]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/prom.c
[PATCH] powerpc/pseries: Cleanup device name printing.
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
dcee3036 32#include <linux/kexec.h>
9b6b563c
PM
33
34#include <asm/prom.h>
35#include <asm/rtas.h>
36#include <asm/lmb.h>
37#include <asm/page.h>
38#include <asm/processor.h>
39#include <asm/irq.h>
40#include <asm/io.h>
0cc4746c 41#include <asm/kdump.h>
9b6b563c
PM
42#include <asm/smp.h>
43#include <asm/system.h>
44#include <asm/mmu.h>
45#include <asm/pgtable.h>
46#include <asm/pci.h>
47#include <asm/iommu.h>
48#include <asm/btext.h>
49#include <asm/sections.h>
50#include <asm/machdep.h>
51#include <asm/pSeries_reconfig.h>
40ef8cbc 52#include <asm/pci-bridge.h>
9b6b563c
PM
53
54#ifdef DEBUG
55#define DBG(fmt...) printk(KERN_ERR fmt)
56#else
57#define DBG(fmt...)
58#endif
59
9b6b563c 60
9b6b563c
PM
61static int __initdata dt_root_addr_cells;
62static int __initdata dt_root_size_cells;
63
64#ifdef CONFIG_PPC64
65static int __initdata iommu_is_off;
66int __initdata iommu_force_on;
cf00a8d1 67unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
68#endif
69
70typedef u32 cell_t;
71
72#if 0
73static struct boot_param_header *initial_boot_params __initdata;
74#else
75struct boot_param_header *initial_boot_params;
76#endif
77
78static struct device_node *allnodes = NULL;
79
80/* use when traversing tree through the allnext, child, sibling,
81 * or parent members of struct device_node.
82 */
83static DEFINE_RWLOCK(devtree_lock);
84
85/* export that to outside world */
86struct device_node *of_chosen;
87
88struct device_node *dflt_interrupt_controller;
89int num_interrupt_controllers;
90
9b6b563c
PM
91/*
92 * Wrapper for allocating memory for various data that needs to be
93 * attached to device nodes as they are processed at boot or when
94 * added to the device tree later (e.g. DLPAR). At boot there is
95 * already a region reserved so we just increment *mem_start by size;
96 * otherwise we call kmalloc.
97 */
98static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99{
100 unsigned long tmp;
101
102 if (!mem_start)
103 return kmalloc(size, GFP_KERNEL);
104
105 tmp = *mem_start;
106 *mem_start += size;
107 return (void *)tmp;
108}
109
110/*
111 * Find the device_node with a given phandle.
112 */
113static struct device_node * find_phandle(phandle ph)
114{
115 struct device_node *np;
116
117 for (np = allnodes; np != 0; np = np->allnext)
118 if (np->linux_phandle == ph)
119 return np;
120 return NULL;
121}
122
123/*
124 * Find the interrupt parent of a node.
125 */
126static struct device_node * __devinit intr_parent(struct device_node *p)
127{
128 phandle *parp;
129
130 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 if (parp == NULL)
132 return p->parent;
133 p = find_phandle(*parp);
134 if (p != NULL)
135 return p;
136 /*
137 * On a powermac booted with BootX, we don't get to know the
138 * phandles for any nodes, so find_phandle will return NULL.
139 * Fortunately these machines only have one interrupt controller
140 * so there isn't in fact any ambiguity. -- paulus
141 */
142 if (num_interrupt_controllers == 1)
143 p = dflt_interrupt_controller;
144 return p;
145}
146
147/*
148 * Find out the size of each entry of the interrupts property
149 * for a node.
150 */
151int __devinit prom_n_intr_cells(struct device_node *np)
152{
153 struct device_node *p;
154 unsigned int *icp;
155
156 for (p = np; (p = intr_parent(p)) != NULL; ) {
157 icp = (unsigned int *)
158 get_property(p, "#interrupt-cells", NULL);
159 if (icp != NULL)
160 return *icp;
161 if (get_property(p, "interrupt-controller", NULL) != NULL
162 || get_property(p, "interrupt-map", NULL) != NULL) {
163 printk("oops, node %s doesn't have #interrupt-cells\n",
164 p->full_name);
165 return 1;
166 }
167 }
168#ifdef DEBUG_IRQ
169 printk("prom_n_intr_cells failed for %s\n", np->full_name);
170#endif
171 return 1;
172}
173
174/*
175 * Map an interrupt from a device up to the platform interrupt
176 * descriptor.
177 */
178static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 struct device_node *np, unsigned int *ints,
180 int nintrc)
181{
182 struct device_node *p, *ipar;
183 unsigned int *imap, *imask, *ip;
184 int i, imaplen, match;
185 int newintrc = 0, newaddrc = 0;
186 unsigned int *reg;
187 int naddrc;
188
189 reg = (unsigned int *) get_property(np, "reg", NULL);
190 naddrc = prom_n_addr_cells(np);
191 p = intr_parent(np);
192 while (p != NULL) {
193 if (get_property(p, "interrupt-controller", NULL) != NULL)
194 /* this node is an interrupt controller, stop here */
195 break;
196 imap = (unsigned int *)
197 get_property(p, "interrupt-map", &imaplen);
198 if (imap == NULL) {
199 p = intr_parent(p);
200 continue;
201 }
202 imask = (unsigned int *)
203 get_property(p, "interrupt-map-mask", NULL);
204 if (imask == NULL) {
205 printk("oops, %s has interrupt-map but no mask\n",
206 p->full_name);
207 return 0;
208 }
209 imaplen /= sizeof(unsigned int);
210 match = 0;
211 ipar = NULL;
212 while (imaplen > 0 && !match) {
213 /* check the child-interrupt field */
214 match = 1;
215 for (i = 0; i < naddrc && match; ++i)
216 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 for (; i < naddrc + nintrc && match; ++i)
218 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 imap += naddrc + nintrc;
220 imaplen -= naddrc + nintrc;
221 /* grab the interrupt parent */
222 ipar = find_phandle((phandle) *imap++);
223 --imaplen;
224 if (ipar == NULL && num_interrupt_controllers == 1)
225 /* cope with BootX not giving us phandles */
226 ipar = dflt_interrupt_controller;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
6d0124fc
PM
277static unsigned char map_isa_senses[4] = {
278 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
281 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
282};
283
284static unsigned char map_mpic_senses[4] = {
285 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
286 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 /* 2 seems to be used for the 8259 cascade... */
288 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
290};
291
9b6b563c
PM
292static int __devinit finish_node_interrupts(struct device_node *np,
293 unsigned long *mem_start,
294 int measure_only)
295{
296 unsigned int *ints;
297 int intlen, intrcells, intrcount;
6d0124fc 298 int i, j, n, sense;
9b6b563c
PM
299 unsigned int *irq, virq;
300 struct device_node *ic;
1beb6a7d
BH
301 int trace = 0;
302
303 //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304#define TRACE(fmt...)
305
306 if (!strcmp(np->name, "smu-doorbell"))
307 trace = 1;
308
309 TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 num_interrupt_controllers);
9b6b563c 311
a575b807
PM
312 if (num_interrupt_controllers == 0) {
313 /*
314 * Old machines just have a list of interrupt numbers
315 * and no interrupt-controller nodes.
316 */
317 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 &intlen);
319 /* XXX old interpret_pci_props looked in parent too */
320 /* XXX old interpret_macio_props looked for interrupts
321 before AAPL,interrupts */
322 if (ints == NULL)
323 ints = (unsigned int *) get_property(np, "interrupts",
324 &intlen);
325 if (ints == NULL)
326 return 0;
327
328 np->n_intrs = intlen / sizeof(unsigned int);
329 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 mem_start);
331 if (!np->intrs)
332 return -ENOMEM;
333 if (measure_only)
334 return 0;
335
336 for (i = 0; i < np->n_intrs; ++i) {
337 np->intrs[i].line = *ints++;
6d0124fc
PM
338 np->intrs[i].sense = IRQ_SENSE_LEVEL
339 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
340 }
341 return 0;
342 }
343
9b6b563c 344 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
1beb6a7d 345 TRACE("ints=%p, intlen=%d\n", ints, intlen);
9b6b563c
PM
346 if (ints == NULL)
347 return 0;
348 intrcells = prom_n_intr_cells(np);
349 intlen /= intrcells * sizeof(unsigned int);
1beb6a7d 350 TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
9b6b563c
PM
351 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 if (!np->intrs)
353 return -ENOMEM;
354
355 if (measure_only)
356 return 0;
357
358 intrcount = 0;
359 for (i = 0; i < intlen; ++i, ints += intrcells) {
360 n = map_interrupt(&irq, &ic, np, ints, intrcells);
1beb6a7d 361 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
9b6b563c
PM
362 if (n <= 0)
363 continue;
364
365 /* don't map IRQ numbers under a cascaded 8259 controller */
366 if (ic && device_is_compatible(ic, "chrp,iic")) {
367 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
368 sense = (n > 1)? (irq[1] & 3): 3;
369 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 370 } else {
9b6b563c 371 virq = virt_irq_create_mapping(irq[0]);
1beb6a7d 372 TRACE("virq=%d\n", virq);
6d0124fc 373#ifdef CONFIG_PPC64
9b6b563c
PM
374 if (virq == NO_IRQ) {
375 printk(KERN_CRIT "Could not allocate interrupt"
376 " number for %s\n", np->full_name);
377 continue;
378 }
9b6b563c 379#endif
6d0124fc
PM
380 np->intrs[intrcount].line = irq_offset_up(virq);
381 sense = (n > 1)? (irq[1] & 3): 1;
1beb6a7d
BH
382
383 /* Apple uses bits in there in a different way, let's
384 * only keep the real sense bit on macs
385 */
386 if (_machine == PLATFORM_POWERMAC)
387 sense &= 0x1;
6d0124fc 388 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
389 }
390
391#ifdef CONFIG_PPC64
392 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 393 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
394 char *name = get_property(ic->parent, "name", NULL);
395 if (name && !strcmp(name, "u3"))
396 np->intrs[intrcount].line += 128;
1beb6a7d
BH
397 else if (!(name && (!strcmp(name, "mac-io") ||
398 !strcmp(name, "u4"))))
9b6b563c
PM
399 /* ignore other cascaded controllers, such as
400 the k2-sata-root */
401 break;
402 }
1beb6a7d 403#endif /* CONFIG_PPC64 */
9b6b563c
PM
404 if (n > 2) {
405 printk("hmmm, got %d intr cells for %s:", n,
406 np->full_name);
407 for (j = 0; j < n; ++j)
408 printk(" %d", irq[j]);
409 printk("\n");
410 }
411 ++intrcount;
412 }
413 np->n_intrs = intrcount;
414
415 return 0;
416}
417
9b6b563c
PM
418static int __devinit finish_node(struct device_node *np,
419 unsigned long *mem_start,
9b6b563c
PM
420 int measure_only)
421{
422 struct device_node *child;
cc5d0189 423 int rc = 0;
9b6b563c
PM
424
425 rc = finish_node_interrupts(np, mem_start, measure_only);
426 if (rc)
427 goto out;
428
9b6b563c 429 for (child = np->child; child != NULL; child = child->sibling) {
cc5d0189 430 rc = finish_node(child, mem_start, measure_only);
9b6b563c
PM
431 if (rc)
432 goto out;
433 }
434out:
435 return rc;
436}
437
438static void __init scan_interrupt_controllers(void)
439{
440 struct device_node *np;
441 int n = 0;
442 char *name, *ic;
443 int iclen;
444
445 for (np = allnodes; np != NULL; np = np->allnext) {
446 ic = get_property(np, "interrupt-controller", &iclen);
447 name = get_property(np, "name", NULL);
448 /* checking iclen makes sure we don't get a false
449 match on /chosen.interrupt_controller */
450 if ((name != NULL
451 && strcmp(name, "interrupt-controller") == 0)
452 || (ic != NULL && iclen == 0
453 && strcmp(name, "AppleKiwi"))) {
454 if (n == 0)
455 dflt_interrupt_controller = np;
456 ++n;
457 }
458 }
459 num_interrupt_controllers = n;
460}
461
462/**
463 * finish_device_tree is called once things are running normally
464 * (i.e. with text and data mapped to the address they were linked at).
465 * It traverses the device tree and fills in some of the additional,
466 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467 * mapping is also initialized at this point.
468 */
469void __init finish_device_tree(void)
470{
471 unsigned long start, end, size = 0;
472
473 DBG(" -> finish_device_tree\n");
474
475#ifdef CONFIG_PPC64
476 /* Initialize virtual IRQ map */
477 virt_irq_init();
478#endif
479 scan_interrupt_controllers();
480
481 /*
482 * Finish device-tree (pre-parsing some properties etc...)
483 * We do this in 2 passes. One with "measure_only" set, which
484 * will only measure the amount of memory needed, then we can
485 * allocate that memory, and call finish_node again. However,
486 * we must be careful as most routines will fail nowadays when
487 * prom_alloc() returns 0, so we must make sure our first pass
488 * doesn't start at 0. We pre-initialize size to 16 for that
489 * reason and then remove those additional 16 bytes
490 */
491 size = 16;
cc5d0189 492 finish_node(allnodes, &size, 1);
9b6b563c 493 size -= 16;
fa938953
ME
494
495 if (0 == size)
496 end = start = 0;
497 else
498 end = start = (unsigned long)__va(lmb_alloc(size, 128));
499
cc5d0189 500 finish_node(allnodes, &end, 0);
9b6b563c
PM
501 BUG_ON(end != start + size);
502
503 DBG(" <- finish_device_tree\n");
504}
505
506static inline char *find_flat_dt_string(u32 offset)
507{
508 return ((char *)initial_boot_params) +
509 initial_boot_params->off_dt_strings + offset;
510}
511
512/**
513 * This function is used to scan the flattened device-tree, it is
514 * used to extract the memory informations at boot before we can
515 * unflatten the tree
516 */
3c726f8d
BH
517int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 const char *uname, int depth,
519 void *data),
520 void *data)
9b6b563c
PM
521{
522 unsigned long p = ((unsigned long)initial_boot_params) +
523 initial_boot_params->off_dt_struct;
524 int rc = 0;
525 int depth = -1;
526
527 do {
528 u32 tag = *((u32 *)p);
529 char *pathp;
530
531 p += 4;
532 if (tag == OF_DT_END_NODE) {
533 depth --;
534 continue;
535 }
536 if (tag == OF_DT_NOP)
537 continue;
538 if (tag == OF_DT_END)
539 break;
540 if (tag == OF_DT_PROP) {
541 u32 sz = *((u32 *)p);
542 p += 8;
543 if (initial_boot_params->version < 0x10)
544 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 p += sz;
546 p = _ALIGN(p, 4);
547 continue;
548 }
549 if (tag != OF_DT_BEGIN_NODE) {
550 printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 " device tree !\n", tag);
552 return -EINVAL;
553 }
554 depth++;
555 pathp = (char *)p;
556 p = _ALIGN(p + strlen(pathp) + 1, 4);
557 if ((*pathp) == '/') {
558 char *lp, *np;
559 for (lp = NULL, np = pathp; *np; np++)
560 if ((*np) == '/')
561 lp = np+1;
562 if (lp != NULL)
563 pathp = lp;
564 }
565 rc = it(p, pathp, depth, data);
566 if (rc != 0)
567 break;
568 } while(1);
569
570 return rc;
571}
572
573/**
574 * This function can be used within scan_flattened_dt callback to get
575 * access to properties
576 */
3c726f8d
BH
577void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578 unsigned long *size)
9b6b563c
PM
579{
580 unsigned long p = node;
581
582 do {
583 u32 tag = *((u32 *)p);
584 u32 sz, noff;
585 const char *nstr;
586
587 p += 4;
588 if (tag == OF_DT_NOP)
589 continue;
590 if (tag != OF_DT_PROP)
591 return NULL;
592
593 sz = *((u32 *)p);
594 noff = *((u32 *)(p + 4));
595 p += 8;
596 if (initial_boot_params->version < 0x10)
597 p = _ALIGN(p, sz >= 8 ? 8 : 4);
598
599 nstr = find_flat_dt_string(noff);
600 if (nstr == NULL) {
601 printk(KERN_WARNING "Can't find property index"
602 " name !\n");
603 return NULL;
604 }
605 if (strcmp(name, nstr) == 0) {
606 if (size)
607 *size = sz;
608 return (void *)p;
609 }
610 p += sz;
611 p = _ALIGN(p, 4);
612 } while(1);
613}
614
615static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616 unsigned long align)
617{
618 void *res;
619
620 *mem = _ALIGN(*mem, align);
621 res = (void *)*mem;
622 *mem += size;
623
624 return res;
625}
626
627static unsigned long __init unflatten_dt_node(unsigned long mem,
628 unsigned long *p,
629 struct device_node *dad,
630 struct device_node ***allnextpp,
631 unsigned long fpsize)
632{
633 struct device_node *np;
634 struct property *pp, **prev_pp = NULL;
635 char *pathp;
636 u32 tag;
637 unsigned int l, allocl;
638 int has_name = 0;
639 int new_format = 0;
640
641 tag = *((u32 *)(*p));
642 if (tag != OF_DT_BEGIN_NODE) {
643 printk("Weird tag at start of node: %x\n", tag);
644 return mem;
645 }
646 *p += 4;
647 pathp = (char *)*p;
648 l = allocl = strlen(pathp) + 1;
649 *p = _ALIGN(*p + l, 4);
650
651 /* version 0x10 has a more compact unit name here instead of the full
652 * path. we accumulate the full path size using "fpsize", we'll rebuild
653 * it later. We detect this because the first character of the name is
654 * not '/'.
655 */
656 if ((*pathp) != '/') {
657 new_format = 1;
658 if (fpsize == 0) {
659 /* root node: special case. fpsize accounts for path
660 * plus terminating zero. root node only has '/', so
661 * fpsize should be 2, but we want to avoid the first
662 * level nodes to have two '/' so we use fpsize 1 here
663 */
664 fpsize = 1;
665 allocl = 2;
666 } else {
667 /* account for '/' and path size minus terminal 0
668 * already in 'l'
669 */
670 fpsize += l;
671 allocl = fpsize;
672 }
673 }
674
675
676 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677 __alignof__(struct device_node));
678 if (allnextpp) {
679 memset(np, 0, sizeof(*np));
680 np->full_name = ((char*)np) + sizeof(struct device_node);
681 if (new_format) {
682 char *p = np->full_name;
683 /* rebuild full path for new format */
684 if (dad && dad->parent) {
685 strcpy(p, dad->full_name);
686#ifdef DEBUG
687 if ((strlen(p) + l + 1) != allocl) {
688 DBG("%s: p: %d, l: %d, a: %d\n",
689 pathp, strlen(p), l, allocl);
690 }
691#endif
692 p += strlen(p);
693 }
694 *(p++) = '/';
695 memcpy(p, pathp, l);
696 } else
697 memcpy(np->full_name, pathp, l);
698 prev_pp = &np->properties;
699 **allnextpp = np;
700 *allnextpp = &np->allnext;
701 if (dad != NULL) {
702 np->parent = dad;
703 /* we temporarily use the next field as `last_child'*/
704 if (dad->next == 0)
705 dad->child = np;
706 else
707 dad->next->sibling = np;
708 dad->next = np;
709 }
710 kref_init(&np->kref);
711 }
712 while(1) {
713 u32 sz, noff;
714 char *pname;
715
716 tag = *((u32 *)(*p));
717 if (tag == OF_DT_NOP) {
718 *p += 4;
719 continue;
720 }
721 if (tag != OF_DT_PROP)
722 break;
723 *p += 4;
724 sz = *((u32 *)(*p));
725 noff = *((u32 *)((*p) + 4));
726 *p += 8;
727 if (initial_boot_params->version < 0x10)
728 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
729
730 pname = find_flat_dt_string(noff);
731 if (pname == NULL) {
732 printk("Can't find property name in list !\n");
733 break;
734 }
735 if (strcmp(pname, "name") == 0)
736 has_name = 1;
737 l = strlen(pname) + 1;
738 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739 __alignof__(struct property));
740 if (allnextpp) {
741 if (strcmp(pname, "linux,phandle") == 0) {
742 np->node = *((u32 *)*p);
743 if (np->linux_phandle == 0)
744 np->linux_phandle = np->node;
745 }
746 if (strcmp(pname, "ibm,phandle") == 0)
747 np->linux_phandle = *((u32 *)*p);
748 pp->name = pname;
749 pp->length = sz;
750 pp->value = (void *)*p;
751 *prev_pp = pp;
752 prev_pp = &pp->next;
753 }
754 *p = _ALIGN((*p) + sz, 4);
755 }
756 /* with version 0x10 we may not have the name property, recreate
757 * it here from the unit name if absent
758 */
759 if (!has_name) {
760 char *p = pathp, *ps = pathp, *pa = NULL;
761 int sz;
762
763 while (*p) {
764 if ((*p) == '@')
765 pa = p;
766 if ((*p) == '/')
767 ps = p + 1;
768 p++;
769 }
770 if (pa < ps)
771 pa = p;
772 sz = (pa - ps) + 1;
773 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774 __alignof__(struct property));
775 if (allnextpp) {
776 pp->name = "name";
777 pp->length = sz;
778 pp->value = (unsigned char *)(pp + 1);
779 *prev_pp = pp;
780 prev_pp = &pp->next;
781 memcpy(pp->value, ps, sz - 1);
782 ((char *)pp->value)[sz - 1] = 0;
783 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
784 }
785 }
786 if (allnextpp) {
787 *prev_pp = NULL;
788 np->name = get_property(np, "name", NULL);
789 np->type = get_property(np, "device_type", NULL);
790
791 if (!np->name)
792 np->name = "<NULL>";
793 if (!np->type)
794 np->type = "<NULL>";
795 }
796 while (tag == OF_DT_BEGIN_NODE) {
797 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798 tag = *((u32 *)(*p));
799 }
800 if (tag != OF_DT_END_NODE) {
801 printk("Weird tag at end of node: %x\n", tag);
802 return mem;
803 }
804 *p += 4;
805 return mem;
806}
807
808
809/**
810 * unflattens the device-tree passed by the firmware, creating the
811 * tree of struct device_node. It also fills the "name" and "type"
812 * pointers of the nodes so the normal device-tree walking functions
813 * can be used (this used to be done by finish_device_tree)
814 */
815void __init unflatten_device_tree(void)
816{
817 unsigned long start, mem, size;
818 struct device_node **allnextp = &allnodes;
9b6b563c
PM
819
820 DBG(" -> unflatten_device_tree()\n");
821
822 /* First pass, scan for size */
823 start = ((unsigned long)initial_boot_params) +
824 initial_boot_params->off_dt_struct;
825 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
826 size = (size | 3) + 1;
827
828 DBG(" size is %lx, allocating...\n", size);
829
830 /* Allocate memory for the expanded device tree */
831 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
9b6b563c
PM
832 mem = (unsigned long) __va(mem);
833
834 ((u32 *)mem)[size / 4] = 0xdeadbeef;
835
836 DBG(" unflattening %lx...\n", mem);
837
838 /* Second pass, do actual unflattening */
839 start = ((unsigned long)initial_boot_params) +
840 initial_boot_params->off_dt_struct;
841 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
842 if (*((u32 *)start) != OF_DT_END)
843 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
844 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
845 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
846 ((u32 *)mem)[size / 4] );
847 *allnextp = NULL;
848
849 /* Get pointer to OF "/chosen" node for use everywhere */
850 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
851 if (of_chosen == NULL)
852 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c 853
9b6b563c
PM
854 DBG(" <- unflatten_device_tree()\n");
855}
856
857
858static int __init early_init_dt_scan_cpus(unsigned long node,
859 const char *uname, int depth, void *data)
860{
9b6b563c 861 u32 *prop;
676e2497
SR
862 unsigned long size;
863 char *type = of_get_flat_dt_prop(node, "device_type", &size);
9b6b563c
PM
864
865 /* We are scanning "cpu" nodes only */
866 if (type == NULL || strcmp(type, "cpu") != 0)
867 return 0;
868
80579e1f
PM
869 boot_cpuid = 0;
870 boot_cpuid_phys = 0;
9b6b563c
PM
871 if (initial_boot_params && initial_boot_params->version >= 2) {
872 /* version 2 of the kexec param format adds the phys cpuid
873 * of booted proc.
874 */
875 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 876 } else {
80579e1f 877 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
878 if (of_get_flat_dt_prop(node,
879 "linux,boot-cpu", NULL) != NULL) {
880 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
881 if (prop != NULL)
882 boot_cpuid_phys = *prop;
9b6b563c
PM
883 }
884 }
80579e1f 885 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
886
887#ifdef CONFIG_ALTIVEC
888 /* Check if we have a VMX and eventually update CPU features */
676e2497 889 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
9b6b563c
PM
890 if (prop && (*prop) > 0) {
891 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
892 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
893 }
894
895 /* Same goes for Apple's "altivec" property */
3c726f8d 896 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
897 if (prop) {
898 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
899 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
900 }
901#endif /* CONFIG_ALTIVEC */
902
903#ifdef CONFIG_PPC_PSERIES
904 /*
905 * Check for an SMT capable CPU and set the CPU feature. We do
906 * this by looking at the size of the ibm,ppc-interrupt-server#s
907 * property
908 */
3c726f8d 909 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
910 &size);
911 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
912 if (prop && ((size / sizeof(u32)) > 1))
913 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
914#endif
915
916 return 0;
917}
918
919static int __init early_init_dt_scan_chosen(unsigned long node,
920 const char *uname, int depth, void *data)
921{
922 u32 *prop;
923 unsigned long *lprop;
329dda08
KG
924 unsigned long l;
925 char *p;
9b6b563c
PM
926
927 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
928
a575b807
PM
929 if (depth != 1 ||
930 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
931 return 0;
932
933 /* get platform type */
3c726f8d 934 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
935 if (prop == NULL)
936 return 0;
60dda256 937#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
938 _machine = *prop;
939#endif
940
941#ifdef CONFIG_PPC64
942 /* check if iommu is forced on or off */
3c726f8d 943 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 944 iommu_is_off = 1;
3c726f8d 945 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
946 iommu_force_on = 1;
947#endif
948
3c726f8d 949 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
950 if (lprop)
951 memory_limit = *lprop;
952
953#ifdef CONFIG_PPC64
3c726f8d 954 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
955 if (lprop)
956 tce_alloc_start = *lprop;
3c726f8d 957 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
958 if (lprop)
959 tce_alloc_end = *lprop;
960#endif
961
962#ifdef CONFIG_PPC_RTAS
943ffb58 963 /* To help early debugging via the front panel, we retrieve a minimal
9b6b563c
PM
964 * set of RTAS infos now if available
965 */
966 {
967 u64 *basep, *entryp;
968
3c726f8d
BH
969 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
970 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
971 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
972 if (basep && entryp && prop) {
973 rtas.base = *basep;
974 rtas.entry = *entryp;
975 rtas.size = *prop;
976 }
977 }
978#endif /* CONFIG_PPC_RTAS */
979
dcee3036
ME
980#ifdef CONFIG_KEXEC
981 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
982 if (lprop)
983 crashk_res.start = *lprop;
984
985 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
986 if (lprop)
987 crashk_res.end = crashk_res.start + *lprop - 1;
988#endif
989
329dda08
KG
990 /* Retreive command line */
991 p = of_get_flat_dt_prop(node, "bootargs", &l);
992 if (p != NULL && l > 0)
993 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
994
995#ifdef CONFIG_CMDLINE
996 if (l == 0 || (l == 1 && (*p) == 0))
997 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
998#endif /* CONFIG_CMDLINE */
999
1000 DBG("Command line is: %s\n", cmd_line);
1001
1002 if (strstr(cmd_line, "mem=")) {
1003 char *p, *q;
1004 unsigned long maxmem = 0;
1005
1006 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1007 q = p + 4;
1008 if (p > cmd_line && p[-1] != ' ')
1009 continue;
1010 maxmem = simple_strtoul(q, &q, 0);
1011 if (*q == 'k' || *q == 'K') {
1012 maxmem <<= 10;
1013 ++q;
1014 } else if (*q == 'm' || *q == 'M') {
1015 maxmem <<= 20;
1016 ++q;
1017 } else if (*q == 'g' || *q == 'G') {
1018 maxmem <<= 30;
1019 ++q;
1020 }
1021 }
1022 memory_limit = maxmem;
1023 }
1024
9b6b563c
PM
1025 /* break now */
1026 return 1;
1027}
1028
1029static int __init early_init_dt_scan_root(unsigned long node,
1030 const char *uname, int depth, void *data)
1031{
1032 u32 *prop;
1033
1034 if (depth != 0)
1035 return 0;
1036
3c726f8d 1037 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
1038 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1039 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1040
3c726f8d 1041 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
1042 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1043 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1044
1045 /* break now */
1046 return 1;
1047}
1048
1049static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1050{
1051 cell_t *p = *cellp;
1052 unsigned long r;
1053
1054 /* Ignore more than 2 cells */
1055 while (s > sizeof(unsigned long) / 4) {
1056 p++;
1057 s--;
1058 }
1059 r = *p++;
1060#ifdef CONFIG_PPC64
1061 if (s > 1) {
1062 r <<= 32;
1063 r |= *(p++);
1064 s--;
1065 }
1066#endif
1067
1068 *cellp = p;
1069 return r;
1070}
1071
1072
1073static int __init early_init_dt_scan_memory(unsigned long node,
1074 const char *uname, int depth, void *data)
1075{
3c726f8d 1076 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1077 cell_t *reg, *endp;
1078 unsigned long l;
1079
1080 /* We are scanning "memory" nodes only */
a23414be
PM
1081 if (type == NULL) {
1082 /*
1083 * The longtrail doesn't have a device_type on the
1084 * /memory node, so look for the node called /memory@0.
1085 */
1086 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1087 return 0;
1088 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1089 return 0;
1090
ba759485
ME
1091 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1092 if (reg == NULL)
1093 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1094 if (reg == NULL)
1095 return 0;
1096
1097 endp = reg + (l / sizeof(cell_t));
1098
358c86fd 1099 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1100 uname, l, reg[0], reg[1], reg[2], reg[3]);
1101
1102 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1103 unsigned long base, size;
1104
1105 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1106 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1107
1108 if (size == 0)
1109 continue;
1110 DBG(" - %lx , %lx\n", base, size);
1111#ifdef CONFIG_PPC64
1112 if (iommu_is_off) {
1113 if (base >= 0x80000000ul)
1114 continue;
1115 if ((base + size) > 0x80000000ul)
1116 size = 0x80000000ul - base;
1117 }
1118#endif
1119 lmb_add(base, size);
1120 }
1121 return 0;
1122}
1123
1124static void __init early_reserve_mem(void)
1125{
cbbcf340
KG
1126 u64 base, size;
1127 u64 *reserve_map;
9b6b563c 1128
cbbcf340 1129 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
9b6b563c 1130 initial_boot_params->off_mem_rsvmap);
cbbcf340
KG
1131#ifdef CONFIG_PPC32
1132 /*
1133 * Handle the case where we might be booting from an old kexec
1134 * image that setup the mem_rsvmap as pairs of 32-bit values
1135 */
1136 if (*reserve_map > 0xffffffffull) {
1137 u32 base_32, size_32;
1138 u32 *reserve_map_32 = (u32 *)reserve_map;
1139
1140 while (1) {
1141 base_32 = *(reserve_map_32++);
1142 size_32 = *(reserve_map_32++);
1143 if (size_32 == 0)
1144 break;
329dda08 1145 DBG("reserving: %x -> %x\n", base_32, size_32);
cbbcf340
KG
1146 lmb_reserve(base_32, size_32);
1147 }
1148 return;
1149 }
1150#endif
9b6b563c
PM
1151 while (1) {
1152 base = *(reserve_map++);
1153 size = *(reserve_map++);
1154 if (size == 0)
1155 break;
cbbcf340 1156 DBG("reserving: %llx -> %llx\n", base, size);
9b6b563c
PM
1157 lmb_reserve(base, size);
1158 }
1159
1160#if 0
1161 DBG("memory reserved, lmbs :\n");
1162 lmb_dump_all();
1163#endif
1164}
1165
1166void __init early_init_devtree(void *params)
1167{
1168 DBG(" -> early_init_devtree()\n");
1169
1170 /* Setup flat device-tree pointer */
1171 initial_boot_params = params;
1172
1173 /* Retrieve various informations from the /chosen node of the
1174 * device-tree, including the platform type, initrd location and
1175 * size, TCE reserve, and more ...
1176 */
3c726f8d 1177 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1178
1179 /* Scan memory nodes and rebuild LMBs */
1180 lmb_init();
3c726f8d
BH
1181 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1182 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1183 lmb_enforce_memory_limit(memory_limit);
1184 lmb_analyze();
9b6b563c
PM
1185
1186 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1187
1188 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
0cc4746c
ME
1189 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1190#ifdef CONFIG_CRASH_DUMP
1191 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1192#endif
9b6b563c
PM
1193 early_reserve_mem();
1194
1195 DBG("Scanning CPUs ...\n");
1196
3c726f8d
BH
1197 /* Retreive CPU related informations from the flat tree
1198 * (altivec support, boot CPU ID, ...)
9b6b563c 1199 */
3c726f8d 1200 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1201
9b6b563c
PM
1202 DBG(" <- early_init_devtree()\n");
1203}
1204
1205#undef printk
1206
1207int
1208prom_n_addr_cells(struct device_node* np)
1209{
1210 int* ip;
1211 do {
1212 if (np->parent)
1213 np = np->parent;
1214 ip = (int *) get_property(np, "#address-cells", NULL);
1215 if (ip != NULL)
1216 return *ip;
1217 } while (np->parent);
1218 /* No #address-cells property for the root node, default to 1 */
1219 return 1;
1220}
1dfc6772 1221EXPORT_SYMBOL(prom_n_addr_cells);
9b6b563c
PM
1222
1223int
1224prom_n_size_cells(struct device_node* np)
1225{
1226 int* ip;
1227 do {
1228 if (np->parent)
1229 np = np->parent;
1230 ip = (int *) get_property(np, "#size-cells", NULL);
1231 if (ip != NULL)
1232 return *ip;
1233 } while (np->parent);
1234 /* No #size-cells property for the root node, default to 1 */
1235 return 1;
1236}
1dfc6772 1237EXPORT_SYMBOL(prom_n_size_cells);
9b6b563c
PM
1238
1239/**
1240 * Work out the sense (active-low level / active-high edge)
1241 * of each interrupt from the device tree.
1242 */
1243void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1244{
1245 struct device_node *np;
1246 int i, j;
1247
1248 /* default to level-triggered */
6d0124fc 1249 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1250
1251 for (np = allnodes; np != 0; np = np->allnext) {
1252 for (j = 0; j < np->n_intrs; j++) {
1253 i = np->intrs[j].line;
1254 if (i >= off && i < max)
6d0124fc 1255 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1256 }
1257 }
1258}
1259
1260/**
1261 * Construct and return a list of the device_nodes with a given name.
1262 */
1263struct device_node *find_devices(const char *name)
1264{
1265 struct device_node *head, **prevp, *np;
1266
1267 prevp = &head;
1268 for (np = allnodes; np != 0; np = np->allnext) {
1269 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1270 *prevp = np;
1271 prevp = &np->next;
1272 }
1273 }
1274 *prevp = NULL;
1275 return head;
1276}
1277EXPORT_SYMBOL(find_devices);
1278
1279/**
1280 * Construct and return a list of the device_nodes with a given type.
1281 */
1282struct device_node *find_type_devices(const char *type)
1283{
1284 struct device_node *head, **prevp, *np;
1285
1286 prevp = &head;
1287 for (np = allnodes; np != 0; np = np->allnext) {
1288 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1289 *prevp = np;
1290 prevp = &np->next;
1291 }
1292 }
1293 *prevp = NULL;
1294 return head;
1295}
1296EXPORT_SYMBOL(find_type_devices);
1297
1298/**
1299 * Returns all nodes linked together
1300 */
1301struct device_node *find_all_nodes(void)
1302{
1303 struct device_node *head, **prevp, *np;
1304
1305 prevp = &head;
1306 for (np = allnodes; np != 0; np = np->allnext) {
1307 *prevp = np;
1308 prevp = &np->next;
1309 }
1310 *prevp = NULL;
1311 return head;
1312}
1313EXPORT_SYMBOL(find_all_nodes);
1314
1315/** Checks if the given "compat" string matches one of the strings in
1316 * the device's "compatible" property
1317 */
1318int device_is_compatible(struct device_node *device, const char *compat)
1319{
1320 const char* cp;
1321 int cplen, l;
1322
1323 cp = (char *) get_property(device, "compatible", &cplen);
1324 if (cp == NULL)
1325 return 0;
1326 while (cplen > 0) {
1327 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1328 return 1;
1329 l = strlen(cp) + 1;
1330 cp += l;
1331 cplen -= l;
1332 }
1333
1334 return 0;
1335}
1336EXPORT_SYMBOL(device_is_compatible);
1337
1338
1339/**
1340 * Indicates whether the root node has a given value in its
1341 * compatible property.
1342 */
1343int machine_is_compatible(const char *compat)
1344{
1345 struct device_node *root;
1346 int rc = 0;
1347
1348 root = of_find_node_by_path("/");
1349 if (root) {
1350 rc = device_is_compatible(root, compat);
1351 of_node_put(root);
1352 }
1353 return rc;
1354}
1355EXPORT_SYMBOL(machine_is_compatible);
1356
1357/**
1358 * Construct and return a list of the device_nodes with a given type
1359 * and compatible property.
1360 */
1361struct device_node *find_compatible_devices(const char *type,
1362 const char *compat)
1363{
1364 struct device_node *head, **prevp, *np;
1365
1366 prevp = &head;
1367 for (np = allnodes; np != 0; np = np->allnext) {
1368 if (type != NULL
1369 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1370 continue;
1371 if (device_is_compatible(np, compat)) {
1372 *prevp = np;
1373 prevp = &np->next;
1374 }
1375 }
1376 *prevp = NULL;
1377 return head;
1378}
1379EXPORT_SYMBOL(find_compatible_devices);
1380
1381/**
1382 * Find the device_node with a given full_name.
1383 */
1384struct device_node *find_path_device(const char *path)
1385{
1386 struct device_node *np;
1387
1388 for (np = allnodes; np != 0; np = np->allnext)
1389 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1390 return np;
1391 return NULL;
1392}
1393EXPORT_SYMBOL(find_path_device);
1394
1395/*******
1396 *
1397 * New implementation of the OF "find" APIs, return a refcounted
1398 * object, call of_node_put() when done. The device tree and list
1399 * are protected by a rw_lock.
1400 *
1401 * Note that property management will need some locking as well,
1402 * this isn't dealt with yet.
1403 *
1404 *******/
1405
1406/**
1407 * of_find_node_by_name - Find a node by its "name" property
1408 * @from: The node to start searching from or NULL, the node
1409 * you pass will not be searched, only the next one
1410 * will; typically, you pass what the previous call
1411 * returned. of_node_put() will be called on it
1412 * @name: The name string to match against
1413 *
1414 * Returns a node pointer with refcount incremented, use
1415 * of_node_put() on it when done.
1416 */
1417struct device_node *of_find_node_by_name(struct device_node *from,
1418 const char *name)
1419{
1420 struct device_node *np;
1421
1422 read_lock(&devtree_lock);
1423 np = from ? from->allnext : allnodes;
090db7c8
OH
1424 for (; np != NULL; np = np->allnext)
1425 if (np->name != NULL && strcasecmp(np->name, name) == 0
9b6b563c
PM
1426 && of_node_get(np))
1427 break;
1428 if (from)
1429 of_node_put(from);
1430 read_unlock(&devtree_lock);
1431 return np;
1432}
1433EXPORT_SYMBOL(of_find_node_by_name);
1434
1435/**
1436 * of_find_node_by_type - Find a node by its "device_type" property
1437 * @from: The node to start searching from or NULL, the node
1438 * you pass will not be searched, only the next one
1439 * will; typically, you pass what the previous call
1440 * returned. of_node_put() will be called on it
1441 * @name: The type string to match against
1442 *
1443 * Returns a node pointer with refcount incremented, use
1444 * of_node_put() on it when done.
1445 */
1446struct device_node *of_find_node_by_type(struct device_node *from,
1447 const char *type)
1448{
1449 struct device_node *np;
1450
1451 read_lock(&devtree_lock);
1452 np = from ? from->allnext : allnodes;
1453 for (; np != 0; np = np->allnext)
1454 if (np->type != 0 && strcasecmp(np->type, type) == 0
1455 && of_node_get(np))
1456 break;
1457 if (from)
1458 of_node_put(from);
1459 read_unlock(&devtree_lock);
1460 return np;
1461}
1462EXPORT_SYMBOL(of_find_node_by_type);
1463
1464/**
1465 * of_find_compatible_node - Find a node based on type and one of the
1466 * tokens in its "compatible" property
1467 * @from: The node to start searching from or NULL, the node
1468 * you pass will not be searched, only the next one
1469 * will; typically, you pass what the previous call
1470 * returned. of_node_put() will be called on it
1471 * @type: The type string to match "device_type" or NULL to ignore
1472 * @compatible: The string to match to one of the tokens in the device
1473 * "compatible" list.
1474 *
1475 * Returns a node pointer with refcount incremented, use
1476 * of_node_put() on it when done.
1477 */
1478struct device_node *of_find_compatible_node(struct device_node *from,
1479 const char *type, const char *compatible)
1480{
1481 struct device_node *np;
1482
1483 read_lock(&devtree_lock);
1484 np = from ? from->allnext : allnodes;
1485 for (; np != 0; np = np->allnext) {
1486 if (type != NULL
1487 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1488 continue;
1489 if (device_is_compatible(np, compatible) && of_node_get(np))
1490 break;
1491 }
1492 if (from)
1493 of_node_put(from);
1494 read_unlock(&devtree_lock);
1495 return np;
1496}
1497EXPORT_SYMBOL(of_find_compatible_node);
1498
1499/**
1500 * of_find_node_by_path - Find a node matching a full OF path
1501 * @path: The full path to match
1502 *
1503 * Returns a node pointer with refcount incremented, use
1504 * of_node_put() on it when done.
1505 */
1506struct device_node *of_find_node_by_path(const char *path)
1507{
1508 struct device_node *np = allnodes;
1509
1510 read_lock(&devtree_lock);
1511 for (; np != 0; np = np->allnext) {
1512 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1513 && of_node_get(np))
1514 break;
1515 }
1516 read_unlock(&devtree_lock);
1517 return np;
1518}
1519EXPORT_SYMBOL(of_find_node_by_path);
1520
1521/**
1522 * of_find_node_by_phandle - Find a node given a phandle
1523 * @handle: phandle of the node to find
1524 *
1525 * Returns a node pointer with refcount incremented, use
1526 * of_node_put() on it when done.
1527 */
1528struct device_node *of_find_node_by_phandle(phandle handle)
1529{
1530 struct device_node *np;
1531
1532 read_lock(&devtree_lock);
1533 for (np = allnodes; np != 0; np = np->allnext)
1534 if (np->linux_phandle == handle)
1535 break;
1536 if (np)
1537 of_node_get(np);
1538 read_unlock(&devtree_lock);
1539 return np;
1540}
1541EXPORT_SYMBOL(of_find_node_by_phandle);
1542
1543/**
1544 * of_find_all_nodes - Get next node in global list
1545 * @prev: Previous node or NULL to start iteration
1546 * of_node_put() will be called on it
1547 *
1548 * Returns a node pointer with refcount incremented, use
1549 * of_node_put() on it when done.
1550 */
1551struct device_node *of_find_all_nodes(struct device_node *prev)
1552{
1553 struct device_node *np;
1554
1555 read_lock(&devtree_lock);
1556 np = prev ? prev->allnext : allnodes;
1557 for (; np != 0; np = np->allnext)
1558 if (of_node_get(np))
1559 break;
1560 if (prev)
1561 of_node_put(prev);
1562 read_unlock(&devtree_lock);
1563 return np;
1564}
1565EXPORT_SYMBOL(of_find_all_nodes);
1566
1567/**
1568 * of_get_parent - Get a node's parent if any
1569 * @node: Node to get parent
1570 *
1571 * Returns a node pointer with refcount incremented, use
1572 * of_node_put() on it when done.
1573 */
1574struct device_node *of_get_parent(const struct device_node *node)
1575{
1576 struct device_node *np;
1577
1578 if (!node)
1579 return NULL;
1580
1581 read_lock(&devtree_lock);
1582 np = of_node_get(node->parent);
1583 read_unlock(&devtree_lock);
1584 return np;
1585}
1586EXPORT_SYMBOL(of_get_parent);
1587
1588/**
1589 * of_get_next_child - Iterate a node childs
1590 * @node: parent node
1591 * @prev: previous child of the parent node, or NULL to get first
1592 *
1593 * Returns a node pointer with refcount incremented, use
1594 * of_node_put() on it when done.
1595 */
1596struct device_node *of_get_next_child(const struct device_node *node,
1597 struct device_node *prev)
1598{
1599 struct device_node *next;
1600
1601 read_lock(&devtree_lock);
1602 next = prev ? prev->sibling : node->child;
1603 for (; next != 0; next = next->sibling)
1604 if (of_node_get(next))
1605 break;
1606 if (prev)
1607 of_node_put(prev);
1608 read_unlock(&devtree_lock);
1609 return next;
1610}
1611EXPORT_SYMBOL(of_get_next_child);
1612
1613/**
1614 * of_node_get - Increment refcount of a node
1615 * @node: Node to inc refcount, NULL is supported to
1616 * simplify writing of callers
1617 *
1618 * Returns node.
1619 */
1620struct device_node *of_node_get(struct device_node *node)
1621{
1622 if (node)
1623 kref_get(&node->kref);
1624 return node;
1625}
1626EXPORT_SYMBOL(of_node_get);
1627
1628static inline struct device_node * kref_to_device_node(struct kref *kref)
1629{
1630 return container_of(kref, struct device_node, kref);
1631}
1632
1633/**
1634 * of_node_release - release a dynamically allocated node
1635 * @kref: kref element of the node to be released
1636 *
1637 * In of_node_put() this function is passed to kref_put()
1638 * as the destructor.
1639 */
1640static void of_node_release(struct kref *kref)
1641{
1642 struct device_node *node = kref_to_device_node(kref);
1643 struct property *prop = node->properties;
1644
1645 if (!OF_IS_DYNAMIC(node))
1646 return;
1647 while (prop) {
1648 struct property *next = prop->next;
1649 kfree(prop->name);
1650 kfree(prop->value);
1651 kfree(prop);
1652 prop = next;
088186de
DB
1653
1654 if (!prop) {
1655 prop = node->deadprops;
1656 node->deadprops = NULL;
1657 }
9b6b563c
PM
1658 }
1659 kfree(node->intrs);
9b6b563c
PM
1660 kfree(node->full_name);
1661 kfree(node->data);
1662 kfree(node);
1663}
1664
1665/**
1666 * of_node_put - Decrement refcount of a node
1667 * @node: Node to dec refcount, NULL is supported to
1668 * simplify writing of callers
1669 *
1670 */
1671void of_node_put(struct device_node *node)
1672{
1673 if (node)
1674 kref_put(&node->kref, of_node_release);
1675}
1676EXPORT_SYMBOL(of_node_put);
1677
1678/*
1679 * Plug a device node into the tree and global list.
1680 */
1681void of_attach_node(struct device_node *np)
1682{
1683 write_lock(&devtree_lock);
1684 np->sibling = np->parent->child;
1685 np->allnext = allnodes;
1686 np->parent->child = np;
1687 allnodes = np;
1688 write_unlock(&devtree_lock);
1689}
1690
1691/*
1692 * "Unplug" a node from the device tree. The caller must hold
1693 * a reference to the node. The memory associated with the node
1694 * is not freed until its refcount goes to zero.
1695 */
1696void of_detach_node(const struct device_node *np)
1697{
1698 struct device_node *parent;
1699
1700 write_lock(&devtree_lock);
1701
1702 parent = np->parent;
1703
1704 if (allnodes == np)
1705 allnodes = np->allnext;
1706 else {
1707 struct device_node *prev;
1708 for (prev = allnodes;
1709 prev->allnext != np;
1710 prev = prev->allnext)
1711 ;
1712 prev->allnext = np->allnext;
1713 }
1714
1715 if (parent->child == np)
1716 parent->child = np->sibling;
1717 else {
1718 struct device_node *prevsib;
1719 for (prevsib = np->parent->child;
1720 prevsib->sibling != np;
1721 prevsib = prevsib->sibling)
1722 ;
1723 prevsib->sibling = np->sibling;
1724 }
1725
1726 write_unlock(&devtree_lock);
1727}
1728
1729#ifdef CONFIG_PPC_PSERIES
1730/*
1731 * Fix up the uninitialized fields in a new device node:
1732 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1733 *
1734 * A lot of boot-time code is duplicated here, because functions such
1735 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1736 * slab allocator.
1737 *
1738 * This should probably be split up into smaller chunks.
1739 */
1740
cc5d0189 1741static int of_finish_dynamic_node(struct device_node *node)
9b6b563c
PM
1742{
1743 struct device_node *parent = of_get_parent(node);
1744 int err = 0;
1745 phandle *ibm_phandle;
1746
1747 node->name = get_property(node, "name", NULL);
1748 node->type = get_property(node, "device_type", NULL);
1749
1750 if (!parent) {
1751 err = -ENODEV;
1752 goto out;
1753 }
1754
1755 /* We don't support that function on PowerMac, at least
1756 * not yet
1757 */
799d6046 1758 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1759 return -ENODEV;
1760
1761 /* fix up new node's linux_phandle field */
cc5d0189
BH
1762 if ((ibm_phandle = (unsigned int *)get_property(node,
1763 "ibm,phandle", NULL)))
9b6b563c
PM
1764 node->linux_phandle = *ibm_phandle;
1765
1766out:
1767 of_node_put(parent);
1768 return err;
1769}
1770
1771static int prom_reconfig_notifier(struct notifier_block *nb,
1772 unsigned long action, void *node)
1773{
1774 int err;
1775
1776 switch (action) {
1777 case PSERIES_RECONFIG_ADD:
cc5d0189
BH
1778 err = of_finish_dynamic_node(node);
1779 if (!err)
1780 finish_node(node, NULL, 0);
9b6b563c
PM
1781 if (err < 0) {
1782 printk(KERN_ERR "finish_node returned %d\n", err);
1783 err = NOTIFY_BAD;
1784 }
1785 break;
1786 default:
1787 err = NOTIFY_DONE;
1788 break;
1789 }
1790 return err;
1791}
1792
1793static struct notifier_block prom_reconfig_nb = {
1794 .notifier_call = prom_reconfig_notifier,
1795 .priority = 10, /* This one needs to run first */
1796};
1797
1798static int __init prom_reconfig_setup(void)
1799{
1800 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1801}
1802__initcall(prom_reconfig_setup);
1803#endif
1804
ecaa8b0f
DB
1805struct property *of_find_property(struct device_node *np, const char *name,
1806 int *lenp)
9b6b563c
PM
1807{
1808 struct property *pp;
1809
088186de 1810 read_lock(&devtree_lock);
9b6b563c
PM
1811 for (pp = np->properties; pp != 0; pp = pp->next)
1812 if (strcmp(pp->name, name) == 0) {
1813 if (lenp != 0)
1814 *lenp = pp->length;
088186de 1815 break;
9b6b563c 1816 }
088186de
DB
1817 read_unlock(&devtree_lock);
1818
ecaa8b0f
DB
1819 return pp;
1820}
1821
1822/*
1823 * Find a property with a given name for a given node
1824 * and return the value.
1825 */
1826unsigned char *get_property(struct device_node *np, const char *name,
1827 int *lenp)
1828{
1829 struct property *pp = of_find_property(np,name,lenp);
088186de 1830 return pp ? pp->value : NULL;
9b6b563c
PM
1831}
1832EXPORT_SYMBOL(get_property);
1833
1834/*
1835 * Add a property to a node
1836 */
183d0202 1837int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1838{
183d0202 1839 struct property **next;
9b6b563c
PM
1840
1841 prop->next = NULL;
183d0202
BH
1842 write_lock(&devtree_lock);
1843 next = &np->properties;
1844 while (*next) {
1845 if (strcmp(prop->name, (*next)->name) == 0) {
1846 /* duplicate ! don't insert it */
1847 write_unlock(&devtree_lock);
1848 return -1;
1849 }
9b6b563c 1850 next = &(*next)->next;
183d0202 1851 }
9b6b563c 1852 *next = prop;
183d0202
BH
1853 write_unlock(&devtree_lock);
1854
799d6046 1855#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
1856 /* try to add to proc as well if it was initialized */
1857 if (np->pde)
1858 proc_device_tree_add_prop(np->pde, prop);
799d6046 1859#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
1860
1861 return 0;
9b6b563c
PM
1862}
1863
088186de
DB
1864/*
1865 * Remove a property from a node. Note that we don't actually
1866 * remove it, since we have given out who-knows-how-many pointers
1867 * to the data using get-property. Instead we just move the property
1868 * to the "dead properties" list, so it won't be found any more.
1869 */
1870int prom_remove_property(struct device_node *np, struct property *prop)
1871{
1872 struct property **next;
1873 int found = 0;
1874
1875 write_lock(&devtree_lock);
1876 next = &np->properties;
1877 while (*next) {
1878 if (*next == prop) {
1879 /* found the node */
1880 *next = prop->next;
1881 prop->next = np->deadprops;
1882 np->deadprops = prop;
1883 found = 1;
1884 break;
1885 }
1886 next = &(*next)->next;
1887 }
1888 write_unlock(&devtree_lock);
1889
1890 if (!found)
1891 return -ENODEV;
1892
1893#ifdef CONFIG_PROC_DEVICETREE
1894 /* try to remove the proc node as well */
1895 if (np->pde)
1896 proc_device_tree_remove_prop(np->pde, prop);
1897#endif /* CONFIG_PROC_DEVICETREE */
1898
1899 return 0;
1900}
1901
1902/*
1903 * Update a property in a node. Note that we don't actually
1904 * remove it, since we have given out who-knows-how-many pointers
1905 * to the data using get-property. Instead we just move the property
1906 * to the "dead properties" list, and add the new property to the
1907 * property list
1908 */
1909int prom_update_property(struct device_node *np,
1910 struct property *newprop,
1911 struct property *oldprop)
1912{
1913 struct property **next;
1914 int found = 0;
1915
1916 write_lock(&devtree_lock);
1917 next = &np->properties;
1918 while (*next) {
1919 if (*next == oldprop) {
1920 /* found the node */
1921 newprop->next = oldprop->next;
1922 *next = newprop;
1923 oldprop->next = np->deadprops;
1924 np->deadprops = oldprop;
1925 found = 1;
1926 break;
1927 }
1928 next = &(*next)->next;
1929 }
1930 write_unlock(&devtree_lock);
1931
1932 if (!found)
1933 return -ENODEV;
9b6b563c 1934
088186de
DB
1935#ifdef CONFIG_PROC_DEVICETREE
1936 /* try to add to proc as well if it was initialized */
1937 if (np->pde)
1938 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1939#endif /* CONFIG_PROC_DEVICETREE */
1940
1941 return 0;
1942}
b68239ee
ME
1943
1944#ifdef CONFIG_KEXEC
1945/* We may have allocated the flat device tree inside the crash kernel region
1946 * in prom_init. If so we need to move it out into regular memory. */
1947void kdump_move_device_tree(void)
1948{
1949 unsigned long start, end;
1950 struct boot_param_header *new;
1951
1952 start = __pa((unsigned long)initial_boot_params);
1953 end = start + initial_boot_params->totalsize;
1954
1955 if (end < crashk_res.start || start > crashk_res.end)
1956 return;
1957
1958 new = (struct boot_param_header*)
1959 __va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
1960
1961 memcpy(new, initial_boot_params, initial_boot_params->totalsize);
1962
1963 initial_boot_params = new;
1964
1965 DBG("Flat device tree blob moved to %p\n", initial_boot_params);
1966
1967 /* XXX should we unreserve the old DT? */
1968}
1969#endif /* CONFIG_KEXEC */