]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/kernel/ptrace.c
powerpc/ptrace: Adapt gpr32_get, gpr32_set functions for transaction
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / ptrace.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
b123923d 11 * and Paul Mackerras (paulus@samba.org).
1da177e4
LT
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/ptrace.h>
f65255e8 24#include <linux/regset.h>
4f72c427 25#include <linux/tracehook.h>
3caf06c6 26#include <linux/elf.h>
1da177e4
LT
27#include <linux/user.h>
28#include <linux/security.h>
7ed20e1a 29#include <linux/signal.h>
ea9c102c
DW
30#include <linux/seccomp.h>
31#include <linux/audit.h>
02424d89 32#include <trace/syscall.h>
5aae8a53
P
33#include <linux/hw_breakpoint.h>
34#include <linux/perf_event.h>
22ecbe8d 35#include <linux/context_tracking.h>
1da177e4
LT
36
37#include <asm/uaccess.h>
38#include <asm/page.h>
39#include <asm/pgtable.h>
ae3a197e 40#include <asm/switch_to.h>
21a62902 41
02424d89
IM
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
359e4284
MS
45/*
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
48 */
49#ifdef CONFIG_PPC32
50#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51#else /* CONFIG_PPC32 */
52#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53#endif
54
55struct pt_regs_offset {
56 const char *name;
57 int offset;
58};
59
60#define STR(s) #s /* convert to string */
61#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62#define GPR_OFFSET_NAME(num) \
343c3327 63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
359e4284
MS
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65#define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67static const struct pt_regs_offset regoffset_table[] = {
68 GPR_OFFSET_NAME(0),
69 GPR_OFFSET_NAME(1),
70 GPR_OFFSET_NAME(2),
71 GPR_OFFSET_NAME(3),
72 GPR_OFFSET_NAME(4),
73 GPR_OFFSET_NAME(5),
74 GPR_OFFSET_NAME(6),
75 GPR_OFFSET_NAME(7),
76 GPR_OFFSET_NAME(8),
77 GPR_OFFSET_NAME(9),
78 GPR_OFFSET_NAME(10),
79 GPR_OFFSET_NAME(11),
80 GPR_OFFSET_NAME(12),
81 GPR_OFFSET_NAME(13),
82 GPR_OFFSET_NAME(14),
83 GPR_OFFSET_NAME(15),
84 GPR_OFFSET_NAME(16),
85 GPR_OFFSET_NAME(17),
86 GPR_OFFSET_NAME(18),
87 GPR_OFFSET_NAME(19),
88 GPR_OFFSET_NAME(20),
89 GPR_OFFSET_NAME(21),
90 GPR_OFFSET_NAME(22),
91 GPR_OFFSET_NAME(23),
92 GPR_OFFSET_NAME(24),
93 GPR_OFFSET_NAME(25),
94 GPR_OFFSET_NAME(26),
95 GPR_OFFSET_NAME(27),
96 GPR_OFFSET_NAME(28),
97 GPR_OFFSET_NAME(29),
98 GPR_OFFSET_NAME(30),
99 GPR_OFFSET_NAME(31),
100 REG_OFFSET_NAME(nip),
101 REG_OFFSET_NAME(msr),
102 REG_OFFSET_NAME(ctr),
103 REG_OFFSET_NAME(link),
104 REG_OFFSET_NAME(xer),
105 REG_OFFSET_NAME(ccr),
106#ifdef CONFIG_PPC64
107 REG_OFFSET_NAME(softe),
108#else
109 REG_OFFSET_NAME(mq),
110#endif
111 REG_OFFSET_NAME(trap),
112 REG_OFFSET_NAME(dar),
113 REG_OFFSET_NAME(dsisr),
114 REG_OFFSET_END,
115};
116
117/**
118 * regs_query_register_offset() - query register offset from its name
119 * @name: the name of a register
120 *
121 * regs_query_register_offset() returns the offset of a register in struct
122 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
123 */
124int regs_query_register_offset(const char *name)
125{
126 const struct pt_regs_offset *roff;
127 for (roff = regoffset_table; roff->name != NULL; roff++)
128 if (!strcmp(roff->name, name))
129 return roff->offset;
130 return -EINVAL;
131}
132
133/**
134 * regs_query_register_name() - query register name from its offset
135 * @offset: the offset of a register in struct pt_regs.
136 *
137 * regs_query_register_name() returns the name of a register from its
138 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
139 */
140const char *regs_query_register_name(unsigned int offset)
141{
142 const struct pt_regs_offset *roff;
143 for (roff = regoffset_table; roff->name != NULL; roff++)
144 if (roff->offset == offset)
145 return roff->name;
146 return NULL;
147}
148
abd06505
BH
149/*
150 * does not yet catch signals sent when the child dies.
151 * in exit.c or in signal.c.
152 */
153
154/*
155 * Set of msr bits that gdb can change on behalf of a process.
156 */
172ae2e7 157#ifdef CONFIG_PPC_ADV_DEBUG_REGS
abd06505 158#define MSR_DEBUGCHANGE 0
1da177e4 159#else
abd06505 160#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
1da177e4 161#endif
acd89828 162
1da177e4 163/*
abd06505 164 * Max register writeable via put_reg
1da177e4 165 */
abd06505
BH
166#ifdef CONFIG_PPC32
167#define PT_MAX_PUT_REG PT_MQ
168#else
169#define PT_MAX_PUT_REG PT_CCR
170#endif
1da177e4 171
26f77130
RM
172static unsigned long get_user_msr(struct task_struct *task)
173{
174 return task->thread.regs->msr | task->thread.fpexc_mode;
175}
176
177static int set_user_msr(struct task_struct *task, unsigned long msr)
178{
179 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
180 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
181 return 0;
182}
183
1715a826 184#ifdef CONFIG_PPC64
ee4a3916 185static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826 186{
ee4a3916
AK
187 *data = task->thread.dscr;
188 return 0;
1715a826
AK
189}
190
191static int set_user_dscr(struct task_struct *task, unsigned long dscr)
192{
193 task->thread.dscr = dscr;
194 task->thread.dscr_inherit = 1;
195 return 0;
196}
197#else
ee4a3916 198static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826
AK
199{
200 return -EIO;
201}
202
203static int set_user_dscr(struct task_struct *task, unsigned long dscr)
204{
205 return -EIO;
206}
207#endif
208
26f77130
RM
209/*
210 * We prevent mucking around with the reserved area of trap
211 * which are used internally by the kernel.
212 */
213static int set_user_trap(struct task_struct *task, unsigned long trap)
214{
215 task->thread.regs->trap = trap & 0xfff0;
216 return 0;
217}
218
865418d8
BH
219/*
220 * Get contents of register REGNO in task TASK.
221 */
ee4a3916 222int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
865418d8 223{
ee4a3916 224 if ((task->thread.regs == NULL) || !data)
865418d8
BH
225 return -EIO;
226
ee4a3916
AK
227 if (regno == PT_MSR) {
228 *data = get_user_msr(task);
229 return 0;
230 }
865418d8 231
1715a826 232 if (regno == PT_DSCR)
ee4a3916 233 return get_user_dscr(task, data);
1715a826 234
ee4a3916
AK
235 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
236 *data = ((unsigned long *)task->thread.regs)[regno];
237 return 0;
238 }
865418d8
BH
239
240 return -EIO;
241}
242
243/*
244 * Write contents of register REGNO in task TASK.
245 */
246int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
247{
248 if (task->thread.regs == NULL)
249 return -EIO;
250
26f77130
RM
251 if (regno == PT_MSR)
252 return set_user_msr(task, data);
253 if (regno == PT_TRAP)
254 return set_user_trap(task, data);
1715a826
AK
255 if (regno == PT_DSCR)
256 return set_user_dscr(task, data);
26f77130
RM
257
258 if (regno <= PT_MAX_PUT_REG) {
865418d8
BH
259 ((unsigned long *)task->thread.regs)[regno] = data;
260 return 0;
261 }
262 return -EIO;
263}
264
44dd3f50
RM
265static int gpr_get(struct task_struct *target, const struct user_regset *regset,
266 unsigned int pos, unsigned int count,
267 void *kbuf, void __user *ubuf)
268{
a71f5d5d 269 int i, ret;
44dd3f50
RM
270
271 if (target->thread.regs == NULL)
272 return -EIO;
273
a71f5d5d
MW
274 if (!FULL_REGS(target->thread.regs)) {
275 /* We have a partial register set. Fill 14-31 with bogus values */
276 for (i = 14; i < 32; i++)
277 target->thread.regs->gpr[i] = NV_REG_POISON;
278 }
44dd3f50
RM
279
280 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
281 target->thread.regs,
282 0, offsetof(struct pt_regs, msr));
283 if (!ret) {
284 unsigned long msr = get_user_msr(target);
285 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
286 offsetof(struct pt_regs, msr),
287 offsetof(struct pt_regs, msr) +
288 sizeof(msr));
289 }
290
291 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
292 offsetof(struct pt_regs, msr) + sizeof(long));
293
294 if (!ret)
295 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
296 &target->thread.regs->orig_gpr3,
297 offsetof(struct pt_regs, orig_gpr3),
298 sizeof(struct pt_regs));
299 if (!ret)
300 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
301 sizeof(struct pt_regs), -1);
302
303 return ret;
304}
305
306static int gpr_set(struct task_struct *target, const struct user_regset *regset,
307 unsigned int pos, unsigned int count,
308 const void *kbuf, const void __user *ubuf)
309{
310 unsigned long reg;
311 int ret;
312
313 if (target->thread.regs == NULL)
314 return -EIO;
315
316 CHECK_FULL_REGS(target->thread.regs);
317
318 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
319 target->thread.regs,
320 0, PT_MSR * sizeof(reg));
321
322 if (!ret && count > 0) {
323 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
324 PT_MSR * sizeof(reg),
325 (PT_MSR + 1) * sizeof(reg));
326 if (!ret)
327 ret = set_user_msr(target, reg);
328 }
329
330 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
331 offsetof(struct pt_regs, msr) + sizeof(long));
332
333 if (!ret)
334 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
335 &target->thread.regs->orig_gpr3,
336 PT_ORIG_R3 * sizeof(reg),
337 (PT_MAX_PUT_REG + 1) * sizeof(reg));
338
339 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
340 ret = user_regset_copyin_ignore(
341 &pos, &count, &kbuf, &ubuf,
342 (PT_MAX_PUT_REG + 1) * sizeof(reg),
343 PT_TRAP * sizeof(reg));
344
345 if (!ret && count > 0) {
346 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
347 PT_TRAP * sizeof(reg),
348 (PT_TRAP + 1) * sizeof(reg));
349 if (!ret)
350 ret = set_user_trap(target, reg);
351 }
352
353 if (!ret)
354 ret = user_regset_copyin_ignore(
355 &pos, &count, &kbuf, &ubuf,
356 (PT_TRAP + 1) * sizeof(reg), -1);
357
358 return ret;
359}
865418d8 360
1ec8549d
AK
361/*
362 * When the transaction is active, 'transact_fp' holds the current running
363 * value of all FPR registers and 'fp_state' holds the last checkpointed
364 * value of all FPR registers for the current transaction. When transaction
365 * is not active 'fp_state' holds the current running state of all the FPR
366 * registers. So this function which returns the current running values of
367 * all the FPR registers, needs to know whether any transaction is active
368 * or not.
369 *
370 * Userspace interface buffer layout:
371 *
372 * struct data {
373 * u64 fpr[32];
374 * u64 fpscr;
375 * };
376 *
377 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
378 * which determines the final code in this function. All the combinations of
379 * these two config options are possible except the one below as transactional
380 * memory config pulls in CONFIG_VSX automatically.
381 *
382 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
383 */
f65255e8
RM
384static int fpr_get(struct task_struct *target, const struct user_regset *regset,
385 unsigned int pos, unsigned int count,
386 void *kbuf, void __user *ubuf)
387{
c6e6771b 388#ifdef CONFIG_VSX
de79f7b9 389 u64 buf[33];
c6e6771b
MN
390 int i;
391#endif
f65255e8
RM
392 flush_fp_to_thread(target);
393
1ec8549d
AK
394#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
395 /* copy to local buffer then write that out */
396 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
397 flush_altivec_to_thread(target);
398 flush_tmregs_to_thread(target);
399 for (i = 0; i < 32 ; i++)
400 buf[i] = target->thread.TS_TRANS_FPR(i);
401 buf[32] = target->thread.transact_fp.fpscr;
402 } else {
403 for (i = 0; i < 32 ; i++)
404 buf[i] = target->thread.TS_FPR(i);
405 buf[32] = target->thread.fp_state.fpscr;
406 }
407 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
408#endif
409
410#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
411 /* copy to local buffer then write that out */
412 for (i = 0; i < 32 ; i++)
413 buf[i] = target->thread.TS_FPR(i);
de79f7b9 414 buf[32] = target->thread.fp_state.fpscr;
c6e6771b 415 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1ec8549d 416#endif
c6e6771b 417
1ec8549d 418#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 419 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 420 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
421
422 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
de79f7b9 423 &target->thread.fp_state, 0, -1);
c6e6771b 424#endif
f65255e8
RM
425}
426
1ec8549d
AK
427/*
428 * When the transaction is active, 'transact_fp' holds the current running
429 * value of all FPR registers and 'fp_state' holds the last checkpointed
430 * value of all FPR registers for the current transaction. When transaction
431 * is not active 'fp_state' holds the current running state of all the FPR
432 * registers. So this function which setss the current running values of
433 * all the FPR registers, needs to know whether any transaction is active
434 * or not.
435 *
436 * Userspace interface buffer layout:
437 *
438 * struct data {
439 * u64 fpr[32];
440 * u64 fpscr;
441 * };
442 *
443 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
444 * which determines the final code in this function. All the combinations of
445 * these two config options are possible except the one below as transactional
446 * memory config pulls in CONFIG_VSX automatically.
447 *
448 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
449 */
f65255e8
RM
450static int fpr_set(struct task_struct *target, const struct user_regset *regset,
451 unsigned int pos, unsigned int count,
452 const void *kbuf, const void __user *ubuf)
453{
c6e6771b 454#ifdef CONFIG_VSX
de79f7b9 455 u64 buf[33];
c6e6771b
MN
456 int i;
457#endif
f65255e8
RM
458 flush_fp_to_thread(target);
459
1ec8549d
AK
460#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
461 /* copy to local buffer then write that out */
462 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
463 if (i)
464 return i;
465
466 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
467 flush_altivec_to_thread(target);
468 flush_tmregs_to_thread(target);
469 for (i = 0; i < 32 ; i++)
470 target->thread.TS_TRANS_FPR(i) = buf[i];
471 target->thread.transact_fp.fpscr = buf[32];
472 } else {
473 for (i = 0; i < 32 ; i++)
474 target->thread.TS_FPR(i) = buf[i];
475 target->thread.fp_state.fpscr = buf[32];
476 }
477 return 0;
478#endif
479
480#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
481 /* copy to local buffer then write that out */
482 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
483 if (i)
484 return i;
485 for (i = 0; i < 32 ; i++)
486 target->thread.TS_FPR(i) = buf[i];
de79f7b9 487 target->thread.fp_state.fpscr = buf[32];
c6e6771b 488 return 0;
1ec8549d
AK
489#endif
490
491#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 492 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 493 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
494
495 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
de79f7b9 496 &target->thread.fp_state, 0, -1);
c6e6771b 497#endif
f65255e8
RM
498}
499
865418d8
BH
500#ifdef CONFIG_ALTIVEC
501/*
502 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
503 * The transfer totals 34 quadword. Quadwords 0-31 contain the
504 * corresponding vector registers. Quadword 32 contains the vscr as the
505 * last word (offset 12) within that quadword. Quadword 33 contains the
506 * vrsave as the first word (offset 0) within the quadword.
507 *
508 * This definition of the VMX state is compatible with the current PPC32
509 * ptrace interface. This allows signal handling and ptrace to use the
510 * same structures. This also simplifies the implementation of a bi-arch
511 * (combined (32- and 64-bit) gdb.
512 */
513
3caf06c6
RM
514static int vr_active(struct task_struct *target,
515 const struct user_regset *regset)
516{
517 flush_altivec_to_thread(target);
518 return target->thread.used_vr ? regset->n : 0;
519}
520
d844e279
AK
521/*
522 * When the transaction is active, 'transact_vr' holds the current running
523 * value of all the VMX registers and 'vr_state' holds the last checkpointed
524 * value of all the VMX registers for the current transaction to fall back
525 * on in case it aborts. When transaction is not active 'vr_state' holds
526 * the current running state of all the VMX registers. So this function which
527 * gets the current running values of all the VMX registers, needs to know
528 * whether any transaction is active or not.
529 *
530 * Userspace interface buffer layout:
531 *
532 * struct data {
533 * vector128 vr[32];
534 * vector128 vscr;
535 * vector128 vrsave;
536 * };
537 */
3caf06c6
RM
538static int vr_get(struct task_struct *target, const struct user_regset *regset,
539 unsigned int pos, unsigned int count,
540 void *kbuf, void __user *ubuf)
541{
d844e279 542 struct thread_vr_state *addr;
3caf06c6
RM
543 int ret;
544
545 flush_altivec_to_thread(target);
546
de79f7b9
PM
547 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
548 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 549
d844e279
AK
550#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
551 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
552 flush_fp_to_thread(target);
553 flush_tmregs_to_thread(target);
554 addr = &target->thread.transact_vr;
555 } else {
556 addr = &target->thread.vr_state;
557 }
558#else
559 addr = &target->thread.vr_state;
560#endif
3caf06c6 561 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
d844e279 562 addr, 0,
3caf06c6
RM
563 33 * sizeof(vector128));
564 if (!ret) {
565 /*
566 * Copy out only the low-order word of vrsave.
567 */
568 union {
569 elf_vrreg_t reg;
570 u32 word;
571 } vrsave;
572 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
573
574#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
575 if (MSR_TM_ACTIVE(target->thread.regs->msr))
576 vrsave.word = target->thread.transact_vrsave;
577 else
578 vrsave.word = target->thread.vrsave;
579#else
3caf06c6 580 vrsave.word = target->thread.vrsave;
d844e279
AK
581#endif
582
3caf06c6
RM
583 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
584 33 * sizeof(vector128), -1);
585 }
586
587 return ret;
588}
589
d844e279
AK
590/*
591 * When the transaction is active, 'transact_vr' holds the current running
592 * value of all the VMX registers and 'vr_state' holds the last checkpointed
593 * value of all the VMX registers for the current transaction to fall back
594 * on in case it aborts. When transaction is not active 'vr_state' holds
595 * the current running state of all the VMX registers. So this function which
596 * sets the current running values of all the VMX registers, needs to know
597 * whether any transaction is active or not.
598 *
599 * Userspace interface buffer layout:
600 *
601 * struct data {
602 * vector128 vr[32];
603 * vector128 vscr;
604 * vector128 vrsave;
605 * };
606 */
3caf06c6
RM
607static int vr_set(struct task_struct *target, const struct user_regset *regset,
608 unsigned int pos, unsigned int count,
609 const void *kbuf, const void __user *ubuf)
610{
d844e279 611 struct thread_vr_state *addr;
3caf06c6
RM
612 int ret;
613
614 flush_altivec_to_thread(target);
615
de79f7b9
PM
616 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
617 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 618
d844e279
AK
619#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
620 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
621 flush_fp_to_thread(target);
622 flush_tmregs_to_thread(target);
623 addr = &target->thread.transact_vr;
624 } else {
625 addr = &target->thread.vr_state;
626 }
627#else
628 addr = &target->thread.vr_state;
629#endif
3caf06c6 630 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
d844e279 631 addr, 0,
de79f7b9 632 33 * sizeof(vector128));
3caf06c6
RM
633 if (!ret && count > 0) {
634 /*
635 * We use only the first word of vrsave.
636 */
637 union {
638 elf_vrreg_t reg;
639 u32 word;
640 } vrsave;
641 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
642
643#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
644 if (MSR_TM_ACTIVE(target->thread.regs->msr))
645 vrsave.word = target->thread.transact_vrsave;
646 else
647 vrsave.word = target->thread.vrsave;
648#else
3caf06c6 649 vrsave.word = target->thread.vrsave;
d844e279 650#endif
3caf06c6
RM
651 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
652 33 * sizeof(vector128), -1);
d844e279
AK
653 if (!ret) {
654
655#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
656 if (MSR_TM_ACTIVE(target->thread.regs->msr))
657 target->thread.transact_vrsave = vrsave.word;
658 else
659 target->thread.vrsave = vrsave.word;
660#else
3caf06c6 661 target->thread.vrsave = vrsave.word;
d844e279
AK
662#endif
663 }
3caf06c6
RM
664 }
665
666 return ret;
667}
865418d8
BH
668#endif /* CONFIG_ALTIVEC */
669
ce48b210
MN
670#ifdef CONFIG_VSX
671/*
672 * Currently to set and and get all the vsx state, you need to call
25985edc 673 * the fp and VMX calls as well. This only get/sets the lower 32
ce48b210
MN
674 * 128bit VSX registers.
675 */
676
677static int vsr_active(struct task_struct *target,
678 const struct user_regset *regset)
679{
680 flush_vsx_to_thread(target);
681 return target->thread.used_vsr ? regset->n : 0;
682}
683
94b7d361
AK
684/*
685 * When the transaction is active, 'transact_fp' holds the current running
686 * value of all FPR registers and 'fp_state' holds the last checkpointed
687 * value of all FPR registers for the current transaction. When transaction
688 * is not active 'fp_state' holds the current running state of all the FPR
689 * registers. So this function which returns the current running values of
690 * all the FPR registers, needs to know whether any transaction is active
691 * or not.
692 *
693 * Userspace interface buffer layout:
694 *
695 * struct data {
696 * u64 vsx[32];
697 * };
698 */
ce48b210
MN
699static int vsr_get(struct task_struct *target, const struct user_regset *regset,
700 unsigned int pos, unsigned int count,
701 void *kbuf, void __user *ubuf)
702{
de79f7b9 703 u64 buf[32];
f3e909c2 704 int ret, i;
ce48b210 705
94b7d361
AK
706#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
707 flush_fp_to_thread(target);
708 flush_altivec_to_thread(target);
709 flush_tmregs_to_thread(target);
710#endif
ce48b210
MN
711 flush_vsx_to_thread(target);
712
94b7d361
AK
713#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
714 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
715 for (i = 0; i < 32 ; i++)
716 buf[i] = target->thread.
717 transact_fp.fpr[i][TS_VSRLOWOFFSET];
718 } else {
719 for (i = 0; i < 32 ; i++)
720 buf[i] = target->thread.
721 fp_state.fpr[i][TS_VSRLOWOFFSET];
722 }
723#else
f3e909c2 724 for (i = 0; i < 32 ; i++)
de79f7b9 725 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
94b7d361 726#endif
ce48b210 727 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
f3e909c2 728 buf, 0, 32 * sizeof(double));
ce48b210
MN
729
730 return ret;
731}
732
94b7d361
AK
733/*
734 * When the transaction is active, 'transact_fp' holds the current running
735 * value of all FPR registers and 'fp_state' holds the last checkpointed
736 * value of all FPR registers for the current transaction. When transaction
737 * is not active 'fp_state' holds the current running state of all the FPR
738 * registers. So this function which sets the current running values of all
739 * the FPR registers, needs to know whether any transaction is active or not.
740 *
741 * Userspace interface buffer layout:
742 *
743 * struct data {
744 * u64 vsx[32];
745 * };
746 */
ce48b210
MN
747static int vsr_set(struct task_struct *target, const struct user_regset *regset,
748 unsigned int pos, unsigned int count,
749 const void *kbuf, const void __user *ubuf)
750{
de79f7b9 751 u64 buf[32];
f3e909c2 752 int ret,i;
ce48b210 753
94b7d361
AK
754#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
755 flush_fp_to_thread(target);
756 flush_altivec_to_thread(target);
757 flush_tmregs_to_thread(target);
758#endif
ce48b210
MN
759 flush_vsx_to_thread(target);
760
761 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
f3e909c2 762 buf, 0, 32 * sizeof(double));
94b7d361
AK
763
764#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
765 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
766 for (i = 0; i < 32 ; i++)
767 target->thread.transact_fp.
768 fpr[i][TS_VSRLOWOFFSET] = buf[i];
769 } else {
770 for (i = 0; i < 32 ; i++)
771 target->thread.fp_state.
772 fpr[i][TS_VSRLOWOFFSET] = buf[i];
773 }
774#else
f3e909c2 775 for (i = 0; i < 32 ; i++)
de79f7b9 776 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
94b7d361 777#endif
f3e909c2 778
ce48b210
MN
779
780 return ret;
781}
782#endif /* CONFIG_VSX */
783
865418d8
BH
784#ifdef CONFIG_SPE
785
786/*
787 * For get_evrregs/set_evrregs functions 'data' has the following layout:
788 *
789 * struct {
790 * u32 evr[32];
791 * u64 acc;
792 * u32 spefscr;
793 * }
794 */
795
a4e4b175
RM
796static int evr_active(struct task_struct *target,
797 const struct user_regset *regset)
865418d8 798{
a4e4b175
RM
799 flush_spe_to_thread(target);
800 return target->thread.used_spe ? regset->n : 0;
801}
865418d8 802
a4e4b175
RM
803static int evr_get(struct task_struct *target, const struct user_regset *regset,
804 unsigned int pos, unsigned int count,
805 void *kbuf, void __user *ubuf)
806{
807 int ret;
865418d8 808
a4e4b175 809 flush_spe_to_thread(target);
865418d8 810
a4e4b175
RM
811 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
812 &target->thread.evr,
813 0, sizeof(target->thread.evr));
865418d8 814
a4e4b175
RM
815 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
816 offsetof(struct thread_struct, spefscr));
817
818 if (!ret)
819 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
820 &target->thread.acc,
821 sizeof(target->thread.evr), -1);
822
823 return ret;
824}
825
826static int evr_set(struct task_struct *target, const struct user_regset *regset,
827 unsigned int pos, unsigned int count,
828 const void *kbuf, const void __user *ubuf)
829{
830 int ret;
831
832 flush_spe_to_thread(target);
833
834 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
835 &target->thread.evr,
836 0, sizeof(target->thread.evr));
865418d8 837
a4e4b175
RM
838 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
839 offsetof(struct thread_struct, spefscr));
840
841 if (!ret)
842 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
843 &target->thread.acc,
844 sizeof(target->thread.evr), -1);
845
846 return ret;
865418d8 847}
865418d8
BH
848#endif /* CONFIG_SPE */
849
850
80fdf470
RM
851/*
852 * These are our native regset flavors.
853 */
854enum powerpc_regset {
855 REGSET_GPR,
856 REGSET_FPR,
857#ifdef CONFIG_ALTIVEC
858 REGSET_VMX,
859#endif
ce48b210
MN
860#ifdef CONFIG_VSX
861 REGSET_VSX,
862#endif
80fdf470
RM
863#ifdef CONFIG_SPE
864 REGSET_SPE,
865#endif
866};
867
868static const struct user_regset native_regsets[] = {
869 [REGSET_GPR] = {
870 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
871 .size = sizeof(long), .align = sizeof(long),
872 .get = gpr_get, .set = gpr_set
873 },
874 [REGSET_FPR] = {
875 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
876 .size = sizeof(double), .align = sizeof(double),
877 .get = fpr_get, .set = fpr_set
878 },
879#ifdef CONFIG_ALTIVEC
880 [REGSET_VMX] = {
881 .core_note_type = NT_PPC_VMX, .n = 34,
882 .size = sizeof(vector128), .align = sizeof(vector128),
883 .active = vr_active, .get = vr_get, .set = vr_set
884 },
885#endif
ce48b210
MN
886#ifdef CONFIG_VSX
887 [REGSET_VSX] = {
f3e909c2
MN
888 .core_note_type = NT_PPC_VSX, .n = 32,
889 .size = sizeof(double), .align = sizeof(double),
ce48b210
MN
890 .active = vsr_active, .get = vsr_get, .set = vsr_set
891 },
892#endif
80fdf470
RM
893#ifdef CONFIG_SPE
894 [REGSET_SPE] = {
a0b38b4e 895 .core_note_type = NT_PPC_SPE, .n = 35,
80fdf470
RM
896 .size = sizeof(u32), .align = sizeof(u32),
897 .active = evr_active, .get = evr_get, .set = evr_set
898 },
899#endif
900};
901
902static const struct user_regset_view user_ppc_native_view = {
903 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
904 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
905};
906
fa8f5cb0
RM
907#ifdef CONFIG_PPC64
908#include <linux/compat.h>
909
04fcadce 910static int gpr32_get_common(struct task_struct *target,
fa8f5cb0
RM
911 const struct user_regset *regset,
912 unsigned int pos, unsigned int count,
04fcadce 913 void *kbuf, void __user *ubuf, bool tm_active)
fa8f5cb0
RM
914{
915 const unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 916 const unsigned long *ckpt_regs;
fa8f5cb0
RM
917 compat_ulong_t *k = kbuf;
918 compat_ulong_t __user *u = ubuf;
919 compat_ulong_t reg;
a71f5d5d 920 int i;
fa8f5cb0 921
04fcadce
AK
922#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
923 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
924#endif
925 if (tm_active) {
926 regs = ckpt_regs;
927 } else {
928 if (target->thread.regs == NULL)
929 return -EIO;
930
931 if (!FULL_REGS(target->thread.regs)) {
932 /*
933 * We have a partial register set.
934 * Fill 14-31 with bogus values.
935 */
936 for (i = 14; i < 32; i++)
937 target->thread.regs->gpr[i] = NV_REG_POISON;
938 }
a71f5d5d 939 }
fa8f5cb0
RM
940
941 pos /= sizeof(reg);
942 count /= sizeof(reg);
943
944 if (kbuf)
945 for (; count > 0 && pos < PT_MSR; --count)
946 *k++ = regs[pos++];
947 else
948 for (; count > 0 && pos < PT_MSR; --count)
949 if (__put_user((compat_ulong_t) regs[pos++], u++))
950 return -EFAULT;
951
952 if (count > 0 && pos == PT_MSR) {
953 reg = get_user_msr(target);
954 if (kbuf)
955 *k++ = reg;
956 else if (__put_user(reg, u++))
957 return -EFAULT;
958 ++pos;
959 --count;
960 }
961
962 if (kbuf)
963 for (; count > 0 && pos < PT_REGS_COUNT; --count)
964 *k++ = regs[pos++];
965 else
966 for (; count > 0 && pos < PT_REGS_COUNT; --count)
967 if (__put_user((compat_ulong_t) regs[pos++], u++))
968 return -EFAULT;
969
970 kbuf = k;
971 ubuf = u;
972 pos *= sizeof(reg);
973 count *= sizeof(reg);
974 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
975 PT_REGS_COUNT * sizeof(reg), -1);
976}
977
04fcadce 978static int gpr32_set_common(struct task_struct *target,
fa8f5cb0
RM
979 const struct user_regset *regset,
980 unsigned int pos, unsigned int count,
04fcadce 981 const void *kbuf, const void __user *ubuf, bool tm_active)
fa8f5cb0
RM
982{
983 unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 984 unsigned long *ckpt_regs;
fa8f5cb0
RM
985 const compat_ulong_t *k = kbuf;
986 const compat_ulong_t __user *u = ubuf;
987 compat_ulong_t reg;
988
04fcadce
AK
989#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
990 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
991#endif
fa8f5cb0 992
04fcadce
AK
993 if (tm_active) {
994 regs = ckpt_regs;
995 } else {
996 regs = &target->thread.regs->gpr[0];
997
998 if (target->thread.regs == NULL)
999 return -EIO;
1000
1001 CHECK_FULL_REGS(target->thread.regs);
1002 }
fa8f5cb0
RM
1003
1004 pos /= sizeof(reg);
1005 count /= sizeof(reg);
1006
1007 if (kbuf)
1008 for (; count > 0 && pos < PT_MSR; --count)
1009 regs[pos++] = *k++;
1010 else
1011 for (; count > 0 && pos < PT_MSR; --count) {
1012 if (__get_user(reg, u++))
1013 return -EFAULT;
1014 regs[pos++] = reg;
1015 }
1016
1017
1018 if (count > 0 && pos == PT_MSR) {
1019 if (kbuf)
1020 reg = *k++;
1021 else if (__get_user(reg, u++))
1022 return -EFAULT;
1023 set_user_msr(target, reg);
1024 ++pos;
1025 --count;
1026 }
1027
c2372eb9 1028 if (kbuf) {
fa8f5cb0
RM
1029 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
1030 regs[pos++] = *k++;
c2372eb9
RM
1031 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1032 ++k;
1033 } else {
fa8f5cb0
RM
1034 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
1035 if (__get_user(reg, u++))
1036 return -EFAULT;
1037 regs[pos++] = reg;
1038 }
c2372eb9
RM
1039 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1040 if (__get_user(reg, u++))
1041 return -EFAULT;
1042 }
fa8f5cb0
RM
1043
1044 if (count > 0 && pos == PT_TRAP) {
1045 if (kbuf)
1046 reg = *k++;
1047 else if (__get_user(reg, u++))
1048 return -EFAULT;
1049 set_user_trap(target, reg);
1050 ++pos;
1051 --count;
1052 }
1053
1054 kbuf = k;
1055 ubuf = u;
1056 pos *= sizeof(reg);
1057 count *= sizeof(reg);
1058 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
1059 (PT_TRAP + 1) * sizeof(reg), -1);
1060}
1061
04fcadce
AK
1062static int gpr32_get(struct task_struct *target,
1063 const struct user_regset *regset,
1064 unsigned int pos, unsigned int count,
1065 void *kbuf, void __user *ubuf)
1066{
1067 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
1068}
1069
1070static int gpr32_set(struct task_struct *target,
1071 const struct user_regset *regset,
1072 unsigned int pos, unsigned int count,
1073 const void *kbuf, const void __user *ubuf)
1074{
1075 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
1076}
1077
fa8f5cb0
RM
1078/*
1079 * These are the regset flavors matching the CONFIG_PPC32 native set.
1080 */
1081static const struct user_regset compat_regsets[] = {
1082 [REGSET_GPR] = {
1083 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1084 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
1085 .get = gpr32_get, .set = gpr32_set
1086 },
1087 [REGSET_FPR] = {
1088 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1089 .size = sizeof(double), .align = sizeof(double),
1090 .get = fpr_get, .set = fpr_set
1091 },
1092#ifdef CONFIG_ALTIVEC
1093 [REGSET_VMX] = {
1094 .core_note_type = NT_PPC_VMX, .n = 34,
1095 .size = sizeof(vector128), .align = sizeof(vector128),
1096 .active = vr_active, .get = vr_get, .set = vr_set
1097 },
1098#endif
1099#ifdef CONFIG_SPE
1100 [REGSET_SPE] = {
24f1a849 1101 .core_note_type = NT_PPC_SPE, .n = 35,
fa8f5cb0
RM
1102 .size = sizeof(u32), .align = sizeof(u32),
1103 .active = evr_active, .get = evr_get, .set = evr_set
1104 },
1105#endif
1106};
1107
1108static const struct user_regset_view user_ppc_compat_view = {
1109 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
1110 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
1111};
1112#endif /* CONFIG_PPC64 */
1113
80fdf470
RM
1114const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1115{
fa8f5cb0
RM
1116#ifdef CONFIG_PPC64
1117 if (test_tsk_thread_flag(task, TIF_32BIT))
1118 return &user_ppc_compat_view;
1119#endif
80fdf470
RM
1120 return &user_ppc_native_view;
1121}
1122
1123
2a84b0d7 1124void user_enable_single_step(struct task_struct *task)
865418d8
BH
1125{
1126 struct pt_regs *regs = task->thread.regs;
1127
1128 if (regs != NULL) {
172ae2e7 1129#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1130 task->thread.debug.dbcr0 &= ~DBCR0_BT;
1131 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
865418d8
BH
1132 regs->msr |= MSR_DE;
1133#else
ec097c84 1134 regs->msr &= ~MSR_BE;
865418d8
BH
1135 regs->msr |= MSR_SE;
1136#endif
1137 }
1138 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1139}
1140
ec097c84
RM
1141void user_enable_block_step(struct task_struct *task)
1142{
1143 struct pt_regs *regs = task->thread.regs;
1144
1145 if (regs != NULL) {
172ae2e7 1146#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1147 task->thread.debug.dbcr0 &= ~DBCR0_IC;
1148 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
ec097c84
RM
1149 regs->msr |= MSR_DE;
1150#else
1151 regs->msr &= ~MSR_SE;
1152 regs->msr |= MSR_BE;
1153#endif
1154 }
1155 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1156}
1157
2a84b0d7 1158void user_disable_single_step(struct task_struct *task)
865418d8
BH
1159{
1160 struct pt_regs *regs = task->thread.regs;
1161
1162 if (regs != NULL) {
172ae2e7 1163#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
1164 /*
1165 * The logic to disable single stepping should be as
1166 * simple as turning off the Instruction Complete flag.
1167 * And, after doing so, if all debug flags are off, turn
1168 * off DBCR0(IDM) and MSR(DE) .... Torez
1169 */
682775b8 1170 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
3bffb652
DK
1171 /*
1172 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
1173 */
51ae8d4a
BB
1174 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1175 task->thread.debug.dbcr1)) {
3bffb652
DK
1176 /*
1177 * All debug events were off.....
1178 */
51ae8d4a 1179 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
28477fb1
DK
1180 regs->msr &= ~MSR_DE;
1181 }
865418d8 1182#else
ec097c84 1183 regs->msr &= ~(MSR_SE | MSR_BE);
865418d8
BH
1184#endif
1185 }
1186 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
1187}
1188
5aae8a53 1189#ifdef CONFIG_HAVE_HW_BREAKPOINT
a8b0ca17 1190void ptrace_triggered(struct perf_event *bp,
5aae8a53
P
1191 struct perf_sample_data *data, struct pt_regs *regs)
1192{
1193 struct perf_event_attr attr;
1194
1195 /*
1196 * Disable the breakpoint request here since ptrace has defined a
1197 * one-shot behaviour for breakpoint exceptions in PPC64.
1198 * The SIGTRAP signal is generated automatically for us in do_dabr().
1199 * We don't have to do anything about that here
1200 */
1201 attr = bp->attr;
1202 attr.disabled = true;
1203 modify_user_hw_breakpoint(bp, &attr);
1204}
1205#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1206
e51df2c1 1207static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
abd06505
BH
1208 unsigned long data)
1209{
5aae8a53
P
1210#ifdef CONFIG_HAVE_HW_BREAKPOINT
1211 int ret;
1212 struct thread_struct *thread = &(task->thread);
1213 struct perf_event *bp;
1214 struct perf_event_attr attr;
1215#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e
MN
1216#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1217 struct arch_hw_breakpoint hw_brk;
1218#endif
5aae8a53 1219
d6a61bfc
LM
1220 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
1221 * For embedded processors we support one DAC and no IAC's at the
1222 * moment.
1223 */
abd06505
BH
1224 if (addr > 0)
1225 return -EINVAL;
1226
2325f0a0 1227 /* The bottom 3 bits in dabr are flags */
abd06505
BH
1228 if ((data & ~0x7UL) >= TASK_SIZE)
1229 return -EIO;
1230
172ae2e7 1231#ifndef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc
LM
1232 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
1233 * It was assumed, on previous implementations, that 3 bits were
1234 * passed together with the data address, fitting the design of the
1235 * DABR register, as follows:
1236 *
1237 * bit 0: Read flag
1238 * bit 1: Write flag
1239 * bit 2: Breakpoint translation
1240 *
1241 * Thus, we use them here as so.
1242 */
1243
1244 /* Ensure breakpoint translation bit is set */
9422de3e 1245 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
abd06505 1246 return -EIO;
9422de3e
MN
1247 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
1248 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
1249 hw_brk.len = 8;
5aae8a53
P
1250#ifdef CONFIG_HAVE_HW_BREAKPOINT
1251 bp = thread->ptrace_bps[0];
9422de3e 1252 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
5aae8a53
P
1253 if (bp) {
1254 unregister_hw_breakpoint(bp);
1255 thread->ptrace_bps[0] = NULL;
1256 }
1257 return 0;
1258 }
1259 if (bp) {
1260 attr = bp->attr;
9422de3e
MN
1261 attr.bp_addr = hw_brk.address;
1262 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
a53fd61a
AP
1263
1264 /* Enable breakpoint */
1265 attr.disabled = false;
1266
5aae8a53 1267 ret = modify_user_hw_breakpoint(bp, &attr);
925f83c0 1268 if (ret) {
5aae8a53 1269 return ret;
925f83c0 1270 }
5aae8a53 1271 thread->ptrace_bps[0] = bp;
9422de3e 1272 thread->hw_brk = hw_brk;
5aae8a53
P
1273 return 0;
1274 }
1275
1276 /* Create a new breakpoint request if one doesn't exist already */
1277 hw_breakpoint_init(&attr);
9422de3e
MN
1278 attr.bp_addr = hw_brk.address;
1279 arch_bp_generic_fields(hw_brk.type,
1280 &attr.bp_type);
5aae8a53
P
1281
1282 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
4dc0da86 1283 ptrace_triggered, NULL, task);
5aae8a53
P
1284 if (IS_ERR(bp)) {
1285 thread->ptrace_bps[0] = NULL;
1286 return PTR_ERR(bp);
1287 }
1288
1289#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 1290 task->thread.hw_brk = hw_brk;
172ae2e7 1291#else /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
1292 /* As described above, it was assumed 3 bits were passed with the data
1293 * address, but we will assume only the mode bits will be passed
1294 * as to not cause alignment restrictions for DAC-based processors.
1295 */
1296
1297 /* DAC's hold the whole address without any mode flags */
51ae8d4a 1298 task->thread.debug.dac1 = data & ~0x3UL;
3bffb652 1299
51ae8d4a 1300 if (task->thread.debug.dac1 == 0) {
3bffb652 1301 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
51ae8d4a
BB
1302 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1303 task->thread.debug.dbcr1)) {
3bffb652 1304 task->thread.regs->msr &= ~MSR_DE;
51ae8d4a 1305 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652 1306 }
d6a61bfc
LM
1307 return 0;
1308 }
1309
1310 /* Read or Write bits must be set */
1311
1312 if (!(data & 0x3UL))
1313 return -EINVAL;
1314
1315 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1316 register */
51ae8d4a 1317 task->thread.debug.dbcr0 |= DBCR0_IDM;
d6a61bfc
LM
1318
1319 /* Check for write and read flags and set DBCR0
1320 accordingly */
3bffb652 1321 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
d6a61bfc 1322 if (data & 0x1UL)
3bffb652 1323 dbcr_dac(task) |= DBCR_DAC1R;
d6a61bfc 1324 if (data & 0x2UL)
3bffb652 1325 dbcr_dac(task) |= DBCR_DAC1W;
d6a61bfc 1326 task->thread.regs->msr |= MSR_DE;
172ae2e7 1327#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
abd06505
BH
1328 return 0;
1329}
abd06505 1330
1da177e4
LT
1331/*
1332 * Called by kernel/ptrace.c when detaching..
1333 *
1334 * Make sure single step bits etc are not set.
1335 */
1336void ptrace_disable(struct task_struct *child)
1337{
1338 /* make sure the single step bit is not set. */
2a84b0d7 1339 user_disable_single_step(child);
1da177e4
LT
1340}
1341
3bffb652 1342#ifdef CONFIG_PPC_ADV_DEBUG_REGS
84295dfc 1343static long set_instruction_bp(struct task_struct *child,
3bffb652
DK
1344 struct ppc_hw_breakpoint *bp_info)
1345{
1346 int slot;
51ae8d4a
BB
1347 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
1348 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
1349 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
1350 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
3bffb652
DK
1351
1352 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1353 slot2_in_use = 1;
1354 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1355 slot4_in_use = 1;
1356
1357 if (bp_info->addr >= TASK_SIZE)
1358 return -EIO;
1359
1360 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1361
1362 /* Make sure range is valid. */
1363 if (bp_info->addr2 >= TASK_SIZE)
1364 return -EIO;
1365
1366 /* We need a pair of IAC regsisters */
1367 if ((!slot1_in_use) && (!slot2_in_use)) {
1368 slot = 1;
51ae8d4a
BB
1369 child->thread.debug.iac1 = bp_info->addr;
1370 child->thread.debug.iac2 = bp_info->addr2;
1371 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1372 if (bp_info->addr_mode ==
1373 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1374 dbcr_iac_range(child) |= DBCR_IAC12X;
1375 else
1376 dbcr_iac_range(child) |= DBCR_IAC12I;
1377#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1378 } else if ((!slot3_in_use) && (!slot4_in_use)) {
1379 slot = 3;
51ae8d4a
BB
1380 child->thread.debug.iac3 = bp_info->addr;
1381 child->thread.debug.iac4 = bp_info->addr2;
1382 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1383 if (bp_info->addr_mode ==
1384 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1385 dbcr_iac_range(child) |= DBCR_IAC34X;
1386 else
1387 dbcr_iac_range(child) |= DBCR_IAC34I;
1388#endif
1389 } else
1390 return -ENOSPC;
1391 } else {
1392 /* We only need one. If possible leave a pair free in
1393 * case a range is needed later
1394 */
1395 if (!slot1_in_use) {
1396 /*
1397 * Don't use iac1 if iac1-iac2 are free and either
1398 * iac3 or iac4 (but not both) are free
1399 */
1400 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1401 slot = 1;
51ae8d4a
BB
1402 child->thread.debug.iac1 = bp_info->addr;
1403 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1404 goto out;
1405 }
1406 }
1407 if (!slot2_in_use) {
1408 slot = 2;
51ae8d4a
BB
1409 child->thread.debug.iac2 = bp_info->addr;
1410 child->thread.debug.dbcr0 |= DBCR0_IAC2;
3bffb652
DK
1411#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1412 } else if (!slot3_in_use) {
1413 slot = 3;
51ae8d4a
BB
1414 child->thread.debug.iac3 = bp_info->addr;
1415 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1416 } else if (!slot4_in_use) {
1417 slot = 4;
51ae8d4a
BB
1418 child->thread.debug.iac4 = bp_info->addr;
1419 child->thread.debug.dbcr0 |= DBCR0_IAC4;
3bffb652
DK
1420#endif
1421 } else
1422 return -ENOSPC;
1423 }
1424out:
51ae8d4a 1425 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1426 child->thread.regs->msr |= MSR_DE;
1427
1428 return slot;
1429}
1430
1431static int del_instruction_bp(struct task_struct *child, int slot)
1432{
1433 switch (slot) {
1434 case 1:
51ae8d4a 1435 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
3bffb652
DK
1436 return -ENOENT;
1437
1438 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1439 /* address range - clear slots 1 & 2 */
51ae8d4a 1440 child->thread.debug.iac2 = 0;
3bffb652
DK
1441 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1442 }
51ae8d4a
BB
1443 child->thread.debug.iac1 = 0;
1444 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652
DK
1445 break;
1446 case 2:
51ae8d4a 1447 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
3bffb652
DK
1448 return -ENOENT;
1449
1450 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1451 /* used in a range */
1452 return -EINVAL;
51ae8d4a
BB
1453 child->thread.debug.iac2 = 0;
1454 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
3bffb652
DK
1455 break;
1456#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1457 case 3:
51ae8d4a 1458 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
3bffb652
DK
1459 return -ENOENT;
1460
1461 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1462 /* address range - clear slots 3 & 4 */
51ae8d4a 1463 child->thread.debug.iac4 = 0;
3bffb652
DK
1464 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1465 }
51ae8d4a
BB
1466 child->thread.debug.iac3 = 0;
1467 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652
DK
1468 break;
1469 case 4:
51ae8d4a 1470 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
3bffb652
DK
1471 return -ENOENT;
1472
1473 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1474 /* Used in a range */
1475 return -EINVAL;
51ae8d4a
BB
1476 child->thread.debug.iac4 = 0;
1477 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
3bffb652
DK
1478 break;
1479#endif
1480 default:
1481 return -EINVAL;
1482 }
1483 return 0;
1484}
1485
1486static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1487{
1488 int byte_enable =
1489 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1490 & 0xf;
1491 int condition_mode =
1492 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1493 int slot;
1494
1495 if (byte_enable && (condition_mode == 0))
1496 return -EINVAL;
1497
1498 if (bp_info->addr >= TASK_SIZE)
1499 return -EIO;
1500
1501 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1502 slot = 1;
1503 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1504 dbcr_dac(child) |= DBCR_DAC1R;
1505 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1506 dbcr_dac(child) |= DBCR_DAC1W;
51ae8d4a 1507 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
3bffb652
DK
1508#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1509 if (byte_enable) {
51ae8d4a 1510 child->thread.debug.dvc1 =
3bffb652 1511 (unsigned long)bp_info->condition_value;
51ae8d4a 1512 child->thread.debug.dbcr2 |=
3bffb652
DK
1513 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
1514 (condition_mode << DBCR2_DVC1M_SHIFT));
1515 }
1516#endif
1517#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1518 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
3bffb652
DK
1519 /* Both dac1 and dac2 are part of a range */
1520 return -ENOSPC;
1521#endif
1522 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1523 slot = 2;
1524 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1525 dbcr_dac(child) |= DBCR_DAC2R;
1526 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1527 dbcr_dac(child) |= DBCR_DAC2W;
51ae8d4a 1528 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
3bffb652
DK
1529#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1530 if (byte_enable) {
51ae8d4a 1531 child->thread.debug.dvc2 =
3bffb652 1532 (unsigned long)bp_info->condition_value;
51ae8d4a 1533 child->thread.debug.dbcr2 |=
3bffb652
DK
1534 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
1535 (condition_mode << DBCR2_DVC2M_SHIFT));
1536 }
1537#endif
1538 } else
1539 return -ENOSPC;
51ae8d4a 1540 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1541 child->thread.regs->msr |= MSR_DE;
1542
1543 return slot + 4;
1544}
1545
1546static int del_dac(struct task_struct *child, int slot)
1547{
1548 if (slot == 1) {
30124d11 1549 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
3bffb652
DK
1550 return -ENOENT;
1551
51ae8d4a 1552 child->thread.debug.dac1 = 0;
3bffb652
DK
1553 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1554#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a
BB
1555 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1556 child->thread.debug.dac2 = 0;
1557 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 1558 }
51ae8d4a 1559 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
3bffb652
DK
1560#endif
1561#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1562 child->thread.debug.dvc1 = 0;
3bffb652
DK
1563#endif
1564 } else if (slot == 2) {
30124d11 1565 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
3bffb652
DK
1566 return -ENOENT;
1567
1568#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1569 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
3bffb652
DK
1570 /* Part of a range */
1571 return -EINVAL;
51ae8d4a 1572 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
3bffb652
DK
1573#endif
1574#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1575 child->thread.debug.dvc2 = 0;
3bffb652 1576#endif
51ae8d4a 1577 child->thread.debug.dac2 = 0;
3bffb652
DK
1578 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1579 } else
1580 return -EINVAL;
1581
1582 return 0;
1583}
1584#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1585
1586#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1587static int set_dac_range(struct task_struct *child,
1588 struct ppc_hw_breakpoint *bp_info)
1589{
1590 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1591
1592 /* We don't allow range watchpoints to be used with DVC */
1593 if (bp_info->condition_mode)
1594 return -EINVAL;
1595
1596 /*
1597 * Best effort to verify the address range. The user/supervisor bits
1598 * prevent trapping in kernel space, but let's fail on an obvious bad
1599 * range. The simple test on the mask is not fool-proof, and any
1600 * exclusive range will spill over into kernel space.
1601 */
1602 if (bp_info->addr >= TASK_SIZE)
1603 return -EIO;
1604 if (mode == PPC_BREAKPOINT_MODE_MASK) {
1605 /*
1606 * dac2 is a bitmask. Don't allow a mask that makes a
1607 * kernel space address from a valid dac1 value
1608 */
1609 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1610 return -EIO;
1611 } else {
1612 /*
1613 * For range breakpoints, addr2 must also be a valid address
1614 */
1615 if (bp_info->addr2 >= TASK_SIZE)
1616 return -EIO;
1617 }
1618
51ae8d4a 1619 if (child->thread.debug.dbcr0 &
3bffb652
DK
1620 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1621 return -ENOSPC;
1622
1623 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
51ae8d4a 1624 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
3bffb652 1625 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
51ae8d4a
BB
1626 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1627 child->thread.debug.dac1 = bp_info->addr;
1628 child->thread.debug.dac2 = bp_info->addr2;
3bffb652 1629 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
51ae8d4a 1630 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
3bffb652 1631 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
51ae8d4a 1632 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
3bffb652 1633 else /* PPC_BREAKPOINT_MODE_MASK */
51ae8d4a 1634 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
3bffb652
DK
1635 child->thread.regs->msr |= MSR_DE;
1636
1637 return 5;
1638}
1639#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1640
3162d92d
DK
1641static long ppc_set_hwdebug(struct task_struct *child,
1642 struct ppc_hw_breakpoint *bp_info)
1643{
6c7a2856
P
1644#ifdef CONFIG_HAVE_HW_BREAKPOINT
1645 int len = 0;
1646 struct thread_struct *thread = &(child->thread);
1647 struct perf_event *bp;
1648 struct perf_event_attr attr;
1649#endif /* CONFIG_HAVE_HW_BREAKPOINT */
4dfbf290 1650#ifndef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e 1651 struct arch_hw_breakpoint brk;
4dfbf290
AS
1652#endif
1653
3bffb652
DK
1654 if (bp_info->version != 1)
1655 return -ENOTSUPP;
1656#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1657 /*
1658 * Check for invalid flags and combinations
1659 */
1660 if ((bp_info->trigger_type == 0) ||
1661 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
1662 PPC_BREAKPOINT_TRIGGER_RW)) ||
1663 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
1664 (bp_info->condition_mode &
1665 ~(PPC_BREAKPOINT_CONDITION_MODE |
1666 PPC_BREAKPOINT_CONDITION_BE_ALL)))
1667 return -EINVAL;
1668#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
1669 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1670 return -EINVAL;
1671#endif
1672
1673 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
1674 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
1675 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
1676 return -EINVAL;
84295dfc 1677 return set_instruction_bp(child, bp_info);
3bffb652
DK
1678 }
1679 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1680 return set_dac(child, bp_info);
1681
1682#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1683 return set_dac_range(child, bp_info);
1684#else
1685 return -EINVAL;
1686#endif
1687#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d 1688 /*
3bffb652 1689 * We only support one data breakpoint
3162d92d 1690 */
4dfbf290
AS
1691 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
1692 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
4dfbf290 1693 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
3162d92d
DK
1694 return -EINVAL;
1695
3162d92d
DK
1696 if ((unsigned long)bp_info->addr >= TASK_SIZE)
1697 return -EIO;
1698
9422de3e
MN
1699 brk.address = bp_info->addr & ~7UL;
1700 brk.type = HW_BRK_TYPE_TRANSLATE;
2bb78efa 1701 brk.len = 8;
4dfbf290 1702 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
9422de3e 1703 brk.type |= HW_BRK_TYPE_READ;
4dfbf290 1704 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
9422de3e 1705 brk.type |= HW_BRK_TYPE_WRITE;
6c7a2856 1706#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
1707 /*
1708 * Check if the request is for 'range' breakpoints. We can
1709 * support it if range < 8 bytes.
1710 */
6961ed96 1711 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
6c7a2856 1712 len = bp_info->addr2 - bp_info->addr;
6961ed96 1713 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
b0b0aa9c 1714 len = 1;
6961ed96 1715 else
6c7a2856 1716 return -EINVAL;
6c7a2856 1717 bp = thread->ptrace_bps[0];
6961ed96 1718 if (bp)
6c7a2856 1719 return -ENOSPC;
6c7a2856
P
1720
1721 /* Create a new breakpoint request if one doesn't exist already */
1722 hw_breakpoint_init(&attr);
1723 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
1724 attr.bp_len = len;
9422de3e 1725 arch_bp_generic_fields(brk.type, &attr.bp_type);
6c7a2856
P
1726
1727 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1728 ptrace_triggered, NULL, child);
1729 if (IS_ERR(bp)) {
1730 thread->ptrace_bps[0] = NULL;
6c7a2856
P
1731 return PTR_ERR(bp);
1732 }
1733
6c7a2856
P
1734 return 1;
1735#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1736
1737 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
1738 return -EINVAL;
1739
9422de3e 1740 if (child->thread.hw_brk.address)
6c7a2856 1741 return -ENOSPC;
4dfbf290 1742
9422de3e 1743 child->thread.hw_brk = brk;
3bffb652 1744
3162d92d 1745 return 1;
3bffb652 1746#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d
DK
1747}
1748
ec1b33dc 1749static long ppc_del_hwdebug(struct task_struct *child, long data)
3162d92d 1750{
6c7a2856
P
1751#ifdef CONFIG_HAVE_HW_BREAKPOINT
1752 int ret = 0;
1753 struct thread_struct *thread = &(child->thread);
1754 struct perf_event *bp;
1755#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
1756#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1757 int rc;
1758
1759 if (data <= 4)
1760 rc = del_instruction_bp(child, (int)data);
1761 else
1762 rc = del_dac(child, (int)data - 4);
1763
1764 if (!rc) {
51ae8d4a
BB
1765 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
1766 child->thread.debug.dbcr1)) {
1767 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
1768 child->thread.regs->msr &= ~MSR_DE;
1769 }
1770 }
1771 return rc;
1772#else
3162d92d
DK
1773 if (data != 1)
1774 return -EINVAL;
6c7a2856
P
1775
1776#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
1777 bp = thread->ptrace_bps[0];
1778 if (bp) {
1779 unregister_hw_breakpoint(bp);
1780 thread->ptrace_bps[0] = NULL;
1781 } else
1782 ret = -ENOENT;
6c7a2856
P
1783 return ret;
1784#else /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 1785 if (child->thread.hw_brk.address == 0)
3162d92d
DK
1786 return -ENOENT;
1787
9422de3e
MN
1788 child->thread.hw_brk.address = 0;
1789 child->thread.hw_brk.type = 0;
6c7a2856 1790#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1791
3162d92d 1792 return 0;
3bffb652 1793#endif
3162d92d
DK
1794}
1795
9b05a69e
NK
1796long arch_ptrace(struct task_struct *child, long request,
1797 unsigned long addr, unsigned long data)
1da177e4 1798{
1da177e4 1799 int ret = -EPERM;
f68d2048
NK
1800 void __user *datavp = (void __user *) data;
1801 unsigned long __user *datalp = datavp;
1da177e4 1802
1da177e4 1803 switch (request) {
1da177e4 1804 /* read the word at location addr in the USER area. */
1da177e4
LT
1805 case PTRACE_PEEKUSR: {
1806 unsigned long index, tmp;
1807
1808 ret = -EIO;
1809 /* convert to index and check */
e8a30302 1810#ifdef CONFIG_PPC32
9b05a69e 1811 index = addr >> 2;
e8a30302
SR
1812 if ((addr & 3) || (index > PT_FPSCR)
1813 || (child->thread.regs == NULL))
1814#else
9b05a69e 1815 index = addr >> 3;
e8a30302
SR
1816 if ((addr & 7) || (index > PT_FPSCR))
1817#endif
1da177e4
LT
1818 break;
1819
1820 CHECK_FULL_REGS(child->thread.regs);
1821 if (index < PT_FPR0) {
ee4a3916
AK
1822 ret = ptrace_get_reg(child, (int) index, &tmp);
1823 if (ret)
1824 break;
1da177e4 1825 } else {
e69b742a
BH
1826 unsigned int fpidx = index - PT_FPR0;
1827
e8a30302 1828 flush_fp_to_thread(child);
e69b742a 1829 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 1830 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
87fec051 1831 sizeof(long));
e69b742a 1832 else
de79f7b9 1833 tmp = child->thread.fp_state.fpscr;
1da177e4 1834 }
f68d2048 1835 ret = put_user(tmp, datalp);
1da177e4
LT
1836 break;
1837 }
1838
1da177e4
LT
1839 /* write the word at location addr in the USER area */
1840 case PTRACE_POKEUSR: {
1841 unsigned long index;
1842
1843 ret = -EIO;
1844 /* convert to index and check */
e8a30302 1845#ifdef CONFIG_PPC32
9b05a69e 1846 index = addr >> 2;
e8a30302
SR
1847 if ((addr & 3) || (index > PT_FPSCR)
1848 || (child->thread.regs == NULL))
1849#else
9b05a69e 1850 index = addr >> 3;
e8a30302
SR
1851 if ((addr & 7) || (index > PT_FPSCR))
1852#endif
1da177e4
LT
1853 break;
1854
1855 CHECK_FULL_REGS(child->thread.regs);
1da177e4 1856 if (index < PT_FPR0) {
865418d8 1857 ret = ptrace_put_reg(child, index, data);
1da177e4 1858 } else {
e69b742a
BH
1859 unsigned int fpidx = index - PT_FPR0;
1860
e8a30302 1861 flush_fp_to_thread(child);
e69b742a 1862 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 1863 memcpy(&child->thread.TS_FPR(fpidx), &data,
87fec051 1864 sizeof(long));
e69b742a 1865 else
de79f7b9 1866 child->thread.fp_state.fpscr = data;
1da177e4
LT
1867 ret = 0;
1868 }
1869 break;
1870 }
1871
3162d92d
DK
1872 case PPC_PTRACE_GETHWDBGINFO: {
1873 struct ppc_debug_info dbginfo;
1874
1875 dbginfo.version = 1;
3bffb652
DK
1876#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1877 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
1878 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
1879 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
1880 dbginfo.data_bp_alignment = 4;
1881 dbginfo.sizeof_condition = 4;
1882 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
1883 PPC_DEBUG_FEATURE_INSN_BP_MASK;
1884#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1885 dbginfo.features |=
1886 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
1887 PPC_DEBUG_FEATURE_DATA_BP_MASK;
1888#endif
1889#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d
DK
1890 dbginfo.num_instruction_bps = 0;
1891 dbginfo.num_data_bps = 1;
1892 dbginfo.num_condition_regs = 0;
1893#ifdef CONFIG_PPC64
1894 dbginfo.data_bp_alignment = 8;
1895#else
1896 dbginfo.data_bp_alignment = 4;
1897#endif
1898 dbginfo.sizeof_condition = 0;
6c7a2856
P
1899#ifdef CONFIG_HAVE_HW_BREAKPOINT
1900 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
517b7314
MN
1901 if (cpu_has_feature(CPU_FTR_DAWR))
1902 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
6c7a2856 1903#else
3162d92d 1904 dbginfo.features = 0;
6c7a2856 1905#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1906#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 1907
f68d2048 1908 if (!access_ok(VERIFY_WRITE, datavp,
3162d92d
DK
1909 sizeof(struct ppc_debug_info)))
1910 return -EFAULT;
f68d2048
NK
1911 ret = __copy_to_user(datavp, &dbginfo,
1912 sizeof(struct ppc_debug_info)) ?
3162d92d
DK
1913 -EFAULT : 0;
1914 break;
1915 }
1916
1917 case PPC_PTRACE_SETHWDEBUG: {
1918 struct ppc_hw_breakpoint bp_info;
1919
f68d2048 1920 if (!access_ok(VERIFY_READ, datavp,
3162d92d
DK
1921 sizeof(struct ppc_hw_breakpoint)))
1922 return -EFAULT;
f68d2048 1923 ret = __copy_from_user(&bp_info, datavp,
3162d92d
DK
1924 sizeof(struct ppc_hw_breakpoint)) ?
1925 -EFAULT : 0;
1926 if (!ret)
1927 ret = ppc_set_hwdebug(child, &bp_info);
1928 break;
1929 }
1930
1931 case PPC_PTRACE_DELHWDEBUG: {
ec1b33dc 1932 ret = ppc_del_hwdebug(child, data);
3162d92d
DK
1933 break;
1934 }
1935
e8a30302 1936 case PTRACE_GET_DEBUGREG: {
9422de3e
MN
1937#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1938 unsigned long dabr_fake;
1939#endif
e8a30302
SR
1940 ret = -EINVAL;
1941 /* We only support one DABR and no IABRS at the moment */
1942 if (addr > 0)
1943 break;
3bffb652 1944#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a 1945 ret = put_user(child->thread.debug.dac1, datalp);
3bffb652 1946#else
9422de3e
MN
1947 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
1948 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
1949 ret = put_user(dabr_fake, datalp);
3bffb652 1950#endif
e8a30302
SR
1951 break;
1952 }
1953
1954 case PTRACE_SET_DEBUGREG:
1955 ret = ptrace_set_debugreg(child, addr, data);
1956 break;
e8a30302 1957
e17666ba
BH
1958#ifdef CONFIG_PPC64
1959 case PTRACE_GETREGS64:
1960#endif
c391cd00
RM
1961 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
1962 return copy_regset_to_user(child, &user_ppc_native_view,
1963 REGSET_GPR,
1964 0, sizeof(struct pt_regs),
f68d2048 1965 datavp);
e8a30302 1966
e17666ba
BH
1967#ifdef CONFIG_PPC64
1968 case PTRACE_SETREGS64:
1969#endif
c391cd00
RM
1970 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1971 return copy_regset_from_user(child, &user_ppc_native_view,
1972 REGSET_GPR,
1973 0, sizeof(struct pt_regs),
f68d2048 1974 datavp);
c391cd00
RM
1975
1976 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
1977 return copy_regset_to_user(child, &user_ppc_native_view,
1978 REGSET_FPR,
1979 0, sizeof(elf_fpregset_t),
f68d2048 1980 datavp);
c391cd00
RM
1981
1982 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
1983 return copy_regset_from_user(child, &user_ppc_native_view,
1984 REGSET_FPR,
1985 0, sizeof(elf_fpregset_t),
f68d2048 1986 datavp);
e8a30302 1987
1da177e4
LT
1988#ifdef CONFIG_ALTIVEC
1989 case PTRACE_GETVRREGS:
c391cd00
RM
1990 return copy_regset_to_user(child, &user_ppc_native_view,
1991 REGSET_VMX,
1992 0, (33 * sizeof(vector128) +
1993 sizeof(u32)),
f68d2048 1994 datavp);
1da177e4
LT
1995
1996 case PTRACE_SETVRREGS:
c391cd00
RM
1997 return copy_regset_from_user(child, &user_ppc_native_view,
1998 REGSET_VMX,
1999 0, (33 * sizeof(vector128) +
2000 sizeof(u32)),
f68d2048 2001 datavp);
1da177e4 2002#endif
ce48b210
MN
2003#ifdef CONFIG_VSX
2004 case PTRACE_GETVSRREGS:
2005 return copy_regset_to_user(child, &user_ppc_native_view,
2006 REGSET_VSX,
1ac42ef8 2007 0, 32 * sizeof(double),
f68d2048 2008 datavp);
ce48b210
MN
2009
2010 case PTRACE_SETVSRREGS:
2011 return copy_regset_from_user(child, &user_ppc_native_view,
2012 REGSET_VSX,
1ac42ef8 2013 0, 32 * sizeof(double),
f68d2048 2014 datavp);
ce48b210 2015#endif
1da177e4
LT
2016#ifdef CONFIG_SPE
2017 case PTRACE_GETEVRREGS:
2018 /* Get the child spe register state. */
c391cd00
RM
2019 return copy_regset_to_user(child, &user_ppc_native_view,
2020 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 2021 datavp);
1da177e4
LT
2022
2023 case PTRACE_SETEVRREGS:
2024 /* Set the child spe register state. */
c391cd00
RM
2025 return copy_regset_from_user(child, &user_ppc_native_view,
2026 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 2027 datavp);
1da177e4
LT
2028#endif
2029
2030 default:
2031 ret = ptrace_request(child, request, addr, data);
2032 break;
2033 }
1da177e4
LT
2034 return ret;
2035}
2036
2449acc5
ME
2037#ifdef CONFIG_SECCOMP
2038static int do_seccomp(struct pt_regs *regs)
2039{
2040 if (!test_thread_flag(TIF_SECCOMP))
2041 return 0;
2042
2043 /*
2044 * The ABI we present to seccomp tracers is that r3 contains
2045 * the syscall return value and orig_gpr3 contains the first
2046 * syscall parameter. This is different to the ptrace ABI where
2047 * both r3 and orig_gpr3 contain the first syscall parameter.
2048 */
2049 regs->gpr[3] = -ENOSYS;
2050
2051 /*
2052 * We use the __ version here because we have already checked
2053 * TIF_SECCOMP. If this fails, there is nothing left to do, we
2054 * have already loaded -ENOSYS into r3, or seccomp has put
2055 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
2056 */
2f275de5 2057 if (__secure_computing(NULL))
2449acc5
ME
2058 return -1;
2059
2060 /*
2061 * The syscall was allowed by seccomp, restore the register
1addc57e 2062 * state to what audit expects.
2449acc5
ME
2063 * Note that we use orig_gpr3, which means a seccomp tracer can
2064 * modify the first syscall parameter (in orig_gpr3) and also
2065 * allow the syscall to proceed.
2066 */
2067 regs->gpr[3] = regs->orig_gpr3;
2068
2069 return 0;
2070}
2071#else
2072static inline int do_seccomp(struct pt_regs *regs) { return 0; }
2073#endif /* CONFIG_SECCOMP */
2074
d3837414
ME
2075/**
2076 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
2077 * @regs: the pt_regs of the task to trace (current)
2078 *
2079 * Performs various types of tracing on syscall entry. This includes seccomp,
2080 * ptrace, syscall tracepoints and audit.
2081 *
2082 * The pt_regs are potentially visible to userspace via ptrace, so their
2083 * contents is ABI.
2084 *
2085 * One or more of the tracers may modify the contents of pt_regs, in particular
2086 * to modify arguments or even the syscall number itself.
2087 *
2088 * It's also possible that a tracer can choose to reject the system call. In
2089 * that case this function will return an illegal syscall number, and will put
2090 * an appropriate return value in regs->r3.
2091 *
2092 * Return: the (possibly changed) syscall number.
4f72c427
RM
2093 */
2094long do_syscall_trace_enter(struct pt_regs *regs)
1da177e4 2095{
22ecbe8d
LZ
2096 user_exit();
2097
1addc57e
KC
2098 /*
2099 * The tracer may decide to abort the syscall, if so tracehook
2100 * will return !0. Note that the tracer may also just change
2101 * regs->gpr[0] to an invalid syscall number, that is handled
2102 * below on the exit path.
2103 */
2104 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
2105 tracehook_report_syscall_entry(regs))
2106 goto skip;
2107
2108 /* Run seccomp after ptrace; allow it to set gpr[3]. */
2449acc5
ME
2109 if (do_seccomp(regs))
2110 return -1;
e8a30302 2111
1addc57e
KC
2112 /* Avoid trace and audit when syscall is invalid. */
2113 if (regs->gpr[0] >= NR_syscalls)
2114 goto skip;
ea9c102c 2115
02424d89
IM
2116 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2117 trace_sys_enter(regs, regs->gpr[0]);
2118
cfcd1705 2119#ifdef CONFIG_PPC64
b05d8447 2120 if (!is_32bit_task())
91397401 2121 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
b05d8447
EP
2122 regs->gpr[5], regs->gpr[6]);
2123 else
e8a30302 2124#endif
91397401 2125 audit_syscall_entry(regs->gpr[0],
b05d8447
EP
2126 regs->gpr[3] & 0xffffffff,
2127 regs->gpr[4] & 0xffffffff,
2128 regs->gpr[5] & 0xffffffff,
2129 regs->gpr[6] & 0xffffffff);
4f72c427 2130
d3837414
ME
2131 /* Return the possibly modified but valid syscall number */
2132 return regs->gpr[0];
1addc57e
KC
2133
2134skip:
2135 /*
2136 * If we are aborting explicitly, or if the syscall number is
2137 * now invalid, set the return value to -ENOSYS.
2138 */
2139 regs->gpr[3] = -ENOSYS;
2140 return -1;
ea9c102c
DW
2141}
2142
2143void do_syscall_trace_leave(struct pt_regs *regs)
2144{
4f72c427
RM
2145 int step;
2146
d7e7528b 2147 audit_syscall_exit(regs);
ea9c102c 2148
02424d89
IM
2149 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2150 trace_sys_exit(regs, regs->result);
2151
4f72c427
RM
2152 step = test_thread_flag(TIF_SINGLESTEP);
2153 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
2154 tracehook_report_syscall_exit(regs, step);
22ecbe8d
LZ
2155
2156 user_enter();
ea9c102c 2157}