]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/time.c
sched/cputime, powerpc, s390: Make scaled cputime arch specific
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/kernel.h>
38#include <linux/param.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/timex.h>
43#include <linux/kernel_stat.h>
1da177e4 44#include <linux/time.h>
0d948730 45#include <linux/clockchips.h>
1da177e4
LT
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
e360adbe 56#include <linux/irq_work.h>
f0d37300 57#include <linux/clk-provider.h>
7f92bc56 58#include <linux/suspend.h>
169047f4 59#include <linux/rtc.h>
6795b85c 60#include <asm/trace.h>
1da177e4 61
1da177e4
LT
62#include <asm/io.h>
63#include <asm/processor.h>
64#include <asm/nvram.h>
65#include <asm/cache.h>
66#include <asm/machdep.h>
1da177e4
LT
67#include <asm/uaccess.h>
68#include <asm/time.h>
1da177e4 69#include <asm/prom.h>
f2783c15
PM
70#include <asm/irq.h>
71#include <asm/div64.h>
2249ca9d 72#include <asm/smp.h>
a7f290da 73#include <asm/vdso_datapage.h>
1ababe11 74#include <asm/firmware.h>
06b8e878 75#include <asm/cputime.h>
0545d543 76#include <asm/asm-prototypes.h>
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
189374ae 81#include <linux/timekeeper_internal.h>
4a4cfe38 82
8e19608e 83static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
89 .read = rtc_read,
90};
91
8e19608e 92static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
93static struct clocksource clocksource_timebase = {
94 .name = "timebase",
95 .rating = 400,
96 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
97 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
98 .read = timebase_read,
99};
100
79901024
OH
101#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
102u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
d831d0b8
TB
103
104static int decrementer_set_next_event(unsigned long evt,
105 struct clock_event_device *dev);
37a13e78 106static int decrementer_shutdown(struct clock_event_device *evt);
d831d0b8 107
6e35994d 108struct clock_event_device decrementer_clockevent = {
37a13e78
VK
109 .name = "decrementer",
110 .rating = 200,
111 .irq = 0,
112 .set_next_event = decrementer_set_next_event,
113 .set_state_shutdown = decrementer_shutdown,
114 .tick_resume = decrementer_shutdown,
115 .features = CLOCK_EVT_FEAT_ONESHOT |
116 CLOCK_EVT_FEAT_C3STOP,
d831d0b8 117};
6e35994d 118EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 119
7df10275
AB
120DEFINE_PER_CPU(u64, decrementers_next_tb);
121static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 122
1da177e4
LT
123#define XSEC_PER_SEC (1024*1024)
124
f2783c15
PM
125#ifdef CONFIG_PPC64
126#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
127#else
128/* compute ((xsec << 12) * max) >> 32 */
129#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
130#endif
131
1da177e4
LT
132unsigned long tb_ticks_per_jiffy;
133unsigned long tb_ticks_per_usec = 100; /* sane default */
134EXPORT_SYMBOL(tb_ticks_per_usec);
135unsigned long tb_ticks_per_sec;
2cf82c02 136EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 137
1da177e4 138DEFINE_SPINLOCK(rtc_lock);
6ae3db11 139EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 140
fc9069fe
TB
141static u64 tb_to_ns_scale __read_mostly;
142static unsigned tb_to_ns_shift __read_mostly;
364a1246 143static u64 boot_tb __read_mostly;
1da177e4 144
1da177e4 145extern struct timezone sys_tz;
f2783c15 146static long timezone_offset;
1da177e4 147
10f7e7c1 148unsigned long ppc_proc_freq;
55ec2fca 149EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 150unsigned long ppc_tb_freq;
55ec2fca 151EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 152
abf917cd 153#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63
PM
154/*
155 * Factors for converting from cputime_t (timebase ticks) to
9f5072d4 156 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
c6622f63
PM
157 * These are all stored as 0.64 fixed-point binary fractions.
158 */
159u64 __cputime_jiffies_factor;
2cf82c02 160EXPORT_SYMBOL(__cputime_jiffies_factor);
9f5072d4
AS
161u64 __cputime_usec_factor;
162EXPORT_SYMBOL(__cputime_usec_factor);
c6622f63 163u64 __cputime_sec_factor;
2cf82c02 164EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 165u64 __cputime_clockt_factor;
2cf82c02 166EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63 167
a42548a1
SG
168cputime_t cputime_one_jiffy;
169
c223c903 170#ifdef CONFIG_PPC_SPLPAR
872e439a 171void (*dtl_consumer)(struct dtl_entry *, u64);
c223c903
CL
172#endif
173
174#ifdef CONFIG_PPC64
175#define get_accounting(tsk) (&get_paca()->accounting)
176#else
177#define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
178#endif
872e439a 179
c6622f63
PM
180static void calc_cputime_factors(void)
181{
182 struct div_result res;
183
184 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
185 __cputime_jiffies_factor = res.result_low;
9f5072d4
AS
186 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
187 __cputime_usec_factor = res.result_low;
c6622f63
PM
188 div128_by_32(1, 0, tb_ticks_per_sec, &res);
189 __cputime_sec_factor = res.result_low;
190 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
191 __cputime_clockt_factor = res.result_low;
192}
193
194/*
cf9efce0
PM
195 * Read the SPURR on systems that have it, otherwise the PURR,
196 * or if that doesn't exist return the timebase value passed in.
c6622f63 197 */
c223c903 198static unsigned long read_spurr(unsigned long tb)
c6622f63 199{
cf9efce0
PM
200 if (cpu_has_feature(CPU_FTR_SPURR))
201 return mfspr(SPRN_SPURR);
c6622f63
PM
202 if (cpu_has_feature(CPU_FTR_PURR))
203 return mfspr(SPRN_PURR);
cf9efce0 204 return tb;
c6622f63
PM
205}
206
cf9efce0
PM
207#ifdef CONFIG_PPC_SPLPAR
208
4603ac18 209/*
cf9efce0
PM
210 * Scan the dispatch trace log and count up the stolen time.
211 * Should be called with interrupts disabled.
4603ac18 212 */
cf9efce0 213static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 214{
872e439a 215 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
216 struct dtl_entry *dtl = local_paca->dtl_curr;
217 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
218 struct lppaca *vpa = local_paca->lppaca_ptr;
219 u64 tb_delta;
220 u64 stolen = 0;
221 u64 dtb;
222
84ffae55
AB
223 if (!dtl)
224 return 0;
225
7ffcf8ec 226 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 227 return 0;
7ffcf8ec 228 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
229 dtb = be64_to_cpu(dtl->timebase);
230 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
231 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 232 barrier();
7ffcf8ec 233 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 234 /* buffer has overflowed */
7ffcf8ec 235 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
236 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
237 continue;
238 }
239 if (dtb > stop_tb)
240 break;
84b07386
AB
241 if (dtl_consumer)
242 dtl_consumer(dtl, i);
cf9efce0
PM
243 stolen += tb_delta;
244 ++i;
245 ++dtl;
246 if (dtl == dtl_end)
247 dtl = local_paca->dispatch_log;
248 }
249 local_paca->dtl_ridx = i;
250 local_paca->dtl_curr = dtl;
251 return stolen;
4603ac18
MN
252}
253
cf9efce0
PM
254/*
255 * Accumulate stolen time by scanning the dispatch trace log.
256 * Called on entry from user mode.
257 */
258void accumulate_stolen_time(void)
259{
260 u64 sst, ust;
b18ae08d 261 u8 save_soft_enabled = local_paca->soft_enabled;
c223c903 262 struct cpu_accounting_data *acct = &local_paca->accounting;
b18ae08d
TH
263
264 /* We are called early in the exception entry, before
265 * soft/hard_enabled are sync'ed to the expected state
266 * for the exception. We are hard disabled but the PACA
267 * needs to reflect that so various debug stuff doesn't
268 * complain
269 */
270 local_paca->soft_enabled = 0;
b18ae08d 271
c223c903
CL
272 sst = scan_dispatch_log(acct->starttime_user);
273 ust = scan_dispatch_log(acct->starttime);
274 acct->system_time -= sst;
275 acct->user_time -= ust;
b18ae08d
TH
276 local_paca->stolen_time += ust + sst;
277
278 local_paca->soft_enabled = save_soft_enabled;
cf9efce0
PM
279}
280
281static inline u64 calculate_stolen_time(u64 stop_tb)
282{
283 u64 stolen = 0;
284
7ffcf8ec 285 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
cf9efce0 286 stolen = scan_dispatch_log(stop_tb);
c223c903 287 get_paca()->accounting.system_time -= stolen;
cf9efce0
PM
288 }
289
290 stolen += get_paca()->stolen_time;
291 get_paca()->stolen_time = 0;
292 return stolen;
4603ac18
MN
293}
294
cf9efce0
PM
295#else /* CONFIG_PPC_SPLPAR */
296static inline u64 calculate_stolen_time(u64 stop_tb)
297{
298 return 0;
299}
300
301#endif /* CONFIG_PPC_SPLPAR */
302
c6622f63
PM
303/*
304 * Account time for a transition between system, hard irq
305 * or soft irq state.
306 */
c223c903
CL
307static unsigned long vtime_delta(struct task_struct *tsk,
308 unsigned long *sys_scaled,
309 unsigned long *stolen)
c6622f63 310{
c223c903
CL
311 unsigned long now, nowscaled, deltascaled;
312 unsigned long udelta, delta, user_scaled;
313 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 314
1b2852b1
FW
315 WARN_ON_ONCE(!irqs_disabled());
316
cf9efce0 317 now = mftb();
4603ac18 318 nowscaled = read_spurr(now);
c223c903
CL
319 acct->system_time += now - acct->starttime;
320 acct->starttime = now;
321 deltascaled = nowscaled - acct->startspurr;
322 acct->startspurr = nowscaled;
cf9efce0 323
a7e1a9e3 324 *stolen = calculate_stolen_time(now);
cf9efce0 325
c223c903
CL
326 delta = acct->system_time;
327 acct->system_time = 0;
328 udelta = acct->user_time - acct->utime_sspurr;
329 acct->utime_sspurr = acct->user_time;
cf9efce0
PM
330
331 /*
332 * Because we don't read the SPURR on every kernel entry/exit,
333 * deltascaled includes both user and system SPURR ticks.
334 * Apportion these ticks to system SPURR ticks and user
335 * SPURR ticks in the same ratio as the system time (delta)
336 * and user time (udelta) values obtained from the timebase
337 * over the same interval. The system ticks get accounted here;
338 * the user ticks get saved up in paca->user_time_scaled to be
339 * used by account_process_tick.
340 */
a7e1a9e3 341 *sys_scaled = delta;
cf9efce0
PM
342 user_scaled = udelta;
343 if (deltascaled != delta + udelta) {
344 if (udelta) {
a7e1a9e3
FW
345 *sys_scaled = deltascaled * delta / (delta + udelta);
346 user_scaled = deltascaled - *sys_scaled;
cf9efce0 347 } else {
a7e1a9e3 348 *sys_scaled = deltascaled;
cf9efce0
PM
349 }
350 }
c223c903 351 acct->user_time_scaled += user_scaled;
cf9efce0 352
a7e1a9e3
FW
353 return delta;
354}
355
fd25b4c2 356void vtime_account_system(struct task_struct *tsk)
a7e1a9e3 357{
c223c903 358 unsigned long delta, sys_scaled, stolen;
a7e1a9e3
FW
359
360 delta = vtime_delta(tsk, &sys_scaled, &stolen);
40565b5a
SG
361 account_system_time(tsk, 0, delta);
362 tsk->stimescaled += sys_scaled;
a7e1a9e3
FW
363 if (stolen)
364 account_steal_time(stolen);
365}
c11f11fc 366EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 367
fd25b4c2 368void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3 369{
c223c903 370 unsigned long delta, sys_scaled, stolen;
a7e1a9e3
FW
371
372 delta = vtime_delta(tsk, &sys_scaled, &stolen);
373 account_idle_time(delta + stolen);
c6622f63
PM
374}
375
376/*
bcebdf84
FW
377 * Transfer the user time accumulated in the paca
378 * by the exception entry and exit code to the generic
379 * process user time records.
c6622f63 380 * Must be called with interrupts disabled.
bcebdf84
FW
381 * Assumes that vtime_account_system/idle() has been called
382 * recently (i.e. since the last entry from usermode) so that
cf9efce0 383 * get_paca()->user_time_scaled is up to date.
c6622f63 384 */
bcebdf84 385void vtime_account_user(struct task_struct *tsk)
c6622f63 386{
4603ac18 387 cputime_t utime, utimescaled;
c223c903 388 struct cpu_accounting_data *acct = get_accounting(tsk);
c6622f63 389
c223c903
CL
390 utime = acct->user_time;
391 utimescaled = acct->user_time_scaled;
392 acct->user_time = 0;
393 acct->user_time_scaled = 0;
394 acct->utime_sspurr = 0;
40565b5a
SG
395 account_user_time(tsk, utime);
396 tsk->utimescaled += utimescaled;
c6622f63
PM
397}
398
c223c903
CL
399#ifdef CONFIG_PPC32
400/*
401 * Called from the context switch with interrupts disabled, to charge all
402 * accumulated times to the current process, and to prepare accounting on
403 * the next process.
404 */
405void arch_vtime_task_switch(struct task_struct *prev)
406{
407 struct cpu_accounting_data *acct = get_accounting(current);
408
409 acct->starttime = get_accounting(prev)->starttime;
410 acct->system_time = 0;
411 acct->user_time = 0;
412}
413#endif /* CONFIG_PPC32 */
414
abf917cd 415#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 416#define calc_cputime_factors()
c6622f63
PM
417#endif
418
6defa38b
PM
419void __delay(unsigned long loops)
420{
421 unsigned long start;
422 int diff;
423
424 if (__USE_RTC()) {
425 start = get_rtcl();
426 do {
427 /* the RTCL register wraps at 1000000000 */
428 diff = get_rtcl() - start;
429 if (diff < 0)
430 diff += 1000000000;
431 } while (diff < loops);
432 } else {
433 start = get_tbl();
434 while (get_tbl() - start < loops)
435 HMT_low();
436 HMT_medium();
437 }
438}
439EXPORT_SYMBOL(__delay);
440
441void udelay(unsigned long usecs)
442{
443 __delay(tb_ticks_per_usec * usecs);
444}
445EXPORT_SYMBOL(udelay);
446
1da177e4
LT
447#ifdef CONFIG_SMP
448unsigned long profile_pc(struct pt_regs *regs)
449{
450 unsigned long pc = instruction_pointer(regs);
451
452 if (in_lock_functions(pc))
453 return regs->link;
454
455 return pc;
456}
457EXPORT_SYMBOL(profile_pc);
458#endif
459
e360adbe 460#ifdef CONFIG_IRQ_WORK
105988c0 461
0fe1ac48
PM
462/*
463 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
464 */
465#ifdef CONFIG_PPC64
e360adbe 466static inline unsigned long test_irq_work_pending(void)
105988c0 467{
0fe1ac48
PM
468 unsigned long x;
469
470 asm volatile("lbz %0,%1(13)"
471 : "=r" (x)
e360adbe 472 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
473 return x;
474}
475
e360adbe 476static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
477{
478 asm volatile("stb %0,%1(13)" : :
479 "r" (1),
e360adbe 480 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
481}
482
e360adbe 483static inline void clear_irq_work_pending(void)
0fe1ac48
PM
484{
485 asm volatile("stb %0,%1(13)" : :
486 "r" (0),
e360adbe 487 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
488}
489
0fe1ac48
PM
490#else /* 32-bit */
491
e360adbe 492DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 493
69111bac
CL
494#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
495#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
496#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
105988c0 497
0fe1ac48
PM
498#endif /* 32 vs 64 bit */
499
4f8b50bb 500void arch_irq_work_raise(void)
0fe1ac48
PM
501{
502 preempt_disable();
e360adbe 503 set_irq_work_pending_flag();
0fe1ac48
PM
504 set_dec(1);
505 preempt_enable();
506}
507
e360adbe 508#else /* CONFIG_IRQ_WORK */
105988c0 509
e360adbe
PZ
510#define test_irq_work_pending() 0
511#define clear_irq_work_pending()
105988c0 512
e360adbe 513#endif /* CONFIG_IRQ_WORK */
105988c0 514
e51df2c1 515static void __timer_interrupt(void)
1b783955
PM
516{
517 struct pt_regs *regs = get_irq_regs();
69111bac
CL
518 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
519 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
1b783955
PM
520 u64 now;
521
522 trace_timer_interrupt_entry(regs);
523
524 if (test_irq_work_pending()) {
525 clear_irq_work_pending();
526 irq_work_run();
527 }
528
529 now = get_tb_or_rtc();
530 if (now >= *next_tb) {
531 *next_tb = ~(u64)0;
532 if (evt->event_handler)
533 evt->event_handler(evt);
69111bac 534 __this_cpu_inc(irq_stat.timer_irqs_event);
1b783955
PM
535 } else {
536 now = *next_tb - now;
79901024
OH
537 if (now <= decrementer_max)
538 set_dec(now);
1b783955
PM
539 /* We may have raced with new irq work */
540 if (test_irq_work_pending())
541 set_dec(1);
69111bac 542 __this_cpu_inc(irq_stat.timer_irqs_others);
1b783955
PM
543 }
544
545#ifdef CONFIG_PPC64
546 /* collect purr register values often, for accurate calculations */
547 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 548 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1b783955
PM
549 cu->current_tb = mfspr(SPRN_PURR);
550 }
551#endif
552
553 trace_timer_interrupt_exit(regs);
554}
555
1da177e4
LT
556/*
557 * timer_interrupt - gets called when the decrementer overflows,
558 * with interrupts disabled.
559 */
c7aeffc4 560void timer_interrupt(struct pt_regs * regs)
1da177e4 561{
7d12e780 562 struct pt_regs *old_regs;
69111bac 563 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
d831d0b8 564
963e5d3b
BH
565 /* Ensure a positive value is written to the decrementer, or else
566 * some CPUs will continue to take decrementer exceptions.
567 */
79901024 568 set_dec(decrementer_max);
963e5d3b
BH
569
570 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
571 * offline, just ignore these and we also need to set
572 * decrementers_next_tb as MAX to make sure __check_irq_replay
573 * don't replay timer interrupt when return, otherwise we'll trap
574 * here infinitely :(
963e5d3b 575 */
689dfa89
TC
576 if (!cpu_online(smp_processor_id())) {
577 *next_tb = ~(u64)0;
963e5d3b 578 return;
689dfa89 579 }
963e5d3b 580
7230c564
BH
581 /* Conditionally hard-enable interrupts now that the DEC has been
582 * bumped to its maximum value
583 */
584 may_hard_irq_enable();
585
89713ed1 586
6e0fdf9a 587#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
f2783c15
PM
588 if (atomic_read(&ppc_n_lost_interrupts) != 0)
589 do_IRQ(regs);
590#endif
1da177e4 591
7d12e780 592 old_regs = set_irq_regs(regs);
1da177e4
LT
593 irq_enter();
594
1b783955 595 __timer_interrupt();
1da177e4 596 irq_exit();
7d12e780 597 set_irq_regs(old_regs);
1da177e4 598}
9445aa1a 599EXPORT_SYMBOL(timer_interrupt);
1da177e4 600
dabe859e
PM
601/*
602 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
603 * left pending on exit from a KVM guest. We don't need to do anything
604 * to clear them, as they are edge-triggered.
605 */
606void hdec_interrupt(struct pt_regs *regs)
607{
608}
609
7ac5dde9 610#ifdef CONFIG_SUSPEND
d75d68cf 611static void generic_suspend_disable_irqs(void)
7ac5dde9 612{
7ac5dde9
SW
613 /* Disable the decrementer, so that it doesn't interfere
614 * with suspending.
615 */
616
79901024 617 set_dec(decrementer_max);
7ac5dde9 618 local_irq_disable();
79901024 619 set_dec(decrementer_max);
7ac5dde9
SW
620}
621
d75d68cf 622static void generic_suspend_enable_irqs(void)
7ac5dde9 623{
7ac5dde9 624 local_irq_enable();
7ac5dde9
SW
625}
626
627/* Overrides the weak version in kernel/power/main.c */
628void arch_suspend_disable_irqs(void)
629{
630 if (ppc_md.suspend_disable_irqs)
631 ppc_md.suspend_disable_irqs();
632 generic_suspend_disable_irqs();
633}
634
635/* Overrides the weak version in kernel/power/main.c */
636void arch_suspend_enable_irqs(void)
637{
638 generic_suspend_enable_irqs();
639 if (ppc_md.suspend_enable_irqs)
640 ppc_md.suspend_enable_irqs();
641}
642#endif
643
b6c295df
PM
644unsigned long long tb_to_ns(unsigned long long ticks)
645{
646 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
647}
648EXPORT_SYMBOL_GPL(tb_to_ns);
649
1da177e4
LT
650/*
651 * Scheduler clock - returns current time in nanosec units.
652 *
653 * Note: mulhdu(a, b) (multiply high double unsigned) returns
654 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
655 * are 64-bit unsigned numbers.
656 */
657unsigned long long sched_clock(void)
658{
96c44507
PM
659 if (__USE_RTC())
660 return get_rtc();
fc9069fe 661 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
662}
663
4be1b297
CB
664
665#ifdef CONFIG_PPC_PSERIES
666
667/*
668 * Running clock - attempts to give a view of time passing for a virtualised
669 * kernels.
670 * Uses the VTB register if available otherwise a next best guess.
671 */
672unsigned long long running_clock(void)
673{
674 /*
675 * Don't read the VTB as a host since KVM does not switch in host
676 * timebase into the VTB when it takes a guest off the CPU, reading the
677 * VTB would result in reading 'last switched out' guest VTB.
678 *
679 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
680 * would be unsafe to rely only on the #ifdef above.
681 */
682 if (firmware_has_feature(FW_FEATURE_LPAR) &&
683 cpu_has_feature(CPU_FTR_ARCH_207S))
684 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
685
686 /*
687 * This is a next best approximation without a VTB.
688 * On a host which is running bare metal there should never be any stolen
689 * time and on a host which doesn't do any virtualisation TB *should* equal
690 * VTB so it makes no difference anyway.
691 */
692 return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
693}
694#endif
695
0bb474a4 696static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
697{
698 struct device_node *cpu;
6f7aba7b 699 const __be32 *fp;
0bb474a4 700 int found = 0;
10f7e7c1 701
0bb474a4 702 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
703 cpu = of_find_node_by_type(NULL, "cpu");
704
d8a8188d 705 if (cpu) {
e2eb6392 706 fp = of_get_property(cpu, name, NULL);
d8a8188d 707 if (fp) {
0bb474a4 708 found = 1;
a4dc7ff0 709 *val = of_read_ulong(fp, cells);
10f7e7c1 710 }
0bb474a4
AB
711
712 of_node_put(cpu);
10f7e7c1 713 }
0bb474a4
AB
714
715 return found;
716}
717
e51df2c1 718static void start_cpu_decrementer(void)
77c0a700
BH
719{
720#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
721 /* Clear any pending timer interrupts */
722 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
723
724 /* Enable decrementer interrupt */
725 mtspr(SPRN_TCR, TCR_DIE);
726#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
727}
728
0bb474a4
AB
729void __init generic_calibrate_decr(void)
730{
731 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
732
733 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
734 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
735
10f7e7c1
AB
736 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
737 "(not found)\n");
0bb474a4 738 }
10f7e7c1 739
0bb474a4
AB
740 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
741
742 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
743 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
744
745 printk(KERN_ERR "WARNING: Estimating processor frequency "
746 "(not found)\n");
10f7e7c1 747 }
10f7e7c1 748}
10f7e7c1 749
aa3be5f3 750int update_persistent_clock(struct timespec now)
f2783c15
PM
751{
752 struct rtc_time tm;
753
aa3be5f3 754 if (!ppc_md.set_rtc_time)
023f333a 755 return -ENODEV;
aa3be5f3
TB
756
757 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
758 tm.tm_year -= 1900;
759 tm.tm_mon -= 1;
760
761 return ppc_md.set_rtc_time(&tm);
762}
763
978d7eb3 764static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
765{
766 struct rtc_time tm;
767 static int first = 1;
768
d90246cd 769 ts->tv_nsec = 0;
aa3be5f3
TB
770 /* XXX this is a litle fragile but will work okay in the short term */
771 if (first) {
772 first = 0;
773 if (ppc_md.time_init)
774 timezone_offset = ppc_md.time_init();
775
776 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
777 if (ppc_md.get_boot_time) {
778 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
779 return;
780 }
781 }
782 if (!ppc_md.get_rtc_time) {
783 ts->tv_sec = 0;
784 return;
aa3be5f3 785 }
f2783c15 786 ppc_md.get_rtc_time(&tm);
978d7eb3 787
d4f587c6
MS
788 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
789 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
790}
791
978d7eb3
BH
792void read_persistent_clock(struct timespec *ts)
793{
794 __read_persistent_clock(ts);
795
796 /* Sanitize it in case real time clock is set below EPOCH */
797 if (ts->tv_sec < 0) {
798 ts->tv_sec = 0;
799 ts->tv_nsec = 0;
800 }
801
802}
803
4a4cfe38 804/* clocksource code */
8e19608e 805static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
806{
807 return (cycle_t)get_rtc();
808}
809
8e19608e 810static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
811{
812 return (cycle_t)get_tb();
813}
814
70639421 815void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
4a0e6377 816 struct clocksource *clock, u32 mult, cycle_t cycle_last)
4a4cfe38 817{
b0797b60 818 u64 new_tb_to_xs, new_stamp_xsec;
47916be4 819 u32 frac_sec;
4a4cfe38
TB
820
821 if (clock != &clocksource_timebase)
822 return;
823
824 /* Make userspace gettimeofday spin until we're done. */
825 ++vdso_data->tb_update_count;
826 smp_mb();
827
11b8633a
AB
828 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
829 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
06d518e3 830 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 831 do_div(new_stamp_xsec, 1000000000);
06d518e3 832 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60 833
47916be4
TG
834 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
835 /* this is tv_nsec / 1e9 as a 0.32 fraction */
836 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
837
b0797b60
JS
838 /*
839 * tb_update_count is used to allow the userspace gettimeofday code
840 * to assure itself that it sees a consistent view of the tb_to_xs and
841 * stamp_xsec variables. It reads the tb_update_count, then reads
842 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
843 * the two values of tb_update_count match and are even then the
844 * tb_to_xs and stamp_xsec values are consistent. If not, then it
845 * loops back and reads them again until this criteria is met.
846 * We expect the caller to have done the first increment of
847 * vdso_data->tb_update_count already.
848 */
4a0e6377 849 vdso_data->tb_orig_stamp = cycle_last;
b0797b60
JS
850 vdso_data->stamp_xsec = new_stamp_xsec;
851 vdso_data->tb_to_xs = new_tb_to_xs;
7615856e
JS
852 vdso_data->wtom_clock_sec = wtm->tv_sec;
853 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
06d518e3 854 vdso_data->stamp_xtime = *wall_time;
0e469db8 855 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
856 smp_wmb();
857 ++(vdso_data->tb_update_count);
4a4cfe38
TB
858}
859
860void update_vsyscall_tz(void)
861{
4a4cfe38
TB
862 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
863 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
864}
865
1c21a293 866static void __init clocksource_init(void)
4a4cfe38
TB
867{
868 struct clocksource *clock;
869
870 if (__USE_RTC())
871 clock = &clocksource_rtc;
872 else
873 clock = &clocksource_timebase;
874
11b8633a 875 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
876 printk(KERN_ERR "clocksource: %s is already registered\n",
877 clock->name);
878 return;
879 }
880
881 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
882 clock->name, clock->mult, clock->shift);
883}
884
d831d0b8
TB
885static int decrementer_set_next_event(unsigned long evt,
886 struct clock_event_device *dev)
887{
69111bac 888 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
d831d0b8 889 set_dec(evt);
0215f7d8
BH
890
891 /* We may have raced with new irq work */
892 if (test_irq_work_pending())
893 set_dec(1);
894
d831d0b8
TB
895 return 0;
896}
897
37a13e78 898static int decrementer_shutdown(struct clock_event_device *dev)
d831d0b8 899{
79901024 900 decrementer_set_next_event(decrementer_max, dev);
37a13e78 901 return 0;
d831d0b8
TB
902}
903
1b67bee1
SB
904/* Interrupt handler for the timer broadcast IPI */
905void tick_broadcast_ipi_handler(void)
906{
69111bac 907 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
1b783955
PM
908
909 *next_tb = get_tb_or_rtc();
910 __timer_interrupt();
1b67bee1
SB
911}
912
d831d0b8
TB
913static void register_decrementer_clockevent(int cpu)
914{
7df10275 915 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
916
917 *dec = decrementer_clockevent;
320ab2b0 918 dec->cpumask = cpumask_of(cpu);
d831d0b8 919
b919ee82
AB
920 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
921 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
922
923 clockevents_register_device(dec);
924}
925
79901024
OH
926static void enable_large_decrementer(void)
927{
928 if (!cpu_has_feature(CPU_FTR_ARCH_300))
929 return;
930
931 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
932 return;
933
934 /*
935 * If we're running as the hypervisor we need to enable the LD manually
936 * otherwise firmware should have done it for us.
937 */
938 if (cpu_has_feature(CPU_FTR_HVMODE))
939 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
940}
941
942static void __init set_decrementer_max(void)
943{
944 struct device_node *cpu;
945 u32 bits = 32;
946
947 /* Prior to ISAv3 the decrementer is always 32 bit */
948 if (!cpu_has_feature(CPU_FTR_ARCH_300))
949 return;
950
951 cpu = of_find_node_by_type(NULL, "cpu");
952
953 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
954 if (bits > 64 || bits < 32) {
955 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
956 bits = 32;
957 }
958
959 /* calculate the signed maximum given this many bits */
960 decrementer_max = (1ul << (bits - 1)) - 1;
961 }
962
963 of_node_put(cpu);
964
965 pr_info("time_init: %u bit decrementer (max: %llx)\n",
966 bits, decrementer_max);
967}
968
c481887f 969static void __init init_decrementer_clockevent(void)
d831d0b8
TB
970{
971 int cpu = smp_processor_id();
972
d8afc6fd
AB
973 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
974
d831d0b8 975 decrementer_clockevent.max_delta_ns =
79901024 976 clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
43875cc0
PM
977 decrementer_clockevent.min_delta_ns =
978 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
979
980 register_decrementer_clockevent(cpu);
981}
982
983void secondary_cpu_time_init(void)
984{
79901024
OH
985 /* Enable and test the large decrementer for this cpu */
986 enable_large_decrementer();
987
77c0a700
BH
988 /* Start the decrementer on CPUs that have manual control
989 * such as BookE
990 */
991 start_cpu_decrementer();
992
d831d0b8
TB
993 /* FIME: Should make unrelatred change to move snapshot_timebase
994 * call here ! */
995 register_decrementer_clockevent(smp_processor_id());
996}
997
f2783c15 998/* This function is only called on the boot processor */
1da177e4
LT
999void __init time_init(void)
1000{
1da177e4 1001 struct div_result res;
d75d68cf 1002 u64 scale;
f2783c15
PM
1003 unsigned shift;
1004
96c44507
PM
1005 if (__USE_RTC()) {
1006 /* 601 processor: dec counts down by 128 every 128ns */
1007 ppc_tb_freq = 1000000000;
96c44507
PM
1008 } else {
1009 /* Normal PowerPC with timebase register */
1010 ppc_md.calibrate_decr();
224ad80a 1011 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1012 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1013 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1014 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 1015 }
374e99d4
PM
1016
1017 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1018 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 1019 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 1020 calc_cputime_factors();
a42548a1 1021 setup_cputime_one_jiffy();
092b8f34 1022
1da177e4
LT
1023 /*
1024 * Compute scale factor for sched_clock.
1025 * The calibrate_decr() function has set tb_ticks_per_sec,
1026 * which is the timebase frequency.
1027 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1028 * the 128-bit result as a 64.64 fixed-point number.
1029 * We then shift that number right until it is less than 1.0,
1030 * giving us the scale factor and shift count to use in
1031 * sched_clock().
1032 */
1033 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1034 scale = res.result_low;
1035 for (shift = 0; res.result_high != 0; ++shift) {
1036 scale = (scale >> 1) | (res.result_high << 63);
1037 res.result_high >>= 1;
1038 }
1039 tb_to_ns_scale = scale;
1040 tb_to_ns_shift = shift;
fc9069fe 1041 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1042 boot_tb = get_tb_or_rtc();
1da177e4 1043
092b8f34 1044 /* If platform provided a timezone (pmac), we correct the time */
621692cb 1045 if (timezone_offset) {
092b8f34
PM
1046 sys_tz.tz_minuteswest = -timezone_offset / 60;
1047 sys_tz.tz_dsttime = 0;
621692cb 1048 }
092b8f34 1049
a7f290da
BH
1050 vdso_data->tb_update_count = 0;
1051 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1052
79901024
OH
1053 /* initialise and enable the large decrementer (if we have one) */
1054 set_decrementer_max();
1055 enable_large_decrementer();
1056
77c0a700
BH
1057 /* Start the decrementer on CPUs that have manual control
1058 * such as BookE
1059 */
1060 start_cpu_decrementer();
1061
f5339277
SR
1062 /* Register the clocksource */
1063 clocksource_init();
4a4cfe38 1064
d831d0b8 1065 init_decrementer_clockevent();
0d948730 1066 tick_setup_hrtimer_broadcast();
f0d37300
KH
1067
1068#ifdef CONFIG_COMMON_CLK
1069 of_clk_init(NULL);
1070#endif
1da177e4
LT
1071}
1072
1da177e4 1073
1da177e4
LT
1074#define FEBRUARY 2
1075#define STARTOFTIME 1970
1076#define SECDAY 86400L
1077#define SECYR (SECDAY * 365)
f2783c15
PM
1078#define leapyear(year) ((year) % 4 == 0 && \
1079 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1080#define days_in_year(a) (leapyear(a) ? 366 : 365)
1081#define days_in_month(a) (month_days[(a) - 1])
1082
1083static int month_days[12] = {
1084 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1085};
1086
1da177e4
LT
1087void to_tm(int tim, struct rtc_time * tm)
1088{
1089 register int i;
1090 register long hms, day;
1091
1092 day = tim / SECDAY;
1093 hms = tim % SECDAY;
1094
1095 /* Hours, minutes, seconds are easy */
1096 tm->tm_hour = hms / 3600;
1097 tm->tm_min = (hms % 3600) / 60;
1098 tm->tm_sec = (hms % 3600) % 60;
1099
1100 /* Number of years in days */
1101 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1102 day -= days_in_year(i);
1103 tm->tm_year = i;
1104
1105 /* Number of months in days left */
1106 if (leapyear(tm->tm_year))
1107 days_in_month(FEBRUARY) = 29;
1108 for (i = 1; day >= days_in_month(i); i++)
1109 day -= days_in_month(i);
1110 days_in_month(FEBRUARY) = 28;
1111 tm->tm_mon = i;
1112
1113 /* Days are what is left over (+1) from all that. */
1114 tm->tm_mday = day + 1;
1115
1116 /*
00b912b0 1117 * No-one uses the day of the week.
1da177e4 1118 */
00b912b0 1119 tm->tm_wday = -1;
1da177e4 1120}
e1802b06 1121EXPORT_SYMBOL(to_tm);
1da177e4 1122
1da177e4
LT
1123/*
1124 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1125 * result.
1126 */
f2783c15
PM
1127void div128_by_32(u64 dividend_high, u64 dividend_low,
1128 unsigned divisor, struct div_result *dr)
1da177e4 1129{
f2783c15
PM
1130 unsigned long a, b, c, d;
1131 unsigned long w, x, y, z;
1132 u64 ra, rb, rc;
1da177e4
LT
1133
1134 a = dividend_high >> 32;
1135 b = dividend_high & 0xffffffff;
1136 c = dividend_low >> 32;
1137 d = dividend_low & 0xffffffff;
1138
f2783c15
PM
1139 w = a / divisor;
1140 ra = ((u64)(a - (w * divisor)) << 32) + b;
1141
f2783c15
PM
1142 rb = ((u64) do_div(ra, divisor) << 32) + c;
1143 x = ra;
1da177e4 1144
f2783c15
PM
1145 rc = ((u64) do_div(rb, divisor) << 32) + d;
1146 y = rb;
1147
1148 do_div(rc, divisor);
1149 z = rc;
1da177e4 1150
f2783c15
PM
1151 dr->result_high = ((u64)w << 32) + x;
1152 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1153
1154}
bcd68a70 1155
177996e6
BH
1156/* We don't need to calibrate delay, we use the CPU timebase for that */
1157void calibrate_delay(void)
1158{
1159 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1160 * as the number of __delay(1) in a jiffy, so make it so
1161 */
1162 loops_per_jiffy = tb_ticks_per_jiffy;
1163}
1164
169047f4
AB
1165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1167{
1168 ppc_md.get_rtc_time(tm);
1169 return rtc_valid_tm(tm);
1170}
1171
1172static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1173{
1174 if (!ppc_md.set_rtc_time)
1175 return -EOPNOTSUPP;
1176
1177 if (ppc_md.set_rtc_time(tm) < 0)
1178 return -EOPNOTSUPP;
1179
1180 return 0;
1181}
1182
1183static const struct rtc_class_ops rtc_generic_ops = {
1184 .read_time = rtc_generic_get_time,
1185 .set_time = rtc_generic_set_time,
1186};
1187
bcd68a70
GU
1188static int __init rtc_init(void)
1189{
1190 struct platform_device *pdev;
1191
1192 if (!ppc_md.get_rtc_time)
1193 return -ENODEV;
1194
169047f4
AB
1195 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1196 &rtc_generic_ops,
1197 sizeof(rtc_generic_ops));
bcd68a70 1198
8c6ffba0 1199 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1200}
1201
8f6b9512 1202device_initcall(rtc_init);
169047f4 1203#endif