]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/time.c
[POWERPC] Create a dummy zImage if no valid platform has been selected
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
f2783c15 68#ifdef CONFIG_PPC64
1ababe11 69#include <asm/firmware.h>
f2783c15
PM
70#endif
71#ifdef CONFIG_PPC_ISERIES
8875ccfb 72#include <asm/iseries/it_lp_queue.h>
8021b8a7 73#include <asm/iseries/hv_call_xm.h>
f2783c15 74#endif
732ee21f 75#include <asm/smp.h>
1da177e4 76
1da177e4
LT
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
1da177e4 79#ifdef CONFIG_PPC_ISERIES
71712b45
TB
80static unsigned long __initdata iSeries_recal_titan;
81static signed long __initdata iSeries_recal_tb;
1da177e4
LT
82#endif
83
f2783c15
PM
84/* The decrementer counts down by 128 every 128ns on a 601. */
85#define DECREMENTER_COUNT_601 (1000000000 / HZ)
86
1da177e4
LT
87#define XSEC_PER_SEC (1024*1024)
88
f2783c15
PM
89#ifdef CONFIG_PPC64
90#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91#else
92/* compute ((xsec << 12) * max) >> 32 */
93#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94#endif
95
1da177e4
LT
96unsigned long tb_ticks_per_jiffy;
97unsigned long tb_ticks_per_usec = 100; /* sane default */
98EXPORT_SYMBOL(tb_ticks_per_usec);
99unsigned long tb_ticks_per_sec;
2cf82c02 100EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
101u64 tb_to_xs;
102unsigned tb_to_us;
092b8f34 103
19923c19 104#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
105u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106u64 ticklen_to_xs; /* 0.64 fraction */
107
108/* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111
1da177e4 112DEFINE_SPINLOCK(rtc_lock);
6ae3db11 113EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 114
f2783c15
PM
115u64 tb_to_ns_scale;
116unsigned tb_to_ns_shift;
1da177e4
LT
117
118struct gettimeofday_struct do_gtod;
119
1da177e4 120extern struct timezone sys_tz;
f2783c15 121static long timezone_offset;
1da177e4 122
10f7e7c1
AB
123unsigned long ppc_proc_freq;
124unsigned long ppc_tb_freq;
125
eb36c288
PM
126static u64 tb_last_jiffy __cacheline_aligned_in_smp;
127static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 128
c6622f63
PM
129#ifdef CONFIG_VIRT_CPU_ACCOUNTING
130/*
131 * Factors for converting from cputime_t (timebase ticks) to
132 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
133 * These are all stored as 0.64 fixed-point binary fractions.
134 */
135u64 __cputime_jiffies_factor;
2cf82c02 136EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 137u64 __cputime_msec_factor;
2cf82c02 138EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 139u64 __cputime_sec_factor;
2cf82c02 140EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 141u64 __cputime_clockt_factor;
2cf82c02 142EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
143
144static void calc_cputime_factors(void)
145{
146 struct div_result res;
147
148 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
149 __cputime_jiffies_factor = res.result_low;
150 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
151 __cputime_msec_factor = res.result_low;
152 div128_by_32(1, 0, tb_ticks_per_sec, &res);
153 __cputime_sec_factor = res.result_low;
154 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
155 __cputime_clockt_factor = res.result_low;
156}
157
158/*
159 * Read the PURR on systems that have it, otherwise the timebase.
160 */
161static u64 read_purr(void)
162{
163 if (cpu_has_feature(CPU_FTR_PURR))
164 return mfspr(SPRN_PURR);
165 return mftb();
166}
167
168/*
169 * Account time for a transition between system, hard irq
170 * or soft irq state.
171 */
172void account_system_vtime(struct task_struct *tsk)
173{
174 u64 now, delta;
175 unsigned long flags;
176
177 local_irq_save(flags);
178 now = read_purr();
179 delta = now - get_paca()->startpurr;
180 get_paca()->startpurr = now;
181 if (!in_interrupt()) {
182 delta += get_paca()->system_time;
183 get_paca()->system_time = 0;
184 }
185 account_system_time(tsk, 0, delta);
186 local_irq_restore(flags);
187}
188
189/*
190 * Transfer the user and system times accumulated in the paca
191 * by the exception entry and exit code to the generic process
192 * user and system time records.
193 * Must be called with interrupts disabled.
194 */
195void account_process_vtime(struct task_struct *tsk)
196{
197 cputime_t utime;
198
199 utime = get_paca()->user_time;
200 get_paca()->user_time = 0;
201 account_user_time(tsk, utime);
202}
203
204static void account_process_time(struct pt_regs *regs)
205{
206 int cpu = smp_processor_id();
207
208 account_process_vtime(current);
209 run_local_timers();
210 if (rcu_pending(cpu))
211 rcu_check_callbacks(cpu, user_mode(regs));
212 scheduler_tick();
213 run_posix_cpu_timers(current);
214}
215
c6622f63
PM
216/*
217 * Stuff for accounting stolen time.
218 */
219struct cpu_purr_data {
220 int initialized; /* thread is running */
c6622f63
PM
221 u64 tb; /* last TB value read */
222 u64 purr; /* last PURR value read */
c6622f63
PM
223};
224
df211c8a
NL
225/*
226 * Each entry in the cpu_purr_data array is manipulated only by its
227 * "owner" cpu -- usually in the timer interrupt but also occasionally
228 * in process context for cpu online. As long as cpus do not touch
229 * each others' cpu_purr_data, disabling local interrupts is
230 * sufficient to serialize accesses.
231 */
c6622f63
PM
232static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
233
234static void snapshot_tb_and_purr(void *data)
235{
df211c8a 236 unsigned long flags;
c6622f63
PM
237 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
238
df211c8a 239 local_irq_save(flags);
cbcdb93d
SR
240 p->tb = mftb();
241 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
242 wmb();
243 p->initialized = 1;
df211c8a 244 local_irq_restore(flags);
c6622f63
PM
245}
246
247/*
248 * Called during boot when all cpus have come up.
249 */
250void snapshot_timebases(void)
251{
c6622f63
PM
252 if (!cpu_has_feature(CPU_FTR_PURR))
253 return;
c6622f63
PM
254 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
255}
256
df211c8a
NL
257/*
258 * Must be called with interrupts disabled.
259 */
c6622f63
PM
260void calculate_steal_time(void)
261{
cbcdb93d 262 u64 tb, purr;
c6622f63 263 s64 stolen;
cbcdb93d 264 struct cpu_purr_data *pme;
c6622f63
PM
265
266 if (!cpu_has_feature(CPU_FTR_PURR))
267 return;
cbcdb93d 268 pme = &per_cpu(cpu_purr_data, smp_processor_id());
c6622f63
PM
269 if (!pme->initialized)
270 return; /* this can happen in early boot */
c6622f63 271 tb = mftb();
cbcdb93d
SR
272 purr = mfspr(SPRN_PURR);
273 stolen = (tb - pme->tb) - (purr - pme->purr);
274 if (stolen > 0)
c6622f63 275 account_steal_time(current, stolen);
c6622f63
PM
276 pme->tb = tb;
277 pme->purr = purr;
c6622f63
PM
278}
279
4cefebb1 280#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
281/*
282 * Must be called before the cpu is added to the online map when
283 * a cpu is being brought up at runtime.
284 */
285static void snapshot_purr(void)
286{
cbcdb93d 287 struct cpu_purr_data *pme;
c6622f63
PM
288 unsigned long flags;
289
290 if (!cpu_has_feature(CPU_FTR_PURR))
291 return;
df211c8a 292 local_irq_save(flags);
cbcdb93d 293 pme = &per_cpu(cpu_purr_data, smp_processor_id());
cbcdb93d
SR
294 pme->tb = mftb();
295 pme->purr = mfspr(SPRN_PURR);
c6622f63 296 pme->initialized = 1;
df211c8a 297 local_irq_restore(flags);
c6622f63
PM
298}
299
300#endif /* CONFIG_PPC_SPLPAR */
301
302#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
303#define calc_cputime_factors()
304#define account_process_time(regs) update_process_times(user_mode(regs))
305#define calculate_steal_time() do { } while (0)
306#endif
307
308#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
309#define snapshot_purr() do { } while (0)
310#endif
311
312/*
313 * Called when a cpu comes up after the system has finished booting,
314 * i.e. as a result of a hotplug cpu action.
315 */
316void snapshot_timebase(void)
317{
318 __get_cpu_var(last_jiffy) = get_tb();
319 snapshot_purr();
320}
321
6defa38b
PM
322void __delay(unsigned long loops)
323{
324 unsigned long start;
325 int diff;
326
327 if (__USE_RTC()) {
328 start = get_rtcl();
329 do {
330 /* the RTCL register wraps at 1000000000 */
331 diff = get_rtcl() - start;
332 if (diff < 0)
333 diff += 1000000000;
334 } while (diff < loops);
335 } else {
336 start = get_tbl();
337 while (get_tbl() - start < loops)
338 HMT_low();
339 HMT_medium();
340 }
341}
342EXPORT_SYMBOL(__delay);
343
344void udelay(unsigned long usecs)
345{
346 __delay(tb_ticks_per_usec * usecs);
347}
348EXPORT_SYMBOL(udelay);
349
1da177e4
LT
350static __inline__ void timer_check_rtc(void)
351{
352 /*
353 * update the rtc when needed, this should be performed on the
354 * right fraction of a second. Half or full second ?
355 * Full second works on mk48t59 clocks, others need testing.
356 * Note that this update is basically only used through
357 * the adjtimex system calls. Setting the HW clock in
358 * any other way is a /dev/rtc and userland business.
359 * This is still wrong by -0.5/+1.5 jiffies because of the
360 * timer interrupt resolution and possible delay, but here we
361 * hit a quantization limit which can only be solved by higher
362 * resolution timers and decoupling time management from timer
363 * interrupts. This is also wrong on the clocks
364 * which require being written at the half second boundary.
365 * We should have an rtc call that only sets the minutes and
366 * seconds like on Intel to avoid problems with non UTC clocks.
367 */
d2e61512 368 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15 369 xtime.tv_sec - last_rtc_update >= 659 &&
092b8f34 370 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
f2783c15
PM
371 struct rtc_time tm;
372 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
373 tm.tm_year -= 1900;
374 tm.tm_mon -= 1;
375 if (ppc_md.set_rtc_time(&tm) == 0)
376 last_rtc_update = xtime.tv_sec + 1;
377 else
378 /* Try again one minute later */
379 last_rtc_update += 60;
1da177e4
LT
380 }
381}
382
383/*
384 * This version of gettimeofday has microsecond resolution.
385 */
5db9fa95 386static inline void __do_gettimeofday(struct timeval *tv)
1da177e4 387{
f2783c15
PM
388 unsigned long sec, usec;
389 u64 tb_ticks, xsec;
390 struct gettimeofday_vars *temp_varp;
391 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
392
393 /*
394 * These calculations are faster (gets rid of divides)
395 * if done in units of 1/2^20 rather than microseconds.
396 * The conversion to microseconds at the end is done
397 * without a divide (and in fact, without a multiply)
398 */
399 temp_varp = do_gtod.varp;
5db9fa95
NL
400
401 /* Sampling the time base must be done after loading
402 * do_gtod.varp in order to avoid racing with update_gtod.
403 */
404 data_barrier(temp_varp);
405 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
1da177e4
LT
406 temp_tb_to_xs = temp_varp->tb_to_xs;
407 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 408 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 409 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
410 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
411 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
412
413 tv->tv_sec = sec;
414 tv->tv_usec = usec;
415}
416
417void do_gettimeofday(struct timeval *tv)
418{
96c44507
PM
419 if (__USE_RTC()) {
420 /* do this the old way */
421 unsigned long flags, seq;
092b8f34 422 unsigned int sec, nsec, usec;
96c44507
PM
423
424 do {
425 seq = read_seqbegin_irqsave(&xtime_lock, flags);
426 sec = xtime.tv_sec;
eb36c288 427 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
96c44507 428 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
092b8f34 429 usec = nsec / 1000;
96c44507
PM
430 while (usec >= 1000000) {
431 usec -= 1000000;
432 ++sec;
433 }
434 tv->tv_sec = sec;
435 tv->tv_usec = usec;
436 return;
437 }
5db9fa95 438 __do_gettimeofday(tv);
1da177e4
LT
439}
440
441EXPORT_SYMBOL(do_gettimeofday);
442
1da177e4 443/*
f2783c15
PM
444 * There are two copies of tb_to_xs and stamp_xsec so that no
445 * lock is needed to access and use these values in
446 * do_gettimeofday. We alternate the copies and as long as a
447 * reasonable time elapses between changes, there will never
448 * be inconsistent values. ntpd has a minimum of one minute
449 * between updates.
1da177e4 450 */
f2783c15 451static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 452 u64 new_tb_to_xs)
1da177e4 453{
1da177e4 454 unsigned temp_idx;
f2783c15 455 struct gettimeofday_vars *temp_varp;
1da177e4
LT
456
457 temp_idx = (do_gtod.var_idx == 0);
458 temp_varp = &do_gtod.vars[temp_idx];
459
f2783c15
PM
460 temp_varp->tb_to_xs = new_tb_to_xs;
461 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 462 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 463 smp_mb();
1da177e4
LT
464 do_gtod.varp = temp_varp;
465 do_gtod.var_idx = temp_idx;
466
f2783c15
PM
467 /*
468 * tb_update_count is used to allow the userspace gettimeofday code
469 * to assure itself that it sees a consistent view of the tb_to_xs and
470 * stamp_xsec variables. It reads the tb_update_count, then reads
471 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
472 * the two values of tb_update_count match and are even then the
473 * tb_to_xs and stamp_xsec values are consistent. If not, then it
474 * loops back and reads them again until this criteria is met.
0a45d449
PM
475 * We expect the caller to have done the first increment of
476 * vdso_data->tb_update_count already.
f2783c15 477 */
a7f290da
BH
478 vdso_data->tb_orig_stamp = new_tb_stamp;
479 vdso_data->stamp_xsec = new_stamp_xsec;
480 vdso_data->tb_to_xs = new_tb_to_xs;
481 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
482 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 483 smp_wmb();
a7f290da 484 ++(vdso_data->tb_update_count);
f2783c15
PM
485}
486
487/*
488 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
489 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
490 * difference tb - tb_orig_stamp small enough to always fit inside a
491 * 32 bits number. This is a requirement of our fast 32 bits userland
492 * implementation in the vdso. If we "miss" a call to this function
493 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
494 * with a too big difference, then the vdso will fallback to calling
495 * the syscall
496 */
497static __inline__ void timer_recalc_offset(u64 cur_tb)
498{
499 unsigned long offset;
500 u64 new_stamp_xsec;
092b8f34 501 u64 tlen, t2x;
0a45d449
PM
502 u64 tb, xsec_old, xsec_new;
503 struct gettimeofday_vars *varp;
f2783c15 504
96c44507
PM
505 if (__USE_RTC())
506 return;
19923c19 507 tlen = current_tick_length();
f2783c15 508 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
0a45d449
PM
509 if (tlen == last_tick_len && offset < 0x80000000u)
510 return;
092b8f34
PM
511 if (tlen != last_tick_len) {
512 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
513 last_tick_len = tlen;
514 } else
515 t2x = do_gtod.varp->tb_to_xs;
516 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
517 do_div(new_stamp_xsec, 1000000000);
518 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
0a45d449
PM
519
520 ++vdso_data->tb_update_count;
521 smp_mb();
522
523 /*
524 * Make sure time doesn't go backwards for userspace gettimeofday.
525 */
526 tb = get_tb();
527 varp = do_gtod.varp;
528 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
529 + varp->stamp_xsec;
530 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
531 if (xsec_new < xsec_old)
532 new_stamp_xsec += xsec_old - xsec_new;
533
092b8f34 534 update_gtod(cur_tb, new_stamp_xsec, t2x);
1da177e4
LT
535}
536
537#ifdef CONFIG_SMP
538unsigned long profile_pc(struct pt_regs *regs)
539{
540 unsigned long pc = instruction_pointer(regs);
541
542 if (in_lock_functions(pc))
543 return regs->link;
544
545 return pc;
546}
547EXPORT_SYMBOL(profile_pc);
548#endif
549
550#ifdef CONFIG_PPC_ISERIES
551
552/*
553 * This function recalibrates the timebase based on the 49-bit time-of-day
554 * value in the Titan chip. The Titan is much more accurate than the value
555 * returned by the service processor for the timebase frequency.
556 */
557
71712b45 558static int __init iSeries_tb_recal(void)
1da177e4
LT
559{
560 struct div_result divres;
561 unsigned long titan, tb;
71712b45
TB
562
563 /* Make sure we only run on iSeries */
564 if (!firmware_has_feature(FW_FEATURE_ISERIES))
565 return -ENODEV;
566
1da177e4
LT
567 tb = get_tb();
568 titan = HvCallXm_loadTod();
569 if ( iSeries_recal_titan ) {
570 unsigned long tb_ticks = tb - iSeries_recal_tb;
571 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
572 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
573 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
574 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
575 char sign = '+';
576 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
577 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
578
579 if ( tick_diff < 0 ) {
580 tick_diff = -tick_diff;
581 sign = '-';
582 }
583 if ( tick_diff ) {
584 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
585 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
586 new_tb_ticks_per_jiffy, sign, tick_diff );
587 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
588 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 589 calc_cputime_factors();
1da177e4
LT
590 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
591 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
592 tb_to_xs = divres.result_low;
593 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
594 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
595 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
596 }
597 else {
598 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
599 " new tb_ticks_per_jiffy = %lu\n"
600 " old tb_ticks_per_jiffy = %lu\n",
601 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
602 }
603 }
604 }
605 iSeries_recal_titan = titan;
606 iSeries_recal_tb = tb;
71712b45
TB
607
608 return 0;
1da177e4 609}
71712b45
TB
610late_initcall(iSeries_tb_recal);
611
612/* Called from platform early init */
613void __init iSeries_time_init_early(void)
614{
615 iSeries_recal_tb = get_tb();
616 iSeries_recal_titan = HvCallXm_loadTod();
617}
618#endif /* CONFIG_PPC_ISERIES */
1da177e4
LT
619
620/*
621 * For iSeries shared processors, we have to let the hypervisor
622 * set the hardware decrementer. We set a virtual decrementer
623 * in the lppaca and call the hypervisor if the virtual
624 * decrementer is less than the current value in the hardware
625 * decrementer. (almost always the new decrementer value will
626 * be greater than the current hardware decementer so the hypervisor
627 * call will not be needed)
628 */
629
1da177e4
LT
630/*
631 * timer_interrupt - gets called when the decrementer overflows,
632 * with interrupts disabled.
633 */
c7aeffc4 634void timer_interrupt(struct pt_regs * regs)
1da177e4 635{
7d12e780 636 struct pt_regs *old_regs;
1da177e4 637 int next_dec;
f2783c15
PM
638 int cpu = smp_processor_id();
639 unsigned long ticks;
5db9fa95 640 u64 tb_next_jiffy;
f2783c15
PM
641
642#ifdef CONFIG_PPC32
643 if (atomic_read(&ppc_n_lost_interrupts) != 0)
644 do_IRQ(regs);
645#endif
1da177e4 646
7d12e780 647 old_regs = set_irq_regs(regs);
1da177e4
LT
648 irq_enter();
649
7d12e780 650 profile_tick(CPU_PROFILING);
c6622f63 651 calculate_steal_time();
1da177e4 652
f2783c15 653#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
654 if (firmware_has_feature(FW_FEATURE_ISERIES))
655 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
656#endif
657
658 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
659 >= tb_ticks_per_jiffy) {
660 /* Update last_jiffy */
661 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
662 /* Handle RTCL overflow on 601 */
663 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
664 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 665
1da177e4
LT
666 /*
667 * We cannot disable the decrementer, so in the period
668 * between this cpu's being marked offline in cpu_online_map
669 * and calling stop-self, it is taking timer interrupts.
670 * Avoid calling into the scheduler rebalancing code if this
671 * is the case.
672 */
673 if (!cpu_is_offline(cpu))
c6622f63 674 account_process_time(regs);
f2783c15 675
1da177e4
LT
676 /*
677 * No need to check whether cpu is offline here; boot_cpuid
678 * should have been fixed up by now.
679 */
f2783c15
PM
680 if (cpu != boot_cpuid)
681 continue;
682
683 write_seqlock(&xtime_lock);
5db9fa95
NL
684 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
685 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
686 tb_last_jiffy = tb_next_jiffy;
3171a030 687 do_timer(1);
5db9fa95
NL
688 timer_recalc_offset(tb_last_jiffy);
689 timer_check_rtc();
690 }
f2783c15 691 write_sequnlock(&xtime_lock);
1da177e4
LT
692 }
693
f2783c15 694 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
695 set_dec(next_dec);
696
697#ifdef CONFIG_PPC_ISERIES
501b6d29 698 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 699 process_hvlpevents();
1da177e4
LT
700#endif
701
f2783c15 702#ifdef CONFIG_PPC64
8d15a3e5 703 /* collect purr register values often, for accurate calculations */
1ababe11 704 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
705 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
706 cu->current_tb = mfspr(SPRN_PURR);
707 }
f2783c15 708#endif
1da177e4
LT
709
710 irq_exit();
7d12e780 711 set_irq_regs(old_regs);
1da177e4
LT
712}
713
f2783c15
PM
714void wakeup_decrementer(void)
715{
092b8f34 716 unsigned long ticks;
f2783c15 717
f2783c15 718 /*
092b8f34
PM
719 * The timebase gets saved on sleep and restored on wakeup,
720 * so all we need to do is to reset the decrementer.
f2783c15 721 */
092b8f34
PM
722 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
723 if (ticks < tb_ticks_per_jiffy)
724 ticks = tb_ticks_per_jiffy - ticks;
725 else
726 ticks = 1;
727 set_dec(ticks);
f2783c15
PM
728}
729
a5b518ed 730#ifdef CONFIG_SMP
f2783c15
PM
731void __init smp_space_timers(unsigned int max_cpus)
732{
733 int i;
eb36c288 734 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 735
cbe62e2b
PM
736 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
737 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 738
0e551954 739 for_each_possible_cpu(i) {
c6622f63
PM
740 if (i == boot_cpuid)
741 continue;
e147ec8f 742 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
743 }
744}
745#endif
746
1da177e4
LT
747/*
748 * Scheduler clock - returns current time in nanosec units.
749 *
750 * Note: mulhdu(a, b) (multiply high double unsigned) returns
751 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
752 * are 64-bit unsigned numbers.
753 */
754unsigned long long sched_clock(void)
755{
96c44507
PM
756 if (__USE_RTC())
757 return get_rtc();
1da177e4
LT
758 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
759}
760
761int do_settimeofday(struct timespec *tv)
762{
763 time_t wtm_sec, new_sec = tv->tv_sec;
764 long wtm_nsec, new_nsec = tv->tv_nsec;
765 unsigned long flags;
092b8f34
PM
766 u64 new_xsec;
767 unsigned long tb_delta;
1da177e4
LT
768
769 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
770 return -EINVAL;
771
772 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
773
774 /*
775 * Updating the RTC is not the job of this code. If the time is
776 * stepped under NTP, the RTC will be updated after STA_UNSYNC
777 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
778 * to the system time, in which case there is no point in writing
779 * to the RTC again, or write to the RTC but then they don't call
780 * settimeofday to perform this operation.
781 */
092b8f34 782
0a45d449
PM
783 /* Make userspace gettimeofday spin until we're done. */
784 ++vdso_data->tb_update_count;
785 smp_mb();
786
092b8f34
PM
787 /*
788 * Subtract off the number of nanoseconds since the
789 * beginning of the last tick.
092b8f34 790 */
eb36c288 791 tb_delta = tb_ticks_since(tb_last_jiffy);
092b8f34
PM
792 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
793 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
1da177e4
LT
794
795 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
796 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
797
798 set_normalized_timespec(&xtime, new_sec, new_nsec);
799 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
800
801 /* In case of a large backwards jump in time with NTP, we want the
802 * clock to be updated as soon as the PLL is again in lock.
803 */
804 last_rtc_update = new_sec - 658;
805
b149ee22 806 ntp_clear();
1da177e4 807
092b8f34
PM
808 new_xsec = xtime.tv_nsec;
809 if (new_xsec != 0) {
810 new_xsec *= XSEC_PER_SEC;
5f6b5b97
PM
811 do_div(new_xsec, NSEC_PER_SEC);
812 }
092b8f34 813 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
96c44507 814 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 815
a7f290da
BH
816 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
817 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
818
819 write_sequnlock_irqrestore(&xtime_lock, flags);
820 clock_was_set();
821 return 0;
822}
823
824EXPORT_SYMBOL(do_settimeofday);
825
0bb474a4 826static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
827{
828 struct device_node *cpu;
a7f67bdf 829 const unsigned int *fp;
0bb474a4 830 int found = 0;
10f7e7c1 831
0bb474a4 832 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
833 cpu = of_find_node_by_type(NULL, "cpu");
834
d8a8188d 835 if (cpu) {
e2eb6392 836 fp = of_get_property(cpu, name, NULL);
d8a8188d 837 if (fp) {
0bb474a4 838 found = 1;
a4dc7ff0 839 *val = of_read_ulong(fp, cells);
10f7e7c1 840 }
0bb474a4
AB
841
842 of_node_put(cpu);
10f7e7c1 843 }
0bb474a4
AB
844
845 return found;
846}
847
848void __init generic_calibrate_decr(void)
849{
850 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
851
852 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
853 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
854
10f7e7c1
AB
855 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
856 "(not found)\n");
0bb474a4 857 }
10f7e7c1 858
0bb474a4
AB
859 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
860
861 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
862 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
863
864 printk(KERN_ERR "WARNING: Estimating processor frequency "
865 "(not found)\n");
10f7e7c1 866 }
0bb474a4 867
0fd6f717
KG
868#ifdef CONFIG_BOOKE
869 /* Set the time base to zero */
870 mtspr(SPRN_TBWL, 0);
871 mtspr(SPRN_TBWU, 0);
872
873 /* Clear any pending timer interrupts */
874 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
875
876 /* Enable decrementer interrupt */
877 mtspr(SPRN_TCR, TCR_DIE);
878#endif
10f7e7c1 879}
10f7e7c1 880
f2783c15
PM
881unsigned long get_boot_time(void)
882{
883 struct rtc_time tm;
884
885 if (ppc_md.get_boot_time)
886 return ppc_md.get_boot_time();
887 if (!ppc_md.get_rtc_time)
888 return 0;
889 ppc_md.get_rtc_time(&tm);
890 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
891 tm.tm_hour, tm.tm_min, tm.tm_sec);
892}
893
894/* This function is only called on the boot processor */
1da177e4
LT
895void __init time_init(void)
896{
1da177e4 897 unsigned long flags;
f2783c15 898 unsigned long tm = 0;
1da177e4 899 struct div_result res;
092b8f34 900 u64 scale, x;
f2783c15
PM
901 unsigned shift;
902
903 if (ppc_md.time_init != NULL)
904 timezone_offset = ppc_md.time_init();
1da177e4 905
96c44507
PM
906 if (__USE_RTC()) {
907 /* 601 processor: dec counts down by 128 every 128ns */
908 ppc_tb_freq = 1000000000;
eb36c288 909 tb_last_jiffy = get_rtcl();
96c44507
PM
910 } else {
911 /* Normal PowerPC with timebase register */
912 ppc_md.calibrate_decr();
224ad80a 913 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 914 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 915 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 916 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 917 tb_last_jiffy = get_tb();
96c44507 918 }
374e99d4
PM
919
920 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 921 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
922 tb_ticks_per_usec = ppc_tb_freq / 1000000;
923 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 924 calc_cputime_factors();
092b8f34
PM
925
926 /*
927 * Calculate the length of each tick in ns. It will not be
928 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
929 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
930 * rounded up.
931 */
932 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
933 do_div(x, ppc_tb_freq);
934 tick_nsec = x;
935 last_tick_len = x << TICKLEN_SCALE;
936
937 /*
938 * Compute ticklen_to_xs, which is a factor which gets multiplied
939 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
940 * It is computed as:
941 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
942 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
943 * which turns out to be N = 51 - SHIFT_HZ.
944 * This gives the result as a 0.64 fixed-point fraction.
945 * That value is reduced by an offset amounting to 1 xsec per
946 * 2^31 timebase ticks to avoid problems with time going backwards
947 * by 1 xsec when we do timer_recalc_offset due to losing the
948 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
949 * since there are 2^20 xsec in a second.
092b8f34 950 */
0a45d449
PM
951 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
952 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
953 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
954 ticklen_to_xs = res.result_low;
955
956 /* Compute tb_to_xs from tick_nsec */
957 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 958
1da177e4
LT
959 /*
960 * Compute scale factor for sched_clock.
961 * The calibrate_decr() function has set tb_ticks_per_sec,
962 * which is the timebase frequency.
963 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
964 * the 128-bit result as a 64.64 fixed-point number.
965 * We then shift that number right until it is less than 1.0,
966 * giving us the scale factor and shift count to use in
967 * sched_clock().
968 */
969 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
970 scale = res.result_low;
971 for (shift = 0; res.result_high != 0; ++shift) {
972 scale = (scale >> 1) | (res.result_high << 63);
973 res.result_high >>= 1;
974 }
975 tb_to_ns_scale = scale;
976 tb_to_ns_shift = shift;
977
4bd174fe 978 tm = get_boot_time();
1da177e4
LT
979
980 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
981
982 /* If platform provided a timezone (pmac), we correct the time */
983 if (timezone_offset) {
984 sys_tz.tz_minuteswest = -timezone_offset / 60;
985 sys_tz.tz_dsttime = 0;
986 tm -= timezone_offset;
987 }
988
f2783c15
PM
989 xtime.tv_sec = tm;
990 xtime.tv_nsec = 0;
1da177e4
LT
991 do_gtod.varp = &do_gtod.vars[0];
992 do_gtod.var_idx = 0;
96c44507 993 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 994 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 995 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
996 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
997 do_gtod.varp->tb_to_xs = tb_to_xs;
998 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
999
1000 vdso_data->tb_orig_stamp = tb_last_jiffy;
1001 vdso_data->tb_update_count = 0;
1002 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1003 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1004 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
1005
1006 time_freq = 0;
1007
1da177e4
LT
1008 last_rtc_update = xtime.tv_sec;
1009 set_normalized_timespec(&wall_to_monotonic,
1010 -xtime.tv_sec, -xtime.tv_nsec);
1011 write_sequnlock_irqrestore(&xtime_lock, flags);
1012
1013 /* Not exact, but the timer interrupt takes care of this */
1014 set_dec(tb_ticks_per_jiffy);
1015}
1016
1da177e4 1017
1da177e4
LT
1018#define FEBRUARY 2
1019#define STARTOFTIME 1970
1020#define SECDAY 86400L
1021#define SECYR (SECDAY * 365)
f2783c15
PM
1022#define leapyear(year) ((year) % 4 == 0 && \
1023 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1024#define days_in_year(a) (leapyear(a) ? 366 : 365)
1025#define days_in_month(a) (month_days[(a) - 1])
1026
1027static int month_days[12] = {
1028 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1029};
1030
1031/*
1032 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1033 */
1034void GregorianDay(struct rtc_time * tm)
1035{
1036 int leapsToDate;
1037 int lastYear;
1038 int day;
1039 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1040
f2783c15 1041 lastYear = tm->tm_year - 1;
1da177e4
LT
1042
1043 /*
1044 * Number of leap corrections to apply up to end of last year
1045 */
f2783c15 1046 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1047
1048 /*
1049 * This year is a leap year if it is divisible by 4 except when it is
1050 * divisible by 100 unless it is divisible by 400
1051 *
f2783c15 1052 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1053 */
f2783c15 1054 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1055
1056 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1057 tm->tm_mday;
1058
f2783c15 1059 tm->tm_wday = day % 7;
1da177e4
LT
1060}
1061
1062void to_tm(int tim, struct rtc_time * tm)
1063{
1064 register int i;
1065 register long hms, day;
1066
1067 day = tim / SECDAY;
1068 hms = tim % SECDAY;
1069
1070 /* Hours, minutes, seconds are easy */
1071 tm->tm_hour = hms / 3600;
1072 tm->tm_min = (hms % 3600) / 60;
1073 tm->tm_sec = (hms % 3600) % 60;
1074
1075 /* Number of years in days */
1076 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1077 day -= days_in_year(i);
1078 tm->tm_year = i;
1079
1080 /* Number of months in days left */
1081 if (leapyear(tm->tm_year))
1082 days_in_month(FEBRUARY) = 29;
1083 for (i = 1; day >= days_in_month(i); i++)
1084 day -= days_in_month(i);
1085 days_in_month(FEBRUARY) = 28;
1086 tm->tm_mon = i;
1087
1088 /* Days are what is left over (+1) from all that. */
1089 tm->tm_mday = day + 1;
1090
1091 /*
1092 * Determine the day of week
1093 */
1094 GregorianDay(tm);
1095}
1096
1097/* Auxiliary function to compute scaling factors */
1098/* Actually the choice of a timebase running at 1/4 the of the bus
1099 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1100 * It makes this computation very precise (27-28 bits typically) which
1101 * is optimistic considering the stability of most processor clock
1102 * oscillators and the precision with which the timebase frequency
1103 * is measured but does not harm.
1104 */
f2783c15
PM
1105unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1106{
1da177e4
LT
1107 unsigned mlt=0, tmp, err;
1108 /* No concern for performance, it's done once: use a stupid
1109 * but safe and compact method to find the multiplier.
1110 */
1111
1112 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1113 if (mulhwu(inscale, mlt|tmp) < outscale)
1114 mlt |= tmp;
1da177e4
LT
1115 }
1116
1117 /* We might still be off by 1 for the best approximation.
1118 * A side effect of this is that if outscale is too large
1119 * the returned value will be zero.
1120 * Many corner cases have been checked and seem to work,
1121 * some might have been forgotten in the test however.
1122 */
1123
f2783c15
PM
1124 err = inscale * (mlt+1);
1125 if (err <= inscale/2)
1126 mlt++;
1da177e4 1127 return mlt;
f2783c15 1128}
1da177e4
LT
1129
1130/*
1131 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1132 * result.
1133 */
f2783c15
PM
1134void div128_by_32(u64 dividend_high, u64 dividend_low,
1135 unsigned divisor, struct div_result *dr)
1da177e4 1136{
f2783c15
PM
1137 unsigned long a, b, c, d;
1138 unsigned long w, x, y, z;
1139 u64 ra, rb, rc;
1da177e4
LT
1140
1141 a = dividend_high >> 32;
1142 b = dividend_high & 0xffffffff;
1143 c = dividend_low >> 32;
1144 d = dividend_low & 0xffffffff;
1145
f2783c15
PM
1146 w = a / divisor;
1147 ra = ((u64)(a - (w * divisor)) << 32) + b;
1148
f2783c15
PM
1149 rb = ((u64) do_div(ra, divisor) << 32) + c;
1150 x = ra;
1da177e4 1151
f2783c15
PM
1152 rc = ((u64) do_div(rb, divisor) << 32) + d;
1153 y = rb;
1154
1155 do_div(rc, divisor);
1156 z = rc;
1da177e4 1157
f2783c15
PM
1158 dr->result_high = ((u64)w << 32) + x;
1159 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1160
1161}