]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/kernel/ptrace.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / ptrace.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
b123923d 11 * and Paul Mackerras (paulus@samba.org).
1da177e4
LT
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/ptrace.h>
f65255e8 24#include <linux/regset.h>
4f72c427 25#include <linux/tracehook.h>
3caf06c6 26#include <linux/elf.h>
1da177e4
LT
27#include <linux/user.h>
28#include <linux/security.h>
7ed20e1a 29#include <linux/signal.h>
ea9c102c
DW
30#include <linux/seccomp.h>
31#include <linux/audit.h>
02424d89 32#include <trace/syscall.h>
5aae8a53
P
33#include <linux/hw_breakpoint.h>
34#include <linux/perf_event.h>
22ecbe8d 35#include <linux/context_tracking.h>
ebb0e13e 36#include <linux/nospec.h>
1da177e4 37
7c0f6ba6 38#include <linux/uaccess.h>
c5cc1f4d 39#include <linux/pkeys.h>
1da177e4
LT
40#include <asm/page.h>
41#include <asm/pgtable.h>
ae3a197e 42#include <asm/switch_to.h>
c7a318ba 43#include <asm/tm.h>
0545d543 44#include <asm/asm-prototypes.h>
85ce9a5d 45#include <asm/debug.h>
c1fe190c 46#include <asm/hw_breakpoint.h>
21a62902 47
02424d89
IM
48#define CREATE_TRACE_POINTS
49#include <trace/events/syscalls.h>
50
359e4284
MS
51/*
52 * The parameter save area on the stack is used to store arguments being passed
53 * to callee function and is located at fixed offset from stack pointer.
54 */
55#ifdef CONFIG_PPC32
56#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
57#else /* CONFIG_PPC32 */
58#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
59#endif
60
61struct pt_regs_offset {
62 const char *name;
63 int offset;
64};
65
66#define STR(s) #s /* convert to string */
67#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
68#define GPR_OFFSET_NAME(num) \
343c3327 69 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
359e4284
MS
70 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
71#define REG_OFFSET_END {.name = NULL, .offset = 0}
72
8c13f599 73#define TVSO(f) (offsetof(struct thread_vr_state, f))
9d3918f7 74#define TFSO(f) (offsetof(struct thread_fp_state, f))
08e1c01d 75#define TSO(f) (offsetof(struct thread_struct, f))
8c13f599 76
359e4284
MS
77static const struct pt_regs_offset regoffset_table[] = {
78 GPR_OFFSET_NAME(0),
79 GPR_OFFSET_NAME(1),
80 GPR_OFFSET_NAME(2),
81 GPR_OFFSET_NAME(3),
82 GPR_OFFSET_NAME(4),
83 GPR_OFFSET_NAME(5),
84 GPR_OFFSET_NAME(6),
85 GPR_OFFSET_NAME(7),
86 GPR_OFFSET_NAME(8),
87 GPR_OFFSET_NAME(9),
88 GPR_OFFSET_NAME(10),
89 GPR_OFFSET_NAME(11),
90 GPR_OFFSET_NAME(12),
91 GPR_OFFSET_NAME(13),
92 GPR_OFFSET_NAME(14),
93 GPR_OFFSET_NAME(15),
94 GPR_OFFSET_NAME(16),
95 GPR_OFFSET_NAME(17),
96 GPR_OFFSET_NAME(18),
97 GPR_OFFSET_NAME(19),
98 GPR_OFFSET_NAME(20),
99 GPR_OFFSET_NAME(21),
100 GPR_OFFSET_NAME(22),
101 GPR_OFFSET_NAME(23),
102 GPR_OFFSET_NAME(24),
103 GPR_OFFSET_NAME(25),
104 GPR_OFFSET_NAME(26),
105 GPR_OFFSET_NAME(27),
106 GPR_OFFSET_NAME(28),
107 GPR_OFFSET_NAME(29),
108 GPR_OFFSET_NAME(30),
109 GPR_OFFSET_NAME(31),
110 REG_OFFSET_NAME(nip),
111 REG_OFFSET_NAME(msr),
112 REG_OFFSET_NAME(ctr),
113 REG_OFFSET_NAME(link),
114 REG_OFFSET_NAME(xer),
115 REG_OFFSET_NAME(ccr),
116#ifdef CONFIG_PPC64
117 REG_OFFSET_NAME(softe),
118#else
119 REG_OFFSET_NAME(mq),
120#endif
121 REG_OFFSET_NAME(trap),
122 REG_OFFSET_NAME(dar),
123 REG_OFFSET_NAME(dsisr),
124 REG_OFFSET_END,
125};
126
c7a318ba
CB
127#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
128static void flush_tmregs_to_thread(struct task_struct *tsk)
129{
130 /*
131 * If task is not current, it will have been flushed already to
132 * it's thread_struct during __switch_to().
133 *
cd63f3cf
GR
134 * A reclaim flushes ALL the state or if not in TM save TM SPRs
135 * in the appropriate thread structures from live.
c7a318ba
CB
136 */
137
c1fa0768 138 if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
cd63f3cf 139 return;
c7a318ba 140
cd63f3cf
GR
141 if (MSR_TM_SUSPENDED(mfmsr())) {
142 tm_reclaim_current(TM_CAUSE_SIGNAL);
143 } else {
144 tm_enable();
145 tm_save_sprs(&(tsk->thread));
146 }
c7a318ba
CB
147}
148#else
149static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
150#endif
151
359e4284
MS
152/**
153 * regs_query_register_offset() - query register offset from its name
154 * @name: the name of a register
155 *
156 * regs_query_register_offset() returns the offset of a register in struct
157 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
158 */
159int regs_query_register_offset(const char *name)
160{
161 const struct pt_regs_offset *roff;
162 for (roff = regoffset_table; roff->name != NULL; roff++)
163 if (!strcmp(roff->name, name))
164 return roff->offset;
165 return -EINVAL;
166}
167
168/**
169 * regs_query_register_name() - query register name from its offset
170 * @offset: the offset of a register in struct pt_regs.
171 *
172 * regs_query_register_name() returns the name of a register from its
173 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
174 */
175const char *regs_query_register_name(unsigned int offset)
176{
177 const struct pt_regs_offset *roff;
178 for (roff = regoffset_table; roff->name != NULL; roff++)
179 if (roff->offset == offset)
180 return roff->name;
181 return NULL;
182}
183
abd06505
BH
184/*
185 * does not yet catch signals sent when the child dies.
186 * in exit.c or in signal.c.
187 */
188
189/*
190 * Set of msr bits that gdb can change on behalf of a process.
191 */
172ae2e7 192#ifdef CONFIG_PPC_ADV_DEBUG_REGS
abd06505 193#define MSR_DEBUGCHANGE 0
1da177e4 194#else
abd06505 195#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
1da177e4 196#endif
acd89828 197
1da177e4 198/*
abd06505 199 * Max register writeable via put_reg
1da177e4 200 */
abd06505
BH
201#ifdef CONFIG_PPC32
202#define PT_MAX_PUT_REG PT_MQ
203#else
204#define PT_MAX_PUT_REG PT_CCR
205#endif
1da177e4 206
26f77130
RM
207static unsigned long get_user_msr(struct task_struct *task)
208{
209 return task->thread.regs->msr | task->thread.fpexc_mode;
210}
211
212static int set_user_msr(struct task_struct *task, unsigned long msr)
213{
214 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
215 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
216 return 0;
217}
218
25847fb1
AK
219#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
220static unsigned long get_user_ckpt_msr(struct task_struct *task)
221{
222 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
223}
224
225static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
226{
227 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
228 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
229 return 0;
230}
231
232static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
233{
234 task->thread.ckpt_regs.trap = trap & 0xfff0;
235 return 0;
236}
237#endif
238
1715a826 239#ifdef CONFIG_PPC64
ee4a3916 240static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826 241{
ee4a3916
AK
242 *data = task->thread.dscr;
243 return 0;
1715a826
AK
244}
245
246static int set_user_dscr(struct task_struct *task, unsigned long dscr)
247{
248 task->thread.dscr = dscr;
249 task->thread.dscr_inherit = 1;
250 return 0;
251}
252#else
ee4a3916 253static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826
AK
254{
255 return -EIO;
256}
257
258static int set_user_dscr(struct task_struct *task, unsigned long dscr)
259{
260 return -EIO;
261}
262#endif
263
26f77130
RM
264/*
265 * We prevent mucking around with the reserved area of trap
266 * which are used internally by the kernel.
267 */
268static int set_user_trap(struct task_struct *task, unsigned long trap)
269{
270 task->thread.regs->trap = trap & 0xfff0;
271 return 0;
272}
273
865418d8
BH
274/*
275 * Get contents of register REGNO in task TASK.
276 */
ee4a3916 277int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
865418d8 278{
ebb0e13e
BL
279 unsigned int regs_max;
280
ee4a3916 281 if ((task->thread.regs == NULL) || !data)
865418d8
BH
282 return -EIO;
283
ee4a3916
AK
284 if (regno == PT_MSR) {
285 *data = get_user_msr(task);
286 return 0;
287 }
865418d8 288
1715a826 289 if (regno == PT_DSCR)
ee4a3916 290 return get_user_dscr(task, data);
1715a826 291
a8a4b03a
MS
292#ifdef CONFIG_PPC64
293 /*
4e26bc4a 294 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
a8a4b03a
MS
295 * no more used as a flag, lets force usr to alway see the softe value as 1
296 * which means interrupts are not soft disabled.
297 */
298 if (regno == PT_SOFTE) {
299 *data = 1;
300 return 0;
301 }
302#endif
303
ebb0e13e
BL
304 regs_max = sizeof(struct user_pt_regs) / sizeof(unsigned long);
305 if (regno < regs_max) {
306 regno = array_index_nospec(regno, regs_max);
ee4a3916
AK
307 *data = ((unsigned long *)task->thread.regs)[regno];
308 return 0;
309 }
865418d8
BH
310
311 return -EIO;
312}
313
314/*
315 * Write contents of register REGNO in task TASK.
316 */
317int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
318{
319 if (task->thread.regs == NULL)
320 return -EIO;
321
26f77130
RM
322 if (regno == PT_MSR)
323 return set_user_msr(task, data);
324 if (regno == PT_TRAP)
325 return set_user_trap(task, data);
1715a826
AK
326 if (regno == PT_DSCR)
327 return set_user_dscr(task, data);
26f77130
RM
328
329 if (regno <= PT_MAX_PUT_REG) {
ebb0e13e 330 regno = array_index_nospec(regno, PT_MAX_PUT_REG + 1);
865418d8
BH
331 ((unsigned long *)task->thread.regs)[regno] = data;
332 return 0;
333 }
334 return -EIO;
335}
336
44dd3f50
RM
337static int gpr_get(struct task_struct *target, const struct user_regset *regset,
338 unsigned int pos, unsigned int count,
339 void *kbuf, void __user *ubuf)
340{
a71f5d5d 341 int i, ret;
44dd3f50
RM
342
343 if (target->thread.regs == NULL)
344 return -EIO;
345
a71f5d5d
MW
346 if (!FULL_REGS(target->thread.regs)) {
347 /* We have a partial register set. Fill 14-31 with bogus values */
348 for (i = 14; i < 32; i++)
349 target->thread.regs->gpr[i] = NV_REG_POISON;
350 }
44dd3f50
RM
351
352 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
353 target->thread.regs,
354 0, offsetof(struct pt_regs, msr));
355 if (!ret) {
356 unsigned long msr = get_user_msr(target);
357 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
358 offsetof(struct pt_regs, msr),
359 offsetof(struct pt_regs, msr) +
360 sizeof(msr));
361 }
362
363 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
364 offsetof(struct pt_regs, msr) + sizeof(long));
365
366 if (!ret)
367 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
368 &target->thread.regs->orig_gpr3,
369 offsetof(struct pt_regs, orig_gpr3),
3eeacd9f 370 sizeof(struct user_pt_regs));
44dd3f50
RM
371 if (!ret)
372 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
3eeacd9f 373 sizeof(struct user_pt_regs), -1);
44dd3f50
RM
374
375 return ret;
376}
377
378static int gpr_set(struct task_struct *target, const struct user_regset *regset,
379 unsigned int pos, unsigned int count,
380 const void *kbuf, const void __user *ubuf)
381{
382 unsigned long reg;
383 int ret;
384
385 if (target->thread.regs == NULL)
386 return -EIO;
387
388 CHECK_FULL_REGS(target->thread.regs);
389
390 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
391 target->thread.regs,
392 0, PT_MSR * sizeof(reg));
393
394 if (!ret && count > 0) {
395 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
396 PT_MSR * sizeof(reg),
397 (PT_MSR + 1) * sizeof(reg));
398 if (!ret)
399 ret = set_user_msr(target, reg);
400 }
401
402 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
403 offsetof(struct pt_regs, msr) + sizeof(long));
404
405 if (!ret)
406 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
407 &target->thread.regs->orig_gpr3,
408 PT_ORIG_R3 * sizeof(reg),
409 (PT_MAX_PUT_REG + 1) * sizeof(reg));
410
411 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
412 ret = user_regset_copyin_ignore(
413 &pos, &count, &kbuf, &ubuf,
414 (PT_MAX_PUT_REG + 1) * sizeof(reg),
415 PT_TRAP * sizeof(reg));
416
417 if (!ret && count > 0) {
418 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
419 PT_TRAP * sizeof(reg),
420 (PT_TRAP + 1) * sizeof(reg));
421 if (!ret)
422 ret = set_user_trap(target, reg);
423 }
424
425 if (!ret)
426 ret = user_regset_copyin_ignore(
427 &pos, &count, &kbuf, &ubuf,
428 (PT_TRAP + 1) * sizeof(reg), -1);
429
430 return ret;
431}
865418d8 432
1ec8549d 433/*
dc310669 434 * Regardless of transactions, 'fp_state' holds the current running
000ec280 435 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
dc310669 436 * value of all FPR registers for the current transaction.
1ec8549d
AK
437 *
438 * Userspace interface buffer layout:
439 *
440 * struct data {
441 * u64 fpr[32];
442 * u64 fpscr;
443 * };
1ec8549d 444 */
f65255e8
RM
445static int fpr_get(struct task_struct *target, const struct user_regset *regset,
446 unsigned int pos, unsigned int count,
447 void *kbuf, void __user *ubuf)
448{
c6e6771b 449#ifdef CONFIG_VSX
de79f7b9 450 u64 buf[33];
c6e6771b 451 int i;
f65255e8 452
dc310669 453 flush_fp_to_thread(target);
1ec8549d 454
c6e6771b
MN
455 /* copy to local buffer then write that out */
456 for (i = 0; i < 32 ; i++)
457 buf[i] = target->thread.TS_FPR(i);
de79f7b9 458 buf[32] = target->thread.fp_state.fpscr;
c6e6771b 459 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
dc310669 460#else
de79f7b9 461 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 462 offsetof(struct thread_fp_state, fpr[32]));
f65255e8 463
dc310669
CB
464 flush_fp_to_thread(target);
465
f65255e8 466 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
de79f7b9 467 &target->thread.fp_state, 0, -1);
c6e6771b 468#endif
f65255e8
RM
469}
470
1ec8549d 471/*
dc310669 472 * Regardless of transactions, 'fp_state' holds the current running
000ec280 473 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
dc310669 474 * value of all FPR registers for the current transaction.
1ec8549d
AK
475 *
476 * Userspace interface buffer layout:
477 *
478 * struct data {
479 * u64 fpr[32];
480 * u64 fpscr;
481 * };
482 *
1ec8549d 483 */
f65255e8
RM
484static int fpr_set(struct task_struct *target, const struct user_regset *regset,
485 unsigned int pos, unsigned int count,
486 const void *kbuf, const void __user *ubuf)
487{
c6e6771b 488#ifdef CONFIG_VSX
de79f7b9 489 u64 buf[33];
c6e6771b 490 int i;
dc310669 491
f65255e8
RM
492 flush_fp_to_thread(target);
493
99dfe80a
DM
494 for (i = 0; i < 32 ; i++)
495 buf[i] = target->thread.TS_FPR(i);
496 buf[32] = target->thread.fp_state.fpscr;
497
1ec8549d
AK
498 /* copy to local buffer then write that out */
499 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
500 if (i)
501 return i;
502
c6e6771b
MN
503 for (i = 0; i < 32 ; i++)
504 target->thread.TS_FPR(i) = buf[i];
de79f7b9 505 target->thread.fp_state.fpscr = buf[32];
c6e6771b 506 return 0;
dc310669 507#else
de79f7b9 508 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 509 offsetof(struct thread_fp_state, fpr[32]));
f65255e8 510
dc310669
CB
511 flush_fp_to_thread(target);
512
f65255e8 513 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
de79f7b9 514 &target->thread.fp_state, 0, -1);
c6e6771b 515#endif
f65255e8
RM
516}
517
865418d8
BH
518#ifdef CONFIG_ALTIVEC
519/*
520 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
521 * The transfer totals 34 quadword. Quadwords 0-31 contain the
522 * corresponding vector registers. Quadword 32 contains the vscr as the
523 * last word (offset 12) within that quadword. Quadword 33 contains the
524 * vrsave as the first word (offset 0) within the quadword.
525 *
526 * This definition of the VMX state is compatible with the current PPC32
527 * ptrace interface. This allows signal handling and ptrace to use the
528 * same structures. This also simplifies the implementation of a bi-arch
529 * (combined (32- and 64-bit) gdb.
530 */
531
3caf06c6
RM
532static int vr_active(struct task_struct *target,
533 const struct user_regset *regset)
534{
535 flush_altivec_to_thread(target);
536 return target->thread.used_vr ? regset->n : 0;
537}
538
d844e279 539/*
dc310669 540 * Regardless of transactions, 'vr_state' holds the current running
000ec280 541 * value of all the VMX registers and 'ckvr_state' holds the last
dc310669
CB
542 * checkpointed value of all the VMX registers for the current
543 * transaction to fall back on in case it aborts.
d844e279
AK
544 *
545 * Userspace interface buffer layout:
546 *
547 * struct data {
548 * vector128 vr[32];
549 * vector128 vscr;
550 * vector128 vrsave;
551 * };
552 */
3caf06c6
RM
553static int vr_get(struct task_struct *target, const struct user_regset *regset,
554 unsigned int pos, unsigned int count,
555 void *kbuf, void __user *ubuf)
556{
557 int ret;
558
559 flush_altivec_to_thread(target);
560
de79f7b9
PM
561 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
562 offsetof(struct thread_vr_state, vr[32]));
3caf06c6
RM
563
564 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
dc310669 565 &target->thread.vr_state, 0,
3caf06c6
RM
566 33 * sizeof(vector128));
567 if (!ret) {
568 /*
569 * Copy out only the low-order word of vrsave.
570 */
ca6d5149 571 int start, end;
3caf06c6
RM
572 union {
573 elf_vrreg_t reg;
574 u32 word;
575 } vrsave;
576 memset(&vrsave, 0, sizeof(vrsave));
d844e279 577
3caf06c6 578 vrsave.word = target->thread.vrsave;
d844e279 579
ca6d5149
ME
580 start = 33 * sizeof(vector128);
581 end = start + sizeof(vrsave);
3caf06c6 582 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
ca6d5149 583 start, end);
3caf06c6
RM
584 }
585
586 return ret;
587}
588
d844e279 589/*
dc310669 590 * Regardless of transactions, 'vr_state' holds the current running
000ec280 591 * value of all the VMX registers and 'ckvr_state' holds the last
dc310669
CB
592 * checkpointed value of all the VMX registers for the current
593 * transaction to fall back on in case it aborts.
d844e279
AK
594 *
595 * Userspace interface buffer layout:
596 *
597 * struct data {
598 * vector128 vr[32];
599 * vector128 vscr;
600 * vector128 vrsave;
601 * };
602 */
3caf06c6
RM
603static int vr_set(struct task_struct *target, const struct user_regset *regset,
604 unsigned int pos, unsigned int count,
605 const void *kbuf, const void __user *ubuf)
606{
607 int ret;
608
609 flush_altivec_to_thread(target);
610
de79f7b9
PM
611 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
612 offsetof(struct thread_vr_state, vr[32]));
3caf06c6
RM
613
614 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
dc310669 615 &target->thread.vr_state, 0,
de79f7b9 616 33 * sizeof(vector128));
3caf06c6
RM
617 if (!ret && count > 0) {
618 /*
619 * We use only the first word of vrsave.
620 */
ca6d5149 621 int start, end;
3caf06c6
RM
622 union {
623 elf_vrreg_t reg;
624 u32 word;
625 } vrsave;
626 memset(&vrsave, 0, sizeof(vrsave));
d844e279 627
3caf06c6 628 vrsave.word = target->thread.vrsave;
dc310669 629
ca6d5149
ME
630 start = 33 * sizeof(vector128);
631 end = start + sizeof(vrsave);
3caf06c6 632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
ca6d5149 633 start, end);
dc310669 634 if (!ret)
3caf06c6
RM
635 target->thread.vrsave = vrsave.word;
636 }
637
638 return ret;
639}
865418d8
BH
640#endif /* CONFIG_ALTIVEC */
641
ce48b210
MN
642#ifdef CONFIG_VSX
643/*
644 * Currently to set and and get all the vsx state, you need to call
25985edc 645 * the fp and VMX calls as well. This only get/sets the lower 32
ce48b210
MN
646 * 128bit VSX registers.
647 */
648
649static int vsr_active(struct task_struct *target,
650 const struct user_regset *regset)
651{
652 flush_vsx_to_thread(target);
653 return target->thread.used_vsr ? regset->n : 0;
654}
655
94b7d361 656/*
dc310669 657 * Regardless of transactions, 'fp_state' holds the current running
000ec280 658 * value of all FPR registers and 'ckfp_state' holds the last
dc310669
CB
659 * checkpointed value of all FPR registers for the current
660 * transaction.
94b7d361
AK
661 *
662 * Userspace interface buffer layout:
663 *
664 * struct data {
665 * u64 vsx[32];
666 * };
667 */
ce48b210
MN
668static int vsr_get(struct task_struct *target, const struct user_regset *regset,
669 unsigned int pos, unsigned int count,
670 void *kbuf, void __user *ubuf)
671{
de79f7b9 672 u64 buf[32];
f3e909c2 673 int ret, i;
ce48b210 674
dc310669 675 flush_tmregs_to_thread(target);
94b7d361
AK
676 flush_fp_to_thread(target);
677 flush_altivec_to_thread(target);
ce48b210
MN
678 flush_vsx_to_thread(target);
679
f3e909c2 680 for (i = 0; i < 32 ; i++)
de79f7b9 681 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
dc310669 682
ce48b210 683 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
f3e909c2 684 buf, 0, 32 * sizeof(double));
ce48b210
MN
685
686 return ret;
687}
688
94b7d361 689/*
dc310669 690 * Regardless of transactions, 'fp_state' holds the current running
000ec280 691 * value of all FPR registers and 'ckfp_state' holds the last
dc310669
CB
692 * checkpointed value of all FPR registers for the current
693 * transaction.
94b7d361
AK
694 *
695 * Userspace interface buffer layout:
696 *
697 * struct data {
698 * u64 vsx[32];
699 * };
700 */
ce48b210
MN
701static int vsr_set(struct task_struct *target, const struct user_regset *regset,
702 unsigned int pos, unsigned int count,
703 const void *kbuf, const void __user *ubuf)
704{
de79f7b9 705 u64 buf[32];
f3e909c2 706 int ret,i;
ce48b210 707
dc310669 708 flush_tmregs_to_thread(target);
94b7d361
AK
709 flush_fp_to_thread(target);
710 flush_altivec_to_thread(target);
ce48b210
MN
711 flush_vsx_to_thread(target);
712
99dfe80a
DM
713 for (i = 0; i < 32 ; i++)
714 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
715
ce48b210 716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
f3e909c2 717 buf, 0, 32 * sizeof(double));
dc310669 718 if (!ret)
94b7d361 719 for (i = 0; i < 32 ; i++)
dc310669 720 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
ce48b210
MN
721
722 return ret;
723}
724#endif /* CONFIG_VSX */
725
865418d8
BH
726#ifdef CONFIG_SPE
727
728/*
729 * For get_evrregs/set_evrregs functions 'data' has the following layout:
730 *
731 * struct {
732 * u32 evr[32];
733 * u64 acc;
734 * u32 spefscr;
735 * }
736 */
737
a4e4b175
RM
738static int evr_active(struct task_struct *target,
739 const struct user_regset *regset)
865418d8 740{
a4e4b175
RM
741 flush_spe_to_thread(target);
742 return target->thread.used_spe ? regset->n : 0;
743}
865418d8 744
a4e4b175
RM
745static int evr_get(struct task_struct *target, const struct user_regset *regset,
746 unsigned int pos, unsigned int count,
747 void *kbuf, void __user *ubuf)
748{
749 int ret;
865418d8 750
a4e4b175 751 flush_spe_to_thread(target);
865418d8 752
a4e4b175
RM
753 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
754 &target->thread.evr,
755 0, sizeof(target->thread.evr));
865418d8 756
a4e4b175
RM
757 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
758 offsetof(struct thread_struct, spefscr));
759
760 if (!ret)
761 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
762 &target->thread.acc,
763 sizeof(target->thread.evr), -1);
764
765 return ret;
766}
767
768static int evr_set(struct task_struct *target, const struct user_regset *regset,
769 unsigned int pos, unsigned int count,
770 const void *kbuf, const void __user *ubuf)
771{
772 int ret;
773
774 flush_spe_to_thread(target);
775
776 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
777 &target->thread.evr,
778 0, sizeof(target->thread.evr));
865418d8 779
a4e4b175
RM
780 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
781 offsetof(struct thread_struct, spefscr));
782
783 if (!ret)
784 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
785 &target->thread.acc,
786 sizeof(target->thread.evr), -1);
787
788 return ret;
865418d8 789}
865418d8
BH
790#endif /* CONFIG_SPE */
791
25847fb1
AK
792#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
793/**
794 * tm_cgpr_active - get active number of registers in CGPR
795 * @target: The target task.
796 * @regset: The user regset structure.
797 *
798 * This function checks for the active number of available
799 * regisers in transaction checkpointed GPR category.
800 */
801static int tm_cgpr_active(struct task_struct *target,
802 const struct user_regset *regset)
803{
804 if (!cpu_has_feature(CPU_FTR_TM))
805 return -ENODEV;
806
807 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
808 return 0;
809
810 return regset->n;
811}
812
813/**
814 * tm_cgpr_get - get CGPR registers
815 * @target: The target task.
816 * @regset: The user regset structure.
817 * @pos: The buffer position.
818 * @count: Number of bytes to copy.
819 * @kbuf: Kernel buffer to copy from.
820 * @ubuf: User buffer to copy into.
821 *
822 * This function gets transaction checkpointed GPR registers.
823 *
824 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
825 * GPR register values for the current transaction to fall back on if it
826 * aborts in between. This function gets those checkpointed GPR registers.
827 * The userspace interface buffer layout is as follows.
828 *
829 * struct data {
830 * struct pt_regs ckpt_regs;
831 * };
832 */
833static int tm_cgpr_get(struct task_struct *target,
834 const struct user_regset *regset,
835 unsigned int pos, unsigned int count,
836 void *kbuf, void __user *ubuf)
837{
838 int ret;
839
840 if (!cpu_has_feature(CPU_FTR_TM))
841 return -ENODEV;
842
843 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
844 return -ENODATA;
845
dc310669 846 flush_tmregs_to_thread(target);
25847fb1
AK
847 flush_fp_to_thread(target);
848 flush_altivec_to_thread(target);
25847fb1
AK
849
850 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
851 &target->thread.ckpt_regs,
852 0, offsetof(struct pt_regs, msr));
853 if (!ret) {
854 unsigned long msr = get_user_ckpt_msr(target);
855
856 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
857 offsetof(struct pt_regs, msr),
858 offsetof(struct pt_regs, msr) +
859 sizeof(msr));
860 }
861
862 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
863 offsetof(struct pt_regs, msr) + sizeof(long));
864
865 if (!ret)
866 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
867 &target->thread.ckpt_regs.orig_gpr3,
868 offsetof(struct pt_regs, orig_gpr3),
3eeacd9f 869 sizeof(struct user_pt_regs));
25847fb1
AK
870 if (!ret)
871 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
3eeacd9f 872 sizeof(struct user_pt_regs), -1);
25847fb1
AK
873
874 return ret;
875}
876
877/*
878 * tm_cgpr_set - set the CGPR registers
879 * @target: The target task.
880 * @regset: The user regset structure.
881 * @pos: The buffer position.
882 * @count: Number of bytes to copy.
883 * @kbuf: Kernel buffer to copy into.
884 * @ubuf: User buffer to copy from.
885 *
886 * This function sets in transaction checkpointed GPR registers.
887 *
888 * When the transaction is active, 'ckpt_regs' holds the checkpointed
889 * GPR register values for the current transaction to fall back on if it
890 * aborts in between. This function sets those checkpointed GPR registers.
891 * The userspace interface buffer layout is as follows.
892 *
893 * struct data {
894 * struct pt_regs ckpt_regs;
895 * };
896 */
897static int tm_cgpr_set(struct task_struct *target,
898 const struct user_regset *regset,
899 unsigned int pos, unsigned int count,
900 const void *kbuf, const void __user *ubuf)
901{
902 unsigned long reg;
903 int ret;
904
905 if (!cpu_has_feature(CPU_FTR_TM))
906 return -ENODEV;
907
908 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
909 return -ENODATA;
910
dc310669 911 flush_tmregs_to_thread(target);
25847fb1
AK
912 flush_fp_to_thread(target);
913 flush_altivec_to_thread(target);
25847fb1
AK
914
915 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
916 &target->thread.ckpt_regs,
917 0, PT_MSR * sizeof(reg));
918
919 if (!ret && count > 0) {
920 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
921 PT_MSR * sizeof(reg),
922 (PT_MSR + 1) * sizeof(reg));
923 if (!ret)
924 ret = set_user_ckpt_msr(target, reg);
925 }
926
927 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
928 offsetof(struct pt_regs, msr) + sizeof(long));
929
930 if (!ret)
931 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
932 &target->thread.ckpt_regs.orig_gpr3,
933 PT_ORIG_R3 * sizeof(reg),
934 (PT_MAX_PUT_REG + 1) * sizeof(reg));
935
936 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
937 ret = user_regset_copyin_ignore(
938 &pos, &count, &kbuf, &ubuf,
939 (PT_MAX_PUT_REG + 1) * sizeof(reg),
940 PT_TRAP * sizeof(reg));
941
942 if (!ret && count > 0) {
943 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
944 PT_TRAP * sizeof(reg),
945 (PT_TRAP + 1) * sizeof(reg));
946 if (!ret)
947 ret = set_user_ckpt_trap(target, reg);
948 }
949
950 if (!ret)
951 ret = user_regset_copyin_ignore(
952 &pos, &count, &kbuf, &ubuf,
953 (PT_TRAP + 1) * sizeof(reg), -1);
954
955 return ret;
956}
19cbcbf7
AK
957
958/**
959 * tm_cfpr_active - get active number of registers in CFPR
960 * @target: The target task.
961 * @regset: The user regset structure.
962 *
963 * This function checks for the active number of available
964 * regisers in transaction checkpointed FPR category.
965 */
966static int tm_cfpr_active(struct task_struct *target,
967 const struct user_regset *regset)
968{
969 if (!cpu_has_feature(CPU_FTR_TM))
970 return -ENODEV;
971
972 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
973 return 0;
974
975 return regset->n;
976}
977
978/**
979 * tm_cfpr_get - get CFPR registers
980 * @target: The target task.
981 * @regset: The user regset structure.
982 * @pos: The buffer position.
983 * @count: Number of bytes to copy.
984 * @kbuf: Kernel buffer to copy from.
985 * @ubuf: User buffer to copy into.
986 *
987 * This function gets in transaction checkpointed FPR registers.
988 *
000ec280 989 * When the transaction is active 'ckfp_state' holds the checkpointed
19cbcbf7
AK
990 * values for the current transaction to fall back on if it aborts
991 * in between. This function gets those checkpointed FPR registers.
992 * The userspace interface buffer layout is as follows.
993 *
994 * struct data {
995 * u64 fpr[32];
996 * u64 fpscr;
997 *};
998 */
999static int tm_cfpr_get(struct task_struct *target,
1000 const struct user_regset *regset,
1001 unsigned int pos, unsigned int count,
1002 void *kbuf, void __user *ubuf)
1003{
1004 u64 buf[33];
1005 int i;
1006
1007 if (!cpu_has_feature(CPU_FTR_TM))
1008 return -ENODEV;
1009
1010 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1011 return -ENODATA;
1012
dc310669 1013 flush_tmregs_to_thread(target);
19cbcbf7
AK
1014 flush_fp_to_thread(target);
1015 flush_altivec_to_thread(target);
19cbcbf7
AK
1016
1017 /* copy to local buffer then write that out */
1018 for (i = 0; i < 32 ; i++)
000ec280
CB
1019 buf[i] = target->thread.TS_CKFPR(i);
1020 buf[32] = target->thread.ckfp_state.fpscr;
19cbcbf7
AK
1021 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1022}
1023
1024/**
1025 * tm_cfpr_set - set CFPR registers
1026 * @target: The target task.
1027 * @regset: The user regset structure.
1028 * @pos: The buffer position.
1029 * @count: Number of bytes to copy.
1030 * @kbuf: Kernel buffer to copy into.
1031 * @ubuf: User buffer to copy from.
1032 *
1033 * This function sets in transaction checkpointed FPR registers.
1034 *
000ec280 1035 * When the transaction is active 'ckfp_state' holds the checkpointed
19cbcbf7
AK
1036 * FPR register values for the current transaction to fall back on
1037 * if it aborts in between. This function sets these checkpointed
1038 * FPR registers. The userspace interface buffer layout is as follows.
1039 *
1040 * struct data {
1041 * u64 fpr[32];
1042 * u64 fpscr;
1043 *};
1044 */
1045static int tm_cfpr_set(struct task_struct *target,
1046 const struct user_regset *regset,
1047 unsigned int pos, unsigned int count,
1048 const void *kbuf, const void __user *ubuf)
1049{
1050 u64 buf[33];
1051 int i;
1052
1053 if (!cpu_has_feature(CPU_FTR_TM))
1054 return -ENODEV;
1055
1056 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1057 return -ENODATA;
1058
dc310669 1059 flush_tmregs_to_thread(target);
19cbcbf7
AK
1060 flush_fp_to_thread(target);
1061 flush_altivec_to_thread(target);
19cbcbf7 1062
b34ca601
DM
1063 for (i = 0; i < 32; i++)
1064 buf[i] = target->thread.TS_CKFPR(i);
1065 buf[32] = target->thread.ckfp_state.fpscr;
1066
19cbcbf7
AK
1067 /* copy to local buffer then write that out */
1068 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1069 if (i)
1070 return i;
1071 for (i = 0; i < 32 ; i++)
000ec280
CB
1072 target->thread.TS_CKFPR(i) = buf[i];
1073 target->thread.ckfp_state.fpscr = buf[32];
19cbcbf7
AK
1074 return 0;
1075}
8c13f599
AK
1076
1077/**
1078 * tm_cvmx_active - get active number of registers in CVMX
1079 * @target: The target task.
1080 * @regset: The user regset structure.
1081 *
1082 * This function checks for the active number of available
1083 * regisers in checkpointed VMX category.
1084 */
1085static int tm_cvmx_active(struct task_struct *target,
1086 const struct user_regset *regset)
1087{
1088 if (!cpu_has_feature(CPU_FTR_TM))
1089 return -ENODEV;
1090
1091 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1092 return 0;
1093
1094 return regset->n;
1095}
1096
1097/**
1098 * tm_cvmx_get - get CMVX registers
1099 * @target: The target task.
1100 * @regset: The user regset structure.
1101 * @pos: The buffer position.
1102 * @count: Number of bytes to copy.
1103 * @kbuf: Kernel buffer to copy from.
1104 * @ubuf: User buffer to copy into.
1105 *
1106 * This function gets in transaction checkpointed VMX registers.
1107 *
000ec280 1108 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
8c13f599
AK
1109 * the checkpointed values for the current transaction to fall
1110 * back on if it aborts in between. The userspace interface buffer
1111 * layout is as follows.
1112 *
1113 * struct data {
1114 * vector128 vr[32];
1115 * vector128 vscr;
1116 * vector128 vrsave;
1117 *};
1118 */
1119static int tm_cvmx_get(struct task_struct *target,
1120 const struct user_regset *regset,
1121 unsigned int pos, unsigned int count,
1122 void *kbuf, void __user *ubuf)
1123{
1124 int ret;
1125
1126 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1127
1128 if (!cpu_has_feature(CPU_FTR_TM))
1129 return -ENODEV;
1130
1131 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1132 return -ENODATA;
1133
1134 /* Flush the state */
dc310669 1135 flush_tmregs_to_thread(target);
8c13f599
AK
1136 flush_fp_to_thread(target);
1137 flush_altivec_to_thread(target);
8c13f599
AK
1138
1139 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
000ec280 1140 &target->thread.ckvr_state, 0,
8c13f599
AK
1141 33 * sizeof(vector128));
1142 if (!ret) {
1143 /*
1144 * Copy out only the low-order word of vrsave.
1145 */
1146 union {
1147 elf_vrreg_t reg;
1148 u32 word;
1149 } vrsave;
1150 memset(&vrsave, 0, sizeof(vrsave));
000ec280 1151 vrsave.word = target->thread.ckvrsave;
8c13f599
AK
1152 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1153 33 * sizeof(vector128), -1);
1154 }
1155
1156 return ret;
1157}
1158
1159/**
1160 * tm_cvmx_set - set CMVX registers
1161 * @target: The target task.
1162 * @regset: The user regset structure.
1163 * @pos: The buffer position.
1164 * @count: Number of bytes to copy.
1165 * @kbuf: Kernel buffer to copy into.
1166 * @ubuf: User buffer to copy from.
1167 *
1168 * This function sets in transaction checkpointed VMX registers.
1169 *
000ec280 1170 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
8c13f599
AK
1171 * the checkpointed values for the current transaction to fall
1172 * back on if it aborts in between. The userspace interface buffer
1173 * layout is as follows.
1174 *
1175 * struct data {
1176 * vector128 vr[32];
1177 * vector128 vscr;
1178 * vector128 vrsave;
1179 *};
1180 */
1181static int tm_cvmx_set(struct task_struct *target,
1182 const struct user_regset *regset,
1183 unsigned int pos, unsigned int count,
1184 const void *kbuf, const void __user *ubuf)
1185{
1186 int ret;
1187
1188 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1189
1190 if (!cpu_has_feature(CPU_FTR_TM))
1191 return -ENODEV;
1192
1193 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1194 return -ENODATA;
1195
dc310669 1196 flush_tmregs_to_thread(target);
8c13f599
AK
1197 flush_fp_to_thread(target);
1198 flush_altivec_to_thread(target);
8c13f599
AK
1199
1200 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
000ec280 1201 &target->thread.ckvr_state, 0,
8c13f599
AK
1202 33 * sizeof(vector128));
1203 if (!ret && count > 0) {
1204 /*
1205 * We use only the low-order word of vrsave.
1206 */
1207 union {
1208 elf_vrreg_t reg;
1209 u32 word;
1210 } vrsave;
1211 memset(&vrsave, 0, sizeof(vrsave));
000ec280 1212 vrsave.word = target->thread.ckvrsave;
8c13f599
AK
1213 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1214 33 * sizeof(vector128), -1);
1215 if (!ret)
000ec280 1216 target->thread.ckvrsave = vrsave.word;
8c13f599
AK
1217 }
1218
1219 return ret;
1220}
9d3918f7
AK
1221
1222/**
1223 * tm_cvsx_active - get active number of registers in CVSX
1224 * @target: The target task.
1225 * @regset: The user regset structure.
1226 *
1227 * This function checks for the active number of available
1228 * regisers in transaction checkpointed VSX category.
1229 */
1230static int tm_cvsx_active(struct task_struct *target,
1231 const struct user_regset *regset)
1232{
1233 if (!cpu_has_feature(CPU_FTR_TM))
1234 return -ENODEV;
1235
1236 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1237 return 0;
1238
1239 flush_vsx_to_thread(target);
1240 return target->thread.used_vsr ? regset->n : 0;
1241}
1242
1243/**
1244 * tm_cvsx_get - get CVSX registers
1245 * @target: The target task.
1246 * @regset: The user regset structure.
1247 * @pos: The buffer position.
1248 * @count: Number of bytes to copy.
1249 * @kbuf: Kernel buffer to copy from.
1250 * @ubuf: User buffer to copy into.
1251 *
1252 * This function gets in transaction checkpointed VSX registers.
1253 *
000ec280 1254 * When the transaction is active 'ckfp_state' holds the checkpointed
9d3918f7
AK
1255 * values for the current transaction to fall back on if it aborts
1256 * in between. This function gets those checkpointed VSX registers.
1257 * The userspace interface buffer layout is as follows.
1258 *
1259 * struct data {
1260 * u64 vsx[32];
1261 *};
1262 */
1263static int tm_cvsx_get(struct task_struct *target,
1264 const struct user_regset *regset,
1265 unsigned int pos, unsigned int count,
1266 void *kbuf, void __user *ubuf)
1267{
1268 u64 buf[32];
1269 int ret, i;
1270
1271 if (!cpu_has_feature(CPU_FTR_TM))
1272 return -ENODEV;
1273
1274 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1275 return -ENODATA;
1276
1277 /* Flush the state */
dc310669 1278 flush_tmregs_to_thread(target);
9d3918f7
AK
1279 flush_fp_to_thread(target);
1280 flush_altivec_to_thread(target);
9d3918f7
AK
1281 flush_vsx_to_thread(target);
1282
1283 for (i = 0; i < 32 ; i++)
000ec280 1284 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
9d3918f7
AK
1285 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286 buf, 0, 32 * sizeof(double));
1287
1288 return ret;
1289}
1290
1291/**
1292 * tm_cvsx_set - set CFPR registers
1293 * @target: The target task.
1294 * @regset: The user regset structure.
1295 * @pos: The buffer position.
1296 * @count: Number of bytes to copy.
1297 * @kbuf: Kernel buffer to copy into.
1298 * @ubuf: User buffer to copy from.
1299 *
1300 * This function sets in transaction checkpointed VSX registers.
1301 *
000ec280 1302 * When the transaction is active 'ckfp_state' holds the checkpointed
9d3918f7
AK
1303 * VSX register values for the current transaction to fall back on
1304 * if it aborts in between. This function sets these checkpointed
1305 * FPR registers. The userspace interface buffer layout is as follows.
1306 *
1307 * struct data {
1308 * u64 vsx[32];
1309 *};
1310 */
1311static int tm_cvsx_set(struct task_struct *target,
1312 const struct user_regset *regset,
1313 unsigned int pos, unsigned int count,
1314 const void *kbuf, const void __user *ubuf)
1315{
1316 u64 buf[32];
1317 int ret, i;
1318
1319 if (!cpu_has_feature(CPU_FTR_TM))
1320 return -ENODEV;
1321
1322 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1323 return -ENODATA;
1324
1325 /* Flush the state */
dc310669 1326 flush_tmregs_to_thread(target);
9d3918f7
AK
1327 flush_fp_to_thread(target);
1328 flush_altivec_to_thread(target);
9d3918f7
AK
1329 flush_vsx_to_thread(target);
1330
b34ca601
DM
1331 for (i = 0; i < 32 ; i++)
1332 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1333
9d3918f7
AK
1334 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1335 buf, 0, 32 * sizeof(double));
dc310669
CB
1336 if (!ret)
1337 for (i = 0; i < 32 ; i++)
000ec280 1338 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
9d3918f7
AK
1339
1340 return ret;
1341}
08e1c01d
AK
1342
1343/**
1344 * tm_spr_active - get active number of registers in TM SPR
1345 * @target: The target task.
1346 * @regset: The user regset structure.
1347 *
1348 * This function checks the active number of available
1349 * regisers in the transactional memory SPR category.
1350 */
1351static int tm_spr_active(struct task_struct *target,
1352 const struct user_regset *regset)
1353{
1354 if (!cpu_has_feature(CPU_FTR_TM))
1355 return -ENODEV;
1356
1357 return regset->n;
1358}
1359
1360/**
1361 * tm_spr_get - get the TM related SPR registers
1362 * @target: The target task.
1363 * @regset: The user regset structure.
1364 * @pos: The buffer position.
1365 * @count: Number of bytes to copy.
1366 * @kbuf: Kernel buffer to copy from.
1367 * @ubuf: User buffer to copy into.
1368 *
1369 * This function gets transactional memory related SPR registers.
1370 * The userspace interface buffer layout is as follows.
1371 *
1372 * struct {
1373 * u64 tm_tfhar;
1374 * u64 tm_texasr;
1375 * u64 tm_tfiar;
1376 * };
1377 */
1378static int tm_spr_get(struct task_struct *target,
1379 const struct user_regset *regset,
1380 unsigned int pos, unsigned int count,
1381 void *kbuf, void __user *ubuf)
1382{
1383 int ret;
1384
1385 /* Build tests */
1386 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1387 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1388 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1389
1390 if (!cpu_has_feature(CPU_FTR_TM))
1391 return -ENODEV;
1392
1393 /* Flush the states */
dc310669 1394 flush_tmregs_to_thread(target);
08e1c01d
AK
1395 flush_fp_to_thread(target);
1396 flush_altivec_to_thread(target);
08e1c01d
AK
1397
1398 /* TFHAR register */
1399 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1400 &target->thread.tm_tfhar, 0, sizeof(u64));
1401
1402 /* TEXASR register */
1403 if (!ret)
1404 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1405 &target->thread.tm_texasr, sizeof(u64),
1406 2 * sizeof(u64));
1407
1408 /* TFIAR register */
1409 if (!ret)
1410 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1411 &target->thread.tm_tfiar,
1412 2 * sizeof(u64), 3 * sizeof(u64));
1413 return ret;
1414}
1415
1416/**
1417 * tm_spr_set - set the TM related SPR registers
1418 * @target: The target task.
1419 * @regset: The user regset structure.
1420 * @pos: The buffer position.
1421 * @count: Number of bytes to copy.
1422 * @kbuf: Kernel buffer to copy into.
1423 * @ubuf: User buffer to copy from.
1424 *
1425 * This function sets transactional memory related SPR registers.
1426 * The userspace interface buffer layout is as follows.
1427 *
1428 * struct {
1429 * u64 tm_tfhar;
1430 * u64 tm_texasr;
1431 * u64 tm_tfiar;
1432 * };
1433 */
1434static int tm_spr_set(struct task_struct *target,
1435 const struct user_regset *regset,
1436 unsigned int pos, unsigned int count,
1437 const void *kbuf, const void __user *ubuf)
1438{
1439 int ret;
1440
1441 /* Build tests */
1442 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1443 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1444 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1445
1446 if (!cpu_has_feature(CPU_FTR_TM))
1447 return -ENODEV;
1448
1449 /* Flush the states */
dc310669 1450 flush_tmregs_to_thread(target);
08e1c01d
AK
1451 flush_fp_to_thread(target);
1452 flush_altivec_to_thread(target);
08e1c01d
AK
1453
1454 /* TFHAR register */
1455 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1456 &target->thread.tm_tfhar, 0, sizeof(u64));
1457
1458 /* TEXASR register */
1459 if (!ret)
1460 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1461 &target->thread.tm_texasr, sizeof(u64),
1462 2 * sizeof(u64));
1463
1464 /* TFIAR register */
1465 if (!ret)
1466 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1467 &target->thread.tm_tfiar,
1468 2 * sizeof(u64), 3 * sizeof(u64));
1469 return ret;
1470}
c45dc900
AK
1471
1472static int tm_tar_active(struct task_struct *target,
1473 const struct user_regset *regset)
1474{
1475 if (!cpu_has_feature(CPU_FTR_TM))
1476 return -ENODEV;
1477
1478 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1479 return regset->n;
1480
1481 return 0;
1482}
1483
1484static int tm_tar_get(struct task_struct *target,
1485 const struct user_regset *regset,
1486 unsigned int pos, unsigned int count,
1487 void *kbuf, void __user *ubuf)
1488{
1489 int ret;
1490
1491 if (!cpu_has_feature(CPU_FTR_TM))
1492 return -ENODEV;
1493
1494 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1495 return -ENODATA;
1496
1497 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1498 &target->thread.tm_tar, 0, sizeof(u64));
1499 return ret;
1500}
1501
1502static int tm_tar_set(struct task_struct *target,
1503 const struct user_regset *regset,
1504 unsigned int pos, unsigned int count,
1505 const void *kbuf, const void __user *ubuf)
1506{
1507 int ret;
1508
1509 if (!cpu_has_feature(CPU_FTR_TM))
1510 return -ENODEV;
1511
1512 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1513 return -ENODATA;
1514
1515 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1516 &target->thread.tm_tar, 0, sizeof(u64));
1517 return ret;
1518}
1519
1520static int tm_ppr_active(struct task_struct *target,
1521 const struct user_regset *regset)
1522{
1523 if (!cpu_has_feature(CPU_FTR_TM))
1524 return -ENODEV;
1525
1526 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1527 return regset->n;
1528
1529 return 0;
1530}
1531
1532
1533static int tm_ppr_get(struct task_struct *target,
1534 const struct user_regset *regset,
1535 unsigned int pos, unsigned int count,
1536 void *kbuf, void __user *ubuf)
1537{
1538 int ret;
1539
1540 if (!cpu_has_feature(CPU_FTR_TM))
1541 return -ENODEV;
1542
1543 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1544 return -ENODATA;
1545
1546 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1547 &target->thread.tm_ppr, 0, sizeof(u64));
1548 return ret;
1549}
1550
1551static int tm_ppr_set(struct task_struct *target,
1552 const struct user_regset *regset,
1553 unsigned int pos, unsigned int count,
1554 const void *kbuf, const void __user *ubuf)
1555{
1556 int ret;
1557
1558 if (!cpu_has_feature(CPU_FTR_TM))
1559 return -ENODEV;
1560
1561 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1562 return -ENODATA;
1563
1564 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1565 &target->thread.tm_ppr, 0, sizeof(u64));
1566 return ret;
1567}
1568
1569static int tm_dscr_active(struct task_struct *target,
1570 const struct user_regset *regset)
1571{
1572 if (!cpu_has_feature(CPU_FTR_TM))
1573 return -ENODEV;
1574
1575 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1576 return regset->n;
1577
1578 return 0;
1579}
1580
1581static int tm_dscr_get(struct task_struct *target,
1582 const struct user_regset *regset,
1583 unsigned int pos, unsigned int count,
1584 void *kbuf, void __user *ubuf)
1585{
1586 int ret;
1587
1588 if (!cpu_has_feature(CPU_FTR_TM))
1589 return -ENODEV;
1590
1591 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1592 return -ENODATA;
1593
1594 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1595 &target->thread.tm_dscr, 0, sizeof(u64));
1596 return ret;
1597}
1598
1599static int tm_dscr_set(struct task_struct *target,
1600 const struct user_regset *regset,
1601 unsigned int pos, unsigned int count,
1602 const void *kbuf, const void __user *ubuf)
1603{
1604 int ret;
1605
1606 if (!cpu_has_feature(CPU_FTR_TM))
1607 return -ENODEV;
1608
1609 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1610 return -ENODATA;
1611
1612 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1613 &target->thread.tm_dscr, 0, sizeof(u64));
1614 return ret;
1615}
08e1c01d 1616#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
865418d8 1617
fa439810
AK
1618#ifdef CONFIG_PPC64
1619static int ppr_get(struct task_struct *target,
1620 const struct user_regset *regset,
1621 unsigned int pos, unsigned int count,
1622 void *kbuf, void __user *ubuf)
1623{
7f2462ac 1624 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
4c2de74c 1625 &target->thread.regs->ppr, 0, sizeof(u64));
fa439810
AK
1626}
1627
1628static int ppr_set(struct task_struct *target,
1629 const struct user_regset *regset,
1630 unsigned int pos, unsigned int count,
1631 const void *kbuf, const void __user *ubuf)
1632{
7f2462ac 1633 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
4c2de74c 1634 &target->thread.regs->ppr, 0, sizeof(u64));
fa439810
AK
1635}
1636
1637static int dscr_get(struct task_struct *target,
1638 const struct user_regset *regset,
1639 unsigned int pos, unsigned int count,
1640 void *kbuf, void __user *ubuf)
1641{
7f2462ac
MY
1642 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1643 &target->thread.dscr, 0, sizeof(u64));
fa439810
AK
1644}
1645static int dscr_set(struct task_struct *target,
1646 const struct user_regset *regset,
1647 unsigned int pos, unsigned int count,
1648 const void *kbuf, const void __user *ubuf)
1649{
7f2462ac
MY
1650 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1651 &target->thread.dscr, 0, sizeof(u64));
fa439810
AK
1652}
1653#endif
1654#ifdef CONFIG_PPC_BOOK3S_64
1655static int tar_get(struct task_struct *target,
1656 const struct user_regset *regset,
1657 unsigned int pos, unsigned int count,
1658 void *kbuf, void __user *ubuf)
1659{
7f2462ac
MY
1660 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1661 &target->thread.tar, 0, sizeof(u64));
fa439810
AK
1662}
1663static int tar_set(struct task_struct *target,
1664 const struct user_regset *regset,
1665 unsigned int pos, unsigned int count,
1666 const void *kbuf, const void __user *ubuf)
1667{
7f2462ac
MY
1668 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1669 &target->thread.tar, 0, sizeof(u64));
fa439810 1670}
cf89d4e1
AK
1671
1672static int ebb_active(struct task_struct *target,
1673 const struct user_regset *regset)
1674{
1675 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1676 return -ENODEV;
1677
1678 if (target->thread.used_ebb)
1679 return regset->n;
1680
1681 return 0;
1682}
1683
1684static int ebb_get(struct task_struct *target,
1685 const struct user_regset *regset,
1686 unsigned int pos, unsigned int count,
1687 void *kbuf, void __user *ubuf)
1688{
1689 /* Build tests */
1690 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1691 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1692
1693 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1694 return -ENODEV;
1695
1696 if (!target->thread.used_ebb)
1697 return -ENODATA;
1698
1699 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1700 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1701}
1702
1703static int ebb_set(struct task_struct *target,
1704 const struct user_regset *regset,
1705 unsigned int pos, unsigned int count,
1706 const void *kbuf, const void __user *ubuf)
1707{
1708 int ret = 0;
1709
1710 /* Build tests */
1711 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1712 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1713
1714 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1715 return -ENODEV;
1716
1717 if (target->thread.used_ebb)
1718 return -ENODATA;
1719
1720 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1721 &target->thread.ebbrr, 0, sizeof(unsigned long));
1722
1723 if (!ret)
1724 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1725 &target->thread.ebbhr, sizeof(unsigned long),
1726 2 * sizeof(unsigned long));
1727
1728 if (!ret)
1729 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1730 &target->thread.bescr,
1731 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1732
1733 return ret;
1734}
a67ae758
AK
1735static int pmu_active(struct task_struct *target,
1736 const struct user_regset *regset)
1737{
1738 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1739 return -ENODEV;
1740
1741 return regset->n;
1742}
1743
1744static int pmu_get(struct task_struct *target,
1745 const struct user_regset *regset,
1746 unsigned int pos, unsigned int count,
1747 void *kbuf, void __user *ubuf)
1748{
1749 /* Build tests */
1750 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1751 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1752 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1753 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1754
1755 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1756 return -ENODEV;
1757
1758 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1759 &target->thread.siar, 0,
1760 5 * sizeof(unsigned long));
1761}
1762
1763static int pmu_set(struct task_struct *target,
1764 const struct user_regset *regset,
1765 unsigned int pos, unsigned int count,
1766 const void *kbuf, const void __user *ubuf)
1767{
1768 int ret = 0;
1769
1770 /* Build tests */
1771 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1772 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1773 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1774 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1775
1776 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1777 return -ENODEV;
1778
1779 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1780 &target->thread.siar, 0,
1781 sizeof(unsigned long));
1782
1783 if (!ret)
1784 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1785 &target->thread.sdar, sizeof(unsigned long),
1786 2 * sizeof(unsigned long));
1787
1788 if (!ret)
1789 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1790 &target->thread.sier, 2 * sizeof(unsigned long),
1791 3 * sizeof(unsigned long));
1792
1793 if (!ret)
1794 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1795 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1796 4 * sizeof(unsigned long));
1797
1798 if (!ret)
1799 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1800 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1801 5 * sizeof(unsigned long));
1802 return ret;
1803}
fa439810 1804#endif
c5cc1f4d
TJB
1805
1806#ifdef CONFIG_PPC_MEM_KEYS
1807static int pkey_active(struct task_struct *target,
1808 const struct user_regset *regset)
1809{
1810 if (!arch_pkeys_enabled())
1811 return -ENODEV;
1812
1813 return regset->n;
1814}
1815
1816static int pkey_get(struct task_struct *target,
1817 const struct user_regset *regset,
1818 unsigned int pos, unsigned int count,
1819 void *kbuf, void __user *ubuf)
1820{
1821 BUILD_BUG_ON(TSO(amr) + sizeof(unsigned long) != TSO(iamr));
1822 BUILD_BUG_ON(TSO(iamr) + sizeof(unsigned long) != TSO(uamor));
1823
1824 if (!arch_pkeys_enabled())
1825 return -ENODEV;
1826
1827 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1828 &target->thread.amr, 0,
1829 ELF_NPKEY * sizeof(unsigned long));
1830}
1831
1832static int pkey_set(struct task_struct *target,
1833 const struct user_regset *regset,
1834 unsigned int pos, unsigned int count,
1835 const void *kbuf, const void __user *ubuf)
1836{
1837 u64 new_amr;
1838 int ret;
1839
1840 if (!arch_pkeys_enabled())
1841 return -ENODEV;
1842
1843 /* Only the AMR can be set from userspace */
1844 if (pos != 0 || count != sizeof(new_amr))
1845 return -EINVAL;
1846
1847 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1848 &new_amr, 0, sizeof(new_amr));
1849 if (ret)
1850 return ret;
1851
1852 /* UAMOR determines which bits of the AMR can be set from userspace. */
1853 target->thread.amr = (new_amr & target->thread.uamor) |
1854 (target->thread.amr & ~target->thread.uamor);
1855
1856 return 0;
1857}
1858#endif /* CONFIG_PPC_MEM_KEYS */
1859
80fdf470
RM
1860/*
1861 * These are our native regset flavors.
1862 */
1863enum powerpc_regset {
1864 REGSET_GPR,
1865 REGSET_FPR,
1866#ifdef CONFIG_ALTIVEC
1867 REGSET_VMX,
1868#endif
ce48b210
MN
1869#ifdef CONFIG_VSX
1870 REGSET_VSX,
1871#endif
80fdf470
RM
1872#ifdef CONFIG_SPE
1873 REGSET_SPE,
1874#endif
25847fb1
AK
1875#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1876 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
19cbcbf7 1877 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
8c13f599 1878 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
9d3918f7 1879 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
08e1c01d 1880 REGSET_TM_SPR, /* TM specific SPR registers */
c45dc900
AK
1881 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1882 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1883 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
25847fb1 1884#endif
fa439810
AK
1885#ifdef CONFIG_PPC64
1886 REGSET_PPR, /* PPR register */
1887 REGSET_DSCR, /* DSCR register */
1888#endif
1889#ifdef CONFIG_PPC_BOOK3S_64
1890 REGSET_TAR, /* TAR register */
cf89d4e1 1891 REGSET_EBB, /* EBB registers */
a67ae758 1892 REGSET_PMR, /* Performance Monitor Registers */
fa439810 1893#endif
c5cc1f4d
TJB
1894#ifdef CONFIG_PPC_MEM_KEYS
1895 REGSET_PKEY, /* AMR register */
1896#endif
80fdf470
RM
1897};
1898
1899static const struct user_regset native_regsets[] = {
1900 [REGSET_GPR] = {
1901 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1902 .size = sizeof(long), .align = sizeof(long),
1903 .get = gpr_get, .set = gpr_set
1904 },
1905 [REGSET_FPR] = {
1906 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1907 .size = sizeof(double), .align = sizeof(double),
1908 .get = fpr_get, .set = fpr_set
1909 },
1910#ifdef CONFIG_ALTIVEC
1911 [REGSET_VMX] = {
1912 .core_note_type = NT_PPC_VMX, .n = 34,
1913 .size = sizeof(vector128), .align = sizeof(vector128),
1914 .active = vr_active, .get = vr_get, .set = vr_set
1915 },
1916#endif
ce48b210
MN
1917#ifdef CONFIG_VSX
1918 [REGSET_VSX] = {
f3e909c2
MN
1919 .core_note_type = NT_PPC_VSX, .n = 32,
1920 .size = sizeof(double), .align = sizeof(double),
ce48b210
MN
1921 .active = vsr_active, .get = vsr_get, .set = vsr_set
1922 },
1923#endif
80fdf470
RM
1924#ifdef CONFIG_SPE
1925 [REGSET_SPE] = {
a0b38b4e 1926 .core_note_type = NT_PPC_SPE, .n = 35,
80fdf470
RM
1927 .size = sizeof(u32), .align = sizeof(u32),
1928 .active = evr_active, .get = evr_get, .set = evr_set
1929 },
1930#endif
25847fb1
AK
1931#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1932 [REGSET_TM_CGPR] = {
1933 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1934 .size = sizeof(long), .align = sizeof(long),
1935 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1936 },
19cbcbf7
AK
1937 [REGSET_TM_CFPR] = {
1938 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1939 .size = sizeof(double), .align = sizeof(double),
1940 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1941 },
8c13f599
AK
1942 [REGSET_TM_CVMX] = {
1943 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1944 .size = sizeof(vector128), .align = sizeof(vector128),
1945 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1946 },
9d3918f7
AK
1947 [REGSET_TM_CVSX] = {
1948 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1949 .size = sizeof(double), .align = sizeof(double),
1950 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1951 },
08e1c01d
AK
1952 [REGSET_TM_SPR] = {
1953 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1954 .size = sizeof(u64), .align = sizeof(u64),
1955 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1956 },
c45dc900
AK
1957 [REGSET_TM_CTAR] = {
1958 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1959 .size = sizeof(u64), .align = sizeof(u64),
1960 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1961 },
1962 [REGSET_TM_CPPR] = {
1963 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1964 .size = sizeof(u64), .align = sizeof(u64),
1965 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1966 },
1967 [REGSET_TM_CDSCR] = {
1968 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1969 .size = sizeof(u64), .align = sizeof(u64),
1970 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1971 },
25847fb1 1972#endif
fa439810
AK
1973#ifdef CONFIG_PPC64
1974 [REGSET_PPR] = {
1975 .core_note_type = NT_PPC_PPR, .n = 1,
1976 .size = sizeof(u64), .align = sizeof(u64),
1977 .get = ppr_get, .set = ppr_set
1978 },
1979 [REGSET_DSCR] = {
1980 .core_note_type = NT_PPC_DSCR, .n = 1,
1981 .size = sizeof(u64), .align = sizeof(u64),
1982 .get = dscr_get, .set = dscr_set
1983 },
1984#endif
1985#ifdef CONFIG_PPC_BOOK3S_64
1986 [REGSET_TAR] = {
1987 .core_note_type = NT_PPC_TAR, .n = 1,
1988 .size = sizeof(u64), .align = sizeof(u64),
1989 .get = tar_get, .set = tar_set
1990 },
cf89d4e1
AK
1991 [REGSET_EBB] = {
1992 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1993 .size = sizeof(u64), .align = sizeof(u64),
1994 .active = ebb_active, .get = ebb_get, .set = ebb_set
1995 },
a67ae758
AK
1996 [REGSET_PMR] = {
1997 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1998 .size = sizeof(u64), .align = sizeof(u64),
1999 .active = pmu_active, .get = pmu_get, .set = pmu_set
2000 },
fa439810 2001#endif
c5cc1f4d
TJB
2002#ifdef CONFIG_PPC_MEM_KEYS
2003 [REGSET_PKEY] = {
2004 .core_note_type = NT_PPC_PKEY, .n = ELF_NPKEY,
2005 .size = sizeof(u64), .align = sizeof(u64),
2006 .active = pkey_active, .get = pkey_get, .set = pkey_set
2007 },
2008#endif
80fdf470
RM
2009};
2010
2011static const struct user_regset_view user_ppc_native_view = {
2012 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2013 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2014};
2015
fa8f5cb0
RM
2016#ifdef CONFIG_PPC64
2017#include <linux/compat.h>
2018
04fcadce 2019static int gpr32_get_common(struct task_struct *target,
fa8f5cb0
RM
2020 const struct user_regset *regset,
2021 unsigned int pos, unsigned int count,
26183116
SG
2022 void *kbuf, void __user *ubuf,
2023 unsigned long *regs)
fa8f5cb0 2024{
fa8f5cb0
RM
2025 compat_ulong_t *k = kbuf;
2026 compat_ulong_t __user *u = ubuf;
2027 compat_ulong_t reg;
fa8f5cb0
RM
2028
2029 pos /= sizeof(reg);
2030 count /= sizeof(reg);
2031
2032 if (kbuf)
2033 for (; count > 0 && pos < PT_MSR; --count)
2034 *k++ = regs[pos++];
2035 else
2036 for (; count > 0 && pos < PT_MSR; --count)
2037 if (__put_user((compat_ulong_t) regs[pos++], u++))
2038 return -EFAULT;
2039
2040 if (count > 0 && pos == PT_MSR) {
2041 reg = get_user_msr(target);
2042 if (kbuf)
2043 *k++ = reg;
2044 else if (__put_user(reg, u++))
2045 return -EFAULT;
2046 ++pos;
2047 --count;
2048 }
2049
2050 if (kbuf)
2051 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2052 *k++ = regs[pos++];
2053 else
2054 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2055 if (__put_user((compat_ulong_t) regs[pos++], u++))
2056 return -EFAULT;
2057
2058 kbuf = k;
2059 ubuf = u;
2060 pos *= sizeof(reg);
2061 count *= sizeof(reg);
2062 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2063 PT_REGS_COUNT * sizeof(reg), -1);
2064}
2065
04fcadce 2066static int gpr32_set_common(struct task_struct *target,
fa8f5cb0
RM
2067 const struct user_regset *regset,
2068 unsigned int pos, unsigned int count,
26183116
SG
2069 const void *kbuf, const void __user *ubuf,
2070 unsigned long *regs)
fa8f5cb0 2071{
fa8f5cb0
RM
2072 const compat_ulong_t *k = kbuf;
2073 const compat_ulong_t __user *u = ubuf;
2074 compat_ulong_t reg;
2075
fa8f5cb0
RM
2076 pos /= sizeof(reg);
2077 count /= sizeof(reg);
2078
2079 if (kbuf)
2080 for (; count > 0 && pos < PT_MSR; --count)
2081 regs[pos++] = *k++;
2082 else
2083 for (; count > 0 && pos < PT_MSR; --count) {
2084 if (__get_user(reg, u++))
2085 return -EFAULT;
2086 regs[pos++] = reg;
2087 }
2088
2089
2090 if (count > 0 && pos == PT_MSR) {
2091 if (kbuf)
2092 reg = *k++;
2093 else if (__get_user(reg, u++))
2094 return -EFAULT;
2095 set_user_msr(target, reg);
2096 ++pos;
2097 --count;
2098 }
2099
c2372eb9 2100 if (kbuf) {
fa8f5cb0
RM
2101 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2102 regs[pos++] = *k++;
c2372eb9
RM
2103 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2104 ++k;
2105 } else {
fa8f5cb0
RM
2106 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2107 if (__get_user(reg, u++))
2108 return -EFAULT;
2109 regs[pos++] = reg;
2110 }
c2372eb9
RM
2111 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2112 if (__get_user(reg, u++))
2113 return -EFAULT;
2114 }
fa8f5cb0
RM
2115
2116 if (count > 0 && pos == PT_TRAP) {
2117 if (kbuf)
2118 reg = *k++;
2119 else if (__get_user(reg, u++))
2120 return -EFAULT;
2121 set_user_trap(target, reg);
2122 ++pos;
2123 --count;
2124 }
2125
2126 kbuf = k;
2127 ubuf = u;
2128 pos *= sizeof(reg);
2129 count *= sizeof(reg);
2130 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2131 (PT_TRAP + 1) * sizeof(reg), -1);
2132}
2133
25847fb1
AK
2134#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2135static int tm_cgpr32_get(struct task_struct *target,
2136 const struct user_regset *regset,
2137 unsigned int pos, unsigned int count,
2138 void *kbuf, void __user *ubuf)
2139{
26183116
SG
2140 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2141 &target->thread.ckpt_regs.gpr[0]);
25847fb1
AK
2142}
2143
2144static int tm_cgpr32_set(struct task_struct *target,
2145 const struct user_regset *regset,
2146 unsigned int pos, unsigned int count,
2147 const void *kbuf, const void __user *ubuf)
2148{
26183116
SG
2149 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2150 &target->thread.ckpt_regs.gpr[0]);
25847fb1
AK
2151}
2152#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2153
04fcadce
AK
2154static int gpr32_get(struct task_struct *target,
2155 const struct user_regset *regset,
2156 unsigned int pos, unsigned int count,
2157 void *kbuf, void __user *ubuf)
2158{
26183116
SG
2159 int i;
2160
2161 if (target->thread.regs == NULL)
2162 return -EIO;
2163
2164 if (!FULL_REGS(target->thread.regs)) {
2165 /*
2166 * We have a partial register set.
2167 * Fill 14-31 with bogus values.
2168 */
2169 for (i = 14; i < 32; i++)
2170 target->thread.regs->gpr[i] = NV_REG_POISON;
2171 }
2172 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2173 &target->thread.regs->gpr[0]);
04fcadce
AK
2174}
2175
2176static int gpr32_set(struct task_struct *target,
2177 const struct user_regset *regset,
2178 unsigned int pos, unsigned int count,
2179 const void *kbuf, const void __user *ubuf)
2180{
26183116
SG
2181 if (target->thread.regs == NULL)
2182 return -EIO;
2183
2184 CHECK_FULL_REGS(target->thread.regs);
2185 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2186 &target->thread.regs->gpr[0]);
04fcadce
AK
2187}
2188
fa8f5cb0
RM
2189/*
2190 * These are the regset flavors matching the CONFIG_PPC32 native set.
2191 */
2192static const struct user_regset compat_regsets[] = {
2193 [REGSET_GPR] = {
2194 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2195 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2196 .get = gpr32_get, .set = gpr32_set
2197 },
2198 [REGSET_FPR] = {
2199 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2200 .size = sizeof(double), .align = sizeof(double),
2201 .get = fpr_get, .set = fpr_set
2202 },
2203#ifdef CONFIG_ALTIVEC
2204 [REGSET_VMX] = {
2205 .core_note_type = NT_PPC_VMX, .n = 34,
2206 .size = sizeof(vector128), .align = sizeof(vector128),
2207 .active = vr_active, .get = vr_get, .set = vr_set
2208 },
2209#endif
2210#ifdef CONFIG_SPE
2211 [REGSET_SPE] = {
24f1a849 2212 .core_note_type = NT_PPC_SPE, .n = 35,
fa8f5cb0
RM
2213 .size = sizeof(u32), .align = sizeof(u32),
2214 .active = evr_active, .get = evr_get, .set = evr_set
2215 },
2216#endif
25847fb1
AK
2217#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2218 [REGSET_TM_CGPR] = {
2219 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2220 .size = sizeof(long), .align = sizeof(long),
2221 .active = tm_cgpr_active,
2222 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2223 },
19cbcbf7
AK
2224 [REGSET_TM_CFPR] = {
2225 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2226 .size = sizeof(double), .align = sizeof(double),
2227 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2228 },
8c13f599
AK
2229 [REGSET_TM_CVMX] = {
2230 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2231 .size = sizeof(vector128), .align = sizeof(vector128),
2232 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2233 },
9d3918f7
AK
2234 [REGSET_TM_CVSX] = {
2235 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2236 .size = sizeof(double), .align = sizeof(double),
2237 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2238 },
08e1c01d
AK
2239 [REGSET_TM_SPR] = {
2240 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2241 .size = sizeof(u64), .align = sizeof(u64),
2242 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2243 },
c45dc900
AK
2244 [REGSET_TM_CTAR] = {
2245 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2246 .size = sizeof(u64), .align = sizeof(u64),
2247 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2248 },
2249 [REGSET_TM_CPPR] = {
2250 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2251 .size = sizeof(u64), .align = sizeof(u64),
2252 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2253 },
2254 [REGSET_TM_CDSCR] = {
2255 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2256 .size = sizeof(u64), .align = sizeof(u64),
2257 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2258 },
25847fb1 2259#endif
fa439810
AK
2260#ifdef CONFIG_PPC64
2261 [REGSET_PPR] = {
2262 .core_note_type = NT_PPC_PPR, .n = 1,
2263 .size = sizeof(u64), .align = sizeof(u64),
2264 .get = ppr_get, .set = ppr_set
2265 },
2266 [REGSET_DSCR] = {
2267 .core_note_type = NT_PPC_DSCR, .n = 1,
2268 .size = sizeof(u64), .align = sizeof(u64),
2269 .get = dscr_get, .set = dscr_set
2270 },
2271#endif
2272#ifdef CONFIG_PPC_BOOK3S_64
2273 [REGSET_TAR] = {
2274 .core_note_type = NT_PPC_TAR, .n = 1,
2275 .size = sizeof(u64), .align = sizeof(u64),
2276 .get = tar_get, .set = tar_set
2277 },
cf89d4e1
AK
2278 [REGSET_EBB] = {
2279 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2280 .size = sizeof(u64), .align = sizeof(u64),
2281 .active = ebb_active, .get = ebb_get, .set = ebb_set
2282 },
fa439810 2283#endif
fa8f5cb0
RM
2284};
2285
2286static const struct user_regset_view user_ppc_compat_view = {
2287 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2288 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2289};
2290#endif /* CONFIG_PPC64 */
2291
80fdf470
RM
2292const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2293{
fa8f5cb0
RM
2294#ifdef CONFIG_PPC64
2295 if (test_tsk_thread_flag(task, TIF_32BIT))
2296 return &user_ppc_compat_view;
2297#endif
80fdf470
RM
2298 return &user_ppc_native_view;
2299}
2300
2301
2a84b0d7 2302void user_enable_single_step(struct task_struct *task)
865418d8
BH
2303{
2304 struct pt_regs *regs = task->thread.regs;
2305
2306 if (regs != NULL) {
172ae2e7 2307#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
2308 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2309 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
865418d8
BH
2310 regs->msr |= MSR_DE;
2311#else
ec097c84 2312 regs->msr &= ~MSR_BE;
865418d8
BH
2313 regs->msr |= MSR_SE;
2314#endif
2315 }
2316 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2317}
2318
ec097c84
RM
2319void user_enable_block_step(struct task_struct *task)
2320{
2321 struct pt_regs *regs = task->thread.regs;
2322
2323 if (regs != NULL) {
172ae2e7 2324#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
2325 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2326 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
ec097c84
RM
2327 regs->msr |= MSR_DE;
2328#else
2329 regs->msr &= ~MSR_SE;
2330 regs->msr |= MSR_BE;
2331#endif
2332 }
2333 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2334}
2335
2a84b0d7 2336void user_disable_single_step(struct task_struct *task)
865418d8
BH
2337{
2338 struct pt_regs *regs = task->thread.regs;
2339
2340 if (regs != NULL) {
172ae2e7 2341#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
2342 /*
2343 * The logic to disable single stepping should be as
2344 * simple as turning off the Instruction Complete flag.
2345 * And, after doing so, if all debug flags are off, turn
2346 * off DBCR0(IDM) and MSR(DE) .... Torez
2347 */
682775b8 2348 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
3bffb652
DK
2349 /*
2350 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2351 */
51ae8d4a
BB
2352 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2353 task->thread.debug.dbcr1)) {
3bffb652
DK
2354 /*
2355 * All debug events were off.....
2356 */
51ae8d4a 2357 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
28477fb1
DK
2358 regs->msr &= ~MSR_DE;
2359 }
865418d8 2360#else
ec097c84 2361 regs->msr &= ~(MSR_SE | MSR_BE);
865418d8
BH
2362#endif
2363 }
2364 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2365}
2366
5aae8a53 2367#ifdef CONFIG_HAVE_HW_BREAKPOINT
a8b0ca17 2368void ptrace_triggered(struct perf_event *bp,
5aae8a53
P
2369 struct perf_sample_data *data, struct pt_regs *regs)
2370{
2371 struct perf_event_attr attr;
2372
2373 /*
2374 * Disable the breakpoint request here since ptrace has defined a
2375 * one-shot behaviour for breakpoint exceptions in PPC64.
2376 * The SIGTRAP signal is generated automatically for us in do_dabr().
2377 * We don't have to do anything about that here
2378 */
2379 attr = bp->attr;
2380 attr.disabled = true;
2381 modify_user_hw_breakpoint(bp, &attr);
2382}
2383#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2384
e51df2c1 2385static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
abd06505
BH
2386 unsigned long data)
2387{
5aae8a53
P
2388#ifdef CONFIG_HAVE_HW_BREAKPOINT
2389 int ret;
2390 struct thread_struct *thread = &(task->thread);
2391 struct perf_event *bp;
2392 struct perf_event_attr attr;
2393#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2394#ifndef CONFIG_PPC_ADV_DEBUG_REGS
85ce9a5d 2395 bool set_bp = true;
9422de3e
MN
2396 struct arch_hw_breakpoint hw_brk;
2397#endif
5aae8a53 2398
d6a61bfc
LM
2399 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2400 * For embedded processors we support one DAC and no IAC's at the
2401 * moment.
2402 */
abd06505
BH
2403 if (addr > 0)
2404 return -EINVAL;
2405
2325f0a0 2406 /* The bottom 3 bits in dabr are flags */
abd06505
BH
2407 if ((data & ~0x7UL) >= TASK_SIZE)
2408 return -EIO;
2409
172ae2e7 2410#ifndef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc
LM
2411 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2412 * It was assumed, on previous implementations, that 3 bits were
2413 * passed together with the data address, fitting the design of the
2414 * DABR register, as follows:
2415 *
2416 * bit 0: Read flag
2417 * bit 1: Write flag
2418 * bit 2: Breakpoint translation
2419 *
2420 * Thus, we use them here as so.
2421 */
2422
2423 /* Ensure breakpoint translation bit is set */
9422de3e 2424 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
abd06505 2425 return -EIO;
9422de3e
MN
2426 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2427 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2428 hw_brk.len = 8;
85ce9a5d 2429 set_bp = (data) && (hw_brk.type & HW_BRK_TYPE_RDWR);
5aae8a53
P
2430#ifdef CONFIG_HAVE_HW_BREAKPOINT
2431 bp = thread->ptrace_bps[0];
85ce9a5d 2432 if (!set_bp) {
5aae8a53
P
2433 if (bp) {
2434 unregister_hw_breakpoint(bp);
2435 thread->ptrace_bps[0] = NULL;
2436 }
2437 return 0;
2438 }
2439 if (bp) {
2440 attr = bp->attr;
9422de3e
MN
2441 attr.bp_addr = hw_brk.address;
2442 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
a53fd61a
AP
2443
2444 /* Enable breakpoint */
2445 attr.disabled = false;
2446
5aae8a53 2447 ret = modify_user_hw_breakpoint(bp, &attr);
925f83c0 2448 if (ret) {
5aae8a53 2449 return ret;
925f83c0 2450 }
5aae8a53 2451 thread->ptrace_bps[0] = bp;
9422de3e 2452 thread->hw_brk = hw_brk;
5aae8a53
P
2453 return 0;
2454 }
2455
2456 /* Create a new breakpoint request if one doesn't exist already */
2457 hw_breakpoint_init(&attr);
9422de3e 2458 attr.bp_addr = hw_brk.address;
4f7c06e2 2459 attr.bp_len = 8;
9422de3e
MN
2460 arch_bp_generic_fields(hw_brk.type,
2461 &attr.bp_type);
5aae8a53
P
2462
2463 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
4dc0da86 2464 ptrace_triggered, NULL, task);
5aae8a53
P
2465 if (IS_ERR(bp)) {
2466 thread->ptrace_bps[0] = NULL;
2467 return PTR_ERR(bp);
2468 }
2469
85ce9a5d
MN
2470#else /* !CONFIG_HAVE_HW_BREAKPOINT */
2471 if (set_bp && (!ppc_breakpoint_available()))
2472 return -ENODEV;
5aae8a53 2473#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2474 task->thread.hw_brk = hw_brk;
172ae2e7 2475#else /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
2476 /* As described above, it was assumed 3 bits were passed with the data
2477 * address, but we will assume only the mode bits will be passed
2478 * as to not cause alignment restrictions for DAC-based processors.
2479 */
2480
2481 /* DAC's hold the whole address without any mode flags */
51ae8d4a 2482 task->thread.debug.dac1 = data & ~0x3UL;
3bffb652 2483
51ae8d4a 2484 if (task->thread.debug.dac1 == 0) {
3bffb652 2485 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
51ae8d4a
BB
2486 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2487 task->thread.debug.dbcr1)) {
3bffb652 2488 task->thread.regs->msr &= ~MSR_DE;
51ae8d4a 2489 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652 2490 }
d6a61bfc
LM
2491 return 0;
2492 }
2493
2494 /* Read or Write bits must be set */
2495
2496 if (!(data & 0x3UL))
2497 return -EINVAL;
2498
2499 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2500 register */
51ae8d4a 2501 task->thread.debug.dbcr0 |= DBCR0_IDM;
d6a61bfc
LM
2502
2503 /* Check for write and read flags and set DBCR0
2504 accordingly */
3bffb652 2505 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
d6a61bfc 2506 if (data & 0x1UL)
3bffb652 2507 dbcr_dac(task) |= DBCR_DAC1R;
d6a61bfc 2508 if (data & 0x2UL)
3bffb652 2509 dbcr_dac(task) |= DBCR_DAC1W;
d6a61bfc 2510 task->thread.regs->msr |= MSR_DE;
172ae2e7 2511#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
abd06505
BH
2512 return 0;
2513}
abd06505 2514
1da177e4
LT
2515/*
2516 * Called by kernel/ptrace.c when detaching..
2517 *
2518 * Make sure single step bits etc are not set.
2519 */
2520void ptrace_disable(struct task_struct *child)
2521{
2522 /* make sure the single step bit is not set. */
2a84b0d7 2523 user_disable_single_step(child);
5521eb4b 2524 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
1da177e4
LT
2525}
2526
3bffb652 2527#ifdef CONFIG_PPC_ADV_DEBUG_REGS
84295dfc 2528static long set_instruction_bp(struct task_struct *child,
3bffb652
DK
2529 struct ppc_hw_breakpoint *bp_info)
2530{
2531 int slot;
51ae8d4a
BB
2532 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2533 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2534 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2535 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
3bffb652
DK
2536
2537 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2538 slot2_in_use = 1;
2539 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2540 slot4_in_use = 1;
2541
2542 if (bp_info->addr >= TASK_SIZE)
2543 return -EIO;
2544
2545 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2546
2547 /* Make sure range is valid. */
2548 if (bp_info->addr2 >= TASK_SIZE)
2549 return -EIO;
2550
2551 /* We need a pair of IAC regsisters */
2552 if ((!slot1_in_use) && (!slot2_in_use)) {
2553 slot = 1;
51ae8d4a
BB
2554 child->thread.debug.iac1 = bp_info->addr;
2555 child->thread.debug.iac2 = bp_info->addr2;
2556 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
2557 if (bp_info->addr_mode ==
2558 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2559 dbcr_iac_range(child) |= DBCR_IAC12X;
2560 else
2561 dbcr_iac_range(child) |= DBCR_IAC12I;
2562#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2563 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2564 slot = 3;
51ae8d4a
BB
2565 child->thread.debug.iac3 = bp_info->addr;
2566 child->thread.debug.iac4 = bp_info->addr2;
2567 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
2568 if (bp_info->addr_mode ==
2569 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2570 dbcr_iac_range(child) |= DBCR_IAC34X;
2571 else
2572 dbcr_iac_range(child) |= DBCR_IAC34I;
2573#endif
2574 } else
2575 return -ENOSPC;
2576 } else {
2577 /* We only need one. If possible leave a pair free in
2578 * case a range is needed later
2579 */
2580 if (!slot1_in_use) {
2581 /*
2582 * Don't use iac1 if iac1-iac2 are free and either
2583 * iac3 or iac4 (but not both) are free
2584 */
2585 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2586 slot = 1;
51ae8d4a
BB
2587 child->thread.debug.iac1 = bp_info->addr;
2588 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
2589 goto out;
2590 }
2591 }
2592 if (!slot2_in_use) {
2593 slot = 2;
51ae8d4a
BB
2594 child->thread.debug.iac2 = bp_info->addr;
2595 child->thread.debug.dbcr0 |= DBCR0_IAC2;
3bffb652
DK
2596#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2597 } else if (!slot3_in_use) {
2598 slot = 3;
51ae8d4a
BB
2599 child->thread.debug.iac3 = bp_info->addr;
2600 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
2601 } else if (!slot4_in_use) {
2602 slot = 4;
51ae8d4a
BB
2603 child->thread.debug.iac4 = bp_info->addr;
2604 child->thread.debug.dbcr0 |= DBCR0_IAC4;
3bffb652
DK
2605#endif
2606 } else
2607 return -ENOSPC;
2608 }
2609out:
51ae8d4a 2610 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
2611 child->thread.regs->msr |= MSR_DE;
2612
2613 return slot;
2614}
2615
2616static int del_instruction_bp(struct task_struct *child, int slot)
2617{
2618 switch (slot) {
2619 case 1:
51ae8d4a 2620 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
3bffb652
DK
2621 return -ENOENT;
2622
2623 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2624 /* address range - clear slots 1 & 2 */
51ae8d4a 2625 child->thread.debug.iac2 = 0;
3bffb652
DK
2626 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2627 }
51ae8d4a
BB
2628 child->thread.debug.iac1 = 0;
2629 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652
DK
2630 break;
2631 case 2:
51ae8d4a 2632 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
3bffb652
DK
2633 return -ENOENT;
2634
2635 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2636 /* used in a range */
2637 return -EINVAL;
51ae8d4a
BB
2638 child->thread.debug.iac2 = 0;
2639 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
3bffb652
DK
2640 break;
2641#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2642 case 3:
51ae8d4a 2643 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
3bffb652
DK
2644 return -ENOENT;
2645
2646 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2647 /* address range - clear slots 3 & 4 */
51ae8d4a 2648 child->thread.debug.iac4 = 0;
3bffb652
DK
2649 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2650 }
51ae8d4a
BB
2651 child->thread.debug.iac3 = 0;
2652 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652
DK
2653 break;
2654 case 4:
51ae8d4a 2655 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
3bffb652
DK
2656 return -ENOENT;
2657
2658 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2659 /* Used in a range */
2660 return -EINVAL;
51ae8d4a
BB
2661 child->thread.debug.iac4 = 0;
2662 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
3bffb652
DK
2663 break;
2664#endif
2665 default:
2666 return -EINVAL;
2667 }
2668 return 0;
2669}
2670
2671static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2672{
2673 int byte_enable =
2674 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2675 & 0xf;
2676 int condition_mode =
2677 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2678 int slot;
2679
2680 if (byte_enable && (condition_mode == 0))
2681 return -EINVAL;
2682
2683 if (bp_info->addr >= TASK_SIZE)
2684 return -EIO;
2685
2686 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2687 slot = 1;
2688 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2689 dbcr_dac(child) |= DBCR_DAC1R;
2690 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2691 dbcr_dac(child) |= DBCR_DAC1W;
51ae8d4a 2692 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
3bffb652
DK
2693#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2694 if (byte_enable) {
51ae8d4a 2695 child->thread.debug.dvc1 =
3bffb652 2696 (unsigned long)bp_info->condition_value;
51ae8d4a 2697 child->thread.debug.dbcr2 |=
3bffb652
DK
2698 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2699 (condition_mode << DBCR2_DVC1M_SHIFT));
2700 }
2701#endif
2702#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 2703 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
3bffb652
DK
2704 /* Both dac1 and dac2 are part of a range */
2705 return -ENOSPC;
2706#endif
2707 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2708 slot = 2;
2709 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2710 dbcr_dac(child) |= DBCR_DAC2R;
2711 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2712 dbcr_dac(child) |= DBCR_DAC2W;
51ae8d4a 2713 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
3bffb652
DK
2714#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2715 if (byte_enable) {
51ae8d4a 2716 child->thread.debug.dvc2 =
3bffb652 2717 (unsigned long)bp_info->condition_value;
51ae8d4a 2718 child->thread.debug.dbcr2 |=
3bffb652
DK
2719 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2720 (condition_mode << DBCR2_DVC2M_SHIFT));
2721 }
2722#endif
2723 } else
2724 return -ENOSPC;
51ae8d4a 2725 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
2726 child->thread.regs->msr |= MSR_DE;
2727
2728 return slot + 4;
2729}
2730
2731static int del_dac(struct task_struct *child, int slot)
2732{
2733 if (slot == 1) {
30124d11 2734 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
3bffb652
DK
2735 return -ENOENT;
2736
51ae8d4a 2737 child->thread.debug.dac1 = 0;
3bffb652
DK
2738 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2739#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a
BB
2740 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2741 child->thread.debug.dac2 = 0;
2742 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 2743 }
51ae8d4a 2744 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
3bffb652
DK
2745#endif
2746#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 2747 child->thread.debug.dvc1 = 0;
3bffb652
DK
2748#endif
2749 } else if (slot == 2) {
30124d11 2750 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
3bffb652
DK
2751 return -ENOENT;
2752
2753#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 2754 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
3bffb652
DK
2755 /* Part of a range */
2756 return -EINVAL;
51ae8d4a 2757 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
3bffb652
DK
2758#endif
2759#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 2760 child->thread.debug.dvc2 = 0;
3bffb652 2761#endif
51ae8d4a 2762 child->thread.debug.dac2 = 0;
3bffb652
DK
2763 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2764 } else
2765 return -EINVAL;
2766
2767 return 0;
2768}
2769#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2770
2771#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2772static int set_dac_range(struct task_struct *child,
2773 struct ppc_hw_breakpoint *bp_info)
2774{
2775 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2776
2777 /* We don't allow range watchpoints to be used with DVC */
2778 if (bp_info->condition_mode)
2779 return -EINVAL;
2780
2781 /*
2782 * Best effort to verify the address range. The user/supervisor bits
2783 * prevent trapping in kernel space, but let's fail on an obvious bad
2784 * range. The simple test on the mask is not fool-proof, and any
2785 * exclusive range will spill over into kernel space.
2786 */
2787 if (bp_info->addr >= TASK_SIZE)
2788 return -EIO;
2789 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2790 /*
2791 * dac2 is a bitmask. Don't allow a mask that makes a
2792 * kernel space address from a valid dac1 value
2793 */
2794 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2795 return -EIO;
2796 } else {
2797 /*
2798 * For range breakpoints, addr2 must also be a valid address
2799 */
2800 if (bp_info->addr2 >= TASK_SIZE)
2801 return -EIO;
2802 }
2803
51ae8d4a 2804 if (child->thread.debug.dbcr0 &
3bffb652
DK
2805 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2806 return -ENOSPC;
2807
2808 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
51ae8d4a 2809 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
3bffb652 2810 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
51ae8d4a
BB
2811 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2812 child->thread.debug.dac1 = bp_info->addr;
2813 child->thread.debug.dac2 = bp_info->addr2;
3bffb652 2814 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
51ae8d4a 2815 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
3bffb652 2816 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
51ae8d4a 2817 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
3bffb652 2818 else /* PPC_BREAKPOINT_MODE_MASK */
51ae8d4a 2819 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
3bffb652
DK
2820 child->thread.regs->msr |= MSR_DE;
2821
2822 return 5;
2823}
2824#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2825
3162d92d
DK
2826static long ppc_set_hwdebug(struct task_struct *child,
2827 struct ppc_hw_breakpoint *bp_info)
2828{
6c7a2856
P
2829#ifdef CONFIG_HAVE_HW_BREAKPOINT
2830 int len = 0;
2831 struct thread_struct *thread = &(child->thread);
2832 struct perf_event *bp;
2833 struct perf_event_attr attr;
2834#endif /* CONFIG_HAVE_HW_BREAKPOINT */
4dfbf290 2835#ifndef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e 2836 struct arch_hw_breakpoint brk;
4dfbf290
AS
2837#endif
2838
3bffb652
DK
2839 if (bp_info->version != 1)
2840 return -ENOTSUPP;
2841#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2842 /*
2843 * Check for invalid flags and combinations
2844 */
2845 if ((bp_info->trigger_type == 0) ||
2846 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2847 PPC_BREAKPOINT_TRIGGER_RW)) ||
2848 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2849 (bp_info->condition_mode &
2850 ~(PPC_BREAKPOINT_CONDITION_MODE |
2851 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2852 return -EINVAL;
2853#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2854 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2855 return -EINVAL;
2856#endif
2857
2858 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2859 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2860 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2861 return -EINVAL;
84295dfc 2862 return set_instruction_bp(child, bp_info);
3bffb652
DK
2863 }
2864 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2865 return set_dac(child, bp_info);
2866
2867#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2868 return set_dac_range(child, bp_info);
2869#else
2870 return -EINVAL;
2871#endif
2872#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d 2873 /*
3bffb652 2874 * We only support one data breakpoint
3162d92d 2875 */
4dfbf290
AS
2876 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2877 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
4dfbf290 2878 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
3162d92d
DK
2879 return -EINVAL;
2880
3162d92d
DK
2881 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2882 return -EIO;
2883
9422de3e
MN
2884 brk.address = bp_info->addr & ~7UL;
2885 brk.type = HW_BRK_TYPE_TRANSLATE;
2bb78efa 2886 brk.len = 8;
4dfbf290 2887 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
9422de3e 2888 brk.type |= HW_BRK_TYPE_READ;
4dfbf290 2889 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
9422de3e 2890 brk.type |= HW_BRK_TYPE_WRITE;
6c7a2856 2891#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2892 /*
2893 * Check if the request is for 'range' breakpoints. We can
2894 * support it if range < 8 bytes.
2895 */
6961ed96 2896 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
6c7a2856 2897 len = bp_info->addr2 - bp_info->addr;
6961ed96 2898 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
b0b0aa9c 2899 len = 1;
6961ed96 2900 else
6c7a2856 2901 return -EINVAL;
6c7a2856 2902 bp = thread->ptrace_bps[0];
6961ed96 2903 if (bp)
6c7a2856 2904 return -ENOSPC;
6c7a2856
P
2905
2906 /* Create a new breakpoint request if one doesn't exist already */
2907 hw_breakpoint_init(&attr);
2908 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2909 attr.bp_len = len;
9422de3e 2910 arch_bp_generic_fields(brk.type, &attr.bp_type);
6c7a2856
P
2911
2912 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2913 ptrace_triggered, NULL, child);
2914 if (IS_ERR(bp)) {
2915 thread->ptrace_bps[0] = NULL;
6c7a2856
P
2916 return PTR_ERR(bp);
2917 }
2918
6c7a2856
P
2919 return 1;
2920#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2921
2922 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2923 return -EINVAL;
2924
9422de3e 2925 if (child->thread.hw_brk.address)
6c7a2856 2926 return -ENOSPC;
4dfbf290 2927
85ce9a5d
MN
2928 if (!ppc_breakpoint_available())
2929 return -ENODEV;
2930
9422de3e 2931 child->thread.hw_brk = brk;
3bffb652 2932
3162d92d 2933 return 1;
3bffb652 2934#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d
DK
2935}
2936
ec1b33dc 2937static long ppc_del_hwdebug(struct task_struct *child, long data)
3162d92d 2938{
6c7a2856
P
2939#ifdef CONFIG_HAVE_HW_BREAKPOINT
2940 int ret = 0;
2941 struct thread_struct *thread = &(child->thread);
2942 struct perf_event *bp;
2943#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
2944#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2945 int rc;
2946
2947 if (data <= 4)
2948 rc = del_instruction_bp(child, (int)data);
2949 else
2950 rc = del_dac(child, (int)data - 4);
2951
2952 if (!rc) {
51ae8d4a
BB
2953 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2954 child->thread.debug.dbcr1)) {
2955 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
2956 child->thread.regs->msr &= ~MSR_DE;
2957 }
2958 }
2959 return rc;
2960#else
3162d92d
DK
2961 if (data != 1)
2962 return -EINVAL;
6c7a2856
P
2963
2964#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2965 bp = thread->ptrace_bps[0];
2966 if (bp) {
2967 unregister_hw_breakpoint(bp);
2968 thread->ptrace_bps[0] = NULL;
2969 } else
2970 ret = -ENOENT;
6c7a2856
P
2971 return ret;
2972#else /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2973 if (child->thread.hw_brk.address == 0)
3162d92d
DK
2974 return -ENOENT;
2975
9422de3e
MN
2976 child->thread.hw_brk.address = 0;
2977 child->thread.hw_brk.type = 0;
6c7a2856 2978#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 2979
3162d92d 2980 return 0;
3bffb652 2981#endif
3162d92d
DK
2982}
2983
9b05a69e
NK
2984long arch_ptrace(struct task_struct *child, long request,
2985 unsigned long addr, unsigned long data)
1da177e4 2986{
1da177e4 2987 int ret = -EPERM;
f68d2048
NK
2988 void __user *datavp = (void __user *) data;
2989 unsigned long __user *datalp = datavp;
1da177e4 2990
1da177e4 2991 switch (request) {
1da177e4 2992 /* read the word at location addr in the USER area. */
1da177e4
LT
2993 case PTRACE_PEEKUSR: {
2994 unsigned long index, tmp;
2995
2996 ret = -EIO;
2997 /* convert to index and check */
e8a30302 2998#ifdef CONFIG_PPC32
9b05a69e 2999 index = addr >> 2;
e8a30302
SR
3000 if ((addr & 3) || (index > PT_FPSCR)
3001 || (child->thread.regs == NULL))
3002#else
9b05a69e 3003 index = addr >> 3;
e8a30302
SR
3004 if ((addr & 7) || (index > PT_FPSCR))
3005#endif
1da177e4
LT
3006 break;
3007
3008 CHECK_FULL_REGS(child->thread.regs);
3009 if (index < PT_FPR0) {
ee4a3916
AK
3010 ret = ptrace_get_reg(child, (int) index, &tmp);
3011 if (ret)
3012 break;
1da177e4 3013 } else {
e69b742a
BH
3014 unsigned int fpidx = index - PT_FPR0;
3015
e8a30302 3016 flush_fp_to_thread(child);
e69b742a 3017 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 3018 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
87fec051 3019 sizeof(long));
e69b742a 3020 else
de79f7b9 3021 tmp = child->thread.fp_state.fpscr;
1da177e4 3022 }
f68d2048 3023 ret = put_user(tmp, datalp);
1da177e4
LT
3024 break;
3025 }
3026
1da177e4
LT
3027 /* write the word at location addr in the USER area */
3028 case PTRACE_POKEUSR: {
3029 unsigned long index;
3030
3031 ret = -EIO;
3032 /* convert to index and check */
e8a30302 3033#ifdef CONFIG_PPC32
9b05a69e 3034 index = addr >> 2;
e8a30302
SR
3035 if ((addr & 3) || (index > PT_FPSCR)
3036 || (child->thread.regs == NULL))
3037#else
9b05a69e 3038 index = addr >> 3;
e8a30302
SR
3039 if ((addr & 7) || (index > PT_FPSCR))
3040#endif
1da177e4
LT
3041 break;
3042
3043 CHECK_FULL_REGS(child->thread.regs);
1da177e4 3044 if (index < PT_FPR0) {
865418d8 3045 ret = ptrace_put_reg(child, index, data);
1da177e4 3046 } else {
e69b742a
BH
3047 unsigned int fpidx = index - PT_FPR0;
3048
e8a30302 3049 flush_fp_to_thread(child);
e69b742a 3050 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 3051 memcpy(&child->thread.TS_FPR(fpidx), &data,
87fec051 3052 sizeof(long));
e69b742a 3053 else
de79f7b9 3054 child->thread.fp_state.fpscr = data;
1da177e4
LT
3055 ret = 0;
3056 }
3057 break;
3058 }
3059
3162d92d
DK
3060 case PPC_PTRACE_GETHWDBGINFO: {
3061 struct ppc_debug_info dbginfo;
3062
3063 dbginfo.version = 1;
3bffb652
DK
3064#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3065 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3066 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3067 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3068 dbginfo.data_bp_alignment = 4;
3069 dbginfo.sizeof_condition = 4;
3070 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3071 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3072#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3073 dbginfo.features |=
3074 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3075 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3076#endif
3077#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 3078 dbginfo.num_instruction_bps = 0;
85ce9a5d
MN
3079 if (ppc_breakpoint_available())
3080 dbginfo.num_data_bps = 1;
3081 else
3082 dbginfo.num_data_bps = 0;
3162d92d
DK
3083 dbginfo.num_condition_regs = 0;
3084#ifdef CONFIG_PPC64
3085 dbginfo.data_bp_alignment = 8;
3086#else
3087 dbginfo.data_bp_alignment = 4;
3088#endif
3089 dbginfo.sizeof_condition = 0;
6c7a2856
P
3090#ifdef CONFIG_HAVE_HW_BREAKPOINT
3091 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
c1fe190c 3092 if (dawr_enabled())
517b7314 3093 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
6c7a2856 3094#else
3162d92d 3095 dbginfo.features = 0;
6c7a2856 3096#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 3097#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 3098
6bcdd297
AV
3099 if (copy_to_user(datavp, &dbginfo,
3100 sizeof(struct ppc_debug_info)))
3162d92d 3101 return -EFAULT;
6bcdd297 3102 return 0;
3162d92d
DK
3103 }
3104
3105 case PPC_PTRACE_SETHWDEBUG: {
3106 struct ppc_hw_breakpoint bp_info;
3107
6bcdd297
AV
3108 if (copy_from_user(&bp_info, datavp,
3109 sizeof(struct ppc_hw_breakpoint)))
3162d92d 3110 return -EFAULT;
6bcdd297 3111 return ppc_set_hwdebug(child, &bp_info);
3162d92d
DK
3112 }
3113
3114 case PPC_PTRACE_DELHWDEBUG: {
ec1b33dc 3115 ret = ppc_del_hwdebug(child, data);
3162d92d
DK
3116 break;
3117 }
3118
e8a30302 3119 case PTRACE_GET_DEBUGREG: {
9422de3e
MN
3120#ifndef CONFIG_PPC_ADV_DEBUG_REGS
3121 unsigned long dabr_fake;
3122#endif
e8a30302
SR
3123 ret = -EINVAL;
3124 /* We only support one DABR and no IABRS at the moment */
3125 if (addr > 0)
3126 break;
3bffb652 3127#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a 3128 ret = put_user(child->thread.debug.dac1, datalp);
3bffb652 3129#else
9422de3e
MN
3130 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3131 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3132 ret = put_user(dabr_fake, datalp);
3bffb652 3133#endif
e8a30302
SR
3134 break;
3135 }
3136
3137 case PTRACE_SET_DEBUGREG:
3138 ret = ptrace_set_debugreg(child, addr, data);
3139 break;
e8a30302 3140
e17666ba
BH
3141#ifdef CONFIG_PPC64
3142 case PTRACE_GETREGS64:
3143#endif
c391cd00
RM
3144 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3145 return copy_regset_to_user(child, &user_ppc_native_view,
3146 REGSET_GPR,
3eeacd9f 3147 0, sizeof(struct user_pt_regs),
f68d2048 3148 datavp);
e8a30302 3149
e17666ba
BH
3150#ifdef CONFIG_PPC64
3151 case PTRACE_SETREGS64:
3152#endif
c391cd00
RM
3153 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3154 return copy_regset_from_user(child, &user_ppc_native_view,
3155 REGSET_GPR,
3eeacd9f 3156 0, sizeof(struct user_pt_regs),
f68d2048 3157 datavp);
c391cd00
RM
3158
3159 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3160 return copy_regset_to_user(child, &user_ppc_native_view,
3161 REGSET_FPR,
3162 0, sizeof(elf_fpregset_t),
f68d2048 3163 datavp);
c391cd00
RM
3164
3165 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3166 return copy_regset_from_user(child, &user_ppc_native_view,
3167 REGSET_FPR,
3168 0, sizeof(elf_fpregset_t),
f68d2048 3169 datavp);
e8a30302 3170
1da177e4
LT
3171#ifdef CONFIG_ALTIVEC
3172 case PTRACE_GETVRREGS:
c391cd00
RM
3173 return copy_regset_to_user(child, &user_ppc_native_view,
3174 REGSET_VMX,
3175 0, (33 * sizeof(vector128) +
3176 sizeof(u32)),
f68d2048 3177 datavp);
1da177e4
LT
3178
3179 case PTRACE_SETVRREGS:
c391cd00
RM
3180 return copy_regset_from_user(child, &user_ppc_native_view,
3181 REGSET_VMX,
3182 0, (33 * sizeof(vector128) +
3183 sizeof(u32)),
f68d2048 3184 datavp);
1da177e4 3185#endif
ce48b210
MN
3186#ifdef CONFIG_VSX
3187 case PTRACE_GETVSRREGS:
3188 return copy_regset_to_user(child, &user_ppc_native_view,
3189 REGSET_VSX,
1ac42ef8 3190 0, 32 * sizeof(double),
f68d2048 3191 datavp);
ce48b210
MN
3192
3193 case PTRACE_SETVSRREGS:
3194 return copy_regset_from_user(child, &user_ppc_native_view,
3195 REGSET_VSX,
1ac42ef8 3196 0, 32 * sizeof(double),
f68d2048 3197 datavp);
ce48b210 3198#endif
1da177e4
LT
3199#ifdef CONFIG_SPE
3200 case PTRACE_GETEVRREGS:
3201 /* Get the child spe register state. */
c391cd00
RM
3202 return copy_regset_to_user(child, &user_ppc_native_view,
3203 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 3204 datavp);
1da177e4
LT
3205
3206 case PTRACE_SETEVRREGS:
3207 /* Set the child spe register state. */
c391cd00
RM
3208 return copy_regset_from_user(child, &user_ppc_native_view,
3209 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 3210 datavp);
1da177e4
LT
3211#endif
3212
3213 default:
3214 ret = ptrace_request(child, request, addr, data);
3215 break;
3216 }
1da177e4
LT
3217 return ret;
3218}
3219
2449acc5
ME
3220#ifdef CONFIG_SECCOMP
3221static int do_seccomp(struct pt_regs *regs)
3222{
3223 if (!test_thread_flag(TIF_SECCOMP))
3224 return 0;
3225
3226 /*
3227 * The ABI we present to seccomp tracers is that r3 contains
3228 * the syscall return value and orig_gpr3 contains the first
3229 * syscall parameter. This is different to the ptrace ABI where
3230 * both r3 and orig_gpr3 contain the first syscall parameter.
3231 */
3232 regs->gpr[3] = -ENOSYS;
3233
3234 /*
3235 * We use the __ version here because we have already checked
3236 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3237 * have already loaded -ENOSYS into r3, or seccomp has put
3238 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3239 */
2f275de5 3240 if (__secure_computing(NULL))
2449acc5
ME
3241 return -1;
3242
3243 /*
3244 * The syscall was allowed by seccomp, restore the register
1addc57e 3245 * state to what audit expects.
2449acc5
ME
3246 * Note that we use orig_gpr3, which means a seccomp tracer can
3247 * modify the first syscall parameter (in orig_gpr3) and also
3248 * allow the syscall to proceed.
3249 */
3250 regs->gpr[3] = regs->orig_gpr3;
3251
3252 return 0;
3253}
3254#else
3255static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3256#endif /* CONFIG_SECCOMP */
3257
d3837414
ME
3258/**
3259 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3260 * @regs: the pt_regs of the task to trace (current)
3261 *
3262 * Performs various types of tracing on syscall entry. This includes seccomp,
3263 * ptrace, syscall tracepoints and audit.
3264 *
3265 * The pt_regs are potentially visible to userspace via ptrace, so their
3266 * contents is ABI.
3267 *
3268 * One or more of the tracers may modify the contents of pt_regs, in particular
3269 * to modify arguments or even the syscall number itself.
3270 *
3271 * It's also possible that a tracer can choose to reject the system call. In
3272 * that case this function will return an illegal syscall number, and will put
3273 * an appropriate return value in regs->r3.
3274 *
3275 * Return: the (possibly changed) syscall number.
4f72c427
RM
3276 */
3277long do_syscall_trace_enter(struct pt_regs *regs)
1da177e4 3278{
8dbdec0b
DL
3279 u32 flags;
3280
22ecbe8d
LZ
3281 user_exit();
3282
8dbdec0b
DL
3283 flags = READ_ONCE(current_thread_info()->flags) &
3284 (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE);
5521eb4b 3285
8dbdec0b
DL
3286 if (flags) {
3287 int rc = tracehook_report_syscall_entry(regs);
3288
3289 if (unlikely(flags & _TIF_SYSCALL_EMU)) {
3290 /*
3291 * A nonzero return code from
3292 * tracehook_report_syscall_entry() tells us to prevent
3293 * the syscall execution, but we are not going to
3294 * execute it anyway.
3295 *
3296 * Returning -1 will skip the syscall execution. We want
3297 * to avoid clobbering any registers, so we don't goto
3298 * the skip label below.
3299 */
3300 return -1;
3301 }
3302
3303 if (rc) {
3304 /*
3305 * The tracer decided to abort the syscall. Note that
3306 * the tracer may also just change regs->gpr[0] to an
3307 * invalid syscall number, that is handled below on the
3308 * exit path.
3309 */
3310 goto skip;
3311 }
3312 }
1addc57e
KC
3313
3314 /* Run seccomp after ptrace; allow it to set gpr[3]. */
2449acc5
ME
3315 if (do_seccomp(regs))
3316 return -1;
e8a30302 3317
1addc57e
KC
3318 /* Avoid trace and audit when syscall is invalid. */
3319 if (regs->gpr[0] >= NR_syscalls)
3320 goto skip;
ea9c102c 3321
02424d89
IM
3322 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3323 trace_sys_enter(regs, regs->gpr[0]);
3324
cfcd1705 3325#ifdef CONFIG_PPC64
b05d8447 3326 if (!is_32bit_task())
91397401 3327 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
b05d8447
EP
3328 regs->gpr[5], regs->gpr[6]);
3329 else
e8a30302 3330#endif
91397401 3331 audit_syscall_entry(regs->gpr[0],
b05d8447
EP
3332 regs->gpr[3] & 0xffffffff,
3333 regs->gpr[4] & 0xffffffff,
3334 regs->gpr[5] & 0xffffffff,
3335 regs->gpr[6] & 0xffffffff);
4f72c427 3336
d3837414
ME
3337 /* Return the possibly modified but valid syscall number */
3338 return regs->gpr[0];
1addc57e
KC
3339
3340skip:
3341 /*
3342 * If we are aborting explicitly, or if the syscall number is
3343 * now invalid, set the return value to -ENOSYS.
3344 */
3345 regs->gpr[3] = -ENOSYS;
3346 return -1;
ea9c102c
DW
3347}
3348
3349void do_syscall_trace_leave(struct pt_regs *regs)
3350{
4f72c427
RM
3351 int step;
3352
d7e7528b 3353 audit_syscall_exit(regs);
ea9c102c 3354
02424d89
IM
3355 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3356 trace_sys_exit(regs, regs->result);
3357
4f72c427
RM
3358 step = test_thread_flag(TIF_SINGLESTEP);
3359 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3360 tracehook_report_syscall_exit(regs, step);
22ecbe8d
LZ
3361
3362 user_enter();
ea9c102c 3363}
002af939
ME
3364
3365void __init pt_regs_check(void)
3366{
3367 BUILD_BUG_ON(offsetof(struct pt_regs, gpr) !=
3368 offsetof(struct user_pt_regs, gpr));
3369 BUILD_BUG_ON(offsetof(struct pt_regs, nip) !=
3370 offsetof(struct user_pt_regs, nip));
3371 BUILD_BUG_ON(offsetof(struct pt_regs, msr) !=
3372 offsetof(struct user_pt_regs, msr));
3373 BUILD_BUG_ON(offsetof(struct pt_regs, msr) !=
3374 offsetof(struct user_pt_regs, msr));
3375 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
3376 offsetof(struct user_pt_regs, orig_gpr3));
3377 BUILD_BUG_ON(offsetof(struct pt_regs, ctr) !=
3378 offsetof(struct user_pt_regs, ctr));
3379 BUILD_BUG_ON(offsetof(struct pt_regs, link) !=
3380 offsetof(struct user_pt_regs, link));
3381 BUILD_BUG_ON(offsetof(struct pt_regs, xer) !=
3382 offsetof(struct user_pt_regs, xer));
3383 BUILD_BUG_ON(offsetof(struct pt_regs, ccr) !=
3384 offsetof(struct user_pt_regs, ccr));
3385#ifdef __powerpc64__
3386 BUILD_BUG_ON(offsetof(struct pt_regs, softe) !=
3387 offsetof(struct user_pt_regs, softe));
3388#else
3389 BUILD_BUG_ON(offsetof(struct pt_regs, mq) !=
3390 offsetof(struct user_pt_regs, mq));
3391#endif
3392 BUILD_BUG_ON(offsetof(struct pt_regs, trap) !=
3393 offsetof(struct user_pt_regs, trap));
3394 BUILD_BUG_ON(offsetof(struct pt_regs, dar) !=
3395 offsetof(struct user_pt_regs, dar));
3396 BUILD_BUG_ON(offsetof(struct pt_regs, dsisr) !=
3397 offsetof(struct user_pt_regs, dsisr));
3398 BUILD_BUG_ON(offsetof(struct pt_regs, result) !=
3399 offsetof(struct user_pt_regs, result));
3400
3401 BUILD_BUG_ON(sizeof(struct user_pt_regs) > sizeof(struct pt_regs));
3402}