]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/time.c
add-scaled-time-to-taskstats-based-process-accounting fix
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
1ababe11 68#include <asm/firmware.h>
f2783c15 69#ifdef CONFIG_PPC_ISERIES
8875ccfb 70#include <asm/iseries/it_lp_queue.h>
8021b8a7 71#include <asm/iseries/hv_call_xm.h>
f2783c15 72#endif
1da177e4 73
4a4cfe38
TB
74/* powerpc clocksource/clockevent code */
75
d831d0b8 76#include <linux/clockchips.h>
4a4cfe38
TB
77#include <linux/clocksource.h>
78
79static cycle_t rtc_read(void);
80static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
88};
89
90static cycle_t timebase_read(void);
91static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
99};
100
d831d0b8
TB
101#define DECREMENTER_MAX 0x7fffffff
102
103static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
107
108static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
cdec12ae 111 .shift = 16,
d831d0b8
TB
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
117};
118
119static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120void init_decrementer_clockevent(void);
d968014b 121static DEFINE_PER_CPU(u64, decrementer_next_tb);
d831d0b8 122
1da177e4 123#ifdef CONFIG_PPC_ISERIES
71712b45
TB
124static unsigned long __initdata iSeries_recal_titan;
125static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
126
127/* Forward declaration is only needed for iSereis compiles */
128void __init clocksource_init(void);
1da177e4
LT
129#endif
130
131#define XSEC_PER_SEC (1024*1024)
132
f2783c15
PM
133#ifdef CONFIG_PPC64
134#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
135#else
136/* compute ((xsec << 12) * max) >> 32 */
137#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
138#endif
139
1da177e4
LT
140unsigned long tb_ticks_per_jiffy;
141unsigned long tb_ticks_per_usec = 100; /* sane default */
142EXPORT_SYMBOL(tb_ticks_per_usec);
143unsigned long tb_ticks_per_sec;
2cf82c02 144EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
145u64 tb_to_xs;
146unsigned tb_to_us;
092b8f34 147
19923c19 148#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
149u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
150u64 ticklen_to_xs; /* 0.64 fraction */
151
152/* If last_tick_len corresponds to about 1/HZ seconds, then
153 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155
1da177e4 156DEFINE_SPINLOCK(rtc_lock);
6ae3db11 157EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 158
fc9069fe
TB
159static u64 tb_to_ns_scale __read_mostly;
160static unsigned tb_to_ns_shift __read_mostly;
161static unsigned long boot_tb __read_mostly;
1da177e4
LT
162
163struct gettimeofday_struct do_gtod;
164
1da177e4 165extern struct timezone sys_tz;
f2783c15 166static long timezone_offset;
1da177e4 167
10f7e7c1 168unsigned long ppc_proc_freq;
1474855d 169EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
170unsigned long ppc_tb_freq;
171
eb36c288
PM
172static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 174
c6622f63
PM
175#ifdef CONFIG_VIRT_CPU_ACCOUNTING
176/*
177 * Factors for converting from cputime_t (timebase ticks) to
178 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179 * These are all stored as 0.64 fixed-point binary fractions.
180 */
181u64 __cputime_jiffies_factor;
2cf82c02 182EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 183u64 __cputime_msec_factor;
2cf82c02 184EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 185u64 __cputime_sec_factor;
2cf82c02 186EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 187u64 __cputime_clockt_factor;
2cf82c02 188EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
189
190static void calc_cputime_factors(void)
191{
192 struct div_result res;
193
194 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195 __cputime_jiffies_factor = res.result_low;
196 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197 __cputime_msec_factor = res.result_low;
198 div128_by_32(1, 0, tb_ticks_per_sec, &res);
199 __cputime_sec_factor = res.result_low;
200 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_clockt_factor = res.result_low;
202}
203
204/*
205 * Read the PURR on systems that have it, otherwise the timebase.
206 */
207static u64 read_purr(void)
208{
209 if (cpu_has_feature(CPU_FTR_PURR))
210 return mfspr(SPRN_PURR);
211 return mftb();
212}
213
214/*
215 * Account time for a transition between system, hard irq
216 * or soft irq state.
217 */
218void account_system_vtime(struct task_struct *tsk)
219{
220 u64 now, delta;
221 unsigned long flags;
222
223 local_irq_save(flags);
224 now = read_purr();
225 delta = now - get_paca()->startpurr;
226 get_paca()->startpurr = now;
227 if (!in_interrupt()) {
228 delta += get_paca()->system_time;
229 get_paca()->system_time = 0;
230 }
231 account_system_time(tsk, 0, delta);
232 local_irq_restore(flags);
233}
234
235/*
236 * Transfer the user and system times accumulated in the paca
237 * by the exception entry and exit code to the generic process
238 * user and system time records.
239 * Must be called with interrupts disabled.
240 */
241void account_process_vtime(struct task_struct *tsk)
242{
243 cputime_t utime;
244
245 utime = get_paca()->user_time;
246 get_paca()->user_time = 0;
247 account_user_time(tsk, utime);
248}
249
250static void account_process_time(struct pt_regs *regs)
251{
252 int cpu = smp_processor_id();
253
254 account_process_vtime(current);
255 run_local_timers();
256 if (rcu_pending(cpu))
257 rcu_check_callbacks(cpu, user_mode(regs));
258 scheduler_tick();
259 run_posix_cpu_timers(current);
260}
261
c6622f63
PM
262/*
263 * Stuff for accounting stolen time.
264 */
265struct cpu_purr_data {
266 int initialized; /* thread is running */
c6622f63
PM
267 u64 tb; /* last TB value read */
268 u64 purr; /* last PURR value read */
c6622f63
PM
269};
270
df211c8a
NL
271/*
272 * Each entry in the cpu_purr_data array is manipulated only by its
273 * "owner" cpu -- usually in the timer interrupt but also occasionally
274 * in process context for cpu online. As long as cpus do not touch
275 * each others' cpu_purr_data, disabling local interrupts is
276 * sufficient to serialize accesses.
277 */
c6622f63
PM
278static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
279
280static void snapshot_tb_and_purr(void *data)
281{
df211c8a 282 unsigned long flags;
c6622f63
PM
283 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
284
df211c8a 285 local_irq_save(flags);
c27da339 286 p->tb = get_tb_or_rtc();
cbcdb93d 287 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
288 wmb();
289 p->initialized = 1;
df211c8a 290 local_irq_restore(flags);
c6622f63
PM
291}
292
293/*
294 * Called during boot when all cpus have come up.
295 */
296void snapshot_timebases(void)
297{
c6622f63
PM
298 if (!cpu_has_feature(CPU_FTR_PURR))
299 return;
c6622f63
PM
300 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
301}
302
df211c8a
NL
303/*
304 * Must be called with interrupts disabled.
305 */
c6622f63
PM
306void calculate_steal_time(void)
307{
cbcdb93d 308 u64 tb, purr;
c6622f63 309 s64 stolen;
cbcdb93d 310 struct cpu_purr_data *pme;
c6622f63
PM
311
312 if (!cpu_has_feature(CPU_FTR_PURR))
313 return;
cbcdb93d 314 pme = &per_cpu(cpu_purr_data, smp_processor_id());
c6622f63
PM
315 if (!pme->initialized)
316 return; /* this can happen in early boot */
c6622f63 317 tb = mftb();
cbcdb93d
SR
318 purr = mfspr(SPRN_PURR);
319 stolen = (tb - pme->tb) - (purr - pme->purr);
320 if (stolen > 0)
c6622f63 321 account_steal_time(current, stolen);
c6622f63
PM
322 pme->tb = tb;
323 pme->purr = purr;
c6622f63
PM
324}
325
4cefebb1 326#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
327/*
328 * Must be called before the cpu is added to the online map when
329 * a cpu is being brought up at runtime.
330 */
331static void snapshot_purr(void)
332{
cbcdb93d 333 struct cpu_purr_data *pme;
c6622f63
PM
334 unsigned long flags;
335
336 if (!cpu_has_feature(CPU_FTR_PURR))
337 return;
df211c8a 338 local_irq_save(flags);
cbcdb93d 339 pme = &per_cpu(cpu_purr_data, smp_processor_id());
cbcdb93d
SR
340 pme->tb = mftb();
341 pme->purr = mfspr(SPRN_PURR);
c6622f63 342 pme->initialized = 1;
df211c8a 343 local_irq_restore(flags);
c6622f63
PM
344}
345
346#endif /* CONFIG_PPC_SPLPAR */
347
348#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
349#define calc_cputime_factors()
350#define account_process_time(regs) update_process_times(user_mode(regs))
351#define calculate_steal_time() do { } while (0)
352#endif
353
354#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
355#define snapshot_purr() do { } while (0)
356#endif
357
358/*
359 * Called when a cpu comes up after the system has finished booting,
360 * i.e. as a result of a hotplug cpu action.
361 */
362void snapshot_timebase(void)
363{
c27da339 364 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
365 snapshot_purr();
366}
367
6defa38b
PM
368void __delay(unsigned long loops)
369{
370 unsigned long start;
371 int diff;
372
373 if (__USE_RTC()) {
374 start = get_rtcl();
375 do {
376 /* the RTCL register wraps at 1000000000 */
377 diff = get_rtcl() - start;
378 if (diff < 0)
379 diff += 1000000000;
380 } while (diff < loops);
381 } else {
382 start = get_tbl();
383 while (get_tbl() - start < loops)
384 HMT_low();
385 HMT_medium();
386 }
387}
388EXPORT_SYMBOL(__delay);
389
390void udelay(unsigned long usecs)
391{
392 __delay(tb_ticks_per_usec * usecs);
393}
394EXPORT_SYMBOL(udelay);
395
1da177e4 396
1da177e4 397/*
f2783c15
PM
398 * There are two copies of tb_to_xs and stamp_xsec so that no
399 * lock is needed to access and use these values in
400 * do_gettimeofday. We alternate the copies and as long as a
401 * reasonable time elapses between changes, there will never
402 * be inconsistent values. ntpd has a minimum of one minute
403 * between updates.
1da177e4 404 */
f2783c15 405static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 406 u64 new_tb_to_xs)
1da177e4 407{
1da177e4 408 unsigned temp_idx;
f2783c15 409 struct gettimeofday_vars *temp_varp;
1da177e4
LT
410
411 temp_idx = (do_gtod.var_idx == 0);
412 temp_varp = &do_gtod.vars[temp_idx];
413
f2783c15
PM
414 temp_varp->tb_to_xs = new_tb_to_xs;
415 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 416 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 417 smp_mb();
1da177e4
LT
418 do_gtod.varp = temp_varp;
419 do_gtod.var_idx = temp_idx;
420
f2783c15
PM
421 /*
422 * tb_update_count is used to allow the userspace gettimeofday code
423 * to assure itself that it sees a consistent view of the tb_to_xs and
424 * stamp_xsec variables. It reads the tb_update_count, then reads
425 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
426 * the two values of tb_update_count match and are even then the
427 * tb_to_xs and stamp_xsec values are consistent. If not, then it
428 * loops back and reads them again until this criteria is met.
0a45d449
PM
429 * We expect the caller to have done the first increment of
430 * vdso_data->tb_update_count already.
f2783c15 431 */
a7f290da
BH
432 vdso_data->tb_orig_stamp = new_tb_stamp;
433 vdso_data->stamp_xsec = new_stamp_xsec;
434 vdso_data->tb_to_xs = new_tb_to_xs;
435 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
436 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 437 smp_wmb();
a7f290da 438 ++(vdso_data->tb_update_count);
f2783c15
PM
439}
440
1da177e4
LT
441#ifdef CONFIG_SMP
442unsigned long profile_pc(struct pt_regs *regs)
443{
444 unsigned long pc = instruction_pointer(regs);
445
446 if (in_lock_functions(pc))
447 return regs->link;
448
449 return pc;
450}
451EXPORT_SYMBOL(profile_pc);
452#endif
453
454#ifdef CONFIG_PPC_ISERIES
455
456/*
457 * This function recalibrates the timebase based on the 49-bit time-of-day
458 * value in the Titan chip. The Titan is much more accurate than the value
459 * returned by the service processor for the timebase frequency.
460 */
461
71712b45 462static int __init iSeries_tb_recal(void)
1da177e4
LT
463{
464 struct div_result divres;
465 unsigned long titan, tb;
71712b45
TB
466
467 /* Make sure we only run on iSeries */
468 if (!firmware_has_feature(FW_FEATURE_ISERIES))
469 return -ENODEV;
470
1da177e4
LT
471 tb = get_tb();
472 titan = HvCallXm_loadTod();
473 if ( iSeries_recal_titan ) {
474 unsigned long tb_ticks = tb - iSeries_recal_tb;
475 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
476 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
477 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
478 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
479 char sign = '+';
480 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
481 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
482
483 if ( tick_diff < 0 ) {
484 tick_diff = -tick_diff;
485 sign = '-';
486 }
487 if ( tick_diff ) {
488 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
489 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
490 new_tb_ticks_per_jiffy, sign, tick_diff );
491 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
492 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 493 calc_cputime_factors();
1da177e4
LT
494 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
495 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
496 tb_to_xs = divres.result_low;
497 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
498 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
499 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
500 }
501 else {
502 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
503 " new tb_ticks_per_jiffy = %lu\n"
504 " old tb_ticks_per_jiffy = %lu\n",
505 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
506 }
507 }
508 }
509 iSeries_recal_titan = titan;
510 iSeries_recal_tb = tb;
71712b45 511
4a4cfe38
TB
512 /* Called here as now we know accurate values for the timebase */
513 clocksource_init();
71712b45 514 return 0;
1da177e4 515}
71712b45
TB
516late_initcall(iSeries_tb_recal);
517
518/* Called from platform early init */
519void __init iSeries_time_init_early(void)
520{
521 iSeries_recal_tb = get_tb();
522 iSeries_recal_titan = HvCallXm_loadTod();
523}
524#endif /* CONFIG_PPC_ISERIES */
1da177e4
LT
525
526/*
527 * For iSeries shared processors, we have to let the hypervisor
528 * set the hardware decrementer. We set a virtual decrementer
529 * in the lppaca and call the hypervisor if the virtual
530 * decrementer is less than the current value in the hardware
531 * decrementer. (almost always the new decrementer value will
532 * be greater than the current hardware decementer so the hypervisor
533 * call will not be needed)
534 */
535
1da177e4
LT
536/*
537 * timer_interrupt - gets called when the decrementer overflows,
538 * with interrupts disabled.
539 */
c7aeffc4 540void timer_interrupt(struct pt_regs * regs)
1da177e4 541{
7d12e780 542 struct pt_regs *old_regs;
f2783c15 543 int cpu = smp_processor_id();
d831d0b8 544 struct clock_event_device *evt = &per_cpu(decrementers, cpu);
d968014b 545 u64 now;
d831d0b8
TB
546
547 /* Ensure a positive value is written to the decrementer, or else
548 * some CPUs will continuue to take decrementer exceptions */
549 set_dec(DECREMENTER_MAX);
f2783c15
PM
550
551#ifdef CONFIG_PPC32
552 if (atomic_read(&ppc_n_lost_interrupts) != 0)
553 do_IRQ(regs);
554#endif
1da177e4 555
d968014b
PM
556 now = get_tb_or_rtc();
557 if (now < per_cpu(decrementer_next_tb, cpu)) {
558 /* not time for this event yet */
559 now = per_cpu(decrementer_next_tb, cpu) - now;
560 if (now <= DECREMENTER_MAX)
561 set_dec((unsigned int)now - 1);
562 return;
563 }
7d12e780 564 old_regs = set_irq_regs(regs);
1da177e4
LT
565 irq_enter();
566
c6622f63 567 calculate_steal_time();
1da177e4 568
f2783c15 569#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
570 if (firmware_has_feature(FW_FEATURE_ISERIES))
571 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
572#endif
573
d831d0b8
TB
574 /*
575 * We cannot disable the decrementer, so in the period
576 * between this cpu's being marked offline in cpu_online_map
577 * and calling stop-self, it is taking timer interrupts.
578 * Avoid calling into the scheduler rebalancing code if this
579 * is the case.
580 */
581 if (!cpu_is_offline(cpu))
582 account_process_time(regs);
f2783c15 583
d831d0b8
TB
584 if (evt->event_handler)
585 evt->event_handler(evt);
586 else
587 evt->set_next_event(DECREMENTER_MAX, evt);
1da177e4
LT
588
589#ifdef CONFIG_PPC_ISERIES
501b6d29 590 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 591 process_hvlpevents();
1da177e4
LT
592#endif
593
f2783c15 594#ifdef CONFIG_PPC64
8d15a3e5 595 /* collect purr register values often, for accurate calculations */
1ababe11 596 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
597 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
598 cu->current_tb = mfspr(SPRN_PURR);
599 }
f2783c15 600#endif
1da177e4
LT
601
602 irq_exit();
7d12e780 603 set_irq_regs(old_regs);
1da177e4
LT
604}
605
f2783c15
PM
606void wakeup_decrementer(void)
607{
092b8f34 608 unsigned long ticks;
f2783c15 609
f2783c15 610 /*
092b8f34
PM
611 * The timebase gets saved on sleep and restored on wakeup,
612 * so all we need to do is to reset the decrementer.
f2783c15 613 */
092b8f34
PM
614 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
615 if (ticks < tb_ticks_per_jiffy)
616 ticks = tb_ticks_per_jiffy - ticks;
617 else
618 ticks = 1;
619 set_dec(ticks);
f2783c15
PM
620}
621
a5b518ed 622#ifdef CONFIG_SMP
f2783c15
PM
623void __init smp_space_timers(unsigned int max_cpus)
624{
625 int i;
eb36c288 626 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 627
cbe62e2b
PM
628 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
629 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 630
0e551954 631 for_each_possible_cpu(i) {
c6622f63
PM
632 if (i == boot_cpuid)
633 continue;
e147ec8f 634 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
635 }
636}
637#endif
638
1da177e4
LT
639/*
640 * Scheduler clock - returns current time in nanosec units.
641 *
642 * Note: mulhdu(a, b) (multiply high double unsigned) returns
643 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
644 * are 64-bit unsigned numbers.
645 */
646unsigned long long sched_clock(void)
647{
96c44507
PM
648 if (__USE_RTC())
649 return get_rtc();
fc9069fe 650 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
651}
652
0bb474a4 653static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
654{
655 struct device_node *cpu;
a7f67bdf 656 const unsigned int *fp;
0bb474a4 657 int found = 0;
10f7e7c1 658
0bb474a4 659 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
660 cpu = of_find_node_by_type(NULL, "cpu");
661
d8a8188d 662 if (cpu) {
e2eb6392 663 fp = of_get_property(cpu, name, NULL);
d8a8188d 664 if (fp) {
0bb474a4 665 found = 1;
a4dc7ff0 666 *val = of_read_ulong(fp, cells);
10f7e7c1 667 }
0bb474a4
AB
668
669 of_node_put(cpu);
10f7e7c1 670 }
0bb474a4
AB
671
672 return found;
673}
674
675void __init generic_calibrate_decr(void)
676{
677 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
678
679 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
680 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
681
10f7e7c1
AB
682 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
683 "(not found)\n");
0bb474a4 684 }
10f7e7c1 685
0bb474a4
AB
686 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
687
688 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
689 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
690
691 printk(KERN_ERR "WARNING: Estimating processor frequency "
692 "(not found)\n");
10f7e7c1 693 }
0bb474a4 694
aab69292 695#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
0fd6f717
KG
696 /* Set the time base to zero */
697 mtspr(SPRN_TBWL, 0);
698 mtspr(SPRN_TBWU, 0);
699
700 /* Clear any pending timer interrupts */
701 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
702
703 /* Enable decrementer interrupt */
704 mtspr(SPRN_TCR, TCR_DIE);
705#endif
10f7e7c1 706}
10f7e7c1 707
aa3be5f3 708int update_persistent_clock(struct timespec now)
f2783c15
PM
709{
710 struct rtc_time tm;
711
aa3be5f3
TB
712 if (!ppc_md.set_rtc_time)
713 return 0;
714
715 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
716 tm.tm_year -= 1900;
717 tm.tm_mon -= 1;
718
719 return ppc_md.set_rtc_time(&tm);
720}
721
722unsigned long read_persistent_clock(void)
723{
724 struct rtc_time tm;
725 static int first = 1;
726
727 /* XXX this is a litle fragile but will work okay in the short term */
728 if (first) {
729 first = 0;
730 if (ppc_md.time_init)
731 timezone_offset = ppc_md.time_init();
732
733 /* get_boot_time() isn't guaranteed to be safe to call late */
734 if (ppc_md.get_boot_time)
735 return ppc_md.get_boot_time() -timezone_offset;
736 }
f2783c15
PM
737 if (!ppc_md.get_rtc_time)
738 return 0;
739 ppc_md.get_rtc_time(&tm);
740 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
741 tm.tm_hour, tm.tm_min, tm.tm_sec);
742}
743
4a4cfe38
TB
744/* clocksource code */
745static cycle_t rtc_read(void)
746{
747 return (cycle_t)get_rtc();
748}
749
750static cycle_t timebase_read(void)
751{
752 return (cycle_t)get_tb();
753}
754
755void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
756{
757 u64 t2x, stamp_xsec;
758
759 if (clock != &clocksource_timebase)
760 return;
761
762 /* Make userspace gettimeofday spin until we're done. */
763 ++vdso_data->tb_update_count;
764 smp_mb();
765
766 /* XXX this assumes clock->shift == 22 */
767 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
768 t2x = (u64) clock->mult * 4611686018ULL;
769 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
770 do_div(stamp_xsec, 1000000000);
771 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
772 update_gtod(clock->cycle_last, stamp_xsec, t2x);
773}
774
775void update_vsyscall_tz(void)
776{
777 /* Make userspace gettimeofday spin until we're done. */
778 ++vdso_data->tb_update_count;
779 smp_mb();
780 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
781 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
782 smp_mb();
783 ++vdso_data->tb_update_count;
784}
785
786void __init clocksource_init(void)
787{
788 struct clocksource *clock;
789
790 if (__USE_RTC())
791 clock = &clocksource_rtc;
792 else
793 clock = &clocksource_timebase;
794
795 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
796
797 if (clocksource_register(clock)) {
798 printk(KERN_ERR "clocksource: %s is already registered\n",
799 clock->name);
800 return;
801 }
802
803 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
804 clock->name, clock->mult, clock->shift);
805}
806
d831d0b8
TB
807static int decrementer_set_next_event(unsigned long evt,
808 struct clock_event_device *dev)
809{
d968014b
PM
810 __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
811 /* The decrementer interrupts on the 0 -> -1 transition */
812 if (evt)
813 --evt;
d831d0b8
TB
814 set_dec(evt);
815 return 0;
816}
817
818static void decrementer_set_mode(enum clock_event_mode mode,
819 struct clock_event_device *dev)
820{
821 if (mode != CLOCK_EVT_MODE_ONESHOT)
822 decrementer_set_next_event(DECREMENTER_MAX, dev);
823}
824
825static void register_decrementer_clockevent(int cpu)
826{
827 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
828
829 *dec = decrementer_clockevent;
830 dec->cpumask = cpumask_of_cpu(cpu);
831
1281c8be 832 printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
d831d0b8
TB
833 dec->name, dec->mult, dec->shift, cpu);
834
835 clockevents_register_device(dec);
836}
837
838void init_decrementer_clockevent(void)
839{
840 int cpu = smp_processor_id();
841
842 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
843 decrementer_clockevent.shift);
844 decrementer_clockevent.max_delta_ns =
845 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
846 decrementer_clockevent.min_delta_ns = 1000;
847
848 register_decrementer_clockevent(cpu);
849}
850
851void secondary_cpu_time_init(void)
852{
853 /* FIME: Should make unrelatred change to move snapshot_timebase
854 * call here ! */
855 register_decrementer_clockevent(smp_processor_id());
856}
857
f2783c15 858/* This function is only called on the boot processor */
1da177e4
LT
859void __init time_init(void)
860{
1da177e4 861 unsigned long flags;
1da177e4 862 struct div_result res;
092b8f34 863 u64 scale, x;
f2783c15
PM
864 unsigned shift;
865
96c44507
PM
866 if (__USE_RTC()) {
867 /* 601 processor: dec counts down by 128 every 128ns */
868 ppc_tb_freq = 1000000000;
eb36c288 869 tb_last_jiffy = get_rtcl();
96c44507
PM
870 } else {
871 /* Normal PowerPC with timebase register */
872 ppc_md.calibrate_decr();
224ad80a 873 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 874 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 875 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 876 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 877 tb_last_jiffy = get_tb();
96c44507 878 }
374e99d4
PM
879
880 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 881 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
882 tb_ticks_per_usec = ppc_tb_freq / 1000000;
883 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 884 calc_cputime_factors();
092b8f34
PM
885
886 /*
887 * Calculate the length of each tick in ns. It will not be
888 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
889 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
890 * rounded up.
891 */
892 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
893 do_div(x, ppc_tb_freq);
894 tick_nsec = x;
895 last_tick_len = x << TICKLEN_SCALE;
896
897 /*
898 * Compute ticklen_to_xs, which is a factor which gets multiplied
899 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
900 * It is computed as:
901 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
902 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
903 * which turns out to be N = 51 - SHIFT_HZ.
904 * This gives the result as a 0.64 fixed-point fraction.
905 * That value is reduced by an offset amounting to 1 xsec per
906 * 2^31 timebase ticks to avoid problems with time going backwards
907 * by 1 xsec when we do timer_recalc_offset due to losing the
908 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
909 * since there are 2^20 xsec in a second.
092b8f34 910 */
0a45d449
PM
911 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
912 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
913 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
914 ticklen_to_xs = res.result_low;
915
916 /* Compute tb_to_xs from tick_nsec */
917 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 918
1da177e4
LT
919 /*
920 * Compute scale factor for sched_clock.
921 * The calibrate_decr() function has set tb_ticks_per_sec,
922 * which is the timebase frequency.
923 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
924 * the 128-bit result as a 64.64 fixed-point number.
925 * We then shift that number right until it is less than 1.0,
926 * giving us the scale factor and shift count to use in
927 * sched_clock().
928 */
929 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
930 scale = res.result_low;
931 for (shift = 0; res.result_high != 0; ++shift) {
932 scale = (scale >> 1) | (res.result_high << 63);
933 res.result_high >>= 1;
934 }
935 tb_to_ns_scale = scale;
936 tb_to_ns_shift = shift;
fc9069fe 937 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 938 boot_tb = get_tb_or_rtc();
1da177e4 939
1da177e4 940 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
941
942 /* If platform provided a timezone (pmac), we correct the time */
943 if (timezone_offset) {
944 sys_tz.tz_minuteswest = -timezone_offset / 60;
945 sys_tz.tz_dsttime = 0;
092b8f34
PM
946 }
947
1da177e4
LT
948 do_gtod.varp = &do_gtod.vars[0];
949 do_gtod.var_idx = 0;
96c44507 950 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 951 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 952 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
953 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
954 do_gtod.varp->tb_to_xs = tb_to_xs;
955 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
956
957 vdso_data->tb_orig_stamp = tb_last_jiffy;
958 vdso_data->tb_update_count = 0;
959 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 960 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 961 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
962
963 time_freq = 0;
964
1da177e4
LT
965 write_sequnlock_irqrestore(&xtime_lock, flags);
966
4a4cfe38
TB
967 /* Register the clocksource, if we're not running on iSeries */
968 if (!firmware_has_feature(FW_FEATURE_ISERIES))
969 clocksource_init();
970
d831d0b8 971 init_decrementer_clockevent();
1da177e4
LT
972}
973
1da177e4 974
1da177e4
LT
975#define FEBRUARY 2
976#define STARTOFTIME 1970
977#define SECDAY 86400L
978#define SECYR (SECDAY * 365)
f2783c15
PM
979#define leapyear(year) ((year) % 4 == 0 && \
980 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
981#define days_in_year(a) (leapyear(a) ? 366 : 365)
982#define days_in_month(a) (month_days[(a) - 1])
983
984static int month_days[12] = {
985 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
986};
987
988/*
989 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
990 */
991void GregorianDay(struct rtc_time * tm)
992{
993 int leapsToDate;
994 int lastYear;
995 int day;
996 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
997
f2783c15 998 lastYear = tm->tm_year - 1;
1da177e4
LT
999
1000 /*
1001 * Number of leap corrections to apply up to end of last year
1002 */
f2783c15 1003 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1004
1005 /*
1006 * This year is a leap year if it is divisible by 4 except when it is
1007 * divisible by 100 unless it is divisible by 400
1008 *
f2783c15 1009 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1010 */
f2783c15 1011 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1012
1013 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1014 tm->tm_mday;
1015
f2783c15 1016 tm->tm_wday = day % 7;
1da177e4
LT
1017}
1018
1019void to_tm(int tim, struct rtc_time * tm)
1020{
1021 register int i;
1022 register long hms, day;
1023
1024 day = tim / SECDAY;
1025 hms = tim % SECDAY;
1026
1027 /* Hours, minutes, seconds are easy */
1028 tm->tm_hour = hms / 3600;
1029 tm->tm_min = (hms % 3600) / 60;
1030 tm->tm_sec = (hms % 3600) % 60;
1031
1032 /* Number of years in days */
1033 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1034 day -= days_in_year(i);
1035 tm->tm_year = i;
1036
1037 /* Number of months in days left */
1038 if (leapyear(tm->tm_year))
1039 days_in_month(FEBRUARY) = 29;
1040 for (i = 1; day >= days_in_month(i); i++)
1041 day -= days_in_month(i);
1042 days_in_month(FEBRUARY) = 28;
1043 tm->tm_mon = i;
1044
1045 /* Days are what is left over (+1) from all that. */
1046 tm->tm_mday = day + 1;
1047
1048 /*
1049 * Determine the day of week
1050 */
1051 GregorianDay(tm);
1052}
1053
1054/* Auxiliary function to compute scaling factors */
1055/* Actually the choice of a timebase running at 1/4 the of the bus
1056 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1057 * It makes this computation very precise (27-28 bits typically) which
1058 * is optimistic considering the stability of most processor clock
1059 * oscillators and the precision with which the timebase frequency
1060 * is measured but does not harm.
1061 */
f2783c15
PM
1062unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1063{
1da177e4
LT
1064 unsigned mlt=0, tmp, err;
1065 /* No concern for performance, it's done once: use a stupid
1066 * but safe and compact method to find the multiplier.
1067 */
1068
1069 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1070 if (mulhwu(inscale, mlt|tmp) < outscale)
1071 mlt |= tmp;
1da177e4
LT
1072 }
1073
1074 /* We might still be off by 1 for the best approximation.
1075 * A side effect of this is that if outscale is too large
1076 * the returned value will be zero.
1077 * Many corner cases have been checked and seem to work,
1078 * some might have been forgotten in the test however.
1079 */
1080
f2783c15
PM
1081 err = inscale * (mlt+1);
1082 if (err <= inscale/2)
1083 mlt++;
1da177e4 1084 return mlt;
f2783c15 1085}
1da177e4
LT
1086
1087/*
1088 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1089 * result.
1090 */
f2783c15
PM
1091void div128_by_32(u64 dividend_high, u64 dividend_low,
1092 unsigned divisor, struct div_result *dr)
1da177e4 1093{
f2783c15
PM
1094 unsigned long a, b, c, d;
1095 unsigned long w, x, y, z;
1096 u64 ra, rb, rc;
1da177e4
LT
1097
1098 a = dividend_high >> 32;
1099 b = dividend_high & 0xffffffff;
1100 c = dividend_low >> 32;
1101 d = dividend_low & 0xffffffff;
1102
f2783c15
PM
1103 w = a / divisor;
1104 ra = ((u64)(a - (w * divisor)) << 32) + b;
1105
f2783c15
PM
1106 rb = ((u64) do_div(ra, divisor) << 32) + c;
1107 x = ra;
1da177e4 1108
f2783c15
PM
1109 rc = ((u64) do_div(rb, divisor) << 32) + d;
1110 y = rb;
1111
1112 do_div(rc, divisor);
1113 z = rc;
1da177e4 1114
f2783c15
PM
1115 dr->result_high = ((u64)w << 32) + x;
1116 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1117
1118}