int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 926{
55ccf3fe
SS
927 flush_fp_to_thread(src);
928 flush_altivec_to_thread(src);
929 flush_vsx_to_thread(src);
930 flush_spe_to_thread(src);
330a1eb7 931
55ccf3fe 932 *dst = *src;
330a1eb7
ME
933
934 clear_task_ebb(dst);
935
55ccf3fe 936 return 0;
14cf11af
PM
937}
938
939/*
940 * Copy a thread..
941 */
efcac658
AK
942extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
943
6f2c55b8 944int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 945 unsigned long arg, struct task_struct *p)
14cf11af
PM
946{
947 struct pt_regs *childregs, *kregs;
948 extern void ret_from_fork(void);
58254e10
AV
949 extern void ret_from_kernel_thread(void);
950 void (*f)(void);
0cec6fd1 951 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 952
14cf11af
PM
953 /* Copy registers */
954 sp -= sizeof(struct pt_regs);
955 childregs = (struct pt_regs *) sp;
ab75819d 956 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 957 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 958 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 959 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 960 childregs->gpr[14] = usp; /* function */
58254e10 961#ifdef CONFIG_PPC64
b5e2fc1c 962 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 963 childregs->softe = 1;
06d67d54 964#endif
58254e10 965 childregs->gpr[15] = arg;
14cf11af 966 p->thread.regs = NULL; /* no user register state */
138d1ce8 967 ti->flags |= _TIF_RESTOREALL;
58254e10 968 f = ret_from_kernel_thread;
14cf11af 969 } else {
afa86fc4 970 struct pt_regs *regs = current_pt_regs();
58254e10
AV
971 CHECK_FULL_REGS(regs);
972 *childregs = *regs;
ea516b11
AV
973 if (usp)
974 childregs->gpr[1] = usp;
14cf11af 975 p->thread.regs = childregs;
58254e10 976 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
977 if (clone_flags & CLONE_SETTLS) {
978#ifdef CONFIG_PPC64
9904b005 979 if (!is_32bit_task())
06d67d54
PM
980 childregs->gpr[13] = childregs->gpr[6];
981 else
982#endif
983 childregs->gpr[2] = childregs->gpr[6];
984 }
58254e10
AV
985
986 f = ret_from_fork;
14cf11af 987 }
14cf11af 988 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
989
990 /*
991 * The way this works is that at some point in the future
992 * some task will call _switch to switch to the new task.
993 * That will pop off the stack frame created below and start
994 * the new task running at ret_from_fork. The new task will
995 * do some house keeping and then return from the fork or clone
996 * system call, using the stack frame created above.
997 */
af945cf4 998 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
999 sp -= sizeof(struct pt_regs);
1000 kregs = (struct pt_regs *) sp;
1001 sp -= STACK_FRAME_OVERHEAD;
1002 p->thread.ksp = sp;
cbc9565e 1003#ifdef CONFIG_PPC32
85218827
KG
1004 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1005 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1006#endif
28d170ab
ON
1007#ifdef CONFIG_HAVE_HW_BREAKPOINT
1008 p->thread.ptrace_bps[0] = NULL;
1009#endif
1010
94491685 1011#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 1012 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 1013 unsigned long sp_vsid;
3c726f8d 1014 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 1015
44ae3ab3 1016 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
1017 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1018 << SLB_VSID_SHIFT_1T;
1019 else
1020 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1021 << SLB_VSID_SHIFT;
3c726f8d 1022 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1023 p->thread.ksp_vsid = sp_vsid;
1024 }
747bea91 1025#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1026#ifdef CONFIG_PPC64
1027 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1028 p->thread.dscr_inherit = current->thread.dscr_inherit;
1029 p->thread.dscr = current->thread.dscr;
efcac658 1030 }
92779245
HM
1031 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1032 p->thread.ppr = INIT_PPR;
efcac658 1033#endif
06d67d54
PM
1034 /*
1035 * The PPC64 ABI makes use of a TOC to contain function
1036 * pointers. The function (ret_from_except) is actually a pointer
1037 * to the TOC entry. The first entry is a pointer to the actual
1038 * function.
58254e10 1039 */
747bea91 1040#ifdef CONFIG_PPC64
58254e10 1041 kregs->nip = *((unsigned long *)f);
06d67d54 1042#else
58254e10 1043 kregs->nip = (unsigned long)f;
06d67d54 1044#endif
14cf11af
PM
1045 return 0;
1046}
1047
1048/*
1049 * Set up a thread for executing a new program
1050 */
06d67d54 1051void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1052{
90eac727
ME
1053#ifdef CONFIG_PPC64
1054 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1055#endif
1056
06d67d54
PM
1057 /*
1058 * If we exec out of a kernel thread then thread.regs will not be
1059 * set. Do it now.
1060 */
1061 if (!current->thread.regs) {
0cec6fd1
AV
1062 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1063 current->thread.regs = regs - 1;
06d67d54
PM
1064 }
1065
14cf11af
PM
1066 memset(regs->gpr, 0, sizeof(regs->gpr));
1067 regs->ctr = 0;
1068 regs->link = 0;
1069 regs->xer = 0;
1070 regs->ccr = 0;
14cf11af 1071 regs->gpr[1] = sp;
06d67d54 1072
474f8196
RM
1073 /*
1074 * We have just cleared all the nonvolatile GPRs, so make
1075 * FULL_REGS(regs) return true. This is necessary to allow
1076 * ptrace to examine the thread immediately after exec.
1077 */
1078 regs->trap &= ~1UL;
1079
06d67d54
PM
1080#ifdef CONFIG_PPC32
1081 regs->mq = 0;
1082 regs->nip = start;
14cf11af 1083 regs->msr = MSR_USER;
06d67d54 1084#else
9904b005 1085 if (!is_32bit_task()) {
90eac727 1086 unsigned long entry, toc;
06d67d54
PM
1087
1088 /* start is a relocated pointer to the function descriptor for
1089 * the elf _start routine. The first entry in the function
1090 * descriptor is the entry address of _start and the second
1091 * entry is the TOC value we need to use.
1092 */
1093 __get_user(entry, (unsigned long __user *)start);
1094 __get_user(toc, (unsigned long __user *)start+1);
1095
1096 /* Check whether the e_entry function descriptor entries
1097 * need to be relocated before we can use them.
1098 */
1099 if (load_addr != 0) {
1100 entry += load_addr;
1101 toc += load_addr;
1102 }
1103 regs->nip = entry;
1104 regs->gpr[2] = toc;
1105 regs->msr = MSR_USER64;
d4bf9a78
SR
1106 } else {
1107 regs->nip = start;
1108 regs->gpr[2] = 0;
1109 regs->msr = MSR_USER32;
06d67d54
PM
1110 }
1111#endif
48abec07 1112 discard_lazy_cpu_state();
ce48b210
MN
1113#ifdef CONFIG_VSX
1114 current->thread.used_vsr = 0;
1115#endif
de79f7b9 1116 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
14cf11af 1117#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1118 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1119 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
1120 current->thread.vrsave = 0;
1121 current->thread.used_vr = 0;
1122#endif /* CONFIG_ALTIVEC */
1123#ifdef CONFIG_SPE
1124 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1125 current->thread.acc = 0;
1126 current->thread.spefscr = 0;
1127 current->thread.used_spe = 0;
1128#endif /* CONFIG_SPE */
bc2a9408
MN
1129#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1130 if (cpu_has_feature(CPU_FTR_TM))
1131 regs->msr |= MSR_TM;
1132 current->thread.tm_tfhar = 0;
1133 current->thread.tm_texasr = 0;
1134 current->thread.tm_tfiar = 0;
1135#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1136}
1137
1138#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1139 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1140
1141int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1142{
1143 struct pt_regs *regs = tsk->thread.regs;
1144
1145 /* This is a bit hairy. If we are an SPE enabled processor
1146 * (have embedded fp) we store the IEEE exception enable flags in
1147 * fpexc_mode. fpexc_mode is also used for setting FP exception
1148 * mode (asyn, precise, disabled) for 'Classic' FP. */
1149 if (val & PR_FP_EXC_SW_ENABLE) {
1150#ifdef CONFIG_SPE
5e14d21e
KG
1151 if (cpu_has_feature(CPU_FTR_SPE)) {
1152 tsk->thread.fpexc_mode = val &
1153 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1154 return 0;
1155 } else {
1156 return -EINVAL;
1157 }
14cf11af
PM
1158#else
1159 return -EINVAL;
1160#endif
14cf11af 1161 }
06d67d54
PM
1162
1163 /* on a CONFIG_SPE this does not hurt us. The bits that
1164 * __pack_fe01 use do not overlap with bits used for
1165 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1166 * on CONFIG_SPE implementations are reserved so writing to
1167 * them does not change anything */
1168 if (val > PR_FP_EXC_PRECISE)
1169 return -EINVAL;
1170 tsk->thread.fpexc_mode = __pack_fe01(val);
1171 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1172 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1173 | tsk->thread.fpexc_mode;
14cf11af
PM
1174 return 0;
1175}
1176
1177int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1178{
1179 unsigned int val;
1180
1181 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1182#ifdef CONFIG_SPE
5e14d21e
KG
1183 if (cpu_has_feature(CPU_FTR_SPE))
1184 val = tsk->thread.fpexc_mode;
1185 else
1186 return -EINVAL;
14cf11af
PM
1187#else
1188 return -EINVAL;
1189#endif
1190 else
1191 val = __unpack_fe01(tsk->thread.fpexc_mode);
1192 return put_user(val, (unsigned int __user *) adr);
1193}
1194
fab5db97
PM
1195int set_endian(struct task_struct *tsk, unsigned int val)
1196{
1197 struct pt_regs *regs = tsk->thread.regs;
1198
1199 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1200 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1201 return -EINVAL;
1202
1203 if (regs == NULL)
1204 return -EINVAL;
1205
1206 if (val == PR_ENDIAN_BIG)
1207 regs->msr &= ~MSR_LE;
1208 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1209 regs->msr |= MSR_LE;
1210 else
1211 return -EINVAL;
1212
1213 return 0;
1214}
1215
1216int get_endian(struct task_struct *tsk, unsigned long adr)
1217{
1218 struct pt_regs *regs = tsk->thread.regs;
1219 unsigned int val;
1220
1221 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1222 !cpu_has_feature(CPU_FTR_REAL_LE))
1223 return -EINVAL;
1224
1225 if (regs == NULL)
1226 return -EINVAL;
1227
1228 if (regs->msr & MSR_LE) {
1229 if (cpu_has_feature(CPU_FTR_REAL_LE))
1230 val = PR_ENDIAN_LITTLE;
1231 else
1232 val = PR_ENDIAN_PPC_LITTLE;
1233 } else
1234 val = PR_ENDIAN_BIG;
1235
1236 return put_user(val, (unsigned int __user *)adr);
1237}
1238
e9370ae1
PM
1239int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1240{
1241 tsk->thread.align_ctl = val;
1242 return 0;
1243}
1244
1245int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1246{
1247 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1248}
1249
bb72c481
PM
1250static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1251 unsigned long nbytes)
1252{
1253 unsigned long stack_page;
1254 unsigned long cpu = task_cpu(p);
1255
1256 /*
1257 * Avoid crashing if the stack has overflowed and corrupted
1258 * task_cpu(p), which is in the thread_info struct.
1259 */
1260 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1261 stack_page = (unsigned long) hardirq_ctx[cpu];
1262 if (sp >= stack_page + sizeof(struct thread_struct)
1263 && sp <= stack_page + THREAD_SIZE - nbytes)
1264 return 1;
1265
1266 stack_page = (unsigned long) softirq_ctx[cpu];
1267 if (sp >= stack_page + sizeof(struct thread_struct)
1268 && sp <= stack_page + THREAD_SIZE - nbytes)
1269 return 1;
1270 }
1271 return 0;
1272}
1273
2f25194d 1274int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1275 unsigned long nbytes)
1276{
0cec6fd1 1277 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1278
1279 if (sp >= stack_page + sizeof(struct thread_struct)
1280 && sp <= stack_page + THREAD_SIZE - nbytes)
1281 return 1;
1282
bb72c481 1283 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1284}
1285
2f25194d
AB
1286EXPORT_SYMBOL(validate_sp);
1287
14cf11af
PM
1288unsigned long get_wchan(struct task_struct *p)
1289{
1290 unsigned long ip, sp;
1291 int count = 0;
1292
1293 if (!p || p == current || p->state == TASK_RUNNING)
1294 return 0;
1295
1296 sp = p->thread.ksp;
ec2b36b9 1297 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1298 return 0;
1299
1300 do {
1301 sp = *(unsigned long *)sp;
ec2b36b9 1302 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1303 return 0;
1304 if (count > 0) {
ec2b36b9 1305 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1306 if (!in_sched_functions(ip))
1307 return ip;
1308 }
1309 } while (count++ < 16);
1310 return 0;
1311}
06d67d54 1312
c4d04be1 1313static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1314
1315void show_stack(struct task_struct *tsk, unsigned long *stack)
1316{
1317 unsigned long sp, ip, lr, newsp;
1318 int count = 0;
1319 int firstframe = 1;
6794c782
SR
1320#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1321 int curr_frame = current->curr_ret_stack;
1322 extern void return_to_handler(void);
9135c3cc
SR
1323 unsigned long rth = (unsigned long)return_to_handler;
1324 unsigned long mrth = -1;
6794c782 1325#ifdef CONFIG_PPC64
9135c3cc
SR
1326 extern void mod_return_to_handler(void);
1327 rth = *(unsigned long *)rth;
1328 mrth = (unsigned long)mod_return_to_handler;
1329 mrth = *(unsigned long *)mrth;
6794c782
SR
1330#endif
1331#endif
06d67d54
PM
1332
1333 sp = (unsigned long) stack;
1334 if (tsk == NULL)
1335 tsk = current;
1336 if (sp == 0) {
1337 if (tsk == current)
1338 asm("mr %0,1" : "=r" (sp));
1339 else
1340 sp = tsk->thread.ksp;
1341 }
1342
1343 lr = 0;
1344 printk("Call Trace:\n");
1345 do {
ec2b36b9 1346 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1347 return;
1348
1349 stack = (unsigned long *) sp;
1350 newsp = stack[0];
ec2b36b9 1351 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1352 if (!firstframe || ip != lr) {
058c78f4 1353 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1354#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1355 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1356 printk(" (%pS)",
1357 (void *)current->ret_stack[curr_frame].ret);
1358 curr_frame--;
1359 }
1360#endif
06d67d54
PM
1361 if (firstframe)
1362 printk(" (unreliable)");
1363 printk("\n");
1364 }
1365 firstframe = 0;
1366
1367 /*
1368 * See if this is an exception frame.
1369 * We look for the "regshere" marker in the current frame.
1370 */
ec2b36b9
BH
1371 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1372 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1373 struct pt_regs *regs = (struct pt_regs *)
1374 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1375 lr = regs->link;
058c78f4
BH
1376 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1377 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1378 firstframe = 1;
1379 }
1380
1381 sp = newsp;
1382 } while (count++ < kstack_depth_to_print);
1383}
1384
cb2c9b27 1385#ifdef CONFIG_PPC64
fe1952fc 1386/* Called with hard IRQs off */
0e37739b 1387void notrace __ppc64_runlatch_on(void)
cb2c9b27 1388{
fe1952fc 1389 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1390 unsigned long ctrl;
1391
fe1952fc
BH
1392 ctrl = mfspr(SPRN_CTRLF);
1393 ctrl |= CTRL_RUNLATCH;
1394 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1395
fae2e0fb 1396 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1397}
1398
fe1952fc 1399/* Called with hard IRQs off */
0e37739b 1400void notrace __ppc64_runlatch_off(void)
cb2c9b27 1401{
fe1952fc 1402 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1403 unsigned long ctrl;
1404
fae2e0fb 1405 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1406
4138d653
AB
1407 ctrl = mfspr(SPRN_CTRLF);
1408 ctrl &= ~CTRL_RUNLATCH;
1409 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1410}
fe1952fc 1411#endif /* CONFIG_PPC64 */
f6a61680 1412
d839088c
AB
1413unsigned long arch_align_stack(unsigned long sp)
1414{
1415 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1416 sp -= get_random_int() & ~PAGE_MASK;
1417 return sp & ~0xf;
1418}
912f9ee2
AB
1419
1420static inline unsigned long brk_rnd(void)
1421{
1422 unsigned long rnd = 0;
1423
1424 /* 8MB for 32bit, 1GB for 64bit */
1425 if (is_32bit_task())
1426 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1427 else
1428 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1429
1430 return rnd << PAGE_SHIFT;
1431}
1432
1433unsigned long arch_randomize_brk(struct mm_struct *mm)
1434{
8bbde7a7
AB
1435 unsigned long base = mm->brk;
1436 unsigned long ret;
1437
ce7a35c7 1438#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1439 /*
1440 * If we are using 1TB segments and we are allowed to randomise
1441 * the heap, we can put it above 1TB so it is backed by a 1TB
1442 * segment. Otherwise the heap will be in the bottom 1TB
1443 * which always uses 256MB segments and this may result in a
1444 * performance penalty.
1445 */
1446 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1447 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1448#endif
1449
1450 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1451
1452 if (ret < mm->brk)
1453 return mm->brk;
1454
1455 return ret;
1456}
501cb16d
AB
1457
1458unsigned long randomize_et_dyn(unsigned long base)
1459{
1460 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1461
1462 if (ret < base)
1463 return base;
1464
1465 return ret;
1466}