]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/ptrace.c
powerpc/ptrace: Enable in transaction NT_PPC_VSX ptrace requests
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / ptrace.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
b123923d 11 * and Paul Mackerras (paulus@samba.org).
1da177e4
LT
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/ptrace.h>
f65255e8 24#include <linux/regset.h>
4f72c427 25#include <linux/tracehook.h>
3caf06c6 26#include <linux/elf.h>
1da177e4
LT
27#include <linux/user.h>
28#include <linux/security.h>
7ed20e1a 29#include <linux/signal.h>
ea9c102c
DW
30#include <linux/seccomp.h>
31#include <linux/audit.h>
02424d89 32#include <trace/syscall.h>
5aae8a53
P
33#include <linux/hw_breakpoint.h>
34#include <linux/perf_event.h>
22ecbe8d 35#include <linux/context_tracking.h>
1da177e4
LT
36
37#include <asm/uaccess.h>
38#include <asm/page.h>
39#include <asm/pgtable.h>
ae3a197e 40#include <asm/switch_to.h>
21a62902 41
02424d89
IM
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
359e4284
MS
45/*
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
48 */
49#ifdef CONFIG_PPC32
50#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51#else /* CONFIG_PPC32 */
52#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53#endif
54
55struct pt_regs_offset {
56 const char *name;
57 int offset;
58};
59
60#define STR(s) #s /* convert to string */
61#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62#define GPR_OFFSET_NAME(num) \
343c3327 63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
359e4284
MS
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65#define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67static const struct pt_regs_offset regoffset_table[] = {
68 GPR_OFFSET_NAME(0),
69 GPR_OFFSET_NAME(1),
70 GPR_OFFSET_NAME(2),
71 GPR_OFFSET_NAME(3),
72 GPR_OFFSET_NAME(4),
73 GPR_OFFSET_NAME(5),
74 GPR_OFFSET_NAME(6),
75 GPR_OFFSET_NAME(7),
76 GPR_OFFSET_NAME(8),
77 GPR_OFFSET_NAME(9),
78 GPR_OFFSET_NAME(10),
79 GPR_OFFSET_NAME(11),
80 GPR_OFFSET_NAME(12),
81 GPR_OFFSET_NAME(13),
82 GPR_OFFSET_NAME(14),
83 GPR_OFFSET_NAME(15),
84 GPR_OFFSET_NAME(16),
85 GPR_OFFSET_NAME(17),
86 GPR_OFFSET_NAME(18),
87 GPR_OFFSET_NAME(19),
88 GPR_OFFSET_NAME(20),
89 GPR_OFFSET_NAME(21),
90 GPR_OFFSET_NAME(22),
91 GPR_OFFSET_NAME(23),
92 GPR_OFFSET_NAME(24),
93 GPR_OFFSET_NAME(25),
94 GPR_OFFSET_NAME(26),
95 GPR_OFFSET_NAME(27),
96 GPR_OFFSET_NAME(28),
97 GPR_OFFSET_NAME(29),
98 GPR_OFFSET_NAME(30),
99 GPR_OFFSET_NAME(31),
100 REG_OFFSET_NAME(nip),
101 REG_OFFSET_NAME(msr),
102 REG_OFFSET_NAME(ctr),
103 REG_OFFSET_NAME(link),
104 REG_OFFSET_NAME(xer),
105 REG_OFFSET_NAME(ccr),
106#ifdef CONFIG_PPC64
107 REG_OFFSET_NAME(softe),
108#else
109 REG_OFFSET_NAME(mq),
110#endif
111 REG_OFFSET_NAME(trap),
112 REG_OFFSET_NAME(dar),
113 REG_OFFSET_NAME(dsisr),
114 REG_OFFSET_END,
115};
116
117/**
118 * regs_query_register_offset() - query register offset from its name
119 * @name: the name of a register
120 *
121 * regs_query_register_offset() returns the offset of a register in struct
122 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
123 */
124int regs_query_register_offset(const char *name)
125{
126 const struct pt_regs_offset *roff;
127 for (roff = regoffset_table; roff->name != NULL; roff++)
128 if (!strcmp(roff->name, name))
129 return roff->offset;
130 return -EINVAL;
131}
132
133/**
134 * regs_query_register_name() - query register name from its offset
135 * @offset: the offset of a register in struct pt_regs.
136 *
137 * regs_query_register_name() returns the name of a register from its
138 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
139 */
140const char *regs_query_register_name(unsigned int offset)
141{
142 const struct pt_regs_offset *roff;
143 for (roff = regoffset_table; roff->name != NULL; roff++)
144 if (roff->offset == offset)
145 return roff->name;
146 return NULL;
147}
148
abd06505
BH
149/*
150 * does not yet catch signals sent when the child dies.
151 * in exit.c or in signal.c.
152 */
153
154/*
155 * Set of msr bits that gdb can change on behalf of a process.
156 */
172ae2e7 157#ifdef CONFIG_PPC_ADV_DEBUG_REGS
abd06505 158#define MSR_DEBUGCHANGE 0
1da177e4 159#else
abd06505 160#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
1da177e4 161#endif
acd89828 162
1da177e4 163/*
abd06505 164 * Max register writeable via put_reg
1da177e4 165 */
abd06505
BH
166#ifdef CONFIG_PPC32
167#define PT_MAX_PUT_REG PT_MQ
168#else
169#define PT_MAX_PUT_REG PT_CCR
170#endif
1da177e4 171
26f77130
RM
172static unsigned long get_user_msr(struct task_struct *task)
173{
174 return task->thread.regs->msr | task->thread.fpexc_mode;
175}
176
177static int set_user_msr(struct task_struct *task, unsigned long msr)
178{
179 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
180 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
181 return 0;
182}
183
1715a826 184#ifdef CONFIG_PPC64
ee4a3916 185static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826 186{
ee4a3916
AK
187 *data = task->thread.dscr;
188 return 0;
1715a826
AK
189}
190
191static int set_user_dscr(struct task_struct *task, unsigned long dscr)
192{
193 task->thread.dscr = dscr;
194 task->thread.dscr_inherit = 1;
195 return 0;
196}
197#else
ee4a3916 198static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826
AK
199{
200 return -EIO;
201}
202
203static int set_user_dscr(struct task_struct *task, unsigned long dscr)
204{
205 return -EIO;
206}
207#endif
208
26f77130
RM
209/*
210 * We prevent mucking around with the reserved area of trap
211 * which are used internally by the kernel.
212 */
213static int set_user_trap(struct task_struct *task, unsigned long trap)
214{
215 task->thread.regs->trap = trap & 0xfff0;
216 return 0;
217}
218
865418d8
BH
219/*
220 * Get contents of register REGNO in task TASK.
221 */
ee4a3916 222int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
865418d8 223{
ee4a3916 224 if ((task->thread.regs == NULL) || !data)
865418d8
BH
225 return -EIO;
226
ee4a3916
AK
227 if (regno == PT_MSR) {
228 *data = get_user_msr(task);
229 return 0;
230 }
865418d8 231
1715a826 232 if (regno == PT_DSCR)
ee4a3916 233 return get_user_dscr(task, data);
1715a826 234
ee4a3916
AK
235 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
236 *data = ((unsigned long *)task->thread.regs)[regno];
237 return 0;
238 }
865418d8
BH
239
240 return -EIO;
241}
242
243/*
244 * Write contents of register REGNO in task TASK.
245 */
246int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
247{
248 if (task->thread.regs == NULL)
249 return -EIO;
250
26f77130
RM
251 if (regno == PT_MSR)
252 return set_user_msr(task, data);
253 if (regno == PT_TRAP)
254 return set_user_trap(task, data);
1715a826
AK
255 if (regno == PT_DSCR)
256 return set_user_dscr(task, data);
26f77130
RM
257
258 if (regno <= PT_MAX_PUT_REG) {
865418d8
BH
259 ((unsigned long *)task->thread.regs)[regno] = data;
260 return 0;
261 }
262 return -EIO;
263}
264
44dd3f50
RM
265static int gpr_get(struct task_struct *target, const struct user_regset *regset,
266 unsigned int pos, unsigned int count,
267 void *kbuf, void __user *ubuf)
268{
a71f5d5d 269 int i, ret;
44dd3f50
RM
270
271 if (target->thread.regs == NULL)
272 return -EIO;
273
a71f5d5d
MW
274 if (!FULL_REGS(target->thread.regs)) {
275 /* We have a partial register set. Fill 14-31 with bogus values */
276 for (i = 14; i < 32; i++)
277 target->thread.regs->gpr[i] = NV_REG_POISON;
278 }
44dd3f50
RM
279
280 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
281 target->thread.regs,
282 0, offsetof(struct pt_regs, msr));
283 if (!ret) {
284 unsigned long msr = get_user_msr(target);
285 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
286 offsetof(struct pt_regs, msr),
287 offsetof(struct pt_regs, msr) +
288 sizeof(msr));
289 }
290
291 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
292 offsetof(struct pt_regs, msr) + sizeof(long));
293
294 if (!ret)
295 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
296 &target->thread.regs->orig_gpr3,
297 offsetof(struct pt_regs, orig_gpr3),
298 sizeof(struct pt_regs));
299 if (!ret)
300 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
301 sizeof(struct pt_regs), -1);
302
303 return ret;
304}
305
306static int gpr_set(struct task_struct *target, const struct user_regset *regset,
307 unsigned int pos, unsigned int count,
308 const void *kbuf, const void __user *ubuf)
309{
310 unsigned long reg;
311 int ret;
312
313 if (target->thread.regs == NULL)
314 return -EIO;
315
316 CHECK_FULL_REGS(target->thread.regs);
317
318 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
319 target->thread.regs,
320 0, PT_MSR * sizeof(reg));
321
322 if (!ret && count > 0) {
323 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
324 PT_MSR * sizeof(reg),
325 (PT_MSR + 1) * sizeof(reg));
326 if (!ret)
327 ret = set_user_msr(target, reg);
328 }
329
330 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
331 offsetof(struct pt_regs, msr) + sizeof(long));
332
333 if (!ret)
334 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
335 &target->thread.regs->orig_gpr3,
336 PT_ORIG_R3 * sizeof(reg),
337 (PT_MAX_PUT_REG + 1) * sizeof(reg));
338
339 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
340 ret = user_regset_copyin_ignore(
341 &pos, &count, &kbuf, &ubuf,
342 (PT_MAX_PUT_REG + 1) * sizeof(reg),
343 PT_TRAP * sizeof(reg));
344
345 if (!ret && count > 0) {
346 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
347 PT_TRAP * sizeof(reg),
348 (PT_TRAP + 1) * sizeof(reg));
349 if (!ret)
350 ret = set_user_trap(target, reg);
351 }
352
353 if (!ret)
354 ret = user_regset_copyin_ignore(
355 &pos, &count, &kbuf, &ubuf,
356 (PT_TRAP + 1) * sizeof(reg), -1);
357
358 return ret;
359}
865418d8 360
1ec8549d
AK
361/*
362 * When the transaction is active, 'transact_fp' holds the current running
363 * value of all FPR registers and 'fp_state' holds the last checkpointed
364 * value of all FPR registers for the current transaction. When transaction
365 * is not active 'fp_state' holds the current running state of all the FPR
366 * registers. So this function which returns the current running values of
367 * all the FPR registers, needs to know whether any transaction is active
368 * or not.
369 *
370 * Userspace interface buffer layout:
371 *
372 * struct data {
373 * u64 fpr[32];
374 * u64 fpscr;
375 * };
376 *
377 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
378 * which determines the final code in this function. All the combinations of
379 * these two config options are possible except the one below as transactional
380 * memory config pulls in CONFIG_VSX automatically.
381 *
382 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
383 */
f65255e8
RM
384static int fpr_get(struct task_struct *target, const struct user_regset *regset,
385 unsigned int pos, unsigned int count,
386 void *kbuf, void __user *ubuf)
387{
c6e6771b 388#ifdef CONFIG_VSX
de79f7b9 389 u64 buf[33];
c6e6771b
MN
390 int i;
391#endif
f65255e8
RM
392 flush_fp_to_thread(target);
393
1ec8549d
AK
394#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
395 /* copy to local buffer then write that out */
396 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
397 flush_altivec_to_thread(target);
398 flush_tmregs_to_thread(target);
399 for (i = 0; i < 32 ; i++)
400 buf[i] = target->thread.TS_TRANS_FPR(i);
401 buf[32] = target->thread.transact_fp.fpscr;
402 } else {
403 for (i = 0; i < 32 ; i++)
404 buf[i] = target->thread.TS_FPR(i);
405 buf[32] = target->thread.fp_state.fpscr;
406 }
407 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
408#endif
409
410#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
411 /* copy to local buffer then write that out */
412 for (i = 0; i < 32 ; i++)
413 buf[i] = target->thread.TS_FPR(i);
de79f7b9 414 buf[32] = target->thread.fp_state.fpscr;
c6e6771b 415 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1ec8549d 416#endif
c6e6771b 417
1ec8549d 418#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 419 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 420 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
421
422 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
de79f7b9 423 &target->thread.fp_state, 0, -1);
c6e6771b 424#endif
f65255e8
RM
425}
426
1ec8549d
AK
427/*
428 * When the transaction is active, 'transact_fp' holds the current running
429 * value of all FPR registers and 'fp_state' holds the last checkpointed
430 * value of all FPR registers for the current transaction. When transaction
431 * is not active 'fp_state' holds the current running state of all the FPR
432 * registers. So this function which setss the current running values of
433 * all the FPR registers, needs to know whether any transaction is active
434 * or not.
435 *
436 * Userspace interface buffer layout:
437 *
438 * struct data {
439 * u64 fpr[32];
440 * u64 fpscr;
441 * };
442 *
443 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
444 * which determines the final code in this function. All the combinations of
445 * these two config options are possible except the one below as transactional
446 * memory config pulls in CONFIG_VSX automatically.
447 *
448 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
449 */
f65255e8
RM
450static int fpr_set(struct task_struct *target, const struct user_regset *regset,
451 unsigned int pos, unsigned int count,
452 const void *kbuf, const void __user *ubuf)
453{
c6e6771b 454#ifdef CONFIG_VSX
de79f7b9 455 u64 buf[33];
c6e6771b
MN
456 int i;
457#endif
f65255e8
RM
458 flush_fp_to_thread(target);
459
1ec8549d
AK
460#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
461 /* copy to local buffer then write that out */
462 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
463 if (i)
464 return i;
465
466 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
467 flush_altivec_to_thread(target);
468 flush_tmregs_to_thread(target);
469 for (i = 0; i < 32 ; i++)
470 target->thread.TS_TRANS_FPR(i) = buf[i];
471 target->thread.transact_fp.fpscr = buf[32];
472 } else {
473 for (i = 0; i < 32 ; i++)
474 target->thread.TS_FPR(i) = buf[i];
475 target->thread.fp_state.fpscr = buf[32];
476 }
477 return 0;
478#endif
479
480#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
481 /* copy to local buffer then write that out */
482 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
483 if (i)
484 return i;
485 for (i = 0; i < 32 ; i++)
486 target->thread.TS_FPR(i) = buf[i];
de79f7b9 487 target->thread.fp_state.fpscr = buf[32];
c6e6771b 488 return 0;
1ec8549d
AK
489#endif
490
491#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 492 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 493 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
494
495 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
de79f7b9 496 &target->thread.fp_state, 0, -1);
c6e6771b 497#endif
f65255e8
RM
498}
499
865418d8
BH
500#ifdef CONFIG_ALTIVEC
501/*
502 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
503 * The transfer totals 34 quadword. Quadwords 0-31 contain the
504 * corresponding vector registers. Quadword 32 contains the vscr as the
505 * last word (offset 12) within that quadword. Quadword 33 contains the
506 * vrsave as the first word (offset 0) within the quadword.
507 *
508 * This definition of the VMX state is compatible with the current PPC32
509 * ptrace interface. This allows signal handling and ptrace to use the
510 * same structures. This also simplifies the implementation of a bi-arch
511 * (combined (32- and 64-bit) gdb.
512 */
513
3caf06c6
RM
514static int vr_active(struct task_struct *target,
515 const struct user_regset *regset)
516{
517 flush_altivec_to_thread(target);
518 return target->thread.used_vr ? regset->n : 0;
519}
520
d844e279
AK
521/*
522 * When the transaction is active, 'transact_vr' holds the current running
523 * value of all the VMX registers and 'vr_state' holds the last checkpointed
524 * value of all the VMX registers for the current transaction to fall back
525 * on in case it aborts. When transaction is not active 'vr_state' holds
526 * the current running state of all the VMX registers. So this function which
527 * gets the current running values of all the VMX registers, needs to know
528 * whether any transaction is active or not.
529 *
530 * Userspace interface buffer layout:
531 *
532 * struct data {
533 * vector128 vr[32];
534 * vector128 vscr;
535 * vector128 vrsave;
536 * };
537 */
3caf06c6
RM
538static int vr_get(struct task_struct *target, const struct user_regset *regset,
539 unsigned int pos, unsigned int count,
540 void *kbuf, void __user *ubuf)
541{
d844e279 542 struct thread_vr_state *addr;
3caf06c6
RM
543 int ret;
544
545 flush_altivec_to_thread(target);
546
de79f7b9
PM
547 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
548 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 549
d844e279
AK
550#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
551 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
552 flush_fp_to_thread(target);
553 flush_tmregs_to_thread(target);
554 addr = &target->thread.transact_vr;
555 } else {
556 addr = &target->thread.vr_state;
557 }
558#else
559 addr = &target->thread.vr_state;
560#endif
3caf06c6 561 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
d844e279 562 addr, 0,
3caf06c6
RM
563 33 * sizeof(vector128));
564 if (!ret) {
565 /*
566 * Copy out only the low-order word of vrsave.
567 */
568 union {
569 elf_vrreg_t reg;
570 u32 word;
571 } vrsave;
572 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
573
574#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
575 if (MSR_TM_ACTIVE(target->thread.regs->msr))
576 vrsave.word = target->thread.transact_vrsave;
577 else
578 vrsave.word = target->thread.vrsave;
579#else
3caf06c6 580 vrsave.word = target->thread.vrsave;
d844e279
AK
581#endif
582
3caf06c6
RM
583 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
584 33 * sizeof(vector128), -1);
585 }
586
587 return ret;
588}
589
d844e279
AK
590/*
591 * When the transaction is active, 'transact_vr' holds the current running
592 * value of all the VMX registers and 'vr_state' holds the last checkpointed
593 * value of all the VMX registers for the current transaction to fall back
594 * on in case it aborts. When transaction is not active 'vr_state' holds
595 * the current running state of all the VMX registers. So this function which
596 * sets the current running values of all the VMX registers, needs to know
597 * whether any transaction is active or not.
598 *
599 * Userspace interface buffer layout:
600 *
601 * struct data {
602 * vector128 vr[32];
603 * vector128 vscr;
604 * vector128 vrsave;
605 * };
606 */
3caf06c6
RM
607static int vr_set(struct task_struct *target, const struct user_regset *regset,
608 unsigned int pos, unsigned int count,
609 const void *kbuf, const void __user *ubuf)
610{
d844e279 611 struct thread_vr_state *addr;
3caf06c6
RM
612 int ret;
613
614 flush_altivec_to_thread(target);
615
de79f7b9
PM
616 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
617 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 618
d844e279
AK
619#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
620 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
621 flush_fp_to_thread(target);
622 flush_tmregs_to_thread(target);
623 addr = &target->thread.transact_vr;
624 } else {
625 addr = &target->thread.vr_state;
626 }
627#else
628 addr = &target->thread.vr_state;
629#endif
3caf06c6 630 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
d844e279 631 addr, 0,
de79f7b9 632 33 * sizeof(vector128));
3caf06c6
RM
633 if (!ret && count > 0) {
634 /*
635 * We use only the first word of vrsave.
636 */
637 union {
638 elf_vrreg_t reg;
639 u32 word;
640 } vrsave;
641 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
642
643#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
644 if (MSR_TM_ACTIVE(target->thread.regs->msr))
645 vrsave.word = target->thread.transact_vrsave;
646 else
647 vrsave.word = target->thread.vrsave;
648#else
3caf06c6 649 vrsave.word = target->thread.vrsave;
d844e279 650#endif
3caf06c6
RM
651 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
652 33 * sizeof(vector128), -1);
d844e279
AK
653 if (!ret) {
654
655#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
656 if (MSR_TM_ACTIVE(target->thread.regs->msr))
657 target->thread.transact_vrsave = vrsave.word;
658 else
659 target->thread.vrsave = vrsave.word;
660#else
3caf06c6 661 target->thread.vrsave = vrsave.word;
d844e279
AK
662#endif
663 }
3caf06c6
RM
664 }
665
666 return ret;
667}
865418d8
BH
668#endif /* CONFIG_ALTIVEC */
669
ce48b210
MN
670#ifdef CONFIG_VSX
671/*
672 * Currently to set and and get all the vsx state, you need to call
25985edc 673 * the fp and VMX calls as well. This only get/sets the lower 32
ce48b210
MN
674 * 128bit VSX registers.
675 */
676
677static int vsr_active(struct task_struct *target,
678 const struct user_regset *regset)
679{
680 flush_vsx_to_thread(target);
681 return target->thread.used_vsr ? regset->n : 0;
682}
683
94b7d361
AK
684/*
685 * When the transaction is active, 'transact_fp' holds the current running
686 * value of all FPR registers and 'fp_state' holds the last checkpointed
687 * value of all FPR registers for the current transaction. When transaction
688 * is not active 'fp_state' holds the current running state of all the FPR
689 * registers. So this function which returns the current running values of
690 * all the FPR registers, needs to know whether any transaction is active
691 * or not.
692 *
693 * Userspace interface buffer layout:
694 *
695 * struct data {
696 * u64 vsx[32];
697 * };
698 */
ce48b210
MN
699static int vsr_get(struct task_struct *target, const struct user_regset *regset,
700 unsigned int pos, unsigned int count,
701 void *kbuf, void __user *ubuf)
702{
de79f7b9 703 u64 buf[32];
f3e909c2 704 int ret, i;
ce48b210 705
94b7d361
AK
706#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
707 flush_fp_to_thread(target);
708 flush_altivec_to_thread(target);
709 flush_tmregs_to_thread(target);
710#endif
ce48b210
MN
711 flush_vsx_to_thread(target);
712
94b7d361
AK
713#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
714 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
715 for (i = 0; i < 32 ; i++)
716 buf[i] = target->thread.
717 transact_fp.fpr[i][TS_VSRLOWOFFSET];
718 } else {
719 for (i = 0; i < 32 ; i++)
720 buf[i] = target->thread.
721 fp_state.fpr[i][TS_VSRLOWOFFSET];
722 }
723#else
f3e909c2 724 for (i = 0; i < 32 ; i++)
de79f7b9 725 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
94b7d361 726#endif
ce48b210 727 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
f3e909c2 728 buf, 0, 32 * sizeof(double));
ce48b210
MN
729
730 return ret;
731}
732
94b7d361
AK
733/*
734 * When the transaction is active, 'transact_fp' holds the current running
735 * value of all FPR registers and 'fp_state' holds the last checkpointed
736 * value of all FPR registers for the current transaction. When transaction
737 * is not active 'fp_state' holds the current running state of all the FPR
738 * registers. So this function which sets the current running values of all
739 * the FPR registers, needs to know whether any transaction is active or not.
740 *
741 * Userspace interface buffer layout:
742 *
743 * struct data {
744 * u64 vsx[32];
745 * };
746 */
ce48b210
MN
747static int vsr_set(struct task_struct *target, const struct user_regset *regset,
748 unsigned int pos, unsigned int count,
749 const void *kbuf, const void __user *ubuf)
750{
de79f7b9 751 u64 buf[32];
f3e909c2 752 int ret,i;
ce48b210 753
94b7d361
AK
754#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
755 flush_fp_to_thread(target);
756 flush_altivec_to_thread(target);
757 flush_tmregs_to_thread(target);
758#endif
ce48b210
MN
759 flush_vsx_to_thread(target);
760
761 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
f3e909c2 762 buf, 0, 32 * sizeof(double));
94b7d361
AK
763
764#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
765 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
766 for (i = 0; i < 32 ; i++)
767 target->thread.transact_fp.
768 fpr[i][TS_VSRLOWOFFSET] = buf[i];
769 } else {
770 for (i = 0; i < 32 ; i++)
771 target->thread.fp_state.
772 fpr[i][TS_VSRLOWOFFSET] = buf[i];
773 }
774#else
f3e909c2 775 for (i = 0; i < 32 ; i++)
de79f7b9 776 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
94b7d361 777#endif
f3e909c2 778
ce48b210
MN
779
780 return ret;
781}
782#endif /* CONFIG_VSX */
783
865418d8
BH
784#ifdef CONFIG_SPE
785
786/*
787 * For get_evrregs/set_evrregs functions 'data' has the following layout:
788 *
789 * struct {
790 * u32 evr[32];
791 * u64 acc;
792 * u32 spefscr;
793 * }
794 */
795
a4e4b175
RM
796static int evr_active(struct task_struct *target,
797 const struct user_regset *regset)
865418d8 798{
a4e4b175
RM
799 flush_spe_to_thread(target);
800 return target->thread.used_spe ? regset->n : 0;
801}
865418d8 802
a4e4b175
RM
803static int evr_get(struct task_struct *target, const struct user_regset *regset,
804 unsigned int pos, unsigned int count,
805 void *kbuf, void __user *ubuf)
806{
807 int ret;
865418d8 808
a4e4b175 809 flush_spe_to_thread(target);
865418d8 810
a4e4b175
RM
811 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
812 &target->thread.evr,
813 0, sizeof(target->thread.evr));
865418d8 814
a4e4b175
RM
815 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
816 offsetof(struct thread_struct, spefscr));
817
818 if (!ret)
819 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
820 &target->thread.acc,
821 sizeof(target->thread.evr), -1);
822
823 return ret;
824}
825
826static int evr_set(struct task_struct *target, const struct user_regset *regset,
827 unsigned int pos, unsigned int count,
828 const void *kbuf, const void __user *ubuf)
829{
830 int ret;
831
832 flush_spe_to_thread(target);
833
834 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
835 &target->thread.evr,
836 0, sizeof(target->thread.evr));
865418d8 837
a4e4b175
RM
838 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
839 offsetof(struct thread_struct, spefscr));
840
841 if (!ret)
842 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
843 &target->thread.acc,
844 sizeof(target->thread.evr), -1);
845
846 return ret;
865418d8 847}
865418d8
BH
848#endif /* CONFIG_SPE */
849
850
80fdf470
RM
851/*
852 * These are our native regset flavors.
853 */
854enum powerpc_regset {
855 REGSET_GPR,
856 REGSET_FPR,
857#ifdef CONFIG_ALTIVEC
858 REGSET_VMX,
859#endif
ce48b210
MN
860#ifdef CONFIG_VSX
861 REGSET_VSX,
862#endif
80fdf470
RM
863#ifdef CONFIG_SPE
864 REGSET_SPE,
865#endif
866};
867
868static const struct user_regset native_regsets[] = {
869 [REGSET_GPR] = {
870 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
871 .size = sizeof(long), .align = sizeof(long),
872 .get = gpr_get, .set = gpr_set
873 },
874 [REGSET_FPR] = {
875 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
876 .size = sizeof(double), .align = sizeof(double),
877 .get = fpr_get, .set = fpr_set
878 },
879#ifdef CONFIG_ALTIVEC
880 [REGSET_VMX] = {
881 .core_note_type = NT_PPC_VMX, .n = 34,
882 .size = sizeof(vector128), .align = sizeof(vector128),
883 .active = vr_active, .get = vr_get, .set = vr_set
884 },
885#endif
ce48b210
MN
886#ifdef CONFIG_VSX
887 [REGSET_VSX] = {
f3e909c2
MN
888 .core_note_type = NT_PPC_VSX, .n = 32,
889 .size = sizeof(double), .align = sizeof(double),
ce48b210
MN
890 .active = vsr_active, .get = vsr_get, .set = vsr_set
891 },
892#endif
80fdf470
RM
893#ifdef CONFIG_SPE
894 [REGSET_SPE] = {
a0b38b4e 895 .core_note_type = NT_PPC_SPE, .n = 35,
80fdf470
RM
896 .size = sizeof(u32), .align = sizeof(u32),
897 .active = evr_active, .get = evr_get, .set = evr_set
898 },
899#endif
900};
901
902static const struct user_regset_view user_ppc_native_view = {
903 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
904 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
905};
906
fa8f5cb0
RM
907#ifdef CONFIG_PPC64
908#include <linux/compat.h>
909
910static int gpr32_get(struct task_struct *target,
911 const struct user_regset *regset,
912 unsigned int pos, unsigned int count,
913 void *kbuf, void __user *ubuf)
914{
915 const unsigned long *regs = &target->thread.regs->gpr[0];
916 compat_ulong_t *k = kbuf;
917 compat_ulong_t __user *u = ubuf;
918 compat_ulong_t reg;
a71f5d5d 919 int i;
fa8f5cb0
RM
920
921 if (target->thread.regs == NULL)
922 return -EIO;
923
a71f5d5d
MW
924 if (!FULL_REGS(target->thread.regs)) {
925 /* We have a partial register set. Fill 14-31 with bogus values */
926 for (i = 14; i < 32; i++)
927 target->thread.regs->gpr[i] = NV_REG_POISON;
928 }
fa8f5cb0
RM
929
930 pos /= sizeof(reg);
931 count /= sizeof(reg);
932
933 if (kbuf)
934 for (; count > 0 && pos < PT_MSR; --count)
935 *k++ = regs[pos++];
936 else
937 for (; count > 0 && pos < PT_MSR; --count)
938 if (__put_user((compat_ulong_t) regs[pos++], u++))
939 return -EFAULT;
940
941 if (count > 0 && pos == PT_MSR) {
942 reg = get_user_msr(target);
943 if (kbuf)
944 *k++ = reg;
945 else if (__put_user(reg, u++))
946 return -EFAULT;
947 ++pos;
948 --count;
949 }
950
951 if (kbuf)
952 for (; count > 0 && pos < PT_REGS_COUNT; --count)
953 *k++ = regs[pos++];
954 else
955 for (; count > 0 && pos < PT_REGS_COUNT; --count)
956 if (__put_user((compat_ulong_t) regs[pos++], u++))
957 return -EFAULT;
958
959 kbuf = k;
960 ubuf = u;
961 pos *= sizeof(reg);
962 count *= sizeof(reg);
963 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
964 PT_REGS_COUNT * sizeof(reg), -1);
965}
966
967static int gpr32_set(struct task_struct *target,
968 const struct user_regset *regset,
969 unsigned int pos, unsigned int count,
970 const void *kbuf, const void __user *ubuf)
971{
972 unsigned long *regs = &target->thread.regs->gpr[0];
973 const compat_ulong_t *k = kbuf;
974 const compat_ulong_t __user *u = ubuf;
975 compat_ulong_t reg;
976
977 if (target->thread.regs == NULL)
978 return -EIO;
979
980 CHECK_FULL_REGS(target->thread.regs);
981
982 pos /= sizeof(reg);
983 count /= sizeof(reg);
984
985 if (kbuf)
986 for (; count > 0 && pos < PT_MSR; --count)
987 regs[pos++] = *k++;
988 else
989 for (; count > 0 && pos < PT_MSR; --count) {
990 if (__get_user(reg, u++))
991 return -EFAULT;
992 regs[pos++] = reg;
993 }
994
995
996 if (count > 0 && pos == PT_MSR) {
997 if (kbuf)
998 reg = *k++;
999 else if (__get_user(reg, u++))
1000 return -EFAULT;
1001 set_user_msr(target, reg);
1002 ++pos;
1003 --count;
1004 }
1005
c2372eb9 1006 if (kbuf) {
fa8f5cb0
RM
1007 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
1008 regs[pos++] = *k++;
c2372eb9
RM
1009 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1010 ++k;
1011 } else {
fa8f5cb0
RM
1012 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
1013 if (__get_user(reg, u++))
1014 return -EFAULT;
1015 regs[pos++] = reg;
1016 }
c2372eb9
RM
1017 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1018 if (__get_user(reg, u++))
1019 return -EFAULT;
1020 }
fa8f5cb0
RM
1021
1022 if (count > 0 && pos == PT_TRAP) {
1023 if (kbuf)
1024 reg = *k++;
1025 else if (__get_user(reg, u++))
1026 return -EFAULT;
1027 set_user_trap(target, reg);
1028 ++pos;
1029 --count;
1030 }
1031
1032 kbuf = k;
1033 ubuf = u;
1034 pos *= sizeof(reg);
1035 count *= sizeof(reg);
1036 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
1037 (PT_TRAP + 1) * sizeof(reg), -1);
1038}
1039
1040/*
1041 * These are the regset flavors matching the CONFIG_PPC32 native set.
1042 */
1043static const struct user_regset compat_regsets[] = {
1044 [REGSET_GPR] = {
1045 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1046 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
1047 .get = gpr32_get, .set = gpr32_set
1048 },
1049 [REGSET_FPR] = {
1050 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1051 .size = sizeof(double), .align = sizeof(double),
1052 .get = fpr_get, .set = fpr_set
1053 },
1054#ifdef CONFIG_ALTIVEC
1055 [REGSET_VMX] = {
1056 .core_note_type = NT_PPC_VMX, .n = 34,
1057 .size = sizeof(vector128), .align = sizeof(vector128),
1058 .active = vr_active, .get = vr_get, .set = vr_set
1059 },
1060#endif
1061#ifdef CONFIG_SPE
1062 [REGSET_SPE] = {
24f1a849 1063 .core_note_type = NT_PPC_SPE, .n = 35,
fa8f5cb0
RM
1064 .size = sizeof(u32), .align = sizeof(u32),
1065 .active = evr_active, .get = evr_get, .set = evr_set
1066 },
1067#endif
1068};
1069
1070static const struct user_regset_view user_ppc_compat_view = {
1071 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
1072 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
1073};
1074#endif /* CONFIG_PPC64 */
1075
80fdf470
RM
1076const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1077{
fa8f5cb0
RM
1078#ifdef CONFIG_PPC64
1079 if (test_tsk_thread_flag(task, TIF_32BIT))
1080 return &user_ppc_compat_view;
1081#endif
80fdf470
RM
1082 return &user_ppc_native_view;
1083}
1084
1085
2a84b0d7 1086void user_enable_single_step(struct task_struct *task)
865418d8
BH
1087{
1088 struct pt_regs *regs = task->thread.regs;
1089
1090 if (regs != NULL) {
172ae2e7 1091#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1092 task->thread.debug.dbcr0 &= ~DBCR0_BT;
1093 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
865418d8
BH
1094 regs->msr |= MSR_DE;
1095#else
ec097c84 1096 regs->msr &= ~MSR_BE;
865418d8
BH
1097 regs->msr |= MSR_SE;
1098#endif
1099 }
1100 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1101}
1102
ec097c84
RM
1103void user_enable_block_step(struct task_struct *task)
1104{
1105 struct pt_regs *regs = task->thread.regs;
1106
1107 if (regs != NULL) {
172ae2e7 1108#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1109 task->thread.debug.dbcr0 &= ~DBCR0_IC;
1110 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
ec097c84
RM
1111 regs->msr |= MSR_DE;
1112#else
1113 regs->msr &= ~MSR_SE;
1114 regs->msr |= MSR_BE;
1115#endif
1116 }
1117 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1118}
1119
2a84b0d7 1120void user_disable_single_step(struct task_struct *task)
865418d8
BH
1121{
1122 struct pt_regs *regs = task->thread.regs;
1123
1124 if (regs != NULL) {
172ae2e7 1125#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
1126 /*
1127 * The logic to disable single stepping should be as
1128 * simple as turning off the Instruction Complete flag.
1129 * And, after doing so, if all debug flags are off, turn
1130 * off DBCR0(IDM) and MSR(DE) .... Torez
1131 */
682775b8 1132 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
3bffb652
DK
1133 /*
1134 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
1135 */
51ae8d4a
BB
1136 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1137 task->thread.debug.dbcr1)) {
3bffb652
DK
1138 /*
1139 * All debug events were off.....
1140 */
51ae8d4a 1141 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
28477fb1
DK
1142 regs->msr &= ~MSR_DE;
1143 }
865418d8 1144#else
ec097c84 1145 regs->msr &= ~(MSR_SE | MSR_BE);
865418d8
BH
1146#endif
1147 }
1148 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
1149}
1150
5aae8a53 1151#ifdef CONFIG_HAVE_HW_BREAKPOINT
a8b0ca17 1152void ptrace_triggered(struct perf_event *bp,
5aae8a53
P
1153 struct perf_sample_data *data, struct pt_regs *regs)
1154{
1155 struct perf_event_attr attr;
1156
1157 /*
1158 * Disable the breakpoint request here since ptrace has defined a
1159 * one-shot behaviour for breakpoint exceptions in PPC64.
1160 * The SIGTRAP signal is generated automatically for us in do_dabr().
1161 * We don't have to do anything about that here
1162 */
1163 attr = bp->attr;
1164 attr.disabled = true;
1165 modify_user_hw_breakpoint(bp, &attr);
1166}
1167#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1168
e51df2c1 1169static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
abd06505
BH
1170 unsigned long data)
1171{
5aae8a53
P
1172#ifdef CONFIG_HAVE_HW_BREAKPOINT
1173 int ret;
1174 struct thread_struct *thread = &(task->thread);
1175 struct perf_event *bp;
1176 struct perf_event_attr attr;
1177#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e
MN
1178#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1179 struct arch_hw_breakpoint hw_brk;
1180#endif
5aae8a53 1181
d6a61bfc
LM
1182 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
1183 * For embedded processors we support one DAC and no IAC's at the
1184 * moment.
1185 */
abd06505
BH
1186 if (addr > 0)
1187 return -EINVAL;
1188
2325f0a0 1189 /* The bottom 3 bits in dabr are flags */
abd06505
BH
1190 if ((data & ~0x7UL) >= TASK_SIZE)
1191 return -EIO;
1192
172ae2e7 1193#ifndef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc
LM
1194 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
1195 * It was assumed, on previous implementations, that 3 bits were
1196 * passed together with the data address, fitting the design of the
1197 * DABR register, as follows:
1198 *
1199 * bit 0: Read flag
1200 * bit 1: Write flag
1201 * bit 2: Breakpoint translation
1202 *
1203 * Thus, we use them here as so.
1204 */
1205
1206 /* Ensure breakpoint translation bit is set */
9422de3e 1207 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
abd06505 1208 return -EIO;
9422de3e
MN
1209 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
1210 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
1211 hw_brk.len = 8;
5aae8a53
P
1212#ifdef CONFIG_HAVE_HW_BREAKPOINT
1213 bp = thread->ptrace_bps[0];
9422de3e 1214 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
5aae8a53
P
1215 if (bp) {
1216 unregister_hw_breakpoint(bp);
1217 thread->ptrace_bps[0] = NULL;
1218 }
1219 return 0;
1220 }
1221 if (bp) {
1222 attr = bp->attr;
9422de3e
MN
1223 attr.bp_addr = hw_brk.address;
1224 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
a53fd61a
AP
1225
1226 /* Enable breakpoint */
1227 attr.disabled = false;
1228
5aae8a53 1229 ret = modify_user_hw_breakpoint(bp, &attr);
925f83c0 1230 if (ret) {
5aae8a53 1231 return ret;
925f83c0 1232 }
5aae8a53 1233 thread->ptrace_bps[0] = bp;
9422de3e 1234 thread->hw_brk = hw_brk;
5aae8a53
P
1235 return 0;
1236 }
1237
1238 /* Create a new breakpoint request if one doesn't exist already */
1239 hw_breakpoint_init(&attr);
9422de3e
MN
1240 attr.bp_addr = hw_brk.address;
1241 arch_bp_generic_fields(hw_brk.type,
1242 &attr.bp_type);
5aae8a53
P
1243
1244 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
4dc0da86 1245 ptrace_triggered, NULL, task);
5aae8a53
P
1246 if (IS_ERR(bp)) {
1247 thread->ptrace_bps[0] = NULL;
1248 return PTR_ERR(bp);
1249 }
1250
1251#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 1252 task->thread.hw_brk = hw_brk;
172ae2e7 1253#else /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
1254 /* As described above, it was assumed 3 bits were passed with the data
1255 * address, but we will assume only the mode bits will be passed
1256 * as to not cause alignment restrictions for DAC-based processors.
1257 */
1258
1259 /* DAC's hold the whole address without any mode flags */
51ae8d4a 1260 task->thread.debug.dac1 = data & ~0x3UL;
3bffb652 1261
51ae8d4a 1262 if (task->thread.debug.dac1 == 0) {
3bffb652 1263 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
51ae8d4a
BB
1264 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1265 task->thread.debug.dbcr1)) {
3bffb652 1266 task->thread.regs->msr &= ~MSR_DE;
51ae8d4a 1267 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652 1268 }
d6a61bfc
LM
1269 return 0;
1270 }
1271
1272 /* Read or Write bits must be set */
1273
1274 if (!(data & 0x3UL))
1275 return -EINVAL;
1276
1277 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1278 register */
51ae8d4a 1279 task->thread.debug.dbcr0 |= DBCR0_IDM;
d6a61bfc
LM
1280
1281 /* Check for write and read flags and set DBCR0
1282 accordingly */
3bffb652 1283 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
d6a61bfc 1284 if (data & 0x1UL)
3bffb652 1285 dbcr_dac(task) |= DBCR_DAC1R;
d6a61bfc 1286 if (data & 0x2UL)
3bffb652 1287 dbcr_dac(task) |= DBCR_DAC1W;
d6a61bfc 1288 task->thread.regs->msr |= MSR_DE;
172ae2e7 1289#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
abd06505
BH
1290 return 0;
1291}
abd06505 1292
1da177e4
LT
1293/*
1294 * Called by kernel/ptrace.c when detaching..
1295 *
1296 * Make sure single step bits etc are not set.
1297 */
1298void ptrace_disable(struct task_struct *child)
1299{
1300 /* make sure the single step bit is not set. */
2a84b0d7 1301 user_disable_single_step(child);
1da177e4
LT
1302}
1303
3bffb652 1304#ifdef CONFIG_PPC_ADV_DEBUG_REGS
84295dfc 1305static long set_instruction_bp(struct task_struct *child,
3bffb652
DK
1306 struct ppc_hw_breakpoint *bp_info)
1307{
1308 int slot;
51ae8d4a
BB
1309 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
1310 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
1311 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
1312 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
3bffb652
DK
1313
1314 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1315 slot2_in_use = 1;
1316 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1317 slot4_in_use = 1;
1318
1319 if (bp_info->addr >= TASK_SIZE)
1320 return -EIO;
1321
1322 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1323
1324 /* Make sure range is valid. */
1325 if (bp_info->addr2 >= TASK_SIZE)
1326 return -EIO;
1327
1328 /* We need a pair of IAC regsisters */
1329 if ((!slot1_in_use) && (!slot2_in_use)) {
1330 slot = 1;
51ae8d4a
BB
1331 child->thread.debug.iac1 = bp_info->addr;
1332 child->thread.debug.iac2 = bp_info->addr2;
1333 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1334 if (bp_info->addr_mode ==
1335 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1336 dbcr_iac_range(child) |= DBCR_IAC12X;
1337 else
1338 dbcr_iac_range(child) |= DBCR_IAC12I;
1339#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1340 } else if ((!slot3_in_use) && (!slot4_in_use)) {
1341 slot = 3;
51ae8d4a
BB
1342 child->thread.debug.iac3 = bp_info->addr;
1343 child->thread.debug.iac4 = bp_info->addr2;
1344 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1345 if (bp_info->addr_mode ==
1346 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1347 dbcr_iac_range(child) |= DBCR_IAC34X;
1348 else
1349 dbcr_iac_range(child) |= DBCR_IAC34I;
1350#endif
1351 } else
1352 return -ENOSPC;
1353 } else {
1354 /* We only need one. If possible leave a pair free in
1355 * case a range is needed later
1356 */
1357 if (!slot1_in_use) {
1358 /*
1359 * Don't use iac1 if iac1-iac2 are free and either
1360 * iac3 or iac4 (but not both) are free
1361 */
1362 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1363 slot = 1;
51ae8d4a
BB
1364 child->thread.debug.iac1 = bp_info->addr;
1365 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1366 goto out;
1367 }
1368 }
1369 if (!slot2_in_use) {
1370 slot = 2;
51ae8d4a
BB
1371 child->thread.debug.iac2 = bp_info->addr;
1372 child->thread.debug.dbcr0 |= DBCR0_IAC2;
3bffb652
DK
1373#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1374 } else if (!slot3_in_use) {
1375 slot = 3;
51ae8d4a
BB
1376 child->thread.debug.iac3 = bp_info->addr;
1377 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1378 } else if (!slot4_in_use) {
1379 slot = 4;
51ae8d4a
BB
1380 child->thread.debug.iac4 = bp_info->addr;
1381 child->thread.debug.dbcr0 |= DBCR0_IAC4;
3bffb652
DK
1382#endif
1383 } else
1384 return -ENOSPC;
1385 }
1386out:
51ae8d4a 1387 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1388 child->thread.regs->msr |= MSR_DE;
1389
1390 return slot;
1391}
1392
1393static int del_instruction_bp(struct task_struct *child, int slot)
1394{
1395 switch (slot) {
1396 case 1:
51ae8d4a 1397 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
3bffb652
DK
1398 return -ENOENT;
1399
1400 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1401 /* address range - clear slots 1 & 2 */
51ae8d4a 1402 child->thread.debug.iac2 = 0;
3bffb652
DK
1403 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1404 }
51ae8d4a
BB
1405 child->thread.debug.iac1 = 0;
1406 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652
DK
1407 break;
1408 case 2:
51ae8d4a 1409 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
3bffb652
DK
1410 return -ENOENT;
1411
1412 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1413 /* used in a range */
1414 return -EINVAL;
51ae8d4a
BB
1415 child->thread.debug.iac2 = 0;
1416 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
3bffb652
DK
1417 break;
1418#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1419 case 3:
51ae8d4a 1420 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
3bffb652
DK
1421 return -ENOENT;
1422
1423 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1424 /* address range - clear slots 3 & 4 */
51ae8d4a 1425 child->thread.debug.iac4 = 0;
3bffb652
DK
1426 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1427 }
51ae8d4a
BB
1428 child->thread.debug.iac3 = 0;
1429 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652
DK
1430 break;
1431 case 4:
51ae8d4a 1432 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
3bffb652
DK
1433 return -ENOENT;
1434
1435 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1436 /* Used in a range */
1437 return -EINVAL;
51ae8d4a
BB
1438 child->thread.debug.iac4 = 0;
1439 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
3bffb652
DK
1440 break;
1441#endif
1442 default:
1443 return -EINVAL;
1444 }
1445 return 0;
1446}
1447
1448static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1449{
1450 int byte_enable =
1451 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1452 & 0xf;
1453 int condition_mode =
1454 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1455 int slot;
1456
1457 if (byte_enable && (condition_mode == 0))
1458 return -EINVAL;
1459
1460 if (bp_info->addr >= TASK_SIZE)
1461 return -EIO;
1462
1463 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1464 slot = 1;
1465 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1466 dbcr_dac(child) |= DBCR_DAC1R;
1467 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1468 dbcr_dac(child) |= DBCR_DAC1W;
51ae8d4a 1469 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
3bffb652
DK
1470#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1471 if (byte_enable) {
51ae8d4a 1472 child->thread.debug.dvc1 =
3bffb652 1473 (unsigned long)bp_info->condition_value;
51ae8d4a 1474 child->thread.debug.dbcr2 |=
3bffb652
DK
1475 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
1476 (condition_mode << DBCR2_DVC1M_SHIFT));
1477 }
1478#endif
1479#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1480 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
3bffb652
DK
1481 /* Both dac1 and dac2 are part of a range */
1482 return -ENOSPC;
1483#endif
1484 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1485 slot = 2;
1486 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1487 dbcr_dac(child) |= DBCR_DAC2R;
1488 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1489 dbcr_dac(child) |= DBCR_DAC2W;
51ae8d4a 1490 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
3bffb652
DK
1491#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1492 if (byte_enable) {
51ae8d4a 1493 child->thread.debug.dvc2 =
3bffb652 1494 (unsigned long)bp_info->condition_value;
51ae8d4a 1495 child->thread.debug.dbcr2 |=
3bffb652
DK
1496 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
1497 (condition_mode << DBCR2_DVC2M_SHIFT));
1498 }
1499#endif
1500 } else
1501 return -ENOSPC;
51ae8d4a 1502 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1503 child->thread.regs->msr |= MSR_DE;
1504
1505 return slot + 4;
1506}
1507
1508static int del_dac(struct task_struct *child, int slot)
1509{
1510 if (slot == 1) {
30124d11 1511 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
3bffb652
DK
1512 return -ENOENT;
1513
51ae8d4a 1514 child->thread.debug.dac1 = 0;
3bffb652
DK
1515 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1516#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a
BB
1517 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1518 child->thread.debug.dac2 = 0;
1519 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 1520 }
51ae8d4a 1521 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
3bffb652
DK
1522#endif
1523#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1524 child->thread.debug.dvc1 = 0;
3bffb652
DK
1525#endif
1526 } else if (slot == 2) {
30124d11 1527 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
3bffb652
DK
1528 return -ENOENT;
1529
1530#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1531 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
3bffb652
DK
1532 /* Part of a range */
1533 return -EINVAL;
51ae8d4a 1534 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
3bffb652
DK
1535#endif
1536#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1537 child->thread.debug.dvc2 = 0;
3bffb652 1538#endif
51ae8d4a 1539 child->thread.debug.dac2 = 0;
3bffb652
DK
1540 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1541 } else
1542 return -EINVAL;
1543
1544 return 0;
1545}
1546#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1547
1548#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1549static int set_dac_range(struct task_struct *child,
1550 struct ppc_hw_breakpoint *bp_info)
1551{
1552 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1553
1554 /* We don't allow range watchpoints to be used with DVC */
1555 if (bp_info->condition_mode)
1556 return -EINVAL;
1557
1558 /*
1559 * Best effort to verify the address range. The user/supervisor bits
1560 * prevent trapping in kernel space, but let's fail on an obvious bad
1561 * range. The simple test on the mask is not fool-proof, and any
1562 * exclusive range will spill over into kernel space.
1563 */
1564 if (bp_info->addr >= TASK_SIZE)
1565 return -EIO;
1566 if (mode == PPC_BREAKPOINT_MODE_MASK) {
1567 /*
1568 * dac2 is a bitmask. Don't allow a mask that makes a
1569 * kernel space address from a valid dac1 value
1570 */
1571 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1572 return -EIO;
1573 } else {
1574 /*
1575 * For range breakpoints, addr2 must also be a valid address
1576 */
1577 if (bp_info->addr2 >= TASK_SIZE)
1578 return -EIO;
1579 }
1580
51ae8d4a 1581 if (child->thread.debug.dbcr0 &
3bffb652
DK
1582 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1583 return -ENOSPC;
1584
1585 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
51ae8d4a 1586 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
3bffb652 1587 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
51ae8d4a
BB
1588 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1589 child->thread.debug.dac1 = bp_info->addr;
1590 child->thread.debug.dac2 = bp_info->addr2;
3bffb652 1591 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
51ae8d4a 1592 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
3bffb652 1593 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
51ae8d4a 1594 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
3bffb652 1595 else /* PPC_BREAKPOINT_MODE_MASK */
51ae8d4a 1596 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
3bffb652
DK
1597 child->thread.regs->msr |= MSR_DE;
1598
1599 return 5;
1600}
1601#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1602
3162d92d
DK
1603static long ppc_set_hwdebug(struct task_struct *child,
1604 struct ppc_hw_breakpoint *bp_info)
1605{
6c7a2856
P
1606#ifdef CONFIG_HAVE_HW_BREAKPOINT
1607 int len = 0;
1608 struct thread_struct *thread = &(child->thread);
1609 struct perf_event *bp;
1610 struct perf_event_attr attr;
1611#endif /* CONFIG_HAVE_HW_BREAKPOINT */
4dfbf290 1612#ifndef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e 1613 struct arch_hw_breakpoint brk;
4dfbf290
AS
1614#endif
1615
3bffb652
DK
1616 if (bp_info->version != 1)
1617 return -ENOTSUPP;
1618#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1619 /*
1620 * Check for invalid flags and combinations
1621 */
1622 if ((bp_info->trigger_type == 0) ||
1623 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
1624 PPC_BREAKPOINT_TRIGGER_RW)) ||
1625 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
1626 (bp_info->condition_mode &
1627 ~(PPC_BREAKPOINT_CONDITION_MODE |
1628 PPC_BREAKPOINT_CONDITION_BE_ALL)))
1629 return -EINVAL;
1630#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
1631 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1632 return -EINVAL;
1633#endif
1634
1635 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
1636 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
1637 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
1638 return -EINVAL;
84295dfc 1639 return set_instruction_bp(child, bp_info);
3bffb652
DK
1640 }
1641 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1642 return set_dac(child, bp_info);
1643
1644#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1645 return set_dac_range(child, bp_info);
1646#else
1647 return -EINVAL;
1648#endif
1649#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d 1650 /*
3bffb652 1651 * We only support one data breakpoint
3162d92d 1652 */
4dfbf290
AS
1653 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
1654 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
4dfbf290 1655 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
3162d92d
DK
1656 return -EINVAL;
1657
3162d92d
DK
1658 if ((unsigned long)bp_info->addr >= TASK_SIZE)
1659 return -EIO;
1660
9422de3e
MN
1661 brk.address = bp_info->addr & ~7UL;
1662 brk.type = HW_BRK_TYPE_TRANSLATE;
2bb78efa 1663 brk.len = 8;
4dfbf290 1664 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
9422de3e 1665 brk.type |= HW_BRK_TYPE_READ;
4dfbf290 1666 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
9422de3e 1667 brk.type |= HW_BRK_TYPE_WRITE;
6c7a2856 1668#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
1669 /*
1670 * Check if the request is for 'range' breakpoints. We can
1671 * support it if range < 8 bytes.
1672 */
6961ed96 1673 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
6c7a2856 1674 len = bp_info->addr2 - bp_info->addr;
6961ed96 1675 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
b0b0aa9c 1676 len = 1;
6961ed96 1677 else
6c7a2856 1678 return -EINVAL;
6c7a2856 1679 bp = thread->ptrace_bps[0];
6961ed96 1680 if (bp)
6c7a2856 1681 return -ENOSPC;
6c7a2856
P
1682
1683 /* Create a new breakpoint request if one doesn't exist already */
1684 hw_breakpoint_init(&attr);
1685 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
1686 attr.bp_len = len;
9422de3e 1687 arch_bp_generic_fields(brk.type, &attr.bp_type);
6c7a2856
P
1688
1689 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1690 ptrace_triggered, NULL, child);
1691 if (IS_ERR(bp)) {
1692 thread->ptrace_bps[0] = NULL;
6c7a2856
P
1693 return PTR_ERR(bp);
1694 }
1695
6c7a2856
P
1696 return 1;
1697#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1698
1699 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
1700 return -EINVAL;
1701
9422de3e 1702 if (child->thread.hw_brk.address)
6c7a2856 1703 return -ENOSPC;
4dfbf290 1704
9422de3e 1705 child->thread.hw_brk = brk;
3bffb652 1706
3162d92d 1707 return 1;
3bffb652 1708#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d
DK
1709}
1710
ec1b33dc 1711static long ppc_del_hwdebug(struct task_struct *child, long data)
3162d92d 1712{
6c7a2856
P
1713#ifdef CONFIG_HAVE_HW_BREAKPOINT
1714 int ret = 0;
1715 struct thread_struct *thread = &(child->thread);
1716 struct perf_event *bp;
1717#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
1718#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1719 int rc;
1720
1721 if (data <= 4)
1722 rc = del_instruction_bp(child, (int)data);
1723 else
1724 rc = del_dac(child, (int)data - 4);
1725
1726 if (!rc) {
51ae8d4a
BB
1727 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
1728 child->thread.debug.dbcr1)) {
1729 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
1730 child->thread.regs->msr &= ~MSR_DE;
1731 }
1732 }
1733 return rc;
1734#else
3162d92d
DK
1735 if (data != 1)
1736 return -EINVAL;
6c7a2856
P
1737
1738#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
1739 bp = thread->ptrace_bps[0];
1740 if (bp) {
1741 unregister_hw_breakpoint(bp);
1742 thread->ptrace_bps[0] = NULL;
1743 } else
1744 ret = -ENOENT;
6c7a2856
P
1745 return ret;
1746#else /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 1747 if (child->thread.hw_brk.address == 0)
3162d92d
DK
1748 return -ENOENT;
1749
9422de3e
MN
1750 child->thread.hw_brk.address = 0;
1751 child->thread.hw_brk.type = 0;
6c7a2856 1752#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1753
3162d92d 1754 return 0;
3bffb652 1755#endif
3162d92d
DK
1756}
1757
9b05a69e
NK
1758long arch_ptrace(struct task_struct *child, long request,
1759 unsigned long addr, unsigned long data)
1da177e4 1760{
1da177e4 1761 int ret = -EPERM;
f68d2048
NK
1762 void __user *datavp = (void __user *) data;
1763 unsigned long __user *datalp = datavp;
1da177e4 1764
1da177e4 1765 switch (request) {
1da177e4 1766 /* read the word at location addr in the USER area. */
1da177e4
LT
1767 case PTRACE_PEEKUSR: {
1768 unsigned long index, tmp;
1769
1770 ret = -EIO;
1771 /* convert to index and check */
e8a30302 1772#ifdef CONFIG_PPC32
9b05a69e 1773 index = addr >> 2;
e8a30302
SR
1774 if ((addr & 3) || (index > PT_FPSCR)
1775 || (child->thread.regs == NULL))
1776#else
9b05a69e 1777 index = addr >> 3;
e8a30302
SR
1778 if ((addr & 7) || (index > PT_FPSCR))
1779#endif
1da177e4
LT
1780 break;
1781
1782 CHECK_FULL_REGS(child->thread.regs);
1783 if (index < PT_FPR0) {
ee4a3916
AK
1784 ret = ptrace_get_reg(child, (int) index, &tmp);
1785 if (ret)
1786 break;
1da177e4 1787 } else {
e69b742a
BH
1788 unsigned int fpidx = index - PT_FPR0;
1789
e8a30302 1790 flush_fp_to_thread(child);
e69b742a 1791 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 1792 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
87fec051 1793 sizeof(long));
e69b742a 1794 else
de79f7b9 1795 tmp = child->thread.fp_state.fpscr;
1da177e4 1796 }
f68d2048 1797 ret = put_user(tmp, datalp);
1da177e4
LT
1798 break;
1799 }
1800
1da177e4
LT
1801 /* write the word at location addr in the USER area */
1802 case PTRACE_POKEUSR: {
1803 unsigned long index;
1804
1805 ret = -EIO;
1806 /* convert to index and check */
e8a30302 1807#ifdef CONFIG_PPC32
9b05a69e 1808 index = addr >> 2;
e8a30302
SR
1809 if ((addr & 3) || (index > PT_FPSCR)
1810 || (child->thread.regs == NULL))
1811#else
9b05a69e 1812 index = addr >> 3;
e8a30302
SR
1813 if ((addr & 7) || (index > PT_FPSCR))
1814#endif
1da177e4
LT
1815 break;
1816
1817 CHECK_FULL_REGS(child->thread.regs);
1da177e4 1818 if (index < PT_FPR0) {
865418d8 1819 ret = ptrace_put_reg(child, index, data);
1da177e4 1820 } else {
e69b742a
BH
1821 unsigned int fpidx = index - PT_FPR0;
1822
e8a30302 1823 flush_fp_to_thread(child);
e69b742a 1824 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 1825 memcpy(&child->thread.TS_FPR(fpidx), &data,
87fec051 1826 sizeof(long));
e69b742a 1827 else
de79f7b9 1828 child->thread.fp_state.fpscr = data;
1da177e4
LT
1829 ret = 0;
1830 }
1831 break;
1832 }
1833
3162d92d
DK
1834 case PPC_PTRACE_GETHWDBGINFO: {
1835 struct ppc_debug_info dbginfo;
1836
1837 dbginfo.version = 1;
3bffb652
DK
1838#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1839 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
1840 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
1841 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
1842 dbginfo.data_bp_alignment = 4;
1843 dbginfo.sizeof_condition = 4;
1844 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
1845 PPC_DEBUG_FEATURE_INSN_BP_MASK;
1846#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1847 dbginfo.features |=
1848 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
1849 PPC_DEBUG_FEATURE_DATA_BP_MASK;
1850#endif
1851#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d
DK
1852 dbginfo.num_instruction_bps = 0;
1853 dbginfo.num_data_bps = 1;
1854 dbginfo.num_condition_regs = 0;
1855#ifdef CONFIG_PPC64
1856 dbginfo.data_bp_alignment = 8;
1857#else
1858 dbginfo.data_bp_alignment = 4;
1859#endif
1860 dbginfo.sizeof_condition = 0;
6c7a2856
P
1861#ifdef CONFIG_HAVE_HW_BREAKPOINT
1862 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
517b7314
MN
1863 if (cpu_has_feature(CPU_FTR_DAWR))
1864 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
6c7a2856 1865#else
3162d92d 1866 dbginfo.features = 0;
6c7a2856 1867#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1868#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 1869
f68d2048 1870 if (!access_ok(VERIFY_WRITE, datavp,
3162d92d
DK
1871 sizeof(struct ppc_debug_info)))
1872 return -EFAULT;
f68d2048
NK
1873 ret = __copy_to_user(datavp, &dbginfo,
1874 sizeof(struct ppc_debug_info)) ?
3162d92d
DK
1875 -EFAULT : 0;
1876 break;
1877 }
1878
1879 case PPC_PTRACE_SETHWDEBUG: {
1880 struct ppc_hw_breakpoint bp_info;
1881
f68d2048 1882 if (!access_ok(VERIFY_READ, datavp,
3162d92d
DK
1883 sizeof(struct ppc_hw_breakpoint)))
1884 return -EFAULT;
f68d2048 1885 ret = __copy_from_user(&bp_info, datavp,
3162d92d
DK
1886 sizeof(struct ppc_hw_breakpoint)) ?
1887 -EFAULT : 0;
1888 if (!ret)
1889 ret = ppc_set_hwdebug(child, &bp_info);
1890 break;
1891 }
1892
1893 case PPC_PTRACE_DELHWDEBUG: {
ec1b33dc 1894 ret = ppc_del_hwdebug(child, data);
3162d92d
DK
1895 break;
1896 }
1897
e8a30302 1898 case PTRACE_GET_DEBUGREG: {
9422de3e
MN
1899#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1900 unsigned long dabr_fake;
1901#endif
e8a30302
SR
1902 ret = -EINVAL;
1903 /* We only support one DABR and no IABRS at the moment */
1904 if (addr > 0)
1905 break;
3bffb652 1906#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a 1907 ret = put_user(child->thread.debug.dac1, datalp);
3bffb652 1908#else
9422de3e
MN
1909 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
1910 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
1911 ret = put_user(dabr_fake, datalp);
3bffb652 1912#endif
e8a30302
SR
1913 break;
1914 }
1915
1916 case PTRACE_SET_DEBUGREG:
1917 ret = ptrace_set_debugreg(child, addr, data);
1918 break;
e8a30302 1919
e17666ba
BH
1920#ifdef CONFIG_PPC64
1921 case PTRACE_GETREGS64:
1922#endif
c391cd00
RM
1923 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
1924 return copy_regset_to_user(child, &user_ppc_native_view,
1925 REGSET_GPR,
1926 0, sizeof(struct pt_regs),
f68d2048 1927 datavp);
e8a30302 1928
e17666ba
BH
1929#ifdef CONFIG_PPC64
1930 case PTRACE_SETREGS64:
1931#endif
c391cd00
RM
1932 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1933 return copy_regset_from_user(child, &user_ppc_native_view,
1934 REGSET_GPR,
1935 0, sizeof(struct pt_regs),
f68d2048 1936 datavp);
c391cd00
RM
1937
1938 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
1939 return copy_regset_to_user(child, &user_ppc_native_view,
1940 REGSET_FPR,
1941 0, sizeof(elf_fpregset_t),
f68d2048 1942 datavp);
c391cd00
RM
1943
1944 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
1945 return copy_regset_from_user(child, &user_ppc_native_view,
1946 REGSET_FPR,
1947 0, sizeof(elf_fpregset_t),
f68d2048 1948 datavp);
e8a30302 1949
1da177e4
LT
1950#ifdef CONFIG_ALTIVEC
1951 case PTRACE_GETVRREGS:
c391cd00
RM
1952 return copy_regset_to_user(child, &user_ppc_native_view,
1953 REGSET_VMX,
1954 0, (33 * sizeof(vector128) +
1955 sizeof(u32)),
f68d2048 1956 datavp);
1da177e4
LT
1957
1958 case PTRACE_SETVRREGS:
c391cd00
RM
1959 return copy_regset_from_user(child, &user_ppc_native_view,
1960 REGSET_VMX,
1961 0, (33 * sizeof(vector128) +
1962 sizeof(u32)),
f68d2048 1963 datavp);
1da177e4 1964#endif
ce48b210
MN
1965#ifdef CONFIG_VSX
1966 case PTRACE_GETVSRREGS:
1967 return copy_regset_to_user(child, &user_ppc_native_view,
1968 REGSET_VSX,
1ac42ef8 1969 0, 32 * sizeof(double),
f68d2048 1970 datavp);
ce48b210
MN
1971
1972 case PTRACE_SETVSRREGS:
1973 return copy_regset_from_user(child, &user_ppc_native_view,
1974 REGSET_VSX,
1ac42ef8 1975 0, 32 * sizeof(double),
f68d2048 1976 datavp);
ce48b210 1977#endif
1da177e4
LT
1978#ifdef CONFIG_SPE
1979 case PTRACE_GETEVRREGS:
1980 /* Get the child spe register state. */
c391cd00
RM
1981 return copy_regset_to_user(child, &user_ppc_native_view,
1982 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 1983 datavp);
1da177e4
LT
1984
1985 case PTRACE_SETEVRREGS:
1986 /* Set the child spe register state. */
c391cd00
RM
1987 return copy_regset_from_user(child, &user_ppc_native_view,
1988 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 1989 datavp);
1da177e4
LT
1990#endif
1991
1992 default:
1993 ret = ptrace_request(child, request, addr, data);
1994 break;
1995 }
1da177e4
LT
1996 return ret;
1997}
1998
2449acc5
ME
1999#ifdef CONFIG_SECCOMP
2000static int do_seccomp(struct pt_regs *regs)
2001{
2002 if (!test_thread_flag(TIF_SECCOMP))
2003 return 0;
2004
2005 /*
2006 * The ABI we present to seccomp tracers is that r3 contains
2007 * the syscall return value and orig_gpr3 contains the first
2008 * syscall parameter. This is different to the ptrace ABI where
2009 * both r3 and orig_gpr3 contain the first syscall parameter.
2010 */
2011 regs->gpr[3] = -ENOSYS;
2012
2013 /*
2014 * We use the __ version here because we have already checked
2015 * TIF_SECCOMP. If this fails, there is nothing left to do, we
2016 * have already loaded -ENOSYS into r3, or seccomp has put
2017 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
2018 */
2f275de5 2019 if (__secure_computing(NULL))
2449acc5
ME
2020 return -1;
2021
2022 /*
2023 * The syscall was allowed by seccomp, restore the register
1addc57e 2024 * state to what audit expects.
2449acc5
ME
2025 * Note that we use orig_gpr3, which means a seccomp tracer can
2026 * modify the first syscall parameter (in orig_gpr3) and also
2027 * allow the syscall to proceed.
2028 */
2029 regs->gpr[3] = regs->orig_gpr3;
2030
2031 return 0;
2032}
2033#else
2034static inline int do_seccomp(struct pt_regs *regs) { return 0; }
2035#endif /* CONFIG_SECCOMP */
2036
d3837414
ME
2037/**
2038 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
2039 * @regs: the pt_regs of the task to trace (current)
2040 *
2041 * Performs various types of tracing on syscall entry. This includes seccomp,
2042 * ptrace, syscall tracepoints and audit.
2043 *
2044 * The pt_regs are potentially visible to userspace via ptrace, so their
2045 * contents is ABI.
2046 *
2047 * One or more of the tracers may modify the contents of pt_regs, in particular
2048 * to modify arguments or even the syscall number itself.
2049 *
2050 * It's also possible that a tracer can choose to reject the system call. In
2051 * that case this function will return an illegal syscall number, and will put
2052 * an appropriate return value in regs->r3.
2053 *
2054 * Return: the (possibly changed) syscall number.
4f72c427
RM
2055 */
2056long do_syscall_trace_enter(struct pt_regs *regs)
1da177e4 2057{
22ecbe8d
LZ
2058 user_exit();
2059
1addc57e
KC
2060 /*
2061 * The tracer may decide to abort the syscall, if so tracehook
2062 * will return !0. Note that the tracer may also just change
2063 * regs->gpr[0] to an invalid syscall number, that is handled
2064 * below on the exit path.
2065 */
2066 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
2067 tracehook_report_syscall_entry(regs))
2068 goto skip;
2069
2070 /* Run seccomp after ptrace; allow it to set gpr[3]. */
2449acc5
ME
2071 if (do_seccomp(regs))
2072 return -1;
e8a30302 2073
1addc57e
KC
2074 /* Avoid trace and audit when syscall is invalid. */
2075 if (regs->gpr[0] >= NR_syscalls)
2076 goto skip;
ea9c102c 2077
02424d89
IM
2078 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2079 trace_sys_enter(regs, regs->gpr[0]);
2080
cfcd1705 2081#ifdef CONFIG_PPC64
b05d8447 2082 if (!is_32bit_task())
91397401 2083 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
b05d8447
EP
2084 regs->gpr[5], regs->gpr[6]);
2085 else
e8a30302 2086#endif
91397401 2087 audit_syscall_entry(regs->gpr[0],
b05d8447
EP
2088 regs->gpr[3] & 0xffffffff,
2089 regs->gpr[4] & 0xffffffff,
2090 regs->gpr[5] & 0xffffffff,
2091 regs->gpr[6] & 0xffffffff);
4f72c427 2092
d3837414
ME
2093 /* Return the possibly modified but valid syscall number */
2094 return regs->gpr[0];
1addc57e
KC
2095
2096skip:
2097 /*
2098 * If we are aborting explicitly, or if the syscall number is
2099 * now invalid, set the return value to -ENOSYS.
2100 */
2101 regs->gpr[3] = -ENOSYS;
2102 return -1;
ea9c102c
DW
2103}
2104
2105void do_syscall_trace_leave(struct pt_regs *regs)
2106{
4f72c427
RM
2107 int step;
2108
d7e7528b 2109 audit_syscall_exit(regs);
ea9c102c 2110
02424d89
IM
2111 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2112 trace_sys_exit(regs, regs->result);
2113
4f72c427
RM
2114 step = test_thread_flag(TIF_SINGLESTEP);
2115 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
2116 tracehook_report_syscall_exit(regs, step);
22ecbe8d
LZ
2117
2118 user_enter();
ea9c102c 2119}