]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/kernel/smp.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kernel / smp.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
1da177e4
LT
12 */
13
14#undef DEBUG
15
1da177e4 16#include <linux/kernel.h>
4b16f8e2 17#include <linux/export.h>
68e21be2 18#include <linux/sched/mm.h>
678c668a 19#include <linux/sched/task_stack.h>
105ab3d8 20#include <linux/sched/topology.h>
1da177e4
LT
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
8a25a2fd 28#include <linux/device.h>
1da177e4
LT
29#include <linux/cpu.h>
30#include <linux/notifier.h>
4b703a23 31#include <linux/topology.h>
665e87ff 32#include <linux/profile.h>
4e287e65 33#include <linux/processor.h>
7241d26e 34#include <linux/random.h>
b6aeddea 35#include <linux/stackprotector.h>
65fddcfc 36#include <linux/pgtable.h>
cd7aa5d2 37#include <linux/clockchips.h>
1da177e4
LT
38
39#include <asm/ptrace.h>
60063497 40#include <linux/atomic.h>
1da177e4 41#include <asm/irq.h>
1b67bee1 42#include <asm/hw_irq.h>
441c19c8 43#include <asm/kvm_ppc.h>
b866cc21 44#include <asm/dbell.h>
1da177e4 45#include <asm/page.h>
1da177e4
LT
46#include <asm/prom.h>
47#include <asm/smp.h>
1da177e4
LT
48#include <asm/time.h>
49#include <asm/machdep.h>
e2075f79 50#include <asm/cputhreads.h>
1da177e4 51#include <asm/cputable.h>
bbeb3f4c 52#include <asm/mpic.h>
a7f290da 53#include <asm/vdso_datapage.h>
5ad57078
PM
54#ifdef CONFIG_PPC64
55#include <asm/paca.h>
56#endif
18ad51dd 57#include <asm/vdso.h>
ae3a197e 58#include <asm/debug.h>
1217d34b 59#include <asm/kexec.h>
42f5b4ca 60#include <asm/asm-prototypes.h>
b92a226e 61#include <asm/cpu_has_feature.h>
d1039786 62#include <asm/ftrace.h>
e0d8e991 63#include <asm/kup.h>
45e929e1 64#include <asm/fadump.h>
5ad57078 65
1da177e4 66#ifdef DEBUG
f9e4ec57 67#include <asm/udbg.h>
1da177e4
LT
68#define DBG(fmt...) udbg_printf(fmt)
69#else
70#define DBG(fmt...)
71#endif
72
c56e5853 73#ifdef CONFIG_HOTPLUG_CPU
fb82b839
BH
74/* State of each CPU during hotplug phases */
75static DEFINE_PER_CPU(int, cpu_state) = { 0 };
c56e5853
BH
76#endif
77
7c19c2e5 78struct task_struct *secondary_current;
425752c6 79bool has_big_cores;
f9f130ff 80bool coregroup_enabled;
9538abee 81bool thread_group_shares_l2;
e9ef81e1 82bool thread_group_shares_l3;
f9e4ec57 83
cc1ba8ea 84DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
425752c6 85DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
2a636a56 86DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
cc1ba8ea 87DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
078277ac 88static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
1da177e4 89
d5a7430d 90EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
2a636a56 91EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
440a0857 92EXPORT_PER_CPU_SYMBOL(cpu_core_map);
425752c6
GS
93EXPORT_SYMBOL_GPL(has_big_cores);
94
72730bfc
SD
95enum {
96#ifdef CONFIG_SCHED_SMT
97 smt_idx,
98#endif
99 cache_idx,
100 mc_idx,
101 die_idx,
102};
103
425752c6
GS
104#define MAX_THREAD_LIST_SIZE 8
105#define THREAD_GROUP_SHARE_L1 1
e9ef81e1 106#define THREAD_GROUP_SHARE_L2_L3 2
425752c6
GS
107struct thread_groups {
108 unsigned int property;
109 unsigned int nr_groups;
110 unsigned int threads_per_group;
111 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
112};
113
790a1662 114/* Maximum number of properties that groups of threads within a core can share */
9538abee 115#define MAX_THREAD_GROUP_PROPERTIES 2
790a1662
GS
116
117struct thread_groups_list {
118 unsigned int nr_properties;
119 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
120};
121
122static struct thread_groups_list tgl[NR_CPUS] __initdata;
425752c6 123/*
1fdc1d66 124 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
425752c6
GS
125 * the set its siblings that share the L1-cache.
126 */
a4bec516 127DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
1da177e4 128
9538abee
GS
129/*
130 * On some big-cores system, thread_group_l2_cache_map for each CPU
131 * corresponds to the set its siblings within the core that share the
132 * L2-cache.
133 */
a4bec516 134DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
9538abee 135
e9ef81e1
PS
136/*
137 * On P10, thread_group_l3_cache_map for each CPU is equal to the
138 * thread_group_l2_cache_map
139 */
140DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
141
5ad57078 142/* SMP operations for this machine */
1da177e4
LT
143struct smp_ops_t *smp_ops;
144
7ccbe504
BH
145/* Can't be static due to PowerMac hackery */
146volatile unsigned int cpu_callin_map[NR_CPUS];
1da177e4 147
1da177e4
LT
148int smt_enabled_at_boot = 1;
149
3cd85250
AF
150/*
151 * Returns 1 if the specified cpu should be brought up during boot.
152 * Used to inhibit booting threads if they've been disabled or
153 * limited on the command line
154 */
155int smp_generic_cpu_bootable(unsigned int nr)
156{
157 /* Special case - we inhibit secondary thread startup
158 * during boot if the user requests it.
159 */
a8fcfc19 160 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
3cd85250
AF
161 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
162 return 0;
163 if (smt_enabled_at_boot
164 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
165 return 0;
166 }
167
168 return 1;
169}
170
171
5ad57078 172#ifdef CONFIG_PPC64
cad5cef6 173int smp_generic_kick_cpu(int nr)
1da177e4 174{
c642af9c 175 if (nr < 0 || nr >= nr_cpu_ids)
f8d0d5dc 176 return -EINVAL;
1da177e4
LT
177
178 /*
179 * The processor is currently spinning, waiting for the
180 * cpu_start field to become non-zero After we set cpu_start,
181 * the processor will continue on to secondary_start
182 */
d2e60075
NP
183 if (!paca_ptrs[nr]->cpu_start) {
184 paca_ptrs[nr]->cpu_start = 1;
fb82b839
BH
185 smp_mb();
186 return 0;
187 }
188
189#ifdef CONFIG_HOTPLUG_CPU
190 /*
191 * Ok it's not there, so it might be soft-unplugged, let's
192 * try to bring it back
193 */
ae5cab47 194 generic_set_cpu_up(nr);
fb82b839
BH
195 smp_wmb();
196 smp_send_reschedule(nr);
197#endif /* CONFIG_HOTPLUG_CPU */
de300974
ME
198
199 return 0;
1da177e4 200}
fb82b839 201#endif /* CONFIG_PPC64 */
1da177e4 202
25ddd738
MM
203static irqreturn_t call_function_action(int irq, void *data)
204{
205 generic_smp_call_function_interrupt();
206 return IRQ_HANDLED;
207}
208
209static irqreturn_t reschedule_action(int irq, void *data)
210{
184748cc 211 scheduler_ipi();
25ddd738
MM
212 return IRQ_HANDLED;
213}
214
bc907113 215#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 216static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
25ddd738 217{
3f984620 218 timer_broadcast_interrupt();
25ddd738
MM
219 return IRQ_HANDLED;
220}
bc907113 221#endif
25ddd738 222
ddd703ca
NP
223#ifdef CONFIG_NMI_IPI
224static irqreturn_t nmi_ipi_action(int irq, void *data)
25ddd738 225{
ddd703ca 226 smp_handle_nmi_ipi(get_irq_regs());
25ddd738
MM
227 return IRQ_HANDLED;
228}
ddd703ca 229#endif
25ddd738
MM
230
231static irq_handler_t smp_ipi_action[] = {
232 [PPC_MSG_CALL_FUNCTION] = call_function_action,
233 [PPC_MSG_RESCHEDULE] = reschedule_action,
bc907113 234#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 235 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
bc907113 236#endif
ddd703ca
NP
237#ifdef CONFIG_NMI_IPI
238 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
239#endif
25ddd738
MM
240};
241
ddd703ca
NP
242/*
243 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
244 * than going through the call function infrastructure, and strongly
245 * serialized, so it is more appropriate for debugging.
246 */
25ddd738
MM
247const char *smp_ipi_name[] = {
248 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
249 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
bc907113 250#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 251 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
bc907113 252#endif
21bfd6a8 253#ifdef CONFIG_NMI_IPI
ddd703ca 254 [PPC_MSG_NMI_IPI] = "nmi ipi",
21bfd6a8 255#endif
25ddd738
MM
256};
257
258/* optional function to request ipi, for controllers with >= 4 ipis */
259int smp_request_message_ipi(int virq, int msg)
260{
261 int err;
262
ddd703ca 263 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
25ddd738 264 return -EINVAL;
ddd703ca
NP
265#ifndef CONFIG_NMI_IPI
266 if (msg == PPC_MSG_NMI_IPI)
25ddd738 267 return 1;
25ddd738 268#endif
ddd703ca 269
3b5e16d7 270 err = request_irq(virq, smp_ipi_action[msg],
e6651de9 271 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
b0d436c7 272 smp_ipi_name[msg], NULL);
25ddd738
MM
273 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
274 virq, smp_ipi_name[msg], err);
275
276 return err;
277}
278
1ece355b 279#ifdef CONFIG_PPC_SMP_MUXED_IPI
23d72bfd 280struct cpu_messages {
bd7f561f 281 long messages; /* current messages */
23d72bfd
MM
282};
283static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
284
31639c77 285void smp_muxed_ipi_set_message(int cpu, int msg)
23d72bfd
MM
286{
287 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
71454272 288 char *message = (char *)&info->messages;
23d72bfd 289
9fb1b36c
PM
290 /*
291 * Order previous accesses before accesses in the IPI handler.
292 */
293 smp_mb();
71454272 294 message[msg] = 1;
31639c77
SW
295}
296
297void smp_muxed_ipi_message_pass(int cpu, int msg)
298{
31639c77 299 smp_muxed_ipi_set_message(cpu, msg);
b866cc21 300
9fb1b36c
PM
301 /*
302 * cause_ipi functions are required to include a full barrier
303 * before doing whatever causes the IPI.
304 */
b866cc21 305 smp_ops->cause_ipi(cpu);
23d72bfd
MM
306}
307
0654de1c 308#ifdef __BIG_ENDIAN__
bd7f561f 309#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
0654de1c 310#else
bd7f561f 311#define IPI_MESSAGE(A) (1uL << (8 * (A)))
0654de1c
AB
312#endif
313
23d72bfd
MM
314irqreturn_t smp_ipi_demux(void)
315{
23d72bfd 316 mb(); /* order any irq clear */
71454272 317
b87ac021
NP
318 return smp_ipi_demux_relaxed();
319}
320
321/* sync-free variant. Callers should ensure synchronization */
322irqreturn_t smp_ipi_demux_relaxed(void)
23d72bfd 323{
b866cc21 324 struct cpu_messages *info;
bd7f561f 325 unsigned long all;
23d72bfd 326
b866cc21 327 info = this_cpu_ptr(&ipi_message);
71454272 328 do {
9fb1b36c 329 all = xchg(&info->messages, 0);
e17769eb
SW
330#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
331 /*
332 * Must check for PPC_MSG_RM_HOST_ACTION messages
333 * before PPC_MSG_CALL_FUNCTION messages because when
334 * a VM is destroyed, we call kick_all_cpus_sync()
335 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
336 * messages have completed before we free any VCPUs.
337 */
338 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
339 kvmppc_xics_ipi_action();
340#endif
0654de1c 341 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
23d72bfd 342 generic_smp_call_function_interrupt();
0654de1c 343 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
880102e7 344 scheduler_ipi();
bc907113 345#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1b67bee1 346 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
3f984620 347 timer_broadcast_interrupt();
bc907113 348#endif
ddd703ca
NP
349#ifdef CONFIG_NMI_IPI
350 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
351 nmi_ipi_action(0, NULL);
352#endif
71454272
MM
353 } while (info->messages);
354
23d72bfd
MM
355 return IRQ_HANDLED;
356}
1ece355b 357#endif /* CONFIG_PPC_SMP_MUXED_IPI */
23d72bfd 358
9ca980dc
PM
359static inline void do_message_pass(int cpu, int msg)
360{
361 if (smp_ops->message_pass)
362 smp_ops->message_pass(cpu, msg);
363#ifdef CONFIG_PPC_SMP_MUXED_IPI
364 else
365 smp_muxed_ipi_message_pass(cpu, msg);
366#endif
367}
368
1da177e4
LT
369void smp_send_reschedule(int cpu)
370{
8cffc6ac 371 if (likely(smp_ops))
9ca980dc 372 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
1da177e4 373}
de56a948 374EXPORT_SYMBOL_GPL(smp_send_reschedule);
1da177e4 375
b7d7a240
JA
376void arch_send_call_function_single_ipi(int cpu)
377{
402d9a1e 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
379}
380
f063ea02 381void arch_send_call_function_ipi_mask(const struct cpumask *mask)
b7d7a240
JA
382{
383 unsigned int cpu;
384
f063ea02 385 for_each_cpu(cpu, mask)
9ca980dc 386 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
b7d7a240
JA
387}
388
ddd703ca
NP
389#ifdef CONFIG_NMI_IPI
390
391/*
392 * "NMI IPI" system.
393 *
394 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
395 * a running system. They can be used for crash, debug, halt/reboot, etc.
396 *
ddd703ca 397 * The IPI call waits with interrupts disabled until all targets enter the
88b9a3d1
NP
398 * NMI handler, then returns. Subsequent IPIs can be issued before targets
399 * have returned from their handlers, so there is no guarantee about
400 * concurrency or re-entrancy.
ddd703ca 401 *
88b9a3d1 402 * A new NMI can be issued before all targets exit the handler.
ddd703ca
NP
403 *
404 * The IPI call may time out without all targets entering the NMI handler.
405 * In that case, there is some logic to recover (and ignore subsequent
406 * NMI interrupts that may eventually be raised), but the platform interrupt
407 * handler may not be able to distinguish this from other exception causes,
408 * which may cause a crash.
409 */
410
411static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
412static struct cpumask nmi_ipi_pending_mask;
88b9a3d1 413static bool nmi_ipi_busy = false;
ddd703ca
NP
414static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
415
416static void nmi_ipi_lock_start(unsigned long *flags)
417{
418 raw_local_irq_save(*flags);
419 hard_irq_disable();
420 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
421 raw_local_irq_restore(*flags);
0459ddfd 422 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
423 raw_local_irq_save(*flags);
424 hard_irq_disable();
425 }
426}
427
428static void nmi_ipi_lock(void)
429{
430 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
0459ddfd 431 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
ddd703ca
NP
432}
433
434static void nmi_ipi_unlock(void)
435{
436 smp_mb();
437 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
438 atomic_set(&__nmi_ipi_lock, 0);
439}
440
441static void nmi_ipi_unlock_end(unsigned long *flags)
442{
443 nmi_ipi_unlock();
444 raw_local_irq_restore(*flags);
445}
446
447/*
448 * Platform NMI handler calls this to ack
449 */
450int smp_handle_nmi_ipi(struct pt_regs *regs)
451{
88b9a3d1 452 void (*fn)(struct pt_regs *) = NULL;
ddd703ca
NP
453 unsigned long flags;
454 int me = raw_smp_processor_id();
455 int ret = 0;
456
457 /*
458 * Unexpected NMIs are possible here because the interrupt may not
459 * be able to distinguish NMI IPIs from other types of NMIs, or
460 * because the caller may have timed out.
461 */
462 nmi_ipi_lock_start(&flags);
88b9a3d1
NP
463 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
464 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
465 fn = READ_ONCE(nmi_ipi_function);
466 WARN_ON_ONCE(!fn);
467 ret = 1;
468 }
ddd703ca
NP
469 nmi_ipi_unlock_end(&flags);
470
88b9a3d1
NP
471 if (fn)
472 fn(regs);
473
ddd703ca
NP
474 return ret;
475}
476
6ba55716 477static void do_smp_send_nmi_ipi(int cpu, bool safe)
ddd703ca 478{
6ba55716 479 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
c64af645
NP
480 return;
481
ddd703ca
NP
482 if (cpu >= 0) {
483 do_message_pass(cpu, PPC_MSG_NMI_IPI);
484 } else {
485 int c;
486
487 for_each_online_cpu(c) {
488 if (c == raw_smp_processor_id())
489 continue;
490 do_message_pass(c, PPC_MSG_NMI_IPI);
491 }
492 }
493}
494
495/*
496 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
497 * - fn is the target callback function.
498 * - delay_us > 0 is the delay before giving up waiting for targets to
88b9a3d1 499 * begin executing the handler, == 0 specifies indefinite delay.
ddd703ca 500 */
6fe243fe
NP
501static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
502 u64 delay_us, bool safe)
ddd703ca
NP
503{
504 unsigned long flags;
505 int me = raw_smp_processor_id();
506 int ret = 1;
507
508 BUG_ON(cpu == me);
509 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
510
511 if (unlikely(!smp_ops))
512 return 0;
513
ddd703ca 514 nmi_ipi_lock_start(&flags);
88b9a3d1 515 while (nmi_ipi_busy) {
ddd703ca 516 nmi_ipi_unlock_end(&flags);
88b9a3d1 517 spin_until_cond(!nmi_ipi_busy);
ddd703ca
NP
518 nmi_ipi_lock_start(&flags);
519 }
88b9a3d1 520 nmi_ipi_busy = true;
ddd703ca
NP
521 nmi_ipi_function = fn;
522
88b9a3d1
NP
523 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
524
ddd703ca
NP
525 if (cpu < 0) {
526 /* ALL_OTHERS */
527 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
528 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
529 } else {
ddd703ca
NP
530 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
531 }
88b9a3d1 532
ddd703ca
NP
533 nmi_ipi_unlock();
534
88b9a3d1
NP
535 /* Interrupts remain hard disabled */
536
6ba55716 537 do_smp_send_nmi_ipi(cpu, safe);
ddd703ca 538
5b73151f 539 nmi_ipi_lock();
88b9a3d1 540 /* nmi_ipi_busy is set here, so unlock/lock is okay */
ddd703ca 541 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 542 nmi_ipi_unlock();
ddd703ca 543 udelay(1);
5b73151f
NP
544 nmi_ipi_lock();
545 if (delay_us) {
546 delay_us--;
547 if (!delay_us)
88b9a3d1 548 break;
5b73151f
NP
549 }
550 }
551
ddd703ca 552 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
5b73151f 553 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
ddd703ca
NP
554 ret = 0;
555 cpumask_clear(&nmi_ipi_pending_mask);
556 }
5b73151f 557
88b9a3d1
NP
558 nmi_ipi_function = NULL;
559 nmi_ipi_busy = false;
560
ddd703ca
NP
561 nmi_ipi_unlock_end(&flags);
562
563 return ret;
564}
6ba55716
ME
565
566int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
567{
568 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
569}
570
571int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
572{
573 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
574}
ddd703ca
NP
575#endif /* CONFIG_NMI_IPI */
576
1b67bee1
SB
577#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
578void tick_broadcast(const struct cpumask *mask)
579{
580 unsigned int cpu;
581
582 for_each_cpu(cpu, mask)
583 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
584}
585#endif
586
ddd703ca 587#ifdef CONFIG_DEBUGGER
157c9f40 588static void debugger_ipi_callback(struct pt_regs *regs)
1da177e4 589{
ddd703ca
NP
590 debugger_ipi(regs);
591}
e0476371 592
ddd703ca
NP
593void smp_send_debugger_break(void)
594{
595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
1da177e4
LT
596}
597#endif
598
da665885 599#ifdef CONFIG_KEXEC_CORE
cc532915
ME
600void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
601{
4145f358
BS
602 int cpu;
603
ddd703ca 604 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
4145f358
BS
605 if (kdump_in_progress() && crash_wake_offline) {
606 for_each_present_cpu(cpu) {
607 if (cpu_online(cpu))
608 continue;
609 /*
610 * crash_ipi_callback will wait for
611 * all cpus, including offline CPUs.
612 * We don't care about nmi_ipi_function.
613 * Offline cpus will jump straight into
614 * crash_ipi_callback, we can skip the
615 * entire NMI dance and waiting for
616 * cpus to clear pending mask, etc.
617 */
6ba55716 618 do_smp_send_nmi_ipi(cpu, false);
4145f358
BS
619 }
620 }
cc532915
ME
621}
622#endif
623
ca9ab07a
HB
624#ifdef CONFIG_NMI_IPI
625static void crash_stop_this_cpu(struct pt_regs *regs)
626#else
627static void crash_stop_this_cpu(void *dummy)
628#endif
629{
630 /*
631 * Just busy wait here and avoid marking CPU as offline to ensure
632 * register data is captured appropriately.
633 */
634 while (1)
635 cpu_relax();
636}
637
638void crash_smp_send_stop(void)
639{
640 static bool stopped = false;
641
45e929e1
HB
642 /*
643 * In case of fadump, register data for all CPUs is captured by f/w
644 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
645 * this rtas call to avoid tricky post processing of those CPUs'
646 * backtraces.
647 */
648 if (should_fadump_crash())
649 return;
650
ca9ab07a
HB
651 if (stopped)
652 return;
653
654 stopped = true;
655
656#ifdef CONFIG_NMI_IPI
657 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
658#else
659 smp_call_function(crash_stop_this_cpu, NULL, 0);
660#endif /* CONFIG_NMI_IPI */
661}
662
ac61c115
NP
663#ifdef CONFIG_NMI_IPI
664static void nmi_stop_this_cpu(struct pt_regs *regs)
665{
666 /*
6029755e 667 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
ac61c115 668 */
bab26238
NP
669 set_cpu_online(smp_processor_id(), false);
670
6029755e
NP
671 spin_begin();
672 while (1)
673 spin_cpu_relax();
ac61c115 674}
ac61c115 675
8fd7675c
SS
676void smp_send_stop(void)
677{
ac61c115 678 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
6029755e
NP
679}
680
681#else /* CONFIG_NMI_IPI */
682
683static void stop_this_cpu(void *dummy)
684{
6029755e 685 hard_irq_disable();
bab26238
NP
686
687 /*
688 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
689 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
690 * to know other CPUs are offline before it breaks locks to flush
691 * printk buffers, in case we panic()ed while holding the lock.
692 */
693 set_cpu_online(smp_processor_id(), false);
694
6029755e
NP
695 spin_begin();
696 while (1)
697 spin_cpu_relax();
698}
699
700void smp_send_stop(void)
701{
702 static bool stopped = false;
703
704 /*
705 * Prevent waiting on csd lock from a previous smp_send_stop.
706 * This is racy, but in general callers try to do the right
707 * thing and only fire off one smp_send_stop (e.g., see
708 * kernel/panic.c)
709 */
710 if (stopped)
711 return;
712
713 stopped = true;
714
8691e5a8 715 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4 716}
6029755e 717#endif /* CONFIG_NMI_IPI */
1da177e4 718
7c19c2e5 719struct task_struct *current_set[NR_CPUS];
1da177e4 720
cad5cef6 721static void smp_store_cpu_info(int id)
1da177e4 722{
6b7487fc 723 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
3160b097
BB
724#ifdef CONFIG_PPC_FSL_BOOK3E
725 per_cpu(next_tlbcam_idx, id)
726 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
727#endif
1da177e4
LT
728}
729
df52f671
OH
730/*
731 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
732 * rather than just passing around the cpumask we pass around a function that
733 * returns the that cpumask for the given CPU.
734 */
735static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
736{
737 cpumask_set_cpu(i, get_cpumask(j));
738 cpumask_set_cpu(j, get_cpumask(i));
739}
740
741#ifdef CONFIG_HOTPLUG_CPU
742static void set_cpus_unrelated(int i, int j,
743 struct cpumask *(*get_cpumask)(int))
744{
745 cpumask_clear_cpu(i, get_cpumask(j));
746 cpumask_clear_cpu(j, get_cpumask(i));
747}
748#endif
749
3ab33d6d
SD
750/*
751 * Extends set_cpus_related. Instead of setting one CPU at a time in
752 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
753 */
754static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
755 struct cpumask *(*dstmask)(int))
756{
757 struct cpumask *mask;
758 int k;
759
760 mask = srcmask(j);
761 for_each_cpu(k, srcmask(i))
762 cpumask_or(dstmask(k), dstmask(k), mask);
763
764 if (i == j)
765 return;
766
767 mask = srcmask(i);
768 for_each_cpu(k, srcmask(j))
769 cpumask_or(dstmask(k), dstmask(k), mask);
770}
771
425752c6
GS
772/*
773 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
774 * property for the CPU device node @dn and stores
790a1662
GS
775 * the parsed output in the thread_groups_list
776 * structure @tglp.
425752c6
GS
777 *
778 * @dn: The device node of the CPU device.
790a1662 779 * @tglp: Pointer to a thread group list structure into which the parsed
425752c6 780 * output of "ibm,thread-groups" is stored.
425752c6
GS
781 *
782 * ibm,thread-groups[0..N-1] array defines which group of threads in
783 * the CPU-device node can be grouped together based on the property.
784 *
790a1662
GS
785 * This array can represent thread groupings for multiple properties.
786 *
787 * ibm,thread-groups[i + 0] tells us the property based on which the
425752c6 788 * threads are being grouped together. If this value is 1, it implies
9538abee
GS
789 * that the threads in the same group share L1, translation cache. If
790 * the value is 2, it implies that the threads in the same group share
791 * the same L2 cache.
425752c6 792 *
790a1662
GS
793 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
794 * property ibm,thread-groups[i]
425752c6 795 *
790a1662 796 * ibm,thread-groups[i+2] tells us the number of threads in each such
425752c6 797 * group.
790a1662 798 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
425752c6 799 *
790a1662 800 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
425752c6
GS
801 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
802 * the grouping.
803 *
790a1662
GS
804 * Example:
805 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
806 * This can be decomposed up into two consecutive arrays:
807 * a) [1,2,4,8,10,12,14,9,11,13,15]
808 * b) [2,2,4,8,10,12,14,9,11,13,15]
809 *
810 * where in,
811 *
812 * a) provides information of Property "1" being shared by "2" groups,
813 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
814 * the first group is {8,10,12,14} and the
815 * "ibm,ppc-interrupt-server#s" of the second group is
816 * {9,11,13,15}. Property "1" is indicative of the thread in the
817 * group sharing L1 cache, translation cache and Instruction Data
818 * flow.
425752c6 819 *
790a1662
GS
820 * b) provides information of Property "2" being shared by "2" groups,
821 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
822 * the first group is {8,10,12,14} and the
823 * "ibm,ppc-interrupt-server#s" of the second group is
824 * {9,11,13,15}. Property "2" indicates that the threads in each
825 * group share the L2-cache.
425752c6
GS
826 *
827 * Returns 0 on success, -EINVAL if the property does not exist,
828 * -ENODATA if property does not have a value, and -EOVERFLOW if the
829 * property data isn't large enough.
830 */
831static int parse_thread_groups(struct device_node *dn,
790a1662 832 struct thread_groups_list *tglp)
425752c6 833{
790a1662
GS
834 unsigned int property_idx = 0;
835 u32 *thread_group_array;
425752c6 836 size_t total_threads;
790a1662
GS
837 int ret = 0, count;
838 u32 *thread_list;
839 int i = 0;
425752c6 840
790a1662
GS
841 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
842 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
425752c6 843 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
790a1662 844 thread_group_array, count);
425752c6 845 if (ret)
790a1662 846 goto out_free;
425752c6 847
790a1662
GS
848 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
849 int j;
850 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
425752c6 851
790a1662
GS
852 tg->property = thread_group_array[i];
853 tg->nr_groups = thread_group_array[i + 1];
854 tg->threads_per_group = thread_group_array[i + 2];
855 total_threads = tg->nr_groups * tg->threads_per_group;
425752c6 856
790a1662 857 thread_list = &thread_group_array[i + 3];
425752c6 858
790a1662
GS
859 for (j = 0; j < total_threads; j++)
860 tg->thread_list[j] = thread_list[j];
861 i = i + 3 + total_threads;
862 }
425752c6 863
790a1662
GS
864 tglp->nr_properties = property_idx;
865
866out_free:
867 kfree(thread_group_array);
868 return ret;
425752c6
GS
869}
870
871/*
872 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
873 * that @cpu belongs to.
874 *
875 * @cpu : The logical CPU whose thread group is being searched.
876 * @tg : The thread-group structure of the CPU node which @cpu belongs
877 * to.
878 *
879 * Returns the index to tg->thread_list that points to the the start
880 * of the thread_group that @cpu belongs to.
881 *
882 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
883 * tg->thread_list.
884 */
885static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
886{
887 int hw_cpu_id = get_hard_smp_processor_id(cpu);
888 int i, j;
889
890 for (i = 0; i < tg->nr_groups; i++) {
891 int group_start = i * tg->threads_per_group;
892
893 for (j = 0; j < tg->threads_per_group; j++) {
894 int idx = group_start + j;
895
896 if (tg->thread_list[idx] == hw_cpu_id)
897 return group_start;
898 }
899 }
900
901 return -1;
902}
903
790a1662
GS
904static struct thread_groups *__init get_thread_groups(int cpu,
905 int group_property,
906 int *err)
907{
908 struct device_node *dn = of_get_cpu_node(cpu, NULL);
909 struct thread_groups_list *cpu_tgl = &tgl[cpu];
910 struct thread_groups *tg = NULL;
911 int i;
912 *err = 0;
913
914 if (!dn) {
915 *err = -ENODATA;
916 return NULL;
917 }
918
919 if (!cpu_tgl->nr_properties) {
920 *err = parse_thread_groups(dn, cpu_tgl);
921 if (*err)
922 goto out;
923 }
924
925 for (i = 0; i < cpu_tgl->nr_properties; i++) {
926 if (cpu_tgl->property_tgs[i].property == group_property) {
927 tg = &cpu_tgl->property_tgs[i];
928 break;
929 }
930 }
931
932 if (!tg)
933 *err = -EINVAL;
934out:
935 of_node_put(dn);
936 return tg;
937}
938
e9ef81e1
PS
939static int update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, int cpu, int cpu_group_start)
940{
941 int first_thread = cpu_first_thread_sibling(cpu);
942 int i;
943
944 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
945
946 for (i = first_thread; i < first_thread + threads_per_core; i++) {
947 int i_group_start = get_cpu_thread_group_start(i, tg);
948
949 if (unlikely(i_group_start == -1)) {
950 WARN_ON_ONCE(1);
951 return -ENODATA;
952 }
953
954 if (i_group_start == cpu_group_start)
955 cpumask_set_cpu(i, *mask);
956 }
957
958 return 0;
959}
960
fbd2b672 961static int __init init_thread_group_cache_map(int cpu, int cache_property)
425752c6
GS
962
963{
e9ef81e1 964 int cpu_group_start = -1, err = 0;
790a1662 965 struct thread_groups *tg = NULL;
9538abee 966 cpumask_var_t *mask = NULL;
425752c6 967
9538abee 968 if (cache_property != THREAD_GROUP_SHARE_L1 &&
e9ef81e1 969 cache_property != THREAD_GROUP_SHARE_L2_L3)
fbd2b672
GS
970 return -EINVAL;
971
972 tg = get_thread_groups(cpu, cache_property, &err);
e9ef81e1 973
790a1662
GS
974 if (!tg)
975 return err;
425752c6 976
790a1662 977 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
425752c6
GS
978
979 if (unlikely(cpu_group_start == -1)) {
980 WARN_ON_ONCE(1);
790a1662 981 return -ENODATA;
425752c6
GS
982 }
983
e9ef81e1 984 if (cache_property == THREAD_GROUP_SHARE_L1) {
9538abee 985 mask = &per_cpu(thread_group_l1_cache_map, cpu);
e9ef81e1
PS
986 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
987 }
988 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
9538abee 989 mask = &per_cpu(thread_group_l2_cache_map, cpu);
e9ef81e1
PS
990 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
991 mask = &per_cpu(thread_group_l3_cache_map, cpu);
992 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
425752c6
GS
993 }
994
e9ef81e1 995
790a1662 996 return 0;
425752c6
GS
997}
998
5e93f16a
SD
999static bool shared_caches;
1000
1001#ifdef CONFIG_SCHED_SMT
1002/* cpumask of CPUs with asymmetric SMT dependency */
1003static int powerpc_smt_flags(void)
1004{
1005 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1006
1007 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1008 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1009 flags |= SD_ASYM_PACKING;
1010 }
1011 return flags;
1012}
1013#endif
1014
1015/*
1016 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1017 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1018 * since the migrated task remains cache hot. We want to take advantage of this
1019 * at the scheduler level so an extra topology level is required.
1020 */
1021static int powerpc_shared_cache_flags(void)
1022{
1023 return SD_SHARE_PKG_RESOURCES;
1024}
1025
1026/*
1027 * We can't just pass cpu_l2_cache_mask() directly because
1028 * returns a non-const pointer and the compiler barfs on that.
1029 */
1030static const struct cpumask *shared_cache_mask(int cpu)
1031{
caa8e29d 1032 return per_cpu(cpu_l2_cache_map, cpu);
5e93f16a
SD
1033}
1034
1035#ifdef CONFIG_SCHED_SMT
1036static const struct cpumask *smallcore_smt_mask(int cpu)
1037{
1038 return cpu_smallcore_mask(cpu);
1039}
1040#endif
1041
72730bfc
SD
1042static struct cpumask *cpu_coregroup_mask(int cpu)
1043{
1044 return per_cpu(cpu_coregroup_map, cpu);
1045}
1046
1047static bool has_coregroup_support(void)
1048{
1049 return coregroup_enabled;
1050}
1051
1052static const struct cpumask *cpu_mc_mask(int cpu)
1053{
1054 return cpu_coregroup_mask(cpu);
1055}
1056
5e93f16a
SD
1057static struct sched_domain_topology_level powerpc_topology[] = {
1058#ifdef CONFIG_SCHED_SMT
1059 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1060#endif
1061 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
72730bfc 1062 { cpu_mc_mask, SD_INIT_NAME(MC) },
5e93f16a
SD
1063 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1064 { NULL, },
1065};
1066
9014eab6 1067static int __init init_big_cores(void)
425752c6
GS
1068{
1069 int cpu;
1070
1071 for_each_possible_cpu(cpu) {
fbd2b672 1072 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
425752c6
GS
1073
1074 if (err)
1075 return err;
1076
1077 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1078 GFP_KERNEL,
1079 cpu_to_node(cpu));
1080 }
1081
1082 has_big_cores = true;
9538abee
GS
1083
1084 for_each_possible_cpu(cpu) {
e9ef81e1 1085 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
9538abee
GS
1086
1087 if (err)
1088 return err;
1089 }
1090
1091 thread_group_shares_l2 = true;
e9ef81e1
PS
1092 thread_group_shares_l3 = true;
1093 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1094
425752c6
GS
1095 return 0;
1096}
1097
1da177e4
LT
1098void __init smp_prepare_cpus(unsigned int max_cpus)
1099{
1100 unsigned int cpu;
1101
1102 DBG("smp_prepare_cpus\n");
1103
1104 /*
1105 * setup_cpu may need to be called on the boot cpu. We havent
1106 * spun any cpus up but lets be paranoid.
1107 */
1108 BUG_ON(boot_cpuid != smp_processor_id());
1109
1110 /* Fixup boot cpu */
1111 smp_store_cpu_info(boot_cpuid);
1112 cpu_callin_map[boot_cpuid] = 1;
1113
cc1ba8ea
AB
1114 for_each_possible_cpu(cpu) {
1115 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1116 GFP_KERNEL, cpu_to_node(cpu));
2a636a56
OH
1117 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1118 GFP_KERNEL, cpu_to_node(cpu));
cc1ba8ea
AB
1119 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1120 GFP_KERNEL, cpu_to_node(cpu));
72730bfc
SD
1121 if (has_coregroup_support())
1122 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1123 GFP_KERNEL, cpu_to_node(cpu));
1124
a9ee6cf5 1125#ifdef CONFIG_NUMA
2fabf084
NA
1126 /*
1127 * numa_node_id() works after this.
1128 */
bc3c4327
LZ
1129 if (cpu_present(cpu)) {
1130 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1131 set_cpu_numa_mem(cpu,
1132 local_memory_node(numa_cpu_lookup_table[cpu]));
1133 }
d0fd24bb 1134#endif
cc1ba8ea
AB
1135 }
1136
df52f671 1137 /* Init the cpumasks so the boot CPU is related to itself */
cc1ba8ea 1138 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
2a636a56 1139 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
c47f892d 1140 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
cc1ba8ea 1141
72730bfc
SD
1142 if (has_coregroup_support())
1143 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1144
425752c6
GS
1145 init_big_cores();
1146 if (has_big_cores) {
1147 cpumask_set_cpu(boot_cpuid,
1148 cpu_smallcore_mask(boot_cpuid));
1149 }
1150
c1e53367 1151 if (cpu_to_chip_id(boot_cpuid) != -1) {
8efd249b 1152 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
c1e53367
SD
1153
1154 /*
1155 * All threads of a core will all belong to the same core,
1156 * chip_id_lookup_table will have one entry per core.
1157 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1158 * other CPUs, will also not have chip-id.
1159 */
1160 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1161 if (chip_id_lookup_table)
1162 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1163 }
1164
dfee0efe
CG
1165 if (smp_ops && smp_ops->probe)
1166 smp_ops->probe();
1da177e4
LT
1167}
1168
cad5cef6 1169void smp_prepare_boot_cpu(void)
1da177e4
LT
1170{
1171 BUG_ON(smp_processor_id() != boot_cpuid);
5ad57078 1172#ifdef CONFIG_PPC64
d2e60075 1173 paca_ptrs[boot_cpuid]->__current = current;
5ad57078 1174#endif
8c272261 1175 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
7c19c2e5 1176 current_set[boot_cpuid] = current;
1da177e4
LT
1177}
1178
1179#ifdef CONFIG_HOTPLUG_CPU
1da177e4
LT
1180
1181int generic_cpu_disable(void)
1182{
1183 unsigned int cpu = smp_processor_id();
1184
1185 if (cpu == boot_cpuid)
1186 return -EBUSY;
1187
ea0f1cab 1188 set_cpu_online(cpu, false);
799d6046 1189#ifdef CONFIG_PPC64
a7f290da 1190 vdso_data->processorCount--;
094fe2e7 1191#endif
a978e139
BH
1192 /* Update affinity of all IRQs previously aimed at this CPU */
1193 irq_migrate_all_off_this_cpu();
1194
687b8f24
ME
1195 /*
1196 * Depending on the details of the interrupt controller, it's possible
1197 * that one of the interrupts we just migrated away from this CPU is
1198 * actually already pending on this CPU. If we leave it in that state
1199 * the interrupt will never be EOI'ed, and will never fire again. So
1200 * temporarily enable interrupts here, to allow any pending interrupt to
1201 * be received (and EOI'ed), before we take this CPU offline.
1202 */
a978e139
BH
1203 local_irq_enable();
1204 mdelay(1);
1205 local_irq_disable();
1206
1da177e4
LT
1207 return 0;
1208}
1209
1da177e4
LT
1210void generic_cpu_die(unsigned int cpu)
1211{
1212 int i;
1213
1214 for (i = 0; i < 100; i++) {
0d8d4d42 1215 smp_rmb();
2f4f1f81 1216 if (is_cpu_dead(cpu))
1da177e4
LT
1217 return;
1218 msleep(100);
1219 }
1220 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221}
1222
105765f4
BH
1223void generic_set_cpu_dead(unsigned int cpu)
1224{
1225 per_cpu(cpu_state, cpu) = CPU_DEAD;
1226}
fb82b839 1227
ae5cab47
ZC
1228/*
1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231 * which makes the delay in generic_cpu_die() not happen.
1232 */
1233void generic_set_cpu_up(unsigned int cpu)
1234{
1235 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236}
1237
fb82b839
BH
1238int generic_check_cpu_restart(unsigned int cpu)
1239{
1240 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241}
512691d4 1242
2f4f1f81 1243int is_cpu_dead(unsigned int cpu)
1244{
1245 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246}
1247
441c19c8 1248static bool secondaries_inhibited(void)
512691d4 1249{
441c19c8 1250 return kvm_hv_mode_active();
512691d4
PM
1251}
1252
1253#else /* HOTPLUG_CPU */
1254
1255#define secondaries_inhibited() 0
1256
1da177e4
LT
1257#endif
1258
17e32eac 1259static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
c56e5853 1260{
c56e5853 1261#ifdef CONFIG_PPC64
d2e60075 1262 paca_ptrs[cpu]->__current = idle;
678c668a
CL
1263 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264 THREAD_SIZE - STACK_FRAME_OVERHEAD;
c56e5853 1265#endif
ed1cd6de 1266 idle->cpu = cpu;
7c19c2e5 1267 secondary_current = current_set[cpu] = idle;
c56e5853
BH
1268}
1269
061d19f2 1270int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1271{
c56e5853 1272 int rc, c;
1da177e4 1273
512691d4
PM
1274 /*
1275 * Don't allow secondary threads to come online if inhibited
1276 */
1277 if (threads_per_core > 1 && secondaries_inhibited() &&
6f5e40a3 1278 cpu_thread_in_subcore(cpu))
512691d4
PM
1279 return -EBUSY;
1280
8cffc6ac
BH
1281 if (smp_ops == NULL ||
1282 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1da177e4
LT
1283 return -EINVAL;
1284
17e32eac 1285 cpu_idle_thread_init(cpu, tidle);
c560bbce 1286
14d4ae5c
BH
1287 /*
1288 * The platform might need to allocate resources prior to bringing
1289 * up the CPU
1290 */
1291 if (smp_ops->prepare_cpu) {
1292 rc = smp_ops->prepare_cpu(cpu);
1293 if (rc)
1294 return rc;
1295 }
1296
1da177e4
LT
1297 /* Make sure callin-map entry is 0 (can be leftover a CPU
1298 * hotplug
1299 */
1300 cpu_callin_map[cpu] = 0;
1301
1302 /* The information for processor bringup must
1303 * be written out to main store before we release
1304 * the processor.
1305 */
0d8d4d42 1306 smp_mb();
1da177e4
LT
1307
1308 /* wake up cpus */
1309 DBG("smp: kicking cpu %d\n", cpu);
de300974
ME
1310 rc = smp_ops->kick_cpu(cpu);
1311 if (rc) {
1312 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1313 return rc;
1314 }
1da177e4
LT
1315
1316 /*
1317 * wait to see if the cpu made a callin (is actually up).
1318 * use this value that I found through experimentation.
1319 * -- Cort
1320 */
1321 if (system_state < SYSTEM_RUNNING)
ee0339f2 1322 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1da177e4
LT
1323 udelay(100);
1324#ifdef CONFIG_HOTPLUG_CPU
1325 else
1326 /*
1327 * CPUs can take much longer to come up in the
1328 * hotplug case. Wait five seconds.
1329 */
67764263
GS
1330 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1331 msleep(1);
1da177e4
LT
1332#endif
1333
1334 if (!cpu_callin_map[cpu]) {
6685a477 1335 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1da177e4
LT
1336 return -ENOENT;
1337 }
1338
6685a477 1339 DBG("Processor %u found.\n", cpu);
1da177e4
LT
1340
1341 if (smp_ops->give_timebase)
1342 smp_ops->give_timebase();
1343
875ebe94 1344 /* Wait until cpu puts itself in the online & active maps */
4e287e65 1345 spin_until_cond(cpu_online(cpu));
1da177e4
LT
1346
1347 return 0;
1348}
1349
e9efed3b
NL
1350/* Return the value of the reg property corresponding to the given
1351 * logical cpu.
1352 */
1353int cpu_to_core_id(int cpu)
1354{
1355 struct device_node *np;
f8a1883a 1356 const __be32 *reg;
e9efed3b
NL
1357 int id = -1;
1358
1359 np = of_get_cpu_node(cpu, NULL);
1360 if (!np)
1361 goto out;
1362
1363 reg = of_get_property(np, "reg", NULL);
1364 if (!reg)
1365 goto out;
1366
f8a1883a 1367 id = be32_to_cpup(reg);
e9efed3b
NL
1368out:
1369 of_node_put(np);
1370 return id;
1371}
f8ab4810 1372EXPORT_SYMBOL_GPL(cpu_to_core_id);
e9efed3b 1373
99d86705
VS
1374/* Helper routines for cpu to core mapping */
1375int cpu_core_index_of_thread(int cpu)
1376{
1377 return cpu >> threads_shift;
1378}
1379EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1380
1381int cpu_first_thread_of_core(int core)
1382{
1383 return core << threads_shift;
1384}
1385EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1386
104699c0 1387/* Must be called when no change can occur to cpu_present_mask,
440a0857
NL
1388 * i.e. during cpu online or offline.
1389 */
1390static struct device_node *cpu_to_l2cache(int cpu)
1391{
1392 struct device_node *np;
b2ea25b9 1393 struct device_node *cache;
440a0857
NL
1394
1395 if (!cpu_present(cpu))
1396 return NULL;
1397
1398 np = of_get_cpu_node(cpu, NULL);
1399 if (np == NULL)
1400 return NULL;
1401
b2ea25b9
NL
1402 cache = of_find_next_cache_node(np);
1403
440a0857
NL
1404 of_node_put(np);
1405
b2ea25b9 1406 return cache;
440a0857 1407}
1da177e4 1408
84dbf66c 1409static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
a8a5356c 1410{
3ab33d6d 1411 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
256f2d4b 1412 struct device_node *l2_cache, *np;
e3d8b67e 1413 int i;
256f2d4b 1414
966730a6
SD
1415 if (has_big_cores)
1416 submask_fn = cpu_smallcore_mask;
1417
9538abee
GS
1418 /*
1419 * If the threads in a thread-group share L2 cache, then the
1420 * L2-mask can be obtained from thread_group_l2_cache_map.
1421 */
1422 if (thread_group_shares_l2) {
1423 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1424
1425 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1426 if (cpu_online(i))
1427 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1428 }
1429
1430 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1431 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1432 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1433 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1434 cpu);
1435 }
1436
1437 return true;
1438 }
1439
a8a5356c 1440 l2_cache = cpu_to_l2cache(cpu);
84dbf66c
SD
1441 if (!l2_cache || !*mask) {
1442 /* Assume only core siblings share cache with this CPU */
5bf63497 1443 for_each_cpu(i, cpu_sibling_mask(cpu))
f6606cfd
SD
1444 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1445
df52f671 1446 return false;
f6606cfd 1447 }
df52f671 1448
84dbf66c 1449 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
3ab33d6d 1450
3ab33d6d
SD
1451 /* Update l2-cache mask with all the CPUs that are part of submask */
1452 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1453
1454 /* Skip all CPUs already part of current CPU l2-cache mask */
84dbf66c 1455 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
3ab33d6d 1456
84dbf66c 1457 for_each_cpu(i, *mask) {
df52f671
OH
1458 /*
1459 * when updating the marks the current CPU has not been marked
1460 * online, but we need to update the cache masks
1461 */
256f2d4b 1462 np = cpu_to_l2cache(i);
df52f671 1463
3ab33d6d
SD
1464 /* Skip all CPUs already part of current CPU l2-cache */
1465 if (np == l2_cache) {
1466 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
84dbf66c 1467 cpumask_andnot(*mask, *mask, submask_fn(i));
3ab33d6d 1468 } else {
84dbf66c 1469 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
3ab33d6d 1470 }
df52f671 1471
a8a5356c
PM
1472 of_node_put(np);
1473 }
1474 of_node_put(l2_cache);
df52f671
OH
1475
1476 return true;
1477}
1478
1479#ifdef CONFIG_HOTPLUG_CPU
1480static void remove_cpu_from_masks(int cpu)
1481{
70edd4a7 1482 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
df52f671
OH
1483 int i;
1484
9a245d0e
SD
1485 unmap_cpu_from_node(cpu);
1486
70edd4a7
SD
1487 if (shared_caches)
1488 mask_fn = cpu_l2_cache_mask;
1489
1490 for_each_cpu(i, mask_fn(cpu)) {
2a636a56 1491 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
df52f671 1492 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
425752c6
GS
1493 if (has_big_cores)
1494 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
70edd4a7
SD
1495 }
1496
c47f892d
SD
1497 for_each_cpu(i, cpu_core_mask(cpu))
1498 set_cpus_unrelated(cpu, i, cpu_core_mask);
1499
70edd4a7
SD
1500 if (has_coregroup_support()) {
1501 for_each_cpu(i, cpu_coregroup_mask(cpu))
72730bfc 1502 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
df52f671
OH
1503 }
1504}
1505#endif
1506
425752c6
GS
1507static inline void add_cpu_to_smallcore_masks(int cpu)
1508{
661e3d42 1509 int i;
425752c6
GS
1510
1511 if (!has_big_cores)
1512 return;
1513
1514 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1515
1fdc1d66 1516 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
661e3d42 1517 if (cpu_online(i))
425752c6
GS
1518 set_cpus_related(i, cpu, cpu_smallcore_mask);
1519 }
1520}
1521
84dbf66c 1522static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
b8a97cb4 1523{
70a94089 1524 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
b8a97cb4
SD
1525 int coregroup_id = cpu_to_coregroup_id(cpu);
1526 int i;
1527
70a94089
SD
1528 if (shared_caches)
1529 submask_fn = cpu_l2_cache_mask;
1530
84dbf66c
SD
1531 if (!*mask) {
1532 /* Assume only siblings are part of this CPU's coregroup */
1533 for_each_cpu(i, submask_fn(cpu))
1534 set_cpus_related(cpu, i, cpu_coregroup_mask);
1535
1536 return;
1537 }
1538
1539 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1540
70a94089
SD
1541 /* Update coregroup mask with all the CPUs that are part of submask */
1542 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1543
1544 /* Skip all CPUs already part of coregroup mask */
84dbf66c 1545 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
b8a97cb4 1546
84dbf66c 1547 for_each_cpu(i, *mask) {
70a94089
SD
1548 /* Skip all CPUs not part of this coregroup */
1549 if (coregroup_id == cpu_to_coregroup_id(i)) {
1550 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
84dbf66c 1551 cpumask_andnot(*mask, *mask, submask_fn(i));
70a94089 1552 } else {
84dbf66c 1553 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
70a94089 1554 }
b8a97cb4
SD
1555 }
1556}
1557
df52f671
OH
1558static void add_cpu_to_masks(int cpu)
1559{
c47f892d 1560 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
df52f671 1561 int first_thread = cpu_first_thread_sibling(cpu);
84dbf66c 1562 cpumask_var_t mask;
c1e53367 1563 int chip_id = -1;
c47f892d 1564 bool ret;
df52f671
OH
1565 int i;
1566
1567 /*
1568 * This CPU will not be in the online mask yet so we need to manually
1569 * add it to it's own thread sibling mask.
1570 */
9a245d0e 1571 map_cpu_to_node(cpu, cpu_to_node(cpu));
df52f671 1572 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
b8b92803 1573 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
df52f671
OH
1574
1575 for (i = first_thread; i < first_thread + threads_per_core; i++)
1576 if (cpu_online(i))
1577 set_cpus_related(i, cpu, cpu_sibling_mask);
1578
425752c6 1579 add_cpu_to_smallcore_masks(cpu);
84dbf66c
SD
1580
1581 /* In CPU-hotplug path, hence use GFP_ATOMIC */
c47f892d 1582 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
84dbf66c 1583 update_mask_by_l2(cpu, &mask);
2a636a56 1584
b8a97cb4 1585 if (has_coregroup_support())
84dbf66c
SD
1586 update_coregroup_mask(cpu, &mask);
1587
c1e53367
SD
1588 if (chip_id_lookup_table && ret)
1589 chip_id = cpu_to_chip_id(cpu);
1590
c47f892d
SD
1591 if (shared_caches)
1592 submask_fn = cpu_l2_cache_mask;
1593
1594 /* Update core_mask with all the CPUs that are part of submask */
1595 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1596
1597 /* Skip all CPUs already part of current CPU core mask */
1598 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1599
b8b92803
SD
1600 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1601 if (chip_id == -1)
1602 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1603
c47f892d
SD
1604 for_each_cpu(i, mask) {
1605 if (chip_id == cpu_to_chip_id(i)) {
1606 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1607 cpumask_andnot(mask, mask, submask_fn(i));
1608 } else {
1609 cpumask_andnot(mask, mask, cpu_core_mask(i));
1610 }
1611 }
1612
84dbf66c 1613 free_cpumask_var(mask);
a8a5356c
PM
1614}
1615
1da177e4 1616/* Activate a secondary processor. */
061d19f2 1617void start_secondary(void *unused)
1da177e4 1618{
99f070b6 1619 unsigned int cpu = raw_smp_processor_id();
1da177e4 1620
86f46f34
CL
1621 /* PPC64 calls setup_kup() in early_setup_secondary() */
1622 if (IS_ENABLED(CONFIG_PPC32))
1623 setup_kup();
1624
f1f10076 1625 mmgrab(&init_mm);
1da177e4
LT
1626 current->active_mm = &init_mm;
1627
1628 smp_store_cpu_info(cpu);
5ad57078 1629 set_dec(tb_ticks_per_jiffy);
99f070b6 1630 rcu_cpu_starting(cpu);
1be6f10f 1631 cpu_callin_map[cpu] = 1;
1da177e4 1632
757cbd46
KG
1633 if (smp_ops->setup_cpu)
1634 smp_ops->setup_cpu(cpu);
1da177e4
LT
1635 if (smp_ops->take_timebase)
1636 smp_ops->take_timebase();
1637
d831d0b8
TB
1638 secondary_cpu_time_init();
1639
aeeafbfa
BH
1640#ifdef CONFIG_PPC64
1641 if (system_state == SYSTEM_RUNNING)
1642 vdso_data->processorCount++;
18ad51dd
AB
1643
1644 vdso_getcpu_init();
aeeafbfa 1645#endif
6980d13f
SD
1646 set_numa_node(numa_cpu_lookup_table[cpu]);
1647 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1648
df52f671
OH
1649 /* Update topology CPU masks */
1650 add_cpu_to_masks(cpu);
1da177e4 1651
96d91431
OH
1652 /*
1653 * Check for any shared caches. Note that this must be done on a
1654 * per-core basis because one core in the pair might be disabled.
1655 */
caa8e29d
SD
1656 if (!shared_caches) {
1657 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1658 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1659
1660 if (has_big_cores)
1661 sibling_mask = cpu_smallcore_mask;
1662
1663 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1664 shared_caches = true;
1665 }
96d91431 1666
cce606fe
LZ
1667 smp_wmb();
1668 notify_cpu_starting(cpu);
1669 set_cpu_online(cpu, true);
1670
b6aeddea
ME
1671 boot_init_stack_canary();
1672
1da177e4
LT
1673 local_irq_enable();
1674
d1039786
NR
1675 /* We can enable ftrace for secondary cpus now */
1676 this_cpu_enable_ftrace();
1677
fc6d73d6 1678 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
fa3f82c8
BH
1679
1680 BUG();
1da177e4
LT
1681}
1682
c420f630 1683#ifdef CONFIG_PROFILING
1da177e4
LT
1684int setup_profiling_timer(unsigned int multiplier)
1685{
1686 return 0;
1687}
c420f630 1688#endif
1da177e4 1689
3c6032a8
SD
1690static void fixup_topology(void)
1691{
375370a1
SD
1692 int i;
1693
3c6032a8
SD
1694#ifdef CONFIG_SCHED_SMT
1695 if (has_big_cores) {
1696 pr_info("Big cores detected but using small core scheduling\n");
72730bfc 1697 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
3c6032a8
SD
1698 }
1699#endif
72730bfc
SD
1700
1701 if (!has_coregroup_support())
1702 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
375370a1
SD
1703
1704 /*
1705 * Try to consolidate topology levels here instead of
1706 * allowing scheduler to degenerate.
1707 * - Dont consolidate if masks are different.
1708 * - Dont consolidate if sd_flags exists and are different.
1709 */
1710 for (i = 1; i <= die_idx; i++) {
1711 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1712 continue;
1713
1714 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1715 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1716 continue;
1717
1718 if (!powerpc_topology[i - 1].sd_flags)
1719 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1720
1721 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1722 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1723#ifdef CONFIG_SCHED_DEBUG
1724 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1725#endif
1726 }
3c6032a8
SD
1727}
1728
6d11b87d
TG
1729void __init smp_cpus_done(unsigned int max_cpus)
1730{
1731 /*
7b7622bb 1732 * We are running pinned to the boot CPU, see rest_init().
1da177e4 1733 */
757cbd46 1734 if (smp_ops && smp_ops->setup_cpu)
7b7622bb 1735 smp_ops->setup_cpu(boot_cpuid);
4b703a23 1736
d7294445
BH
1737 if (smp_ops && smp_ops->bringup_done)
1738 smp_ops->bringup_done();
1739
4b703a23 1740 dump_numa_cpu_topology();
d7294445 1741
3c6032a8 1742 fixup_topology();
2ef0ca54 1743 set_sched_topology(powerpc_topology);
e1f0ece1
MN
1744}
1745
1da177e4
LT
1746#ifdef CONFIG_HOTPLUG_CPU
1747int __cpu_disable(void)
1748{
e2075f79 1749 int cpu = smp_processor_id();
e2075f79 1750 int err;
1da177e4 1751
e2075f79
NL
1752 if (!smp_ops->cpu_disable)
1753 return -ENOSYS;
1754
424ef016
NR
1755 this_cpu_disable_ftrace();
1756
e2075f79
NL
1757 err = smp_ops->cpu_disable();
1758 if (err)
1759 return err;
1760
1761 /* Update sibling maps */
df52f671 1762 remove_cpu_from_masks(cpu);
e2075f79
NL
1763
1764 return 0;
1da177e4
LT
1765}
1766
1767void __cpu_die(unsigned int cpu)
1768{
1769 if (smp_ops->cpu_die)
1770 smp_ops->cpu_die(cpu);
1771}
d0174c72 1772
1ea21ba2
ME
1773void arch_cpu_idle_dead(void)
1774{
424ef016
NR
1775 /*
1776 * Disable on the down path. This will be re-enabled by
1777 * start_secondary() via start_secondary_resume() below
1778 */
1779 this_cpu_disable_ftrace();
1780
39f87561
ME
1781 if (smp_ops->cpu_offline_self)
1782 smp_ops->cpu_offline_self();
fa3f82c8
BH
1783
1784 /* If we return, we re-enter start_secondary */
1785 start_secondary_resume();
abb17f9c 1786}
fa3f82c8 1787
1da177e4 1788#endif