]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/kernel/time.c
openrisc: prefer memblock APIs returning virtual address
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1da177e4
LT
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4 45#include <linux/time.h>
0d948730 46#include <linux/clockchips.h>
1da177e4
LT
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
7d12e780 55#include <linux/irq.h>
177996e6 56#include <linux/delay.h>
e360adbe 57#include <linux/irq_work.h>
f0d37300 58#include <linux/clk-provider.h>
7f92bc56 59#include <linux/suspend.h>
32ef5517 60#include <linux/sched/cputime.h>
4e287e65 61#include <linux/processor.h>
6795b85c 62#include <asm/trace.h>
1da177e4 63
1da177e4 64#include <asm/io.h>
1da177e4
LT
65#include <asm/nvram.h>
66#include <asm/cache.h>
67#include <asm/machdep.h>
7c0f6ba6 68#include <linux/uaccess.h>
1da177e4 69#include <asm/time.h>
1da177e4 70#include <asm/prom.h>
f2783c15
PM
71#include <asm/irq.h>
72#include <asm/div64.h>
2249ca9d 73#include <asm/smp.h>
a7f290da 74#include <asm/vdso_datapage.h>
1ababe11 75#include <asm/firmware.h>
0545d543 76#include <asm/asm-prototypes.h>
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
189374ae 81#include <linux/timekeeper_internal.h>
4a4cfe38 82
a5a1d1c2 83static u64 rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
89 .read = rtc_read,
90};
91
a5a1d1c2 92static u64 timebase_read(struct clocksource *);
4a4cfe38
TB
93static struct clocksource clocksource_timebase = {
94 .name = "timebase",
95 .rating = 400,
96 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
97 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
98 .read = timebase_read,
99};
100
79901024
OH
101#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
102u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
d831d0b8
TB
103
104static int decrementer_set_next_event(unsigned long evt,
105 struct clock_event_device *dev);
37a13e78 106static int decrementer_shutdown(struct clock_event_device *evt);
d831d0b8 107
6e35994d 108struct clock_event_device decrementer_clockevent = {
37a13e78
VK
109 .name = "decrementer",
110 .rating = 200,
111 .irq = 0,
112 .set_next_event = decrementer_set_next_event,
81759360 113 .set_state_oneshot_stopped = decrementer_shutdown,
37a13e78
VK
114 .set_state_shutdown = decrementer_shutdown,
115 .tick_resume = decrementer_shutdown,
116 .features = CLOCK_EVT_FEAT_ONESHOT |
117 CLOCK_EVT_FEAT_C3STOP,
d831d0b8 118};
6e35994d 119EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 120
7df10275
AB
121DEFINE_PER_CPU(u64, decrementers_next_tb);
122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 123
1da177e4
LT
124#define XSEC_PER_SEC (1024*1024)
125
f2783c15
PM
126#ifdef CONFIG_PPC64
127#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
128#else
129/* compute ((xsec << 12) * max) >> 32 */
130#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
131#endif
132
1da177e4
LT
133unsigned long tb_ticks_per_jiffy;
134unsigned long tb_ticks_per_usec = 100; /* sane default */
135EXPORT_SYMBOL(tb_ticks_per_usec);
136unsigned long tb_ticks_per_sec;
2cf82c02 137EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 138
1da177e4 139DEFINE_SPINLOCK(rtc_lock);
6ae3db11 140EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 141
fc9069fe
TB
142static u64 tb_to_ns_scale __read_mostly;
143static unsigned tb_to_ns_shift __read_mostly;
364a1246 144static u64 boot_tb __read_mostly;
1da177e4 145
1da177e4 146extern struct timezone sys_tz;
f2783c15 147static long timezone_offset;
1da177e4 148
10f7e7c1 149unsigned long ppc_proc_freq;
55ec2fca 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 151unsigned long ppc_tb_freq;
55ec2fca 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 153
abf917cd 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63 155/*
e7f340ca
FW
156 * Factor for converting from cputime_t (timebase ticks) to
157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
c6622f63 158 */
9f5072d4
AS
159u64 __cputime_usec_factor;
160EXPORT_SYMBOL(__cputime_usec_factor);
a42548a1 161
c223c903 162#ifdef CONFIG_PPC_SPLPAR
872e439a 163void (*dtl_consumer)(struct dtl_entry *, u64);
c223c903
CL
164#endif
165
c6622f63
PM
166static void calc_cputime_factors(void)
167{
168 struct div_result res;
169
9f5072d4
AS
170 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
171 __cputime_usec_factor = res.result_low;
c6622f63
PM
172}
173
174/*
cf9efce0
PM
175 * Read the SPURR on systems that have it, otherwise the PURR,
176 * or if that doesn't exist return the timebase value passed in.
c6622f63 177 */
abcff86d 178static inline unsigned long read_spurr(unsigned long tb)
c6622f63 179{
cf9efce0
PM
180 if (cpu_has_feature(CPU_FTR_SPURR))
181 return mfspr(SPRN_SPURR);
c6622f63
PM
182 if (cpu_has_feature(CPU_FTR_PURR))
183 return mfspr(SPRN_PURR);
cf9efce0 184 return tb;
c6622f63
PM
185}
186
cf9efce0
PM
187#ifdef CONFIG_PPC_SPLPAR
188
4603ac18 189/*
cf9efce0
PM
190 * Scan the dispatch trace log and count up the stolen time.
191 * Should be called with interrupts disabled.
4603ac18 192 */
cf9efce0 193static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 194{
872e439a 195 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
196 struct dtl_entry *dtl = local_paca->dtl_curr;
197 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
198 struct lppaca *vpa = local_paca->lppaca_ptr;
199 u64 tb_delta;
200 u64 stolen = 0;
201 u64 dtb;
202
84ffae55
AB
203 if (!dtl)
204 return 0;
205
7ffcf8ec 206 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 207 return 0;
7ffcf8ec 208 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
209 dtb = be64_to_cpu(dtl->timebase);
210 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
211 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 212 barrier();
7ffcf8ec 213 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 214 /* buffer has overflowed */
7ffcf8ec 215 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
216 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
217 continue;
218 }
219 if (dtb > stop_tb)
220 break;
84b07386
AB
221 if (dtl_consumer)
222 dtl_consumer(dtl, i);
cf9efce0
PM
223 stolen += tb_delta;
224 ++i;
225 ++dtl;
226 if (dtl == dtl_end)
227 dtl = local_paca->dispatch_log;
228 }
229 local_paca->dtl_ridx = i;
230 local_paca->dtl_curr = dtl;
231 return stolen;
4603ac18
MN
232}
233
cf9efce0
PM
234/*
235 * Accumulate stolen time by scanning the dispatch trace log.
236 * Called on entry from user mode.
237 */
238void accumulate_stolen_time(void)
239{
240 u64 sst, ust;
4e26bc4a 241 unsigned long save_irq_soft_mask = irq_soft_mask_return();
c223c903 242 struct cpu_accounting_data *acct = &local_paca->accounting;
b18ae08d
TH
243
244 /* We are called early in the exception entry, before
245 * soft/hard_enabled are sync'ed to the expected state
246 * for the exception. We are hard disabled but the PACA
247 * needs to reflect that so various debug stuff doesn't
248 * complain
249 */
4e26bc4a 250 irq_soft_mask_set(IRQS_DISABLED);
b18ae08d 251
c223c903
CL
252 sst = scan_dispatch_log(acct->starttime_user);
253 ust = scan_dispatch_log(acct->starttime);
8c8b73c4
FW
254 acct->stime -= sst;
255 acct->utime -= ust;
f828c3d0 256 acct->steal_time += ust + sst;
b18ae08d 257
4e26bc4a 258 irq_soft_mask_set(save_irq_soft_mask);
cf9efce0
PM
259}
260
261static inline u64 calculate_stolen_time(u64 stop_tb)
262{
a6201da3
AK
263 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
264 return 0;
265
a19ff1a2
FW
266 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
267 return scan_dispatch_log(stop_tb);
cf9efce0 268
a19ff1a2 269 return 0;
4603ac18
MN
270}
271
cf9efce0
PM
272#else /* CONFIG_PPC_SPLPAR */
273static inline u64 calculate_stolen_time(u64 stop_tb)
274{
275 return 0;
276}
277
278#endif /* CONFIG_PPC_SPLPAR */
279
c6622f63
PM
280/*
281 * Account time for a transition between system, hard irq
282 * or soft irq state.
283 */
b38a181c
CL
284static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
285 unsigned long now, unsigned long stime)
c6622f63 286{
abcff86d
CL
287 unsigned long stime_scaled = 0;
288#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
b38a181c 289 unsigned long nowscaled, deltascaled;
a19ff1a2 290 unsigned long utime, utime_scaled;
c6622f63 291
4603ac18 292 nowscaled = read_spurr(now);
c223c903
CL
293 deltascaled = nowscaled - acct->startspurr;
294 acct->startspurr = nowscaled;
a19ff1a2 295 utime = acct->utime - acct->utime_sspurr;
8c8b73c4 296 acct->utime_sspurr = acct->utime;
cf9efce0
PM
297
298 /*
299 * Because we don't read the SPURR on every kernel entry/exit,
300 * deltascaled includes both user and system SPURR ticks.
301 * Apportion these ticks to system SPURR ticks and user
302 * SPURR ticks in the same ratio as the system time (delta)
303 * and user time (udelta) values obtained from the timebase
304 * over the same interval. The system ticks get accounted here;
305 * the user ticks get saved up in paca->user_time_scaled to be
306 * used by account_process_tick.
307 */
b38a181c 308 stime_scaled = stime;
a19ff1a2
FW
309 utime_scaled = utime;
310 if (deltascaled != stime + utime) {
311 if (utime) {
b38a181c
CL
312 stime_scaled = deltascaled * stime / (stime + utime);
313 utime_scaled = deltascaled - stime_scaled;
cf9efce0 314 } else {
b38a181c 315 stime_scaled = deltascaled;
cf9efce0
PM
316 }
317 }
a19ff1a2 318 acct->utime_scaled += utime_scaled;
abcff86d 319#endif
cf9efce0 320
b38a181c
CL
321 return stime_scaled;
322}
323
324static unsigned long vtime_delta(struct task_struct *tsk,
325 unsigned long *stime_scaled,
326 unsigned long *steal_time)
327{
328 unsigned long now, stime;
329 struct cpu_accounting_data *acct = get_accounting(tsk);
330
331 WARN_ON_ONCE(!irqs_disabled());
332
333 now = mftb();
334 stime = now - acct->starttime;
335 acct->starttime = now;
336
337 *stime_scaled = vtime_delta_scaled(acct, now, stime);
338
339 *steal_time = calculate_stolen_time(now);
340
a19ff1a2 341 return stime;
a7e1a9e3
FW
342}
343
fd25b4c2 344void vtime_account_system(struct task_struct *tsk)
a7e1a9e3 345{
a19ff1a2
FW
346 unsigned long stime, stime_scaled, steal_time;
347 struct cpu_accounting_data *acct = get_accounting(tsk);
348
349 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
350
351 stime -= min(stime, steal_time);
352 acct->steal_time += steal_time;
a7e1a9e3 353
a19ff1a2
FW
354 if ((tsk->flags & PF_VCPU) && !irq_count()) {
355 acct->gtime += stime;
abcff86d 356#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
a19ff1a2 357 acct->utime_scaled += stime_scaled;
abcff86d 358#endif
a19ff1a2
FW
359 } else {
360 if (hardirq_count())
361 acct->hardirq_time += stime;
362 else if (in_serving_softirq())
363 acct->softirq_time += stime;
364 else
365 acct->stime += stime;
366
abcff86d 367#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
a19ff1a2 368 acct->stime_scaled += stime_scaled;
abcff86d 369#endif
a19ff1a2 370 }
a7e1a9e3 371}
c11f11fc 372EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 373
fd25b4c2 374void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3 375{
a19ff1a2
FW
376 unsigned long stime, stime_scaled, steal_time;
377 struct cpu_accounting_data *acct = get_accounting(tsk);
a7e1a9e3 378
a19ff1a2
FW
379 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
380 acct->idle_time += stime + steal_time;
c6622f63
PM
381}
382
b38a181c
CL
383static void vtime_flush_scaled(struct task_struct *tsk,
384 struct cpu_accounting_data *acct)
385{
abcff86d 386#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
b38a181c
CL
387 if (acct->utime_scaled)
388 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
389 if (acct->stime_scaled)
390 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
391
392 acct->utime_scaled = 0;
393 acct->utime_sspurr = 0;
394 acct->stime_scaled = 0;
abcff86d 395#endif
b38a181c
CL
396}
397
c6622f63 398/*
c8d7dabf 399 * Account the whole cputime accumulated in the paca
c6622f63 400 * Must be called with interrupts disabled.
bcebdf84
FW
401 * Assumes that vtime_account_system/idle() has been called
402 * recently (i.e. since the last entry from usermode) so that
cf9efce0 403 * get_paca()->user_time_scaled is up to date.
c6622f63 404 */
c8d7dabf 405void vtime_flush(struct task_struct *tsk)
c6622f63 406{
c223c903 407 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 408
a19ff1a2 409 if (acct->utime)
23244a5c 410 account_user_time(tsk, cputime_to_nsecs(acct->utime));
a19ff1a2 411
a19ff1a2 412 if (acct->gtime)
fb8b049c 413 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
a19ff1a2 414
51eeef9e 415 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
be9095ed 416 account_steal_time(cputime_to_nsecs(acct->steal_time));
51eeef9e
CL
417 acct->steal_time = 0;
418 }
a19ff1a2
FW
419
420 if (acct->idle_time)
18b43a9b 421 account_idle_time(cputime_to_nsecs(acct->idle_time));
a19ff1a2
FW
422
423 if (acct->stime)
fb8b049c
FW
424 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
425 CPUTIME_SYSTEM);
a19ff1a2
FW
426
427 if (acct->hardirq_time)
fb8b049c
FW
428 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
429 CPUTIME_IRQ);
a19ff1a2 430 if (acct->softirq_time)
fb8b049c
FW
431 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
432 CPUTIME_SOFTIRQ);
a19ff1a2 433
b38a181c
CL
434 vtime_flush_scaled(tsk, acct);
435
8c8b73c4 436 acct->utime = 0;
a19ff1a2 437 acct->gtime = 0;
a19ff1a2
FW
438 acct->idle_time = 0;
439 acct->stime = 0;
a19ff1a2
FW
440 acct->hardirq_time = 0;
441 acct->softirq_time = 0;
c6622f63
PM
442}
443
abf917cd 444#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 445#define calc_cputime_factors()
c6622f63
PM
446#endif
447
6defa38b
PM
448void __delay(unsigned long loops)
449{
450 unsigned long start;
451 int diff;
452
4e287e65 453 spin_begin();
6defa38b
PM
454 if (__USE_RTC()) {
455 start = get_rtcl();
456 do {
457 /* the RTCL register wraps at 1000000000 */
458 diff = get_rtcl() - start;
459 if (diff < 0)
460 diff += 1000000000;
4e287e65 461 spin_cpu_relax();
6defa38b
PM
462 } while (diff < loops);
463 } else {
464 start = get_tbl();
465 while (get_tbl() - start < loops)
4e287e65 466 spin_cpu_relax();
6defa38b 467 }
4e287e65 468 spin_end();
6defa38b
PM
469}
470EXPORT_SYMBOL(__delay);
471
472void udelay(unsigned long usecs)
473{
474 __delay(tb_ticks_per_usec * usecs);
475}
476EXPORT_SYMBOL(udelay);
477
1da177e4
LT
478#ifdef CONFIG_SMP
479unsigned long profile_pc(struct pt_regs *regs)
480{
481 unsigned long pc = instruction_pointer(regs);
482
483 if (in_lock_functions(pc))
484 return regs->link;
485
486 return pc;
487}
488EXPORT_SYMBOL(profile_pc);
489#endif
490
e360adbe 491#ifdef CONFIG_IRQ_WORK
105988c0 492
0fe1ac48
PM
493/*
494 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
495 */
496#ifdef CONFIG_PPC64
e360adbe 497static inline unsigned long test_irq_work_pending(void)
105988c0 498{
0fe1ac48
PM
499 unsigned long x;
500
501 asm volatile("lbz %0,%1(13)"
502 : "=r" (x)
e360adbe 503 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
504 return x;
505}
506
e360adbe 507static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
508{
509 asm volatile("stb %0,%1(13)" : :
510 "r" (1),
e360adbe 511 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
512}
513
e360adbe 514static inline void clear_irq_work_pending(void)
0fe1ac48
PM
515{
516 asm volatile("stb %0,%1(13)" : :
517 "r" (0),
e360adbe 518 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
519}
520
ebb37cf3
NP
521void arch_irq_work_raise(void)
522{
523 preempt_disable();
524 set_irq_work_pending_flag();
525 /*
526 * Non-nmi code running with interrupts disabled will replay
527 * irq_happened before it re-enables interrupts, so setthe
528 * decrementer there instead of causing a hardware exception
529 * which would immediately hit the masked interrupt handler
530 * and have the net effect of setting the decrementer in
531 * irq_happened.
532 *
533 * NMI interrupts can not check this when they return, so the
534 * decrementer hardware exception is raised, which will fire
535 * when interrupts are next enabled.
536 *
537 * BookE does not support this yet, it must audit all NMI
538 * interrupt handlers to ensure they call nmi_enter() so this
539 * check would be correct.
540 */
541 if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
542 set_dec(1);
543 } else {
544 hard_irq_disable();
545 local_paca->irq_happened |= PACA_IRQ_DEC;
546 }
547 preempt_enable();
548}
549
0fe1ac48
PM
550#else /* 32-bit */
551
e360adbe 552DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 553
69111bac
CL
554#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
555#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
556#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
105988c0 557
4f8b50bb 558void arch_irq_work_raise(void)
0fe1ac48
PM
559{
560 preempt_disable();
e360adbe 561 set_irq_work_pending_flag();
0fe1ac48
PM
562 set_dec(1);
563 preempt_enable();
564}
565
ebb37cf3
NP
566#endif /* 32 vs 64 bit */
567
e360adbe 568#else /* CONFIG_IRQ_WORK */
105988c0 569
e360adbe
PZ
570#define test_irq_work_pending() 0
571#define clear_irq_work_pending()
105988c0 572
e360adbe 573#endif /* CONFIG_IRQ_WORK */
105988c0 574
1da177e4
LT
575/*
576 * timer_interrupt - gets called when the decrementer overflows,
577 * with interrupts disabled.
578 */
3f984620 579void timer_interrupt(struct pt_regs *regs)
1da177e4 580{
3f984620 581 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
69111bac 582 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
3f984620
NP
583 struct pt_regs *old_regs;
584 u64 now;
d831d0b8 585
963e5d3b 586 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
587 * offline, just ignore these and we also need to set
588 * decrementers_next_tb as MAX to make sure __check_irq_replay
589 * don't replay timer interrupt when return, otherwise we'll trap
590 * here infinitely :(
963e5d3b 591 */
a7cba02d 592 if (unlikely(!cpu_online(smp_processor_id()))) {
689dfa89 593 *next_tb = ~(u64)0;
a7cba02d 594 set_dec(decrementer_max);
963e5d3b 595 return;
689dfa89 596 }
963e5d3b 597
a7cba02d
NP
598 /* Ensure a positive value is written to the decrementer, or else
599 * some CPUs will continue to take decrementer exceptions. When the
600 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
601 * 31 bits, which is about 4 seconds on most systems, which gives
602 * the watchdog a chance of catching timer interrupt hard lockups.
603 */
604 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
605 set_dec(0x7fffffff);
606 else
607 set_dec(decrementer_max);
608
7230c564
BH
609 /* Conditionally hard-enable interrupts now that the DEC has been
610 * bumped to its maximum value
611 */
612 may_hard_irq_enable();
613
89713ed1 614
6e0fdf9a 615#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
f2783c15
PM
616 if (atomic_read(&ppc_n_lost_interrupts) != 0)
617 do_IRQ(regs);
618#endif
1da177e4 619
7d12e780 620 old_regs = set_irq_regs(regs);
1da177e4 621 irq_enter();
3f984620
NP
622 trace_timer_interrupt_entry(regs);
623
624 if (test_irq_work_pending()) {
625 clear_irq_work_pending();
626 irq_work_run();
627 }
628
629 now = get_tb_or_rtc();
630 if (now >= *next_tb) {
631 *next_tb = ~(u64)0;
632 if (evt->event_handler)
633 evt->event_handler(evt);
634 __this_cpu_inc(irq_stat.timer_irqs_event);
635 } else {
636 now = *next_tb - now;
637 if (now <= decrementer_max)
638 set_dec(now);
639 /* We may have raced with new irq work */
640 if (test_irq_work_pending())
641 set_dec(1);
642 __this_cpu_inc(irq_stat.timer_irqs_others);
643 }
1da177e4 644
3f984620 645 trace_timer_interrupt_exit(regs);
1da177e4 646 irq_exit();
7d12e780 647 set_irq_regs(old_regs);
1da177e4 648}
9445aa1a 649EXPORT_SYMBOL(timer_interrupt);
1da177e4 650
bc907113 651#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
3f984620
NP
652void timer_broadcast_interrupt(void)
653{
654 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
3f984620 655
3f984620
NP
656 *next_tb = ~(u64)0;
657 tick_receive_broadcast();
e360cd37 658 __this_cpu_inc(irq_stat.broadcast_irqs_event);
3f984620 659}
bc907113 660#endif
3f984620 661
dabe859e
PM
662/*
663 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
664 * left pending on exit from a KVM guest. We don't need to do anything
665 * to clear them, as they are edge-triggered.
666 */
667void hdec_interrupt(struct pt_regs *regs)
668{
669}
670
7ac5dde9 671#ifdef CONFIG_SUSPEND
d75d68cf 672static void generic_suspend_disable_irqs(void)
7ac5dde9 673{
7ac5dde9
SW
674 /* Disable the decrementer, so that it doesn't interfere
675 * with suspending.
676 */
677
79901024 678 set_dec(decrementer_max);
7ac5dde9 679 local_irq_disable();
79901024 680 set_dec(decrementer_max);
7ac5dde9
SW
681}
682
d75d68cf 683static void generic_suspend_enable_irqs(void)
7ac5dde9 684{
7ac5dde9 685 local_irq_enable();
7ac5dde9
SW
686}
687
688/* Overrides the weak version in kernel/power/main.c */
689void arch_suspend_disable_irqs(void)
690{
691 if (ppc_md.suspend_disable_irqs)
692 ppc_md.suspend_disable_irqs();
693 generic_suspend_disable_irqs();
694}
695
696/* Overrides the weak version in kernel/power/main.c */
697void arch_suspend_enable_irqs(void)
698{
699 generic_suspend_enable_irqs();
700 if (ppc_md.suspend_enable_irqs)
701 ppc_md.suspend_enable_irqs();
702}
703#endif
704
b6c295df
PM
705unsigned long long tb_to_ns(unsigned long long ticks)
706{
707 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
708}
709EXPORT_SYMBOL_GPL(tb_to_ns);
710
1da177e4
LT
711/*
712 * Scheduler clock - returns current time in nanosec units.
713 *
714 * Note: mulhdu(a, b) (multiply high double unsigned) returns
715 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
716 * are 64-bit unsigned numbers.
717 */
6b847d79 718notrace unsigned long long sched_clock(void)
1da177e4 719{
96c44507
PM
720 if (__USE_RTC())
721 return get_rtc();
fc9069fe 722 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
723}
724
4be1b297
CB
725
726#ifdef CONFIG_PPC_PSERIES
727
728/*
729 * Running clock - attempts to give a view of time passing for a virtualised
730 * kernels.
731 * Uses the VTB register if available otherwise a next best guess.
732 */
733unsigned long long running_clock(void)
734{
735 /*
736 * Don't read the VTB as a host since KVM does not switch in host
737 * timebase into the VTB when it takes a guest off the CPU, reading the
738 * VTB would result in reading 'last switched out' guest VTB.
739 *
740 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
741 * would be unsafe to rely only on the #ifdef above.
742 */
743 if (firmware_has_feature(FW_FEATURE_LPAR) &&
744 cpu_has_feature(CPU_FTR_ARCH_207S))
745 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
746
747 /*
748 * This is a next best approximation without a VTB.
749 * On a host which is running bare metal there should never be any stolen
750 * time and on a host which doesn't do any virtualisation TB *should* equal
751 * VTB so it makes no difference anyway.
752 */
9f3768e0 753 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
4be1b297
CB
754}
755#endif
756
0bb474a4 757static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
758{
759 struct device_node *cpu;
6f7aba7b 760 const __be32 *fp;
0bb474a4 761 int found = 0;
10f7e7c1 762
0bb474a4 763 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
764 cpu = of_find_node_by_type(NULL, "cpu");
765
d8a8188d 766 if (cpu) {
e2eb6392 767 fp = of_get_property(cpu, name, NULL);
d8a8188d 768 if (fp) {
0bb474a4 769 found = 1;
a4dc7ff0 770 *val = of_read_ulong(fp, cells);
10f7e7c1 771 }
0bb474a4
AB
772
773 of_node_put(cpu);
10f7e7c1 774 }
0bb474a4
AB
775
776 return found;
777}
778
e51df2c1 779static void start_cpu_decrementer(void)
77c0a700
BH
780{
781#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
6e2f03e2
IM
782 unsigned int tcr;
783
77c0a700
BH
784 /* Clear any pending timer interrupts */
785 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
786
6e2f03e2
IM
787 tcr = mfspr(SPRN_TCR);
788 /*
789 * The watchdog may have already been enabled by u-boot. So leave
790 * TRC[WP] (Watchdog Period) alone.
791 */
792 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
793 tcr |= TCR_DIE; /* Enable decrementer */
794 mtspr(SPRN_TCR, tcr);
795#endif
77c0a700
BH
796}
797
0bb474a4
AB
798void __init generic_calibrate_decr(void)
799{
800 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
801
802 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
803 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
804
10f7e7c1
AB
805 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
806 "(not found)\n");
0bb474a4 807 }
10f7e7c1 808
0bb474a4
AB
809 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
810
811 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
812 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
813
814 printk(KERN_ERR "WARNING: Estimating processor frequency "
815 "(not found)\n");
10f7e7c1 816 }
10f7e7c1 817}
10f7e7c1 818
5235afa8 819int update_persistent_clock64(struct timespec64 now)
f2783c15
PM
820{
821 struct rtc_time tm;
822
aa3be5f3 823 if (!ppc_md.set_rtc_time)
023f333a 824 return -ENODEV;
aa3be5f3 825
5235afa8 826 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
aa3be5f3
TB
827
828 return ppc_md.set_rtc_time(&tm);
829}
830
5bfd6435 831static void __read_persistent_clock(struct timespec64 *ts)
aa3be5f3
TB
832{
833 struct rtc_time tm;
834 static int first = 1;
835
d90246cd 836 ts->tv_nsec = 0;
aa3be5f3
TB
837 /* XXX this is a litle fragile but will work okay in the short term */
838 if (first) {
839 first = 0;
840 if (ppc_md.time_init)
841 timezone_offset = ppc_md.time_init();
842
843 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
844 if (ppc_md.get_boot_time) {
845 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
846 return;
847 }
848 }
849 if (!ppc_md.get_rtc_time) {
850 ts->tv_sec = 0;
851 return;
aa3be5f3 852 }
f2783c15 853 ppc_md.get_rtc_time(&tm);
978d7eb3 854
5bfd6435 855 ts->tv_sec = rtc_tm_to_time64(&tm);
f2783c15
PM
856}
857
5bfd6435 858void read_persistent_clock64(struct timespec64 *ts)
978d7eb3
BH
859{
860 __read_persistent_clock(ts);
861
862 /* Sanitize it in case real time clock is set below EPOCH */
863 if (ts->tv_sec < 0) {
864 ts->tv_sec = 0;
865 ts->tv_nsec = 0;
866 }
867
868}
869
4a4cfe38 870/* clocksource code */
6b847d79 871static notrace u64 rtc_read(struct clocksource *cs)
4a4cfe38 872{
a5a1d1c2 873 return (u64)get_rtc();
4a4cfe38
TB
874}
875
6b847d79 876static notrace u64 timebase_read(struct clocksource *cs)
4a4cfe38 877{
a5a1d1c2 878 return (u64)get_tb();
4a4cfe38
TB
879}
880
d4cfb113
PM
881
882void update_vsyscall(struct timekeeper *tk)
4a4cfe38 883{
d4cfb113
PM
884 struct timespec xt;
885 struct clocksource *clock = tk->tkr_mono.clock;
886 u32 mult = tk->tkr_mono.mult;
887 u32 shift = tk->tkr_mono.shift;
888 u64 cycle_last = tk->tkr_mono.cycle_last;
b0797b60 889 u64 new_tb_to_xs, new_stamp_xsec;
d4cfb113 890 u64 frac_sec;
4a4cfe38
TB
891
892 if (clock != &clocksource_timebase)
893 return;
894
d4cfb113
PM
895 xt.tv_sec = tk->xtime_sec;
896 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
897
4a4cfe38
TB
898 /* Make userspace gettimeofday spin until we're done. */
899 ++vdso_data->tb_update_count;
900 smp_mb();
901
d4cfb113
PM
902 /*
903 * This computes ((2^20 / 1e9) * mult) >> shift as a
904 * 0.64 fixed-point fraction.
905 * The computation in the else clause below won't overflow
906 * (as long as the timebase frequency is >= 1.049 MHz)
907 * but loses precision because we lose the low bits of the constant
908 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
909 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
910 * over a second. (Shift values are usually 22, 23 or 24.)
911 * For high frequency clocks such as the 512MHz timebase clock
912 * on POWER[6789], the mult value is small (e.g. 32768000)
913 * and so we can shift the constant by 16 initially
914 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
915 * remaining shifts after the multiplication, which gives a
916 * more accurate result (e.g. with mult = 32768000, shift = 24,
917 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
918 */
919 if (mult <= 62500000 && clock->shift >= 16)
920 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
921 else
922 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
923
924 /*
925 * Compute the fractional second in units of 2^-32 seconds.
926 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
927 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
928 * it in units of 2^-32 seconds.
929 * We assume shift <= 32 because clocks_calc_mult_shift()
930 * generates shift values in the range 0 - 32.
931 */
932 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
933 do_div(frac_sec, NSEC_PER_SEC);
b0797b60 934
d4cfb113
PM
935 /*
936 * Work out new stamp_xsec value for any legacy users of systemcfg.
937 * stamp_xsec is in units of 2^-20 seconds.
938 */
939 new_stamp_xsec = frac_sec >> 12;
940 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
47916be4 941
b0797b60
JS
942 /*
943 * tb_update_count is used to allow the userspace gettimeofday code
944 * to assure itself that it sees a consistent view of the tb_to_xs and
945 * stamp_xsec variables. It reads the tb_update_count, then reads
946 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
947 * the two values of tb_update_count match and are even then the
948 * tb_to_xs and stamp_xsec values are consistent. If not, then it
949 * loops back and reads them again until this criteria is met.
b0797b60 950 */
4a0e6377 951 vdso_data->tb_orig_stamp = cycle_last;
b0797b60
JS
952 vdso_data->stamp_xsec = new_stamp_xsec;
953 vdso_data->tb_to_xs = new_tb_to_xs;
d4cfb113
PM
954 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
955 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
956 vdso_data->stamp_xtime = xt;
0e469db8 957 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
958 smp_wmb();
959 ++(vdso_data->tb_update_count);
4a4cfe38
TB
960}
961
962void update_vsyscall_tz(void)
963{
4a4cfe38
TB
964 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
965 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
966}
967
1c21a293 968static void __init clocksource_init(void)
4a4cfe38
TB
969{
970 struct clocksource *clock;
971
972 if (__USE_RTC())
973 clock = &clocksource_rtc;
974 else
975 clock = &clocksource_timebase;
976
11b8633a 977 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
978 printk(KERN_ERR "clocksource: %s is already registered\n",
979 clock->name);
980 return;
981 }
982
983 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
984 clock->name, clock->mult, clock->shift);
985}
986
d831d0b8
TB
987static int decrementer_set_next_event(unsigned long evt,
988 struct clock_event_device *dev)
989{
69111bac 990 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
d831d0b8 991 set_dec(evt);
0215f7d8
BH
992
993 /* We may have raced with new irq work */
994 if (test_irq_work_pending())
995 set_dec(1);
996
d831d0b8
TB
997 return 0;
998}
999
37a13e78 1000static int decrementer_shutdown(struct clock_event_device *dev)
d831d0b8 1001{
79901024 1002 decrementer_set_next_event(decrementer_max, dev);
37a13e78 1003 return 0;
d831d0b8
TB
1004}
1005
1006static void register_decrementer_clockevent(int cpu)
1007{
7df10275 1008 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
1009
1010 *dec = decrementer_clockevent;
320ab2b0 1011 dec->cpumask = cpumask_of(cpu);
d831d0b8 1012
8b78fdb0
AB
1013 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
1014
b919ee82
AB
1015 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1016 dec->name, dec->mult, dec->shift, cpu);
b4d16ab5
ME
1017
1018 /* Set values for KVM, see kvm_emulate_dec() */
1019 decrementer_clockevent.mult = dec->mult;
1020 decrementer_clockevent.shift = dec->shift;
d831d0b8
TB
1021}
1022
79901024
OH
1023static void enable_large_decrementer(void)
1024{
1025 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1026 return;
1027
1028 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1029 return;
1030
1031 /*
1032 * If we're running as the hypervisor we need to enable the LD manually
1033 * otherwise firmware should have done it for us.
1034 */
1035 if (cpu_has_feature(CPU_FTR_HVMODE))
1036 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1037}
1038
1039static void __init set_decrementer_max(void)
1040{
1041 struct device_node *cpu;
1042 u32 bits = 32;
1043
1044 /* Prior to ISAv3 the decrementer is always 32 bit */
1045 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1046 return;
1047
1048 cpu = of_find_node_by_type(NULL, "cpu");
1049
1050 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1051 if (bits > 64 || bits < 32) {
1052 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1053 bits = 32;
1054 }
1055
1056 /* calculate the signed maximum given this many bits */
1057 decrementer_max = (1ul << (bits - 1)) - 1;
1058 }
1059
1060 of_node_put(cpu);
1061
1062 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1063 bits, decrementer_max);
1064}
1065
c481887f 1066static void __init init_decrementer_clockevent(void)
d831d0b8 1067{
8b78fdb0 1068 register_decrementer_clockevent(smp_processor_id());
d831d0b8
TB
1069}
1070
1071void secondary_cpu_time_init(void)
1072{
79901024
OH
1073 /* Enable and test the large decrementer for this cpu */
1074 enable_large_decrementer();
1075
77c0a700
BH
1076 /* Start the decrementer on CPUs that have manual control
1077 * such as BookE
1078 */
1079 start_cpu_decrementer();
1080
d831d0b8
TB
1081 /* FIME: Should make unrelatred change to move snapshot_timebase
1082 * call here ! */
1083 register_decrementer_clockevent(smp_processor_id());
1084}
1085
f2783c15 1086/* This function is only called on the boot processor */
1da177e4
LT
1087void __init time_init(void)
1088{
1da177e4 1089 struct div_result res;
d75d68cf 1090 u64 scale;
f2783c15
PM
1091 unsigned shift;
1092
96c44507
PM
1093 if (__USE_RTC()) {
1094 /* 601 processor: dec counts down by 128 every 128ns */
1095 ppc_tb_freq = 1000000000;
96c44507
PM
1096 } else {
1097 /* Normal PowerPC with timebase register */
1098 ppc_md.calibrate_decr();
224ad80a 1099 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1100 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1101 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1102 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 1103 }
374e99d4
PM
1104
1105 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1106 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 1107 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 1108 calc_cputime_factors();
092b8f34 1109
1da177e4
LT
1110 /*
1111 * Compute scale factor for sched_clock.
1112 * The calibrate_decr() function has set tb_ticks_per_sec,
1113 * which is the timebase frequency.
1114 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1115 * the 128-bit result as a 64.64 fixed-point number.
1116 * We then shift that number right until it is less than 1.0,
1117 * giving us the scale factor and shift count to use in
1118 * sched_clock().
1119 */
1120 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1121 scale = res.result_low;
1122 for (shift = 0; res.result_high != 0; ++shift) {
1123 scale = (scale >> 1) | (res.result_high << 63);
1124 res.result_high >>= 1;
1125 }
1126 tb_to_ns_scale = scale;
1127 tb_to_ns_shift = shift;
fc9069fe 1128 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1129 boot_tb = get_tb_or_rtc();
1da177e4 1130
092b8f34 1131 /* If platform provided a timezone (pmac), we correct the time */
621692cb 1132 if (timezone_offset) {
092b8f34
PM
1133 sys_tz.tz_minuteswest = -timezone_offset / 60;
1134 sys_tz.tz_dsttime = 0;
621692cb 1135 }
092b8f34 1136
a7f290da
BH
1137 vdso_data->tb_update_count = 0;
1138 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1139
79901024
OH
1140 /* initialise and enable the large decrementer (if we have one) */
1141 set_decrementer_max();
1142 enable_large_decrementer();
1143
77c0a700
BH
1144 /* Start the decrementer on CPUs that have manual control
1145 * such as BookE
1146 */
1147 start_cpu_decrementer();
1148
f5339277
SR
1149 /* Register the clocksource */
1150 clocksource_init();
4a4cfe38 1151
d831d0b8 1152 init_decrementer_clockevent();
0d948730 1153 tick_setup_hrtimer_broadcast();
f0d37300
KH
1154
1155#ifdef CONFIG_COMMON_CLK
1156 of_clk_init(NULL);
1157#endif
1da177e4
LT
1158}
1159
1da177e4
LT
1160/*
1161 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1162 * result.
1163 */
f2783c15
PM
1164void div128_by_32(u64 dividend_high, u64 dividend_low,
1165 unsigned divisor, struct div_result *dr)
1da177e4 1166{
f2783c15
PM
1167 unsigned long a, b, c, d;
1168 unsigned long w, x, y, z;
1169 u64 ra, rb, rc;
1da177e4
LT
1170
1171 a = dividend_high >> 32;
1172 b = dividend_high & 0xffffffff;
1173 c = dividend_low >> 32;
1174 d = dividend_low & 0xffffffff;
1175
f2783c15
PM
1176 w = a / divisor;
1177 ra = ((u64)(a - (w * divisor)) << 32) + b;
1178
f2783c15
PM
1179 rb = ((u64) do_div(ra, divisor) << 32) + c;
1180 x = ra;
1da177e4 1181
f2783c15
PM
1182 rc = ((u64) do_div(rb, divisor) << 32) + d;
1183 y = rb;
1184
1185 do_div(rc, divisor);
1186 z = rc;
1da177e4 1187
f2783c15
PM
1188 dr->result_high = ((u64)w << 32) + x;
1189 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1190
1191}
bcd68a70 1192
177996e6
BH
1193/* We don't need to calibrate delay, we use the CPU timebase for that */
1194void calibrate_delay(void)
1195{
1196 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1197 * as the number of __delay(1) in a jiffy, so make it so
1198 */
1199 loops_per_jiffy = tb_ticks_per_jiffy;
1200}
1201
169047f4
AB
1202#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1203static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1204{
1205 ppc_md.get_rtc_time(tm);
890ae797 1206 return 0;
169047f4
AB
1207}
1208
1209static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1210{
1211 if (!ppc_md.set_rtc_time)
1212 return -EOPNOTSUPP;
1213
1214 if (ppc_md.set_rtc_time(tm) < 0)
1215 return -EOPNOTSUPP;
1216
1217 return 0;
1218}
1219
1220static const struct rtc_class_ops rtc_generic_ops = {
1221 .read_time = rtc_generic_get_time,
1222 .set_time = rtc_generic_set_time,
1223};
1224
bcd68a70
GU
1225static int __init rtc_init(void)
1226{
1227 struct platform_device *pdev;
1228
1229 if (!ppc_md.get_rtc_time)
1230 return -ENODEV;
1231
169047f4
AB
1232 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1233 &rtc_generic_ops,
1234 sizeof(rtc_generic_ops));
bcd68a70 1235
8c6ffba0 1236 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1237}
1238
8f6b9512 1239device_initcall(rtc_init);
169047f4 1240#endif