]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/prom.c
[PATCH] powerpc: Create a trampoline for the fwnmi vectors
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/system.h>
42#include <asm/mmu.h>
43#include <asm/pgtable.h>
44#include <asm/pci.h>
45#include <asm/iommu.h>
46#include <asm/btext.h>
47#include <asm/sections.h>
48#include <asm/machdep.h>
49#include <asm/pSeries_reconfig.h>
40ef8cbc 50#include <asm/pci-bridge.h>
9b6b563c
PM
51
52#ifdef DEBUG
53#define DBG(fmt...) printk(KERN_ERR fmt)
54#else
55#define DBG(fmt...)
56#endif
57
58struct pci_reg_property {
59 struct pci_address addr;
60 u32 size_hi;
61 u32 size_lo;
62};
63
64struct isa_reg_property {
65 u32 space;
66 u32 address;
67 u32 size;
68};
69
70
71typedef int interpret_func(struct device_node *, unsigned long *,
72 int, int, int);
73
9b6b563c
PM
74static int __initdata dt_root_addr_cells;
75static int __initdata dt_root_size_cells;
76
77#ifdef CONFIG_PPC64
78static int __initdata iommu_is_off;
79int __initdata iommu_force_on;
cf00a8d1 80unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
81#endif
82
83typedef u32 cell_t;
84
85#if 0
86static struct boot_param_header *initial_boot_params __initdata;
87#else
88struct boot_param_header *initial_boot_params;
89#endif
90
91static struct device_node *allnodes = NULL;
92
93/* use when traversing tree through the allnext, child, sibling,
94 * or parent members of struct device_node.
95 */
96static DEFINE_RWLOCK(devtree_lock);
97
98/* export that to outside world */
99struct device_node *of_chosen;
100
101struct device_node *dflt_interrupt_controller;
102int num_interrupt_controllers;
103
9b6b563c
PM
104/*
105 * Wrapper for allocating memory for various data that needs to be
106 * attached to device nodes as they are processed at boot or when
107 * added to the device tree later (e.g. DLPAR). At boot there is
108 * already a region reserved so we just increment *mem_start by size;
109 * otherwise we call kmalloc.
110 */
111static void * prom_alloc(unsigned long size, unsigned long *mem_start)
112{
113 unsigned long tmp;
114
115 if (!mem_start)
116 return kmalloc(size, GFP_KERNEL);
117
118 tmp = *mem_start;
119 *mem_start += size;
120 return (void *)tmp;
121}
122
123/*
124 * Find the device_node with a given phandle.
125 */
126static struct device_node * find_phandle(phandle ph)
127{
128 struct device_node *np;
129
130 for (np = allnodes; np != 0; np = np->allnext)
131 if (np->linux_phandle == ph)
132 return np;
133 return NULL;
134}
135
136/*
137 * Find the interrupt parent of a node.
138 */
139static struct device_node * __devinit intr_parent(struct device_node *p)
140{
141 phandle *parp;
142
143 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
144 if (parp == NULL)
145 return p->parent;
146 p = find_phandle(*parp);
147 if (p != NULL)
148 return p;
149 /*
150 * On a powermac booted with BootX, we don't get to know the
151 * phandles for any nodes, so find_phandle will return NULL.
152 * Fortunately these machines only have one interrupt controller
153 * so there isn't in fact any ambiguity. -- paulus
154 */
155 if (num_interrupt_controllers == 1)
156 p = dflt_interrupt_controller;
157 return p;
158}
159
160/*
161 * Find out the size of each entry of the interrupts property
162 * for a node.
163 */
164int __devinit prom_n_intr_cells(struct device_node *np)
165{
166 struct device_node *p;
167 unsigned int *icp;
168
169 for (p = np; (p = intr_parent(p)) != NULL; ) {
170 icp = (unsigned int *)
171 get_property(p, "#interrupt-cells", NULL);
172 if (icp != NULL)
173 return *icp;
174 if (get_property(p, "interrupt-controller", NULL) != NULL
175 || get_property(p, "interrupt-map", NULL) != NULL) {
176 printk("oops, node %s doesn't have #interrupt-cells\n",
177 p->full_name);
178 return 1;
179 }
180 }
181#ifdef DEBUG_IRQ
182 printk("prom_n_intr_cells failed for %s\n", np->full_name);
183#endif
184 return 1;
185}
186
187/*
188 * Map an interrupt from a device up to the platform interrupt
189 * descriptor.
190 */
191static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
192 struct device_node *np, unsigned int *ints,
193 int nintrc)
194{
195 struct device_node *p, *ipar;
196 unsigned int *imap, *imask, *ip;
197 int i, imaplen, match;
198 int newintrc = 0, newaddrc = 0;
199 unsigned int *reg;
200 int naddrc;
201
202 reg = (unsigned int *) get_property(np, "reg", NULL);
203 naddrc = prom_n_addr_cells(np);
204 p = intr_parent(np);
205 while (p != NULL) {
206 if (get_property(p, "interrupt-controller", NULL) != NULL)
207 /* this node is an interrupt controller, stop here */
208 break;
209 imap = (unsigned int *)
210 get_property(p, "interrupt-map", &imaplen);
211 if (imap == NULL) {
212 p = intr_parent(p);
213 continue;
214 }
215 imask = (unsigned int *)
216 get_property(p, "interrupt-map-mask", NULL);
217 if (imask == NULL) {
218 printk("oops, %s has interrupt-map but no mask\n",
219 p->full_name);
220 return 0;
221 }
222 imaplen /= sizeof(unsigned int);
223 match = 0;
224 ipar = NULL;
225 while (imaplen > 0 && !match) {
226 /* check the child-interrupt field */
227 match = 1;
228 for (i = 0; i < naddrc && match; ++i)
229 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
230 for (; i < naddrc + nintrc && match; ++i)
231 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
232 imap += naddrc + nintrc;
233 imaplen -= naddrc + nintrc;
234 /* grab the interrupt parent */
235 ipar = find_phandle((phandle) *imap++);
236 --imaplen;
237 if (ipar == NULL && num_interrupt_controllers == 1)
238 /* cope with BootX not giving us phandles */
239 ipar = dflt_interrupt_controller;
240 if (ipar == NULL) {
241 printk("oops, no int parent %x in map of %s\n",
242 imap[-1], p->full_name);
243 return 0;
244 }
245 /* find the parent's # addr and intr cells */
246 ip = (unsigned int *)
247 get_property(ipar, "#interrupt-cells", NULL);
248 if (ip == NULL) {
249 printk("oops, no #interrupt-cells on %s\n",
250 ipar->full_name);
251 return 0;
252 }
253 newintrc = *ip;
254 ip = (unsigned int *)
255 get_property(ipar, "#address-cells", NULL);
256 newaddrc = (ip == NULL)? 0: *ip;
257 imap += newaddrc + newintrc;
258 imaplen -= newaddrc + newintrc;
259 }
260 if (imaplen < 0) {
261 printk("oops, error decoding int-map on %s, len=%d\n",
262 p->full_name, imaplen);
263 return 0;
264 }
265 if (!match) {
266#ifdef DEBUG_IRQ
267 printk("oops, no match in %s int-map for %s\n",
268 p->full_name, np->full_name);
269#endif
270 return 0;
271 }
272 p = ipar;
273 naddrc = newaddrc;
274 nintrc = newintrc;
275 ints = imap - nintrc;
276 reg = ints - naddrc;
277 }
278 if (p == NULL) {
279#ifdef DEBUG_IRQ
280 printk("hmmm, int tree for %s doesn't have ctrler\n",
281 np->full_name);
282#endif
283 return 0;
284 }
285 *irq = ints;
286 *ictrler = p;
287 return nintrc;
288}
289
6d0124fc
PM
290static unsigned char map_isa_senses[4] = {
291 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
292 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
293 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
294 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
295};
296
297static unsigned char map_mpic_senses[4] = {
298 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
299 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
300 /* 2 seems to be used for the 8259 cascade... */
301 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
302 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
303};
304
9b6b563c
PM
305static int __devinit finish_node_interrupts(struct device_node *np,
306 unsigned long *mem_start,
307 int measure_only)
308{
309 unsigned int *ints;
310 int intlen, intrcells, intrcount;
6d0124fc 311 int i, j, n, sense;
9b6b563c
PM
312 unsigned int *irq, virq;
313 struct device_node *ic;
314
a575b807
PM
315 if (num_interrupt_controllers == 0) {
316 /*
317 * Old machines just have a list of interrupt numbers
318 * and no interrupt-controller nodes.
319 */
320 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
321 &intlen);
322 /* XXX old interpret_pci_props looked in parent too */
323 /* XXX old interpret_macio_props looked for interrupts
324 before AAPL,interrupts */
325 if (ints == NULL)
326 ints = (unsigned int *) get_property(np, "interrupts",
327 &intlen);
328 if (ints == NULL)
329 return 0;
330
331 np->n_intrs = intlen / sizeof(unsigned int);
332 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
333 mem_start);
334 if (!np->intrs)
335 return -ENOMEM;
336 if (measure_only)
337 return 0;
338
339 for (i = 0; i < np->n_intrs; ++i) {
340 np->intrs[i].line = *ints++;
6d0124fc
PM
341 np->intrs[i].sense = IRQ_SENSE_LEVEL
342 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
343 }
344 return 0;
345 }
346
9b6b563c
PM
347 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
348 if (ints == NULL)
349 return 0;
350 intrcells = prom_n_intr_cells(np);
351 intlen /= intrcells * sizeof(unsigned int);
352
353 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
354 if (!np->intrs)
355 return -ENOMEM;
356
357 if (measure_only)
358 return 0;
359
360 intrcount = 0;
361 for (i = 0; i < intlen; ++i, ints += intrcells) {
362 n = map_interrupt(&irq, &ic, np, ints, intrcells);
363 if (n <= 0)
364 continue;
365
366 /* don't map IRQ numbers under a cascaded 8259 controller */
367 if (ic && device_is_compatible(ic, "chrp,iic")) {
368 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
369 sense = (n > 1)? (irq[1] & 3): 3;
370 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 371 } else {
9b6b563c 372 virq = virt_irq_create_mapping(irq[0]);
6d0124fc 373#ifdef CONFIG_PPC64
9b6b563c
PM
374 if (virq == NO_IRQ) {
375 printk(KERN_CRIT "Could not allocate interrupt"
376 " number for %s\n", np->full_name);
377 continue;
378 }
9b6b563c 379#endif
6d0124fc
PM
380 np->intrs[intrcount].line = irq_offset_up(virq);
381 sense = (n > 1)? (irq[1] & 3): 1;
382 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
383 }
384
385#ifdef CONFIG_PPC64
386 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 387 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
388 char *name = get_property(ic->parent, "name", NULL);
389 if (name && !strcmp(name, "u3"))
390 np->intrs[intrcount].line += 128;
391 else if (!(name && !strcmp(name, "mac-io")))
392 /* ignore other cascaded controllers, such as
393 the k2-sata-root */
394 break;
395 }
396#endif
9b6b563c
PM
397 if (n > 2) {
398 printk("hmmm, got %d intr cells for %s:", n,
399 np->full_name);
400 for (j = 0; j < n; ++j)
401 printk(" %d", irq[j]);
402 printk("\n");
403 }
404 ++intrcount;
405 }
406 np->n_intrs = intrcount;
407
408 return 0;
409}
410
411static int __devinit interpret_pci_props(struct device_node *np,
412 unsigned long *mem_start,
413 int naddrc, int nsizec,
414 int measure_only)
415{
416 struct address_range *adr;
417 struct pci_reg_property *pci_addrs;
418 int i, l, n_addrs;
419
420 pci_addrs = (struct pci_reg_property *)
421 get_property(np, "assigned-addresses", &l);
422 if (!pci_addrs)
423 return 0;
424
425 n_addrs = l / sizeof(*pci_addrs);
426
427 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
428 if (!adr)
429 return -ENOMEM;
430
431 if (measure_only)
432 return 0;
433
434 np->addrs = adr;
435 np->n_addrs = n_addrs;
436
437 for (i = 0; i < n_addrs; i++) {
438 adr[i].space = pci_addrs[i].addr.a_hi;
439 adr[i].address = pci_addrs[i].addr.a_lo |
440 ((u64)pci_addrs[i].addr.a_mid << 32);
441 adr[i].size = pci_addrs[i].size_lo;
442 }
443
444 return 0;
445}
446
447static int __init interpret_dbdma_props(struct device_node *np,
448 unsigned long *mem_start,
449 int naddrc, int nsizec,
450 int measure_only)
451{
452 struct reg_property32 *rp;
453 struct address_range *adr;
454 unsigned long base_address;
455 int i, l;
456 struct device_node *db;
457
458 base_address = 0;
459 if (!measure_only) {
460 for (db = np->parent; db != NULL; db = db->parent) {
461 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
462 base_address = db->addrs[0].address;
463 break;
464 }
465 }
466 }
467
468 rp = (struct reg_property32 *) get_property(np, "reg", &l);
469 if (rp != 0 && l >= sizeof(struct reg_property32)) {
470 i = 0;
471 adr = (struct address_range *) (*mem_start);
472 while ((l -= sizeof(struct reg_property32)) >= 0) {
473 if (!measure_only) {
474 adr[i].space = 2;
475 adr[i].address = rp[i].address + base_address;
476 adr[i].size = rp[i].size;
477 }
478 ++i;
479 }
480 np->addrs = adr;
481 np->n_addrs = i;
482 (*mem_start) += i * sizeof(struct address_range);
483 }
484
485 return 0;
486}
487
488static int __init interpret_macio_props(struct device_node *np,
489 unsigned long *mem_start,
490 int naddrc, int nsizec,
491 int measure_only)
492{
493 struct reg_property32 *rp;
494 struct address_range *adr;
495 unsigned long base_address;
496 int i, l;
497 struct device_node *db;
498
499 base_address = 0;
500 if (!measure_only) {
501 for (db = np->parent; db != NULL; db = db->parent) {
502 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
503 base_address = db->addrs[0].address;
504 break;
505 }
506 }
507 }
508
509 rp = (struct reg_property32 *) get_property(np, "reg", &l);
510 if (rp != 0 && l >= sizeof(struct reg_property32)) {
511 i = 0;
512 adr = (struct address_range *) (*mem_start);
513 while ((l -= sizeof(struct reg_property32)) >= 0) {
514 if (!measure_only) {
515 adr[i].space = 2;
516 adr[i].address = rp[i].address + base_address;
517 adr[i].size = rp[i].size;
518 }
519 ++i;
520 }
521 np->addrs = adr;
522 np->n_addrs = i;
523 (*mem_start) += i * sizeof(struct address_range);
524 }
525
526 return 0;
527}
528
529static int __init interpret_isa_props(struct device_node *np,
530 unsigned long *mem_start,
531 int naddrc, int nsizec,
532 int measure_only)
533{
534 struct isa_reg_property *rp;
535 struct address_range *adr;
536 int i, l;
537
538 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
539 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
540 i = 0;
541 adr = (struct address_range *) (*mem_start);
542 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
543 if (!measure_only) {
544 adr[i].space = rp[i].space;
545 adr[i].address = rp[i].address;
546 adr[i].size = rp[i].size;
547 }
548 ++i;
549 }
550 np->addrs = adr;
551 np->n_addrs = i;
552 (*mem_start) += i * sizeof(struct address_range);
553 }
554
555 return 0;
556}
557
558static int __init interpret_root_props(struct device_node *np,
559 unsigned long *mem_start,
560 int naddrc, int nsizec,
561 int measure_only)
562{
563 struct address_range *adr;
564 int i, l;
565 unsigned int *rp;
566 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
567
568 rp = (unsigned int *) get_property(np, "reg", &l);
569 if (rp != 0 && l >= rpsize) {
570 i = 0;
571 adr = (struct address_range *) (*mem_start);
572 while ((l -= rpsize) >= 0) {
573 if (!measure_only) {
574 adr[i].space = 0;
575 adr[i].address = rp[naddrc - 1];
576 adr[i].size = rp[naddrc + nsizec - 1];
577 }
578 ++i;
579 rp += naddrc + nsizec;
580 }
581 np->addrs = adr;
582 np->n_addrs = i;
583 (*mem_start) += i * sizeof(struct address_range);
584 }
585
586 return 0;
587}
588
589static int __devinit finish_node(struct device_node *np,
590 unsigned long *mem_start,
591 interpret_func *ifunc,
592 int naddrc, int nsizec,
593 int measure_only)
594{
595 struct device_node *child;
596 int *ip, rc = 0;
597
598 /* get the device addresses and interrupts */
599 if (ifunc != NULL)
600 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
601 if (rc)
602 goto out;
603
604 rc = finish_node_interrupts(np, mem_start, measure_only);
605 if (rc)
606 goto out;
607
608 /* Look for #address-cells and #size-cells properties. */
609 ip = (int *) get_property(np, "#address-cells", NULL);
610 if (ip != NULL)
611 naddrc = *ip;
612 ip = (int *) get_property(np, "#size-cells", NULL);
613 if (ip != NULL)
614 nsizec = *ip;
615
616 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
617 ifunc = interpret_root_props;
618 else if (np->type == 0)
619 ifunc = NULL;
620 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
621 ifunc = interpret_pci_props;
622 else if (!strcmp(np->type, "dbdma"))
623 ifunc = interpret_dbdma_props;
624 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
625 ifunc = interpret_macio_props;
626 else if (!strcmp(np->type, "isa"))
627 ifunc = interpret_isa_props;
628 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
629 ifunc = interpret_root_props;
630 else if (!((ifunc == interpret_dbdma_props
631 || ifunc == interpret_macio_props)
632 && (!strcmp(np->type, "escc")
633 || !strcmp(np->type, "media-bay"))))
634 ifunc = NULL;
635
636 for (child = np->child; child != NULL; child = child->sibling) {
637 rc = finish_node(child, mem_start, ifunc,
638 naddrc, nsizec, measure_only);
639 if (rc)
640 goto out;
641 }
642out:
643 return rc;
644}
645
646static void __init scan_interrupt_controllers(void)
647{
648 struct device_node *np;
649 int n = 0;
650 char *name, *ic;
651 int iclen;
652
653 for (np = allnodes; np != NULL; np = np->allnext) {
654 ic = get_property(np, "interrupt-controller", &iclen);
655 name = get_property(np, "name", NULL);
656 /* checking iclen makes sure we don't get a false
657 match on /chosen.interrupt_controller */
658 if ((name != NULL
659 && strcmp(name, "interrupt-controller") == 0)
660 || (ic != NULL && iclen == 0
661 && strcmp(name, "AppleKiwi"))) {
662 if (n == 0)
663 dflt_interrupt_controller = np;
664 ++n;
665 }
666 }
667 num_interrupt_controllers = n;
668}
669
670/**
671 * finish_device_tree is called once things are running normally
672 * (i.e. with text and data mapped to the address they were linked at).
673 * It traverses the device tree and fills in some of the additional,
674 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
675 * mapping is also initialized at this point.
676 */
677void __init finish_device_tree(void)
678{
679 unsigned long start, end, size = 0;
680
681 DBG(" -> finish_device_tree\n");
682
683#ifdef CONFIG_PPC64
684 /* Initialize virtual IRQ map */
685 virt_irq_init();
686#endif
687 scan_interrupt_controllers();
688
689 /*
690 * Finish device-tree (pre-parsing some properties etc...)
691 * We do this in 2 passes. One with "measure_only" set, which
692 * will only measure the amount of memory needed, then we can
693 * allocate that memory, and call finish_node again. However,
694 * we must be careful as most routines will fail nowadays when
695 * prom_alloc() returns 0, so we must make sure our first pass
696 * doesn't start at 0. We pre-initialize size to 16 for that
697 * reason and then remove those additional 16 bytes
698 */
699 size = 16;
700 finish_node(allnodes, &size, NULL, 0, 0, 1);
701 size -= 16;
702 end = start = (unsigned long) __va(lmb_alloc(size, 128));
703 finish_node(allnodes, &end, NULL, 0, 0, 0);
704 BUG_ON(end != start + size);
705
706 DBG(" <- finish_device_tree\n");
707}
708
709static inline char *find_flat_dt_string(u32 offset)
710{
711 return ((char *)initial_boot_params) +
712 initial_boot_params->off_dt_strings + offset;
713}
714
715/**
716 * This function is used to scan the flattened device-tree, it is
717 * used to extract the memory informations at boot before we can
718 * unflatten the tree
719 */
3c726f8d
BH
720int __init of_scan_flat_dt(int (*it)(unsigned long node,
721 const char *uname, int depth,
722 void *data),
723 void *data)
9b6b563c
PM
724{
725 unsigned long p = ((unsigned long)initial_boot_params) +
726 initial_boot_params->off_dt_struct;
727 int rc = 0;
728 int depth = -1;
729
730 do {
731 u32 tag = *((u32 *)p);
732 char *pathp;
733
734 p += 4;
735 if (tag == OF_DT_END_NODE) {
736 depth --;
737 continue;
738 }
739 if (tag == OF_DT_NOP)
740 continue;
741 if (tag == OF_DT_END)
742 break;
743 if (tag == OF_DT_PROP) {
744 u32 sz = *((u32 *)p);
745 p += 8;
746 if (initial_boot_params->version < 0x10)
747 p = _ALIGN(p, sz >= 8 ? 8 : 4);
748 p += sz;
749 p = _ALIGN(p, 4);
750 continue;
751 }
752 if (tag != OF_DT_BEGIN_NODE) {
753 printk(KERN_WARNING "Invalid tag %x scanning flattened"
754 " device tree !\n", tag);
755 return -EINVAL;
756 }
757 depth++;
758 pathp = (char *)p;
759 p = _ALIGN(p + strlen(pathp) + 1, 4);
760 if ((*pathp) == '/') {
761 char *lp, *np;
762 for (lp = NULL, np = pathp; *np; np++)
763 if ((*np) == '/')
764 lp = np+1;
765 if (lp != NULL)
766 pathp = lp;
767 }
768 rc = it(p, pathp, depth, data);
769 if (rc != 0)
770 break;
771 } while(1);
772
773 return rc;
774}
775
776/**
777 * This function can be used within scan_flattened_dt callback to get
778 * access to properties
779 */
3c726f8d
BH
780void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
781 unsigned long *size)
9b6b563c
PM
782{
783 unsigned long p = node;
784
785 do {
786 u32 tag = *((u32 *)p);
787 u32 sz, noff;
788 const char *nstr;
789
790 p += 4;
791 if (tag == OF_DT_NOP)
792 continue;
793 if (tag != OF_DT_PROP)
794 return NULL;
795
796 sz = *((u32 *)p);
797 noff = *((u32 *)(p + 4));
798 p += 8;
799 if (initial_boot_params->version < 0x10)
800 p = _ALIGN(p, sz >= 8 ? 8 : 4);
801
802 nstr = find_flat_dt_string(noff);
803 if (nstr == NULL) {
804 printk(KERN_WARNING "Can't find property index"
805 " name !\n");
806 return NULL;
807 }
808 if (strcmp(name, nstr) == 0) {
809 if (size)
810 *size = sz;
811 return (void *)p;
812 }
813 p += sz;
814 p = _ALIGN(p, 4);
815 } while(1);
816}
817
818static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
819 unsigned long align)
820{
821 void *res;
822
823 *mem = _ALIGN(*mem, align);
824 res = (void *)*mem;
825 *mem += size;
826
827 return res;
828}
829
830static unsigned long __init unflatten_dt_node(unsigned long mem,
831 unsigned long *p,
832 struct device_node *dad,
833 struct device_node ***allnextpp,
834 unsigned long fpsize)
835{
836 struct device_node *np;
837 struct property *pp, **prev_pp = NULL;
838 char *pathp;
839 u32 tag;
840 unsigned int l, allocl;
841 int has_name = 0;
842 int new_format = 0;
843
844 tag = *((u32 *)(*p));
845 if (tag != OF_DT_BEGIN_NODE) {
846 printk("Weird tag at start of node: %x\n", tag);
847 return mem;
848 }
849 *p += 4;
850 pathp = (char *)*p;
851 l = allocl = strlen(pathp) + 1;
852 *p = _ALIGN(*p + l, 4);
853
854 /* version 0x10 has a more compact unit name here instead of the full
855 * path. we accumulate the full path size using "fpsize", we'll rebuild
856 * it later. We detect this because the first character of the name is
857 * not '/'.
858 */
859 if ((*pathp) != '/') {
860 new_format = 1;
861 if (fpsize == 0) {
862 /* root node: special case. fpsize accounts for path
863 * plus terminating zero. root node only has '/', so
864 * fpsize should be 2, but we want to avoid the first
865 * level nodes to have two '/' so we use fpsize 1 here
866 */
867 fpsize = 1;
868 allocl = 2;
869 } else {
870 /* account for '/' and path size minus terminal 0
871 * already in 'l'
872 */
873 fpsize += l;
874 allocl = fpsize;
875 }
876 }
877
878
879 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
880 __alignof__(struct device_node));
881 if (allnextpp) {
882 memset(np, 0, sizeof(*np));
883 np->full_name = ((char*)np) + sizeof(struct device_node);
884 if (new_format) {
885 char *p = np->full_name;
886 /* rebuild full path for new format */
887 if (dad && dad->parent) {
888 strcpy(p, dad->full_name);
889#ifdef DEBUG
890 if ((strlen(p) + l + 1) != allocl) {
891 DBG("%s: p: %d, l: %d, a: %d\n",
892 pathp, strlen(p), l, allocl);
893 }
894#endif
895 p += strlen(p);
896 }
897 *(p++) = '/';
898 memcpy(p, pathp, l);
899 } else
900 memcpy(np->full_name, pathp, l);
901 prev_pp = &np->properties;
902 **allnextpp = np;
903 *allnextpp = &np->allnext;
904 if (dad != NULL) {
905 np->parent = dad;
906 /* we temporarily use the next field as `last_child'*/
907 if (dad->next == 0)
908 dad->child = np;
909 else
910 dad->next->sibling = np;
911 dad->next = np;
912 }
913 kref_init(&np->kref);
914 }
915 while(1) {
916 u32 sz, noff;
917 char *pname;
918
919 tag = *((u32 *)(*p));
920 if (tag == OF_DT_NOP) {
921 *p += 4;
922 continue;
923 }
924 if (tag != OF_DT_PROP)
925 break;
926 *p += 4;
927 sz = *((u32 *)(*p));
928 noff = *((u32 *)((*p) + 4));
929 *p += 8;
930 if (initial_boot_params->version < 0x10)
931 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
932
933 pname = find_flat_dt_string(noff);
934 if (pname == NULL) {
935 printk("Can't find property name in list !\n");
936 break;
937 }
938 if (strcmp(pname, "name") == 0)
939 has_name = 1;
940 l = strlen(pname) + 1;
941 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
942 __alignof__(struct property));
943 if (allnextpp) {
944 if (strcmp(pname, "linux,phandle") == 0) {
945 np->node = *((u32 *)*p);
946 if (np->linux_phandle == 0)
947 np->linux_phandle = np->node;
948 }
949 if (strcmp(pname, "ibm,phandle") == 0)
950 np->linux_phandle = *((u32 *)*p);
951 pp->name = pname;
952 pp->length = sz;
953 pp->value = (void *)*p;
954 *prev_pp = pp;
955 prev_pp = &pp->next;
956 }
957 *p = _ALIGN((*p) + sz, 4);
958 }
959 /* with version 0x10 we may not have the name property, recreate
960 * it here from the unit name if absent
961 */
962 if (!has_name) {
963 char *p = pathp, *ps = pathp, *pa = NULL;
964 int sz;
965
966 while (*p) {
967 if ((*p) == '@')
968 pa = p;
969 if ((*p) == '/')
970 ps = p + 1;
971 p++;
972 }
973 if (pa < ps)
974 pa = p;
975 sz = (pa - ps) + 1;
976 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
977 __alignof__(struct property));
978 if (allnextpp) {
979 pp->name = "name";
980 pp->length = sz;
981 pp->value = (unsigned char *)(pp + 1);
982 *prev_pp = pp;
983 prev_pp = &pp->next;
984 memcpy(pp->value, ps, sz - 1);
985 ((char *)pp->value)[sz - 1] = 0;
986 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
987 }
988 }
989 if (allnextpp) {
990 *prev_pp = NULL;
991 np->name = get_property(np, "name", NULL);
992 np->type = get_property(np, "device_type", NULL);
993
994 if (!np->name)
995 np->name = "<NULL>";
996 if (!np->type)
997 np->type = "<NULL>";
998 }
999 while (tag == OF_DT_BEGIN_NODE) {
1000 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1001 tag = *((u32 *)(*p));
1002 }
1003 if (tag != OF_DT_END_NODE) {
1004 printk("Weird tag at end of node: %x\n", tag);
1005 return mem;
1006 }
1007 *p += 4;
1008 return mem;
1009}
1010
1011
1012/**
1013 * unflattens the device-tree passed by the firmware, creating the
1014 * tree of struct device_node. It also fills the "name" and "type"
1015 * pointers of the nodes so the normal device-tree walking functions
1016 * can be used (this used to be done by finish_device_tree)
1017 */
1018void __init unflatten_device_tree(void)
1019{
1020 unsigned long start, mem, size;
1021 struct device_node **allnextp = &allnodes;
1022 char *p = NULL;
1023 int l = 0;
1024
1025 DBG(" -> unflatten_device_tree()\n");
1026
1027 /* First pass, scan for size */
1028 start = ((unsigned long)initial_boot_params) +
1029 initial_boot_params->off_dt_struct;
1030 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1031 size = (size | 3) + 1;
1032
1033 DBG(" size is %lx, allocating...\n", size);
1034
1035 /* Allocate memory for the expanded device tree */
1036 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1037 if (!mem) {
1038 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1039 panic("Couldn't allocate memory with lmb_alloc()!\n");
1040 }
1041 mem = (unsigned long) __va(mem);
1042
1043 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1044
1045 DBG(" unflattening %lx...\n", mem);
1046
1047 /* Second pass, do actual unflattening */
1048 start = ((unsigned long)initial_boot_params) +
1049 initial_boot_params->off_dt_struct;
1050 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1051 if (*((u32 *)start) != OF_DT_END)
1052 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1053 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1054 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1055 ((u32 *)mem)[size / 4] );
1056 *allnextp = NULL;
1057
1058 /* Get pointer to OF "/chosen" node for use everywhere */
1059 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
1060 if (of_chosen == NULL)
1061 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
1062
1063 /* Retreive command line */
1064 if (of_chosen != NULL) {
1065 p = (char *)get_property(of_chosen, "bootargs", &l);
1066 if (p != NULL && l > 0)
1067 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1068 }
1069#ifdef CONFIG_CMDLINE
1070 if (l == 0 || (l == 1 && (*p) == 0))
1071 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1072#endif /* CONFIG_CMDLINE */
1073
1074 DBG("Command line is: %s\n", cmd_line);
1075
1076 DBG(" <- unflatten_device_tree()\n");
1077}
1078
1079
1080static int __init early_init_dt_scan_cpus(unsigned long node,
1081 const char *uname, int depth, void *data)
1082{
9b6b563c 1083 u32 *prop;
676e2497
SR
1084 unsigned long size;
1085 char *type = of_get_flat_dt_prop(node, "device_type", &size);
9b6b563c
PM
1086
1087 /* We are scanning "cpu" nodes only */
1088 if (type == NULL || strcmp(type, "cpu") != 0)
1089 return 0;
1090
80579e1f
PM
1091 boot_cpuid = 0;
1092 boot_cpuid_phys = 0;
9b6b563c
PM
1093 if (initial_boot_params && initial_boot_params->version >= 2) {
1094 /* version 2 of the kexec param format adds the phys cpuid
1095 * of booted proc.
1096 */
1097 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 1098 } else {
80579e1f 1099 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
1100 if (of_get_flat_dt_prop(node,
1101 "linux,boot-cpu", NULL) != NULL) {
1102 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
1103 if (prop != NULL)
1104 boot_cpuid_phys = *prop;
9b6b563c
PM
1105 }
1106 }
80579e1f 1107 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
1108
1109#ifdef CONFIG_ALTIVEC
1110 /* Check if we have a VMX and eventually update CPU features */
676e2497 1111 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
9b6b563c
PM
1112 if (prop && (*prop) > 0) {
1113 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1114 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1115 }
1116
1117 /* Same goes for Apple's "altivec" property */
3c726f8d 1118 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
1119 if (prop) {
1120 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1121 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1122 }
1123#endif /* CONFIG_ALTIVEC */
1124
1125#ifdef CONFIG_PPC_PSERIES
1126 /*
1127 * Check for an SMT capable CPU and set the CPU feature. We do
1128 * this by looking at the size of the ibm,ppc-interrupt-server#s
1129 * property
1130 */
3c726f8d 1131 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
1132 &size);
1133 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1134 if (prop && ((size / sizeof(u32)) > 1))
1135 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1136#endif
1137
1138 return 0;
1139}
1140
1141static int __init early_init_dt_scan_chosen(unsigned long node,
1142 const char *uname, int depth, void *data)
1143{
1144 u32 *prop;
1145 unsigned long *lprop;
1146
1147 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1148
a575b807
PM
1149 if (depth != 1 ||
1150 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
1151 return 0;
1152
1153 /* get platform type */
3c726f8d 1154 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
1155 if (prop == NULL)
1156 return 0;
60dda256 1157#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
1158 _machine = *prop;
1159#endif
1160
1161#ifdef CONFIG_PPC64
1162 /* check if iommu is forced on or off */
3c726f8d 1163 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 1164 iommu_is_off = 1;
3c726f8d 1165 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
1166 iommu_force_on = 1;
1167#endif
1168
3c726f8d 1169 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
1170 if (lprop)
1171 memory_limit = *lprop;
1172
1173#ifdef CONFIG_PPC64
3c726f8d 1174 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
1175 if (lprop)
1176 tce_alloc_start = *lprop;
3c726f8d 1177 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
1178 if (lprop)
1179 tce_alloc_end = *lprop;
1180#endif
1181
1182#ifdef CONFIG_PPC_RTAS
1183 /* To help early debugging via the front panel, we retreive a minimal
1184 * set of RTAS infos now if available
1185 */
1186 {
1187 u64 *basep, *entryp;
1188
3c726f8d
BH
1189 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1190 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1191 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
1192 if (basep && entryp && prop) {
1193 rtas.base = *basep;
1194 rtas.entry = *entryp;
1195 rtas.size = *prop;
1196 }
1197 }
1198#endif /* CONFIG_PPC_RTAS */
1199
1200 /* break now */
1201 return 1;
1202}
1203
1204static int __init early_init_dt_scan_root(unsigned long node,
1205 const char *uname, int depth, void *data)
1206{
1207 u32 *prop;
1208
1209 if (depth != 0)
1210 return 0;
1211
3c726f8d 1212 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
1213 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1214 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1215
3c726f8d 1216 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
1217 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1218 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1219
1220 /* break now */
1221 return 1;
1222}
1223
1224static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1225{
1226 cell_t *p = *cellp;
1227 unsigned long r;
1228
1229 /* Ignore more than 2 cells */
1230 while (s > sizeof(unsigned long) / 4) {
1231 p++;
1232 s--;
1233 }
1234 r = *p++;
1235#ifdef CONFIG_PPC64
1236 if (s > 1) {
1237 r <<= 32;
1238 r |= *(p++);
1239 s--;
1240 }
1241#endif
1242
1243 *cellp = p;
1244 return r;
1245}
1246
1247
1248static int __init early_init_dt_scan_memory(unsigned long node,
1249 const char *uname, int depth, void *data)
1250{
3c726f8d 1251 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1252 cell_t *reg, *endp;
1253 unsigned long l;
1254
1255 /* We are scanning "memory" nodes only */
a23414be
PM
1256 if (type == NULL) {
1257 /*
1258 * The longtrail doesn't have a device_type on the
1259 * /memory node, so look for the node called /memory@0.
1260 */
1261 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1262 return 0;
1263 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1264 return 0;
1265
3c726f8d 1266 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1267 if (reg == NULL)
1268 return 0;
1269
1270 endp = reg + (l / sizeof(cell_t));
1271
358c86fd 1272 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1273 uname, l, reg[0], reg[1], reg[2], reg[3]);
1274
1275 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1276 unsigned long base, size;
1277
1278 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1279 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1280
1281 if (size == 0)
1282 continue;
1283 DBG(" - %lx , %lx\n", base, size);
1284#ifdef CONFIG_PPC64
1285 if (iommu_is_off) {
1286 if (base >= 0x80000000ul)
1287 continue;
1288 if ((base + size) > 0x80000000ul)
1289 size = 0x80000000ul - base;
1290 }
1291#endif
1292 lmb_add(base, size);
1293 }
1294 return 0;
1295}
1296
1297static void __init early_reserve_mem(void)
1298{
1299 unsigned long base, size;
1300 unsigned long *reserve_map;
1301
1302 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1303 initial_boot_params->off_mem_rsvmap);
1304 while (1) {
1305 base = *(reserve_map++);
1306 size = *(reserve_map++);
1307 if (size == 0)
1308 break;
1309 DBG("reserving: %lx -> %lx\n", base, size);
1310 lmb_reserve(base, size);
1311 }
1312
1313#if 0
1314 DBG("memory reserved, lmbs :\n");
1315 lmb_dump_all();
1316#endif
1317}
1318
1319void __init early_init_devtree(void *params)
1320{
1321 DBG(" -> early_init_devtree()\n");
1322
1323 /* Setup flat device-tree pointer */
1324 initial_boot_params = params;
1325
1326 /* Retrieve various informations from the /chosen node of the
1327 * device-tree, including the platform type, initrd location and
1328 * size, TCE reserve, and more ...
1329 */
3c726f8d 1330 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1331
1332 /* Scan memory nodes and rebuild LMBs */
1333 lmb_init();
3c726f8d
BH
1334 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1335 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1336 lmb_enforce_memory_limit(memory_limit);
1337 lmb_analyze();
9b6b563c
PM
1338 lmb_reserve(0, __pa(klimit));
1339
1340 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1341
1342 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1343 early_reserve_mem();
1344
1345 DBG("Scanning CPUs ...\n");
1346
3c726f8d
BH
1347 /* Retreive CPU related informations from the flat tree
1348 * (altivec support, boot CPU ID, ...)
9b6b563c 1349 */
3c726f8d 1350 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1351
9b6b563c
PM
1352 DBG(" <- early_init_devtree()\n");
1353}
1354
1355#undef printk
1356
1357int
1358prom_n_addr_cells(struct device_node* np)
1359{
1360 int* ip;
1361 do {
1362 if (np->parent)
1363 np = np->parent;
1364 ip = (int *) get_property(np, "#address-cells", NULL);
1365 if (ip != NULL)
1366 return *ip;
1367 } while (np->parent);
1368 /* No #address-cells property for the root node, default to 1 */
1369 return 1;
1370}
1dfc6772 1371EXPORT_SYMBOL(prom_n_addr_cells);
9b6b563c
PM
1372
1373int
1374prom_n_size_cells(struct device_node* np)
1375{
1376 int* ip;
1377 do {
1378 if (np->parent)
1379 np = np->parent;
1380 ip = (int *) get_property(np, "#size-cells", NULL);
1381 if (ip != NULL)
1382 return *ip;
1383 } while (np->parent);
1384 /* No #size-cells property for the root node, default to 1 */
1385 return 1;
1386}
1dfc6772 1387EXPORT_SYMBOL(prom_n_size_cells);
9b6b563c
PM
1388
1389/**
1390 * Work out the sense (active-low level / active-high edge)
1391 * of each interrupt from the device tree.
1392 */
1393void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1394{
1395 struct device_node *np;
1396 int i, j;
1397
1398 /* default to level-triggered */
6d0124fc 1399 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1400
1401 for (np = allnodes; np != 0; np = np->allnext) {
1402 for (j = 0; j < np->n_intrs; j++) {
1403 i = np->intrs[j].line;
1404 if (i >= off && i < max)
6d0124fc 1405 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1406 }
1407 }
1408}
1409
1410/**
1411 * Construct and return a list of the device_nodes with a given name.
1412 */
1413struct device_node *find_devices(const char *name)
1414{
1415 struct device_node *head, **prevp, *np;
1416
1417 prevp = &head;
1418 for (np = allnodes; np != 0; np = np->allnext) {
1419 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1420 *prevp = np;
1421 prevp = &np->next;
1422 }
1423 }
1424 *prevp = NULL;
1425 return head;
1426}
1427EXPORT_SYMBOL(find_devices);
1428
1429/**
1430 * Construct and return a list of the device_nodes with a given type.
1431 */
1432struct device_node *find_type_devices(const char *type)
1433{
1434 struct device_node *head, **prevp, *np;
1435
1436 prevp = &head;
1437 for (np = allnodes; np != 0; np = np->allnext) {
1438 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1439 *prevp = np;
1440 prevp = &np->next;
1441 }
1442 }
1443 *prevp = NULL;
1444 return head;
1445}
1446EXPORT_SYMBOL(find_type_devices);
1447
1448/**
1449 * Returns all nodes linked together
1450 */
1451struct device_node *find_all_nodes(void)
1452{
1453 struct device_node *head, **prevp, *np;
1454
1455 prevp = &head;
1456 for (np = allnodes; np != 0; np = np->allnext) {
1457 *prevp = np;
1458 prevp = &np->next;
1459 }
1460 *prevp = NULL;
1461 return head;
1462}
1463EXPORT_SYMBOL(find_all_nodes);
1464
1465/** Checks if the given "compat" string matches one of the strings in
1466 * the device's "compatible" property
1467 */
1468int device_is_compatible(struct device_node *device, const char *compat)
1469{
1470 const char* cp;
1471 int cplen, l;
1472
1473 cp = (char *) get_property(device, "compatible", &cplen);
1474 if (cp == NULL)
1475 return 0;
1476 while (cplen > 0) {
1477 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1478 return 1;
1479 l = strlen(cp) + 1;
1480 cp += l;
1481 cplen -= l;
1482 }
1483
1484 return 0;
1485}
1486EXPORT_SYMBOL(device_is_compatible);
1487
1488
1489/**
1490 * Indicates whether the root node has a given value in its
1491 * compatible property.
1492 */
1493int machine_is_compatible(const char *compat)
1494{
1495 struct device_node *root;
1496 int rc = 0;
1497
1498 root = of_find_node_by_path("/");
1499 if (root) {
1500 rc = device_is_compatible(root, compat);
1501 of_node_put(root);
1502 }
1503 return rc;
1504}
1505EXPORT_SYMBOL(machine_is_compatible);
1506
1507/**
1508 * Construct and return a list of the device_nodes with a given type
1509 * and compatible property.
1510 */
1511struct device_node *find_compatible_devices(const char *type,
1512 const char *compat)
1513{
1514 struct device_node *head, **prevp, *np;
1515
1516 prevp = &head;
1517 for (np = allnodes; np != 0; np = np->allnext) {
1518 if (type != NULL
1519 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1520 continue;
1521 if (device_is_compatible(np, compat)) {
1522 *prevp = np;
1523 prevp = &np->next;
1524 }
1525 }
1526 *prevp = NULL;
1527 return head;
1528}
1529EXPORT_SYMBOL(find_compatible_devices);
1530
1531/**
1532 * Find the device_node with a given full_name.
1533 */
1534struct device_node *find_path_device(const char *path)
1535{
1536 struct device_node *np;
1537
1538 for (np = allnodes; np != 0; np = np->allnext)
1539 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1540 return np;
1541 return NULL;
1542}
1543EXPORT_SYMBOL(find_path_device);
1544
1545/*******
1546 *
1547 * New implementation of the OF "find" APIs, return a refcounted
1548 * object, call of_node_put() when done. The device tree and list
1549 * are protected by a rw_lock.
1550 *
1551 * Note that property management will need some locking as well,
1552 * this isn't dealt with yet.
1553 *
1554 *******/
1555
1556/**
1557 * of_find_node_by_name - Find a node by its "name" property
1558 * @from: The node to start searching from or NULL, the node
1559 * you pass will not be searched, only the next one
1560 * will; typically, you pass what the previous call
1561 * returned. of_node_put() will be called on it
1562 * @name: The name string to match against
1563 *
1564 * Returns a node pointer with refcount incremented, use
1565 * of_node_put() on it when done.
1566 */
1567struct device_node *of_find_node_by_name(struct device_node *from,
1568 const char *name)
1569{
1570 struct device_node *np;
1571
1572 read_lock(&devtree_lock);
1573 np = from ? from->allnext : allnodes;
1574 for (; np != 0; np = np->allnext)
1575 if (np->name != 0 && strcasecmp(np->name, name) == 0
1576 && of_node_get(np))
1577 break;
1578 if (from)
1579 of_node_put(from);
1580 read_unlock(&devtree_lock);
1581 return np;
1582}
1583EXPORT_SYMBOL(of_find_node_by_name);
1584
1585/**
1586 * of_find_node_by_type - Find a node by its "device_type" property
1587 * @from: The node to start searching from or NULL, the node
1588 * you pass will not be searched, only the next one
1589 * will; typically, you pass what the previous call
1590 * returned. of_node_put() will be called on it
1591 * @name: The type string to match against
1592 *
1593 * Returns a node pointer with refcount incremented, use
1594 * of_node_put() on it when done.
1595 */
1596struct device_node *of_find_node_by_type(struct device_node *from,
1597 const char *type)
1598{
1599 struct device_node *np;
1600
1601 read_lock(&devtree_lock);
1602 np = from ? from->allnext : allnodes;
1603 for (; np != 0; np = np->allnext)
1604 if (np->type != 0 && strcasecmp(np->type, type) == 0
1605 && of_node_get(np))
1606 break;
1607 if (from)
1608 of_node_put(from);
1609 read_unlock(&devtree_lock);
1610 return np;
1611}
1612EXPORT_SYMBOL(of_find_node_by_type);
1613
1614/**
1615 * of_find_compatible_node - Find a node based on type and one of the
1616 * tokens in its "compatible" property
1617 * @from: The node to start searching from or NULL, the node
1618 * you pass will not be searched, only the next one
1619 * will; typically, you pass what the previous call
1620 * returned. of_node_put() will be called on it
1621 * @type: The type string to match "device_type" or NULL to ignore
1622 * @compatible: The string to match to one of the tokens in the device
1623 * "compatible" list.
1624 *
1625 * Returns a node pointer with refcount incremented, use
1626 * of_node_put() on it when done.
1627 */
1628struct device_node *of_find_compatible_node(struct device_node *from,
1629 const char *type, const char *compatible)
1630{
1631 struct device_node *np;
1632
1633 read_lock(&devtree_lock);
1634 np = from ? from->allnext : allnodes;
1635 for (; np != 0; np = np->allnext) {
1636 if (type != NULL
1637 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1638 continue;
1639 if (device_is_compatible(np, compatible) && of_node_get(np))
1640 break;
1641 }
1642 if (from)
1643 of_node_put(from);
1644 read_unlock(&devtree_lock);
1645 return np;
1646}
1647EXPORT_SYMBOL(of_find_compatible_node);
1648
1649/**
1650 * of_find_node_by_path - Find a node matching a full OF path
1651 * @path: The full path to match
1652 *
1653 * Returns a node pointer with refcount incremented, use
1654 * of_node_put() on it when done.
1655 */
1656struct device_node *of_find_node_by_path(const char *path)
1657{
1658 struct device_node *np = allnodes;
1659
1660 read_lock(&devtree_lock);
1661 for (; np != 0; np = np->allnext) {
1662 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1663 && of_node_get(np))
1664 break;
1665 }
1666 read_unlock(&devtree_lock);
1667 return np;
1668}
1669EXPORT_SYMBOL(of_find_node_by_path);
1670
1671/**
1672 * of_find_node_by_phandle - Find a node given a phandle
1673 * @handle: phandle of the node to find
1674 *
1675 * Returns a node pointer with refcount incremented, use
1676 * of_node_put() on it when done.
1677 */
1678struct device_node *of_find_node_by_phandle(phandle handle)
1679{
1680 struct device_node *np;
1681
1682 read_lock(&devtree_lock);
1683 for (np = allnodes; np != 0; np = np->allnext)
1684 if (np->linux_phandle == handle)
1685 break;
1686 if (np)
1687 of_node_get(np);
1688 read_unlock(&devtree_lock);
1689 return np;
1690}
1691EXPORT_SYMBOL(of_find_node_by_phandle);
1692
1693/**
1694 * of_find_all_nodes - Get next node in global list
1695 * @prev: Previous node or NULL to start iteration
1696 * of_node_put() will be called on it
1697 *
1698 * Returns a node pointer with refcount incremented, use
1699 * of_node_put() on it when done.
1700 */
1701struct device_node *of_find_all_nodes(struct device_node *prev)
1702{
1703 struct device_node *np;
1704
1705 read_lock(&devtree_lock);
1706 np = prev ? prev->allnext : allnodes;
1707 for (; np != 0; np = np->allnext)
1708 if (of_node_get(np))
1709 break;
1710 if (prev)
1711 of_node_put(prev);
1712 read_unlock(&devtree_lock);
1713 return np;
1714}
1715EXPORT_SYMBOL(of_find_all_nodes);
1716
1717/**
1718 * of_get_parent - Get a node's parent if any
1719 * @node: Node to get parent
1720 *
1721 * Returns a node pointer with refcount incremented, use
1722 * of_node_put() on it when done.
1723 */
1724struct device_node *of_get_parent(const struct device_node *node)
1725{
1726 struct device_node *np;
1727
1728 if (!node)
1729 return NULL;
1730
1731 read_lock(&devtree_lock);
1732 np = of_node_get(node->parent);
1733 read_unlock(&devtree_lock);
1734 return np;
1735}
1736EXPORT_SYMBOL(of_get_parent);
1737
1738/**
1739 * of_get_next_child - Iterate a node childs
1740 * @node: parent node
1741 * @prev: previous child of the parent node, or NULL to get first
1742 *
1743 * Returns a node pointer with refcount incremented, use
1744 * of_node_put() on it when done.
1745 */
1746struct device_node *of_get_next_child(const struct device_node *node,
1747 struct device_node *prev)
1748{
1749 struct device_node *next;
1750
1751 read_lock(&devtree_lock);
1752 next = prev ? prev->sibling : node->child;
1753 for (; next != 0; next = next->sibling)
1754 if (of_node_get(next))
1755 break;
1756 if (prev)
1757 of_node_put(prev);
1758 read_unlock(&devtree_lock);
1759 return next;
1760}
1761EXPORT_SYMBOL(of_get_next_child);
1762
1763/**
1764 * of_node_get - Increment refcount of a node
1765 * @node: Node to inc refcount, NULL is supported to
1766 * simplify writing of callers
1767 *
1768 * Returns node.
1769 */
1770struct device_node *of_node_get(struct device_node *node)
1771{
1772 if (node)
1773 kref_get(&node->kref);
1774 return node;
1775}
1776EXPORT_SYMBOL(of_node_get);
1777
1778static inline struct device_node * kref_to_device_node(struct kref *kref)
1779{
1780 return container_of(kref, struct device_node, kref);
1781}
1782
1783/**
1784 * of_node_release - release a dynamically allocated node
1785 * @kref: kref element of the node to be released
1786 *
1787 * In of_node_put() this function is passed to kref_put()
1788 * as the destructor.
1789 */
1790static void of_node_release(struct kref *kref)
1791{
1792 struct device_node *node = kref_to_device_node(kref);
1793 struct property *prop = node->properties;
1794
1795 if (!OF_IS_DYNAMIC(node))
1796 return;
1797 while (prop) {
1798 struct property *next = prop->next;
1799 kfree(prop->name);
1800 kfree(prop->value);
1801 kfree(prop);
1802 prop = next;
1803 }
1804 kfree(node->intrs);
1805 kfree(node->addrs);
1806 kfree(node->full_name);
1807 kfree(node->data);
1808 kfree(node);
1809}
1810
1811/**
1812 * of_node_put - Decrement refcount of a node
1813 * @node: Node to dec refcount, NULL is supported to
1814 * simplify writing of callers
1815 *
1816 */
1817void of_node_put(struct device_node *node)
1818{
1819 if (node)
1820 kref_put(&node->kref, of_node_release);
1821}
1822EXPORT_SYMBOL(of_node_put);
1823
1824/*
1825 * Plug a device node into the tree and global list.
1826 */
1827void of_attach_node(struct device_node *np)
1828{
1829 write_lock(&devtree_lock);
1830 np->sibling = np->parent->child;
1831 np->allnext = allnodes;
1832 np->parent->child = np;
1833 allnodes = np;
1834 write_unlock(&devtree_lock);
1835}
1836
1837/*
1838 * "Unplug" a node from the device tree. The caller must hold
1839 * a reference to the node. The memory associated with the node
1840 * is not freed until its refcount goes to zero.
1841 */
1842void of_detach_node(const struct device_node *np)
1843{
1844 struct device_node *parent;
1845
1846 write_lock(&devtree_lock);
1847
1848 parent = np->parent;
1849
1850 if (allnodes == np)
1851 allnodes = np->allnext;
1852 else {
1853 struct device_node *prev;
1854 for (prev = allnodes;
1855 prev->allnext != np;
1856 prev = prev->allnext)
1857 ;
1858 prev->allnext = np->allnext;
1859 }
1860
1861 if (parent->child == np)
1862 parent->child = np->sibling;
1863 else {
1864 struct device_node *prevsib;
1865 for (prevsib = np->parent->child;
1866 prevsib->sibling != np;
1867 prevsib = prevsib->sibling)
1868 ;
1869 prevsib->sibling = np->sibling;
1870 }
1871
1872 write_unlock(&devtree_lock);
1873}
1874
1875#ifdef CONFIG_PPC_PSERIES
1876/*
1877 * Fix up the uninitialized fields in a new device node:
1878 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1879 *
1880 * A lot of boot-time code is duplicated here, because functions such
1881 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1882 * slab allocator.
1883 *
1884 * This should probably be split up into smaller chunks.
1885 */
1886
1887static int of_finish_dynamic_node(struct device_node *node,
1888 unsigned long *unused1, int unused2,
1889 int unused3, int unused4)
1890{
1891 struct device_node *parent = of_get_parent(node);
1892 int err = 0;
1893 phandle *ibm_phandle;
1894
1895 node->name = get_property(node, "name", NULL);
1896 node->type = get_property(node, "device_type", NULL);
1897
1898 if (!parent) {
1899 err = -ENODEV;
1900 goto out;
1901 }
1902
1903 /* We don't support that function on PowerMac, at least
1904 * not yet
1905 */
799d6046 1906 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1907 return -ENODEV;
1908
1909 /* fix up new node's linux_phandle field */
1910 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1911 node->linux_phandle = *ibm_phandle;
1912
1913out:
1914 of_node_put(parent);
1915 return err;
1916}
1917
1918static int prom_reconfig_notifier(struct notifier_block *nb,
1919 unsigned long action, void *node)
1920{
1921 int err;
1922
1923 switch (action) {
1924 case PSERIES_RECONFIG_ADD:
1925 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1926 if (err < 0) {
1927 printk(KERN_ERR "finish_node returned %d\n", err);
1928 err = NOTIFY_BAD;
1929 }
1930 break;
1931 default:
1932 err = NOTIFY_DONE;
1933 break;
1934 }
1935 return err;
1936}
1937
1938static struct notifier_block prom_reconfig_nb = {
1939 .notifier_call = prom_reconfig_notifier,
1940 .priority = 10, /* This one needs to run first */
1941};
1942
1943static int __init prom_reconfig_setup(void)
1944{
1945 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1946}
1947__initcall(prom_reconfig_setup);
1948#endif
1949
1950/*
1951 * Find a property with a given name for a given node
1952 * and return the value.
1953 */
1954unsigned char *get_property(struct device_node *np, const char *name,
1955 int *lenp)
1956{
1957 struct property *pp;
1958
1959 for (pp = np->properties; pp != 0; pp = pp->next)
1960 if (strcmp(pp->name, name) == 0) {
1961 if (lenp != 0)
1962 *lenp = pp->length;
1963 return pp->value;
1964 }
1965 return NULL;
1966}
1967EXPORT_SYMBOL(get_property);
1968
1969/*
1970 * Add a property to a node
1971 */
183d0202 1972int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1973{
183d0202 1974 struct property **next;
9b6b563c
PM
1975
1976 prop->next = NULL;
183d0202
BH
1977 write_lock(&devtree_lock);
1978 next = &np->properties;
1979 while (*next) {
1980 if (strcmp(prop->name, (*next)->name) == 0) {
1981 /* duplicate ! don't insert it */
1982 write_unlock(&devtree_lock);
1983 return -1;
1984 }
9b6b563c 1985 next = &(*next)->next;
183d0202 1986 }
9b6b563c 1987 *next = prop;
183d0202
BH
1988 write_unlock(&devtree_lock);
1989
799d6046 1990#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
1991 /* try to add to proc as well if it was initialized */
1992 if (np->pde)
1993 proc_device_tree_add_prop(np->pde, prop);
799d6046 1994#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
1995
1996 return 0;
9b6b563c
PM
1997}
1998
1999/* I quickly hacked that one, check against spec ! */
2000static inline unsigned long
2001bus_space_to_resource_flags(unsigned int bus_space)
2002{
2003 u8 space = (bus_space >> 24) & 0xf;
2004 if (space == 0)
2005 space = 0x02;
2006 if (space == 0x02)
2007 return IORESOURCE_MEM;
2008 else if (space == 0x01)
2009 return IORESOURCE_IO;
2010 else {
2011 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2012 bus_space);
2013 return 0;
2014 }
2015}
2016
60dda256 2017#ifdef CONFIG_PCI
9b6b563c
PM
2018static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2019 struct address_range *range)
2020{
2021 unsigned long mask;
2022 int i;
2023
2024 /* Check this one */
2025 mask = bus_space_to_resource_flags(range->space);
2026 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2027 if ((pdev->resource[i].flags & mask) == mask &&
2028 pdev->resource[i].start <= range->address &&
2029 pdev->resource[i].end > range->address) {
2030 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2031 /* Add better message */
2032 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2033 return NULL;
2034 }
2035 break;
2036 }
2037 }
2038 if (i == DEVICE_COUNT_RESOURCE)
2039 return NULL;
2040 return &pdev->resource[i];
2041}
2042
2043/*
2044 * Request an OF device resource. Currently handles child of PCI devices,
2045 * or other nodes attached to the root node. Ultimately, put some
2046 * link to resources in the OF node.
2047 */
2048struct resource *request_OF_resource(struct device_node* node, int index,
2049 const char* name_postfix)
2050{
2051 struct pci_dev* pcidev;
2052 u8 pci_bus, pci_devfn;
2053 unsigned long iomask;
2054 struct device_node* nd;
2055 struct resource* parent;
2056 struct resource *res = NULL;
2057 int nlen, plen;
2058
2059 if (index >= node->n_addrs)
2060 goto fail;
2061
2062 /* Sanity check on bus space */
2063 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2064 if (iomask & IORESOURCE_MEM)
2065 parent = &iomem_resource;
2066 else if (iomask & IORESOURCE_IO)
2067 parent = &ioport_resource;
2068 else
2069 goto fail;
2070
2071 /* Find a PCI parent if any */
2072 nd = node;
2073 pcidev = NULL;
2074 while (nd) {
2075 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2076 pcidev = pci_find_slot(pci_bus, pci_devfn);
2077 if (pcidev) break;
2078 nd = nd->parent;
2079 }
2080 if (pcidev)
2081 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2082 if (!parent) {
2083 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2084 node->name);
2085 goto fail;
2086 }
2087
2088 res = __request_region(parent, node->addrs[index].address,
2089 node->addrs[index].size, NULL);
2090 if (!res)
2091 goto fail;
2092 nlen = strlen(node->name);
2093 plen = name_postfix ? strlen(name_postfix) : 0;
2094 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2095 if (res->name) {
2096 strcpy((char *)res->name, node->name);
2097 if (plen)
2098 strcpy((char *)res->name+nlen, name_postfix);
2099 }
2100 return res;
2101fail:
2102 return NULL;
2103}
2104EXPORT_SYMBOL(request_OF_resource);
2105
2106int release_OF_resource(struct device_node *node, int index)
2107{
2108 struct pci_dev* pcidev;
2109 u8 pci_bus, pci_devfn;
2110 unsigned long iomask, start, end;
2111 struct device_node* nd;
2112 struct resource* parent;
2113 struct resource *res = NULL;
2114
2115 if (index >= node->n_addrs)
2116 return -EINVAL;
2117
2118 /* Sanity check on bus space */
2119 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2120 if (iomask & IORESOURCE_MEM)
2121 parent = &iomem_resource;
2122 else if (iomask & IORESOURCE_IO)
2123 parent = &ioport_resource;
2124 else
2125 return -EINVAL;
2126
2127 /* Find a PCI parent if any */
2128 nd = node;
2129 pcidev = NULL;
2130 while(nd) {
2131 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2132 pcidev = pci_find_slot(pci_bus, pci_devfn);
2133 if (pcidev) break;
2134 nd = nd->parent;
2135 }
2136 if (pcidev)
2137 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2138 if (!parent) {
2139 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2140 node->name);
2141 return -ENODEV;
2142 }
2143
2144 /* Find us in the parent and its childs */
2145 res = parent->child;
2146 start = node->addrs[index].address;
2147 end = start + node->addrs[index].size - 1;
2148 while (res) {
2149 if (res->start == start && res->end == end &&
2150 (res->flags & IORESOURCE_BUSY))
2151 break;
2152 if (res->start <= start && res->end >= end)
2153 res = res->child;
2154 else
2155 res = res->sibling;
2156 }
2157 if (!res)
2158 return -ENODEV;
2159
2160 if (res->name) {
2161 kfree(res->name);
2162 res->name = NULL;
2163 }
2164 release_resource(res);
2165 kfree(res);
2166
2167 return 0;
2168}
2169EXPORT_SYMBOL(release_OF_resource);
60dda256 2170#endif /* CONFIG_PCI */