]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/kernel/traps.c
Merge tag 'socfpga_arm32_defconfig_for_v5.2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / traps.c
CommitLineData
14cf11af 1/*
14cf11af 2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
fe04b112 3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
14cf11af
PM
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14/*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
14cf11af
PM
18#include <linux/errno.h>
19#include <linux/sched.h>
b17b0153 20#include <linux/sched/debug.h>
14cf11af
PM
21#include <linux/kernel.h>
22#include <linux/mm.h>
99cd1302 23#include <linux/pkeys.h>
14cf11af
PM
24#include <linux/stddef.h>
25#include <linux/unistd.h>
8dad3f92 26#include <linux/ptrace.h>
14cf11af 27#include <linux/user.h>
14cf11af 28#include <linux/interrupt.h>
14cf11af 29#include <linux/init.h>
8a39b05f
PG
30#include <linux/extable.h>
31#include <linux/module.h> /* print_modules */
8dad3f92 32#include <linux/prctl.h>
14cf11af
PM
33#include <linux/delay.h>
34#include <linux/kprobes.h>
cc532915 35#include <linux/kexec.h>
5474c120 36#include <linux/backlight.h>
73c9ceab 37#include <linux/bug.h>
1eeb66a1 38#include <linux/kdebug.h>
76462232 39#include <linux/ratelimit.h>
ba12eede 40#include <linux/context_tracking.h>
5080332c 41#include <linux/smp.h>
35adacd6
NP
42#include <linux/console.h>
43#include <linux/kmsg_dump.h>
14cf11af 44
80947e7c 45#include <asm/emulated_ops.h>
14cf11af 46#include <asm/pgtable.h>
7c0f6ba6 47#include <linux/uaccess.h>
7644d581 48#include <asm/debugfs.h>
14cf11af 49#include <asm/io.h>
86417780
PM
50#include <asm/machdep.h>
51#include <asm/rtas.h>
f7f6f4fe 52#include <asm/pmc.h>
14cf11af 53#include <asm/reg.h>
14cf11af
PM
54#ifdef CONFIG_PMAC_BACKLIGHT
55#include <asm/backlight.h>
56#endif
dc1c1ca3 57#ifdef CONFIG_PPC64
86417780 58#include <asm/firmware.h>
dc1c1ca3 59#include <asm/processor.h>
6ce6c629 60#include <asm/tm.h>
dc1c1ca3 61#endif
c0ce7d08 62#include <asm/kexec.h>
16c57b36 63#include <asm/ppc-opcode.h>
cce1f106 64#include <asm/rio.h>
ebaeb5ae 65#include <asm/fadump.h>
ae3a197e 66#include <asm/switch_to.h>
f54db641 67#include <asm/tm.h>
ae3a197e 68#include <asm/debug.h>
42f5b4ca 69#include <asm/asm-prototypes.h>
fd7bacbc 70#include <asm/hmi.h>
4e0e3435 71#include <sysdev/fsl_pci.h>
6cc89bad 72#include <asm/kprobes.h>
a99b9c5e 73#include <asm/stacktrace.h>
de3c83c2 74#include <asm/nmi.h>
dc1c1ca3 75
da665885 76#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
5be3492f
AB
77int (*__debugger)(struct pt_regs *regs) __read_mostly;
78int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
79int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
80int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
81int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
9422de3e 82int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
5be3492f 83int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
14cf11af
PM
84
85EXPORT_SYMBOL(__debugger);
86EXPORT_SYMBOL(__debugger_ipi);
87EXPORT_SYMBOL(__debugger_bpt);
88EXPORT_SYMBOL(__debugger_sstep);
89EXPORT_SYMBOL(__debugger_iabr_match);
9422de3e 90EXPORT_SYMBOL(__debugger_break_match);
14cf11af
PM
91EXPORT_SYMBOL(__debugger_fault_handler);
92#endif
93
8b3c34cf
MN
94/* Transactional Memory trap debug */
95#ifdef TM_DEBUG_SW
96#define TM_DEBUG(x...) printk(KERN_INFO x)
97#else
98#define TM_DEBUG(x...) do { } while(0)
99#endif
100
0f642d61
MOA
101static const char *signame(int signr)
102{
103 switch (signr) {
104 case SIGBUS: return "bus error";
105 case SIGFPE: return "floating point exception";
106 case SIGILL: return "illegal instruction";
107 case SIGSEGV: return "segfault";
108 case SIGTRAP: return "unhandled trap";
109 }
110
111 return "unknown signal";
112}
113
14cf11af
PM
114/*
115 * Trap & Exception support
116 */
117
6031d9d9 118#ifdef CONFIG_PMAC_BACKLIGHT
119static void pmac_backlight_unblank(void)
120{
121 mutex_lock(&pmac_backlight_mutex);
122 if (pmac_backlight) {
123 struct backlight_properties *props;
124
125 props = &pmac_backlight->props;
126 props->brightness = props->max_brightness;
127 props->power = FB_BLANK_UNBLANK;
128 backlight_update_status(pmac_backlight);
129 }
130 mutex_unlock(&pmac_backlight_mutex);
131}
132#else
133static inline void pmac_backlight_unblank(void) { }
134#endif
135
6fcd6baa
NP
136/*
137 * If oops/die is expected to crash the machine, return true here.
138 *
139 * This should not be expected to be 100% accurate, there may be
140 * notifiers registered or other unexpected conditions that may bring
141 * down the kernel. Or if the current process in the kernel is holding
142 * locks or has other critical state, the kernel may become effectively
143 * unusable anyway.
144 */
145bool die_will_crash(void)
146{
147 if (should_fadump_crash())
148 return true;
149 if (kexec_should_crash(current))
150 return true;
151 if (in_interrupt() || panic_on_oops ||
152 !current->pid || is_global_init(current))
153 return true;
154
155 return false;
156}
157
760ca4dc
AB
158static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
159static int die_owner = -1;
160static unsigned int die_nest_count;
161static int die_counter;
162
35adacd6
NP
163extern void panic_flush_kmsg_start(void)
164{
165 /*
166 * These are mostly taken from kernel/panic.c, but tries to do
167 * relatively minimal work. Don't use delay functions (TB may
168 * be broken), don't crash dump (need to set a firmware log),
169 * don't run notifiers. We do want to get some information to
170 * Linux console.
171 */
172 console_verbose();
173 bust_spinlocks(1);
174}
175
176extern void panic_flush_kmsg_end(void)
177{
178 printk_safe_flush_on_panic();
179 kmsg_dump(KMSG_DUMP_PANIC);
180 bust_spinlocks(0);
181 debug_locks_off();
182 console_flush_on_panic();
183}
184
03465f89 185static unsigned long oops_begin(struct pt_regs *regs)
14cf11af 186{
760ca4dc 187 int cpu;
34c2a14f 188 unsigned long flags;
14cf11af 189
293e4688 190 oops_enter();
191
760ca4dc
AB
192 /* racy, but better than risking deadlock. */
193 raw_local_irq_save(flags);
194 cpu = smp_processor_id();
195 if (!arch_spin_trylock(&die_lock)) {
196 if (cpu == die_owner)
197 /* nested oops. should stop eventually */;
198 else
199 arch_spin_lock(&die_lock);
34c2a14f 200 }
760ca4dc
AB
201 die_nest_count++;
202 die_owner = cpu;
203 console_verbose();
204 bust_spinlocks(1);
205 if (machine_is(powermac))
206 pmac_backlight_unblank();
207 return flags;
208}
03465f89 209NOKPROBE_SYMBOL(oops_begin);
e8222502 210
03465f89 211static void oops_end(unsigned long flags, struct pt_regs *regs,
760ca4dc
AB
212 int signr)
213{
14cf11af 214 bust_spinlocks(0);
373d4d09 215 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
760ca4dc 216 die_nest_count--;
58154c8c
AB
217 oops_exit();
218 printk("\n");
7458e8b2 219 if (!die_nest_count) {
760ca4dc 220 /* Nest count reaches zero, release the lock. */
7458e8b2 221 die_owner = -1;
760ca4dc 222 arch_spin_unlock(&die_lock);
7458e8b2 223 }
760ca4dc 224 raw_local_irq_restore(flags);
cc532915 225
d40b6768
NP
226 /*
227 * system_reset_excption handles debugger, crash dump, panic, for 0x100
228 */
229 if (TRAP(regs) == 0x100)
230 return;
231
ebaeb5ae
MS
232 crash_fadump(regs, "die oops");
233
4388c9b3 234 if (kexec_should_crash(current))
cc532915 235 crash_kexec(regs);
9b00ac06 236
760ca4dc
AB
237 if (!signr)
238 return;
239
58154c8c
AB
240 /*
241 * While our oops output is serialised by a spinlock, output
242 * from panic() called below can race and corrupt it. If we
243 * know we are going to panic, delay for 1 second so we have a
244 * chance to get clean backtraces from all CPUs that are oopsing.
245 */
246 if (in_interrupt() || panic_on_oops || !current->pid ||
247 is_global_init(current)) {
248 mdelay(MSEC_PER_SEC);
249 }
250
cea6a4ba 251 if (panic_on_oops)
012c437d 252 panic("Fatal exception");
760ca4dc
AB
253 do_exit(signr);
254}
03465f89 255NOKPROBE_SYMBOL(oops_end);
cea6a4ba 256
03465f89 257static int __die(const char *str, struct pt_regs *regs, long err)
760ca4dc
AB
258{
259 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
2e82ca3c 260
16842516 261 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s%s %s\n",
78227443 262 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
18405139 263 PAGE_SIZE / 1024,
16842516
ME
264 early_radix_enabled() ? " MMU=Radix" : "",
265 early_mmu_has_feature(MMU_FTR_HPTE_TABLE) ? " MMU=Hash" : "",
78227443
ME
266 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
267 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
268 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
269 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
270 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
271 ppc_md.name ? ppc_md.name : "");
760ca4dc
AB
272
273 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
274 return 1;
275
276 print_modules();
277 show_regs(regs);
14cf11af
PM
278
279 return 0;
280}
03465f89 281NOKPROBE_SYMBOL(__die);
14cf11af 282
760ca4dc
AB
283void die(const char *str, struct pt_regs *regs, long err)
284{
6f44b20e
NP
285 unsigned long flags;
286
d40b6768
NP
287 /*
288 * system_reset_excption handles debugger, crash dump, panic, for 0x100
289 */
290 if (TRAP(regs) != 0x100) {
291 if (debugger(regs))
292 return;
293 }
760ca4dc 294
6f44b20e 295 flags = oops_begin(regs);
760ca4dc
AB
296 if (__die(str, regs, err))
297 err = 0;
298 oops_end(flags, regs, err);
299}
15770a13 300NOKPROBE_SYMBOL(die);
760ca4dc 301
efc463ad 302void user_single_step_report(struct pt_regs *regs)
25baa35b 303{
efc463ad 304 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip, current);
25baa35b
ON
305}
306
997dd26c
ME
307static void show_signal_msg(int signr, struct pt_regs *regs, int code,
308 unsigned long addr)
35a52a10
MOA
309{
310 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
311 DEFAULT_RATELIMIT_BURST);
35a52a10 312
997dd26c 313 if (!show_unhandled_signals)
35a52a10
MOA
314 return;
315
316 if (!unhandled_signal(current, signr))
317 return;
318
997dd26c
ME
319 if (!__ratelimit(&rs))
320 return;
321
0f642d61
MOA
322 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
323 current->comm, current->pid, signame(signr), signr,
49d8f201 324 addr, regs->nip, regs->link, code);
0f642d61
MOA
325
326 print_vma_addr(KERN_CONT " in ", regs->nip);
327
328 pr_cont("\n");
a99b9c5e
MOA
329
330 show_user_instructions(regs);
658b0f92 331}
99cd1302 332
2c44ce28
EB
333static bool exception_common(int signr, struct pt_regs *regs, int code,
334 unsigned long addr)
14cf11af 335{
14cf11af 336 if (!user_mode(regs)) {
760ca4dc 337 die("Exception in kernel mode", regs, signr);
2c44ce28 338 return false;
760ca4dc
AB
339 }
340
658b0f92 341 show_signal_msg(signr, regs, code, addr);
14cf11af 342
a3512b2d 343 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
9f2f79e3
BH
344 local_irq_enable();
345
41ab5266 346 current->thread.trap_nr = code;
c5cc1f4d
TJB
347
348 /*
349 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
350 * to capture the content, if the task gets killed.
351 */
352 thread_pkey_regs_save(&current->thread);
353
2c44ce28
EB
354 return true;
355}
356
5d8fb8a5 357void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
2c44ce28 358{
5d8fb8a5 359 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
2c44ce28
EB
360 return;
361
77c70728 362 force_sig_pkuerr((void __user *) addr, key);
14cf11af
PM
363}
364
99cd1302
RP
365void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
366{
c1c7c85c
EB
367 if (!exception_common(signr, regs, code, addr))
368 return;
369
370 force_sig_fault(signr, code, (void __user *)addr, current);
99cd1302
RP
371}
372
ccd47702
NP
373/*
374 * The interrupt architecture has a quirk in that the HV interrupts excluding
375 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
376 * that an interrupt handler must do is save off a GPR into a scratch register,
377 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
378 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
379 * that it is non-reentrant, which leads to random data corruption.
380 *
381 * The solution is for NMI interrupts in HV mode to check if they originated
382 * from these critical HV interrupt regions. If so, then mark them not
383 * recoverable.
384 *
385 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
386 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
387 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
388 * that would work. However any other guest OS that may have the SPRG live
389 * and MSR[RI]=1 could encounter silent corruption.
390 *
391 * Builds that do not support KVM could take this second option to increase
392 * the recoverability of NMIs.
393 */
394void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
395{
396#ifdef CONFIG_PPC_POWERNV
397 unsigned long kbase = (unsigned long)_stext;
398 unsigned long nip = regs->nip;
399
400 if (!(regs->msr & MSR_RI))
401 return;
402 if (!(regs->msr & MSR_HV))
403 return;
404 if (regs->msr & MSR_PR)
405 return;
406
407 /*
408 * Now test if the interrupt has hit a range that may be using
409 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
410 * problem ranges all run un-relocated. Test real and virt modes
411 * at the same time by droping the high bit of the nip (virt mode
412 * entry points still have the +0x4000 offset).
413 */
414 nip &= ~0xc000000000000000ULL;
415 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
416 goto nonrecoverable;
417 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
418 goto nonrecoverable;
419 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
420 goto nonrecoverable;
421 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
422 goto nonrecoverable;
bd3524fe 423
ccd47702 424 /* Trampoline code runs un-relocated so subtract kbase. */
bd3524fe
NP
425 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
426 nip < (unsigned long)(end_real_trampolines - kbase))
ccd47702 427 goto nonrecoverable;
bd3524fe
NP
428 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
429 nip < (unsigned long)(end_virt_trampolines - kbase))
ccd47702
NP
430 goto nonrecoverable;
431 return;
432
433nonrecoverable:
434 regs->msr &= ~MSR_RI;
435#endif
436}
437
14cf11af
PM
438void system_reset_exception(struct pt_regs *regs)
439{
cbf2ba95
NP
440 unsigned long hsrr0, hsrr1;
441 bool nested = in_nmi();
442 bool saved_hsrrs = false;
443
2b4f3ac5
NP
444 /*
445 * Avoid crashes in case of nested NMI exceptions. Recoverability
446 * is determined by RI and in_nmi
447 */
2b4f3ac5
NP
448 if (!nested)
449 nmi_enter();
450
cbf2ba95
NP
451 /*
452 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
453 * The system reset interrupt itself may clobber HSRRs (e.g., to call
454 * OPAL), so save them here and restore them before returning.
455 *
456 * Machine checks don't need to save HSRRs, as the real mode handler
457 * is careful to avoid them, and the regular handler is not delivered
458 * as an NMI.
459 */
460 if (cpu_has_feature(CPU_FTR_HVMODE)) {
461 hsrr0 = mfspr(SPRN_HSRR0);
462 hsrr1 = mfspr(SPRN_HSRR1);
463 saved_hsrrs = true;
464 }
465
ccd47702
NP
466 hv_nmi_check_nonrecoverable(regs);
467
ca41ad43
NP
468 __this_cpu_inc(irq_stat.sreset_irqs);
469
14cf11af 470 /* See if any machine dependent calls */
c902be71
AB
471 if (ppc_md.system_reset_exception) {
472 if (ppc_md.system_reset_exception(regs))
c4f3b52c 473 goto out;
c902be71 474 }
14cf11af 475
4388c9b3
NP
476 if (debugger(regs))
477 goto out;
478
479 /*
480 * A system reset is a request to dump, so we always send
481 * it through the crashdump code (if fadump or kdump are
482 * registered).
483 */
484 crash_fadump(regs, "System Reset");
485
486 crash_kexec(regs);
487
488 /*
489 * We aren't the primary crash CPU. We need to send it
490 * to a holding pattern to avoid it ending up in the panic
491 * code.
492 */
493 crash_kexec_secondary(regs);
494
495 /*
496 * No debugger or crash dump registered, print logs then
497 * panic.
498 */
4552d128 499 die("System Reset", regs, SIGABRT);
4388c9b3
NP
500
501 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
502 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
503 nmi_panic(regs, "System Reset");
14cf11af 504
c4f3b52c
NP
505out:
506#ifdef CONFIG_PPC_BOOK3S_64
507 BUG_ON(get_paca()->in_nmi == 0);
508 if (get_paca()->in_nmi > 1)
4388c9b3 509 nmi_panic(regs, "Unrecoverable nested System Reset");
c4f3b52c 510#endif
14cf11af
PM
511 /* Must die if the interrupt is not recoverable */
512 if (!(regs->msr & MSR_RI))
4388c9b3 513 nmi_panic(regs, "Unrecoverable System Reset");
14cf11af 514
cbf2ba95
NP
515 if (saved_hsrrs) {
516 mtspr(SPRN_HSRR0, hsrr0);
517 mtspr(SPRN_HSRR1, hsrr1);
518 }
519
2b4f3ac5
NP
520 if (!nested)
521 nmi_exit();
522
14cf11af
PM
523 /* What should we do here? We could issue a shutdown or hard reset. */
524}
1e9b4507 525
14cf11af
PM
526/*
527 * I/O accesses can cause machine checks on powermacs.
528 * Check if the NIP corresponds to the address of a sync
529 * instruction for which there is an entry in the exception
530 * table.
531 * Note that the 601 only takes a machine check on TEA
532 * (transfer error ack) signal assertion, and does not
533 * set any of the top 16 bits of SRR1.
534 * -- paulus.
535 */
536static inline int check_io_access(struct pt_regs *regs)
537{
68a64357 538#ifdef CONFIG_PPC32
14cf11af
PM
539 unsigned long msr = regs->msr;
540 const struct exception_table_entry *entry;
541 unsigned int *nip = (unsigned int *)regs->nip;
542
543 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
544 && (entry = search_exception_tables(regs->nip)) != NULL) {
545 /*
546 * Check that it's a sync instruction, or somewhere
547 * in the twi; isync; nop sequence that inb/inw/inl uses.
548 * As the address is in the exception table
549 * we should be able to read the instr there.
550 * For the debug message, we look at the preceding
551 * load or store.
552 */
ddc6cd0d 553 if (*nip == PPC_INST_NOP)
14cf11af 554 nip -= 2;
ddc6cd0d 555 else if (*nip == PPC_INST_ISYNC)
14cf11af 556 --nip;
ddc6cd0d 557 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
14cf11af
PM
558 unsigned int rb;
559
560 --nip;
561 rb = (*nip >> 11) & 0x1f;
562 printk(KERN_DEBUG "%s bad port %lx at %p\n",
563 (*nip & 0x100)? "OUT to": "IN from",
564 regs->gpr[rb] - _IO_BASE, nip);
565 regs->msr |= MSR_RI;
61a92f70 566 regs->nip = extable_fixup(entry);
14cf11af
PM
567 return 1;
568 }
569 }
68a64357 570#endif /* CONFIG_PPC32 */
14cf11af
PM
571 return 0;
572}
573
172ae2e7 574#ifdef CONFIG_PPC_ADV_DEBUG_REGS
14cf11af
PM
575/* On 4xx, the reason for the machine check or program exception
576 is in the ESR. */
577#define get_reason(regs) ((regs)->dsisr)
14cf11af
PM
578#define REASON_FP ESR_FP
579#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
580#define REASON_PRIVILEGED ESR_PPR
581#define REASON_TRAP ESR_PTR
582
583/* single-step stuff */
51ae8d4a
BB
584#define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
585#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
0e524e76 586#define clear_br_trace(regs) do {} while(0)
14cf11af
PM
587#else
588/* On non-4xx, the reason for the machine check or program
589 exception is in the MSR. */
590#define get_reason(regs) ((regs)->msr)
d30a5a52
ME
591#define REASON_TM SRR1_PROGTM
592#define REASON_FP SRR1_PROGFPE
593#define REASON_ILLEGAL SRR1_PROGILL
594#define REASON_PRIVILEGED SRR1_PROGPRIV
595#define REASON_TRAP SRR1_PROGTRAP
14cf11af
PM
596
597#define single_stepping(regs) ((regs)->msr & MSR_SE)
598#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
0e524e76 599#define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
14cf11af
PM
600#endif
601
0d0935b3 602#if defined(CONFIG_E500)
fe04b112
SW
603int machine_check_e500mc(struct pt_regs *regs)
604{
605 unsigned long mcsr = mfspr(SPRN_MCSR);
a4e89ffb 606 unsigned long pvr = mfspr(SPRN_PVR);
fe04b112
SW
607 unsigned long reason = mcsr;
608 int recoverable = 1;
609
82a9a480 610 if (reason & MCSR_LD) {
cce1f106
SX
611 recoverable = fsl_rio_mcheck_exception(regs);
612 if (recoverable == 1)
613 goto silent_out;
614 }
615
fe04b112
SW
616 printk("Machine check in kernel mode.\n");
617 printk("Caused by (from MCSR=%lx): ", reason);
618
619 if (reason & MCSR_MCP)
422123cc 620 pr_cont("Machine Check Signal\n");
fe04b112
SW
621
622 if (reason & MCSR_ICPERR) {
422123cc 623 pr_cont("Instruction Cache Parity Error\n");
fe04b112
SW
624
625 /*
626 * This is recoverable by invalidating the i-cache.
627 */
628 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
629 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
630 ;
631
632 /*
633 * This will generally be accompanied by an instruction
634 * fetch error report -- only treat MCSR_IF as fatal
635 * if it wasn't due to an L1 parity error.
636 */
637 reason &= ~MCSR_IF;
638 }
639
640 if (reason & MCSR_DCPERR_MC) {
422123cc 641 pr_cont("Data Cache Parity Error\n");
37caf9f2
KG
642
643 /*
644 * In write shadow mode we auto-recover from the error, but it
645 * may still get logged and cause a machine check. We should
646 * only treat the non-write shadow case as non-recoverable.
647 */
a4e89ffb
MW
648 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
649 * is not implemented but L1 data cache always runs in write
650 * shadow mode. Hence on data cache parity errors HW will
651 * automatically invalidate the L1 Data Cache.
652 */
653 if (PVR_VER(pvr) != PVR_VER_E6500) {
654 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
655 recoverable = 0;
656 }
fe04b112
SW
657 }
658
659 if (reason & MCSR_L2MMU_MHIT) {
422123cc 660 pr_cont("Hit on multiple TLB entries\n");
fe04b112
SW
661 recoverable = 0;
662 }
663
664 if (reason & MCSR_NMI)
422123cc 665 pr_cont("Non-maskable interrupt\n");
fe04b112
SW
666
667 if (reason & MCSR_IF) {
422123cc 668 pr_cont("Instruction Fetch Error Report\n");
fe04b112
SW
669 recoverable = 0;
670 }
671
672 if (reason & MCSR_LD) {
422123cc 673 pr_cont("Load Error Report\n");
fe04b112
SW
674 recoverable = 0;
675 }
676
677 if (reason & MCSR_ST) {
422123cc 678 pr_cont("Store Error Report\n");
fe04b112
SW
679 recoverable = 0;
680 }
681
682 if (reason & MCSR_LDG) {
422123cc 683 pr_cont("Guarded Load Error Report\n");
fe04b112
SW
684 recoverable = 0;
685 }
686
687 if (reason & MCSR_TLBSYNC)
422123cc 688 pr_cont("Simultaneous tlbsync operations\n");
fe04b112
SW
689
690 if (reason & MCSR_BSL2_ERR) {
422123cc 691 pr_cont("Level 2 Cache Error\n");
fe04b112
SW
692 recoverable = 0;
693 }
694
695 if (reason & MCSR_MAV) {
696 u64 addr;
697
698 addr = mfspr(SPRN_MCAR);
699 addr |= (u64)mfspr(SPRN_MCARU) << 32;
700
422123cc 701 pr_cont("Machine Check %s Address: %#llx\n",
fe04b112
SW
702 reason & MCSR_MEA ? "Effective" : "Physical", addr);
703 }
704
cce1f106 705silent_out:
fe04b112
SW
706 mtspr(SPRN_MCSR, mcsr);
707 return mfspr(SPRN_MCSR) == 0 && recoverable;
708}
709
47c0bd1a
BH
710int machine_check_e500(struct pt_regs *regs)
711{
42bff234 712 unsigned long reason = mfspr(SPRN_MCSR);
47c0bd1a 713
cce1f106
SX
714 if (reason & MCSR_BUS_RBERR) {
715 if (fsl_rio_mcheck_exception(regs))
716 return 1;
4e0e3435
HJ
717 if (fsl_pci_mcheck_exception(regs))
718 return 1;
cce1f106
SX
719 }
720
14cf11af
PM
721 printk("Machine check in kernel mode.\n");
722 printk("Caused by (from MCSR=%lx): ", reason);
723
724 if (reason & MCSR_MCP)
422123cc 725 pr_cont("Machine Check Signal\n");
14cf11af 726 if (reason & MCSR_ICPERR)
422123cc 727 pr_cont("Instruction Cache Parity Error\n");
14cf11af 728 if (reason & MCSR_DCP_PERR)
422123cc 729 pr_cont("Data Cache Push Parity Error\n");
14cf11af 730 if (reason & MCSR_DCPERR)
422123cc 731 pr_cont("Data Cache Parity Error\n");
14cf11af 732 if (reason & MCSR_BUS_IAERR)
422123cc 733 pr_cont("Bus - Instruction Address Error\n");
14cf11af 734 if (reason & MCSR_BUS_RAERR)
422123cc 735 pr_cont("Bus - Read Address Error\n");
14cf11af 736 if (reason & MCSR_BUS_WAERR)
422123cc 737 pr_cont("Bus - Write Address Error\n");
14cf11af 738 if (reason & MCSR_BUS_IBERR)
422123cc 739 pr_cont("Bus - Instruction Data Error\n");
14cf11af 740 if (reason & MCSR_BUS_RBERR)
422123cc 741 pr_cont("Bus - Read Data Bus Error\n");
14cf11af 742 if (reason & MCSR_BUS_WBERR)
422123cc 743 pr_cont("Bus - Write Data Bus Error\n");
14cf11af 744 if (reason & MCSR_BUS_IPERR)
422123cc 745 pr_cont("Bus - Instruction Parity Error\n");
14cf11af 746 if (reason & MCSR_BUS_RPERR)
422123cc 747 pr_cont("Bus - Read Parity Error\n");
47c0bd1a
BH
748
749 return 0;
750}
4490c06b
KG
751
752int machine_check_generic(struct pt_regs *regs)
753{
754 return 0;
755}
47c0bd1a
BH
756#elif defined(CONFIG_E200)
757int machine_check_e200(struct pt_regs *regs)
758{
42bff234 759 unsigned long reason = mfspr(SPRN_MCSR);
47c0bd1a 760
14cf11af
PM
761 printk("Machine check in kernel mode.\n");
762 printk("Caused by (from MCSR=%lx): ", reason);
763
764 if (reason & MCSR_MCP)
422123cc 765 pr_cont("Machine Check Signal\n");
14cf11af 766 if (reason & MCSR_CP_PERR)
422123cc 767 pr_cont("Cache Push Parity Error\n");
14cf11af 768 if (reason & MCSR_CPERR)
422123cc 769 pr_cont("Cache Parity Error\n");
14cf11af 770 if (reason & MCSR_EXCP_ERR)
422123cc 771 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
14cf11af 772 if (reason & MCSR_BUS_IRERR)
422123cc 773 pr_cont("Bus - Read Bus Error on instruction fetch\n");
14cf11af 774 if (reason & MCSR_BUS_DRERR)
422123cc 775 pr_cont("Bus - Read Bus Error on data load\n");
14cf11af 776 if (reason & MCSR_BUS_WRERR)
422123cc 777 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
47c0bd1a
BH
778
779 return 0;
780}
7f3f819e 781#elif defined(CONFIG_PPC32)
47c0bd1a
BH
782int machine_check_generic(struct pt_regs *regs)
783{
42bff234 784 unsigned long reason = regs->msr;
47c0bd1a 785
14cf11af
PM
786 printk("Machine check in kernel mode.\n");
787 printk("Caused by (from SRR1=%lx): ", reason);
788 switch (reason & 0x601F0000) {
789 case 0x80000:
422123cc 790 pr_cont("Machine check signal\n");
14cf11af
PM
791 break;
792 case 0: /* for 601 */
793 case 0x40000:
794 case 0x140000: /* 7450 MSS error and TEA */
422123cc 795 pr_cont("Transfer error ack signal\n");
14cf11af
PM
796 break;
797 case 0x20000:
422123cc 798 pr_cont("Data parity error signal\n");
14cf11af
PM
799 break;
800 case 0x10000:
422123cc 801 pr_cont("Address parity error signal\n");
14cf11af
PM
802 break;
803 case 0x20000000:
422123cc 804 pr_cont("L1 Data Cache error\n");
14cf11af
PM
805 break;
806 case 0x40000000:
422123cc 807 pr_cont("L1 Instruction Cache error\n");
14cf11af
PM
808 break;
809 case 0x00100000:
422123cc 810 pr_cont("L2 data cache parity error\n");
14cf11af
PM
811 break;
812 default:
422123cc 813 pr_cont("Unknown values in msr\n");
14cf11af 814 }
75918a4b
OJ
815 return 0;
816}
47c0bd1a 817#endif /* everything else */
75918a4b
OJ
818
819void machine_check_exception(struct pt_regs *regs)
820{
821 int recover = 0;
b96672dd
NP
822 bool nested = in_nmi();
823 if (!nested)
824 nmi_enter();
75918a4b 825
8a03e81c 826 __this_cpu_inc(irq_stat.mce_exceptions);
89713ed1 827
d93b0ac0
MS
828 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
829
47c0bd1a
BH
830 /* See if any machine dependent calls. In theory, we would want
831 * to call the CPU first, and call the ppc_md. one if the CPU
832 * one returns a positive number. However there is existing code
833 * that assumes the board gets a first chance, so let's keep it
834 * that way for now and fix things later. --BenH.
835 */
75918a4b
OJ
836 if (ppc_md.machine_check_exception)
837 recover = ppc_md.machine_check_exception(regs);
47c0bd1a
BH
838 else if (cur_cpu_spec->machine_check)
839 recover = cur_cpu_spec->machine_check(regs);
75918a4b 840
47c0bd1a 841 if (recover > 0)
ba12eede 842 goto bail;
75918a4b 843
a443506b 844 if (debugger_fault_handler(regs))
ba12eede 845 goto bail;
75918a4b
OJ
846
847 if (check_io_access(regs))
ba12eede 848 goto bail;
75918a4b 849
daf00ae7
CL
850 if (!nested)
851 nmi_exit();
852
853 die("Machine check", regs, SIGBUS);
854
0bbea75c
CL
855 /* Must die if the interrupt is not recoverable */
856 if (!(regs->msr & MSR_RI))
857 nmi_panic(regs, "Unrecoverable Machine check");
858
daf00ae7
CL
859 return;
860
ba12eede 861bail:
b96672dd
NP
862 if (!nested)
863 nmi_exit();
14cf11af
PM
864}
865
866void SMIException(struct pt_regs *regs)
867{
868 die("System Management Interrupt", regs, SIGABRT);
869}
870
5080332c
MN
871#ifdef CONFIG_VSX
872static void p9_hmi_special_emu(struct pt_regs *regs)
873{
874 unsigned int ra, rb, t, i, sel, instr, rc;
875 const void __user *addr;
876 u8 vbuf[16], *vdst;
877 unsigned long ea, msr, msr_mask;
878 bool swap;
879
880 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
881 return;
882
883 /*
884 * lxvb16x opcode: 0x7c0006d8
885 * lxvd2x opcode: 0x7c000698
886 * lxvh8x opcode: 0x7c000658
887 * lxvw4x opcode: 0x7c000618
888 */
889 if ((instr & 0xfc00073e) != 0x7c000618) {
890 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
891 " instr=%08x\n",
892 smp_processor_id(), current->comm, current->pid,
893 regs->nip, instr);
894 return;
895 }
896
897 /* Grab vector registers into the task struct */
898 msr = regs->msr; /* Grab msr before we flush the bits */
899 flush_vsx_to_thread(current);
900 enable_kernel_altivec();
901
902 /*
903 * Is userspace running with a different endian (this is rare but
904 * not impossible)
905 */
906 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
907
908 /* Decode the instruction */
909 ra = (instr >> 16) & 0x1f;
910 rb = (instr >> 11) & 0x1f;
911 t = (instr >> 21) & 0x1f;
912 if (instr & 1)
913 vdst = (u8 *)&current->thread.vr_state.vr[t];
914 else
915 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
916
917 /* Grab the vector address */
918 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
919 if (is_32bit_task())
920 ea &= 0xfffffffful;
921 addr = (__force const void __user *)ea;
922
923 /* Check it */
96d4f267 924 if (!access_ok(addr, 16)) {
5080332c
MN
925 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
926 " instr=%08x addr=%016lx\n",
927 smp_processor_id(), current->comm, current->pid,
928 regs->nip, instr, (unsigned long)addr);
929 return;
930 }
931
932 /* Read the vector */
933 rc = 0;
934 if ((unsigned long)addr & 0xfUL)
935 /* unaligned case */
936 rc = __copy_from_user_inatomic(vbuf, addr, 16);
937 else
938 __get_user_atomic_128_aligned(vbuf, addr, rc);
939 if (rc) {
940 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
941 " instr=%08x addr=%016lx\n",
942 smp_processor_id(), current->comm, current->pid,
943 regs->nip, instr, (unsigned long)addr);
944 return;
945 }
946
947 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
948 " instr=%08x addr=%016lx\n",
949 smp_processor_id(), current->comm, current->pid, regs->nip,
950 instr, (unsigned long) addr);
951
952 /* Grab instruction "selector" */
953 sel = (instr >> 6) & 3;
954
955 /*
956 * Check to make sure the facility is actually enabled. This
957 * could happen if we get a false positive hit.
958 *
959 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
960 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
961 */
962 msr_mask = MSR_VSX;
963 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
964 msr_mask = MSR_VEC;
965 if (!(msr & msr_mask)) {
966 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
967 " instr=%08x msr:%016lx\n",
968 smp_processor_id(), current->comm, current->pid,
969 regs->nip, instr, msr);
970 return;
971 }
972
973 /* Do logging here before we modify sel based on endian */
974 switch (sel) {
975 case 0: /* lxvw4x */
976 PPC_WARN_EMULATED(lxvw4x, regs);
977 break;
978 case 1: /* lxvh8x */
979 PPC_WARN_EMULATED(lxvh8x, regs);
980 break;
981 case 2: /* lxvd2x */
982 PPC_WARN_EMULATED(lxvd2x, regs);
983 break;
984 case 3: /* lxvb16x */
985 PPC_WARN_EMULATED(lxvb16x, regs);
986 break;
987 }
988
989#ifdef __LITTLE_ENDIAN__
990 /*
991 * An LE kernel stores the vector in the task struct as an LE
992 * byte array (effectively swapping both the components and
993 * the content of the components). Those instructions expect
994 * the components to remain in ascending address order, so we
995 * swap them back.
996 *
997 * If we are running a BE user space, the expectation is that
998 * of a simple memcpy, so forcing the emulation to look like
999 * a lxvb16x should do the trick.
1000 */
1001 if (swap)
1002 sel = 3;
1003
1004 switch (sel) {
1005 case 0: /* lxvw4x */
1006 for (i = 0; i < 4; i++)
1007 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1008 break;
1009 case 1: /* lxvh8x */
1010 for (i = 0; i < 8; i++)
1011 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1012 break;
1013 case 2: /* lxvd2x */
1014 for (i = 0; i < 2; i++)
1015 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1016 break;
1017 case 3: /* lxvb16x */
1018 for (i = 0; i < 16; i++)
1019 vdst[i] = vbuf[15-i];
1020 break;
1021 }
1022#else /* __LITTLE_ENDIAN__ */
1023 /* On a big endian kernel, a BE userspace only needs a memcpy */
1024 if (!swap)
1025 sel = 3;
1026
1027 /* Otherwise, we need to swap the content of the components */
1028 switch (sel) {
1029 case 0: /* lxvw4x */
1030 for (i = 0; i < 4; i++)
1031 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1032 break;
1033 case 1: /* lxvh8x */
1034 for (i = 0; i < 8; i++)
1035 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1036 break;
1037 case 2: /* lxvd2x */
1038 for (i = 0; i < 2; i++)
1039 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1040 break;
1041 case 3: /* lxvb16x */
1042 memcpy(vdst, vbuf, 16);
1043 break;
1044 }
1045#endif /* !__LITTLE_ENDIAN__ */
1046
1047 /* Go to next instruction */
1048 regs->nip += 4;
1049}
1050#endif /* CONFIG_VSX */
1051
0869b6fd
MS
1052void handle_hmi_exception(struct pt_regs *regs)
1053{
1054 struct pt_regs *old_regs;
1055
1056 old_regs = set_irq_regs(regs);
1057 irq_enter();
1058
5080332c
MN
1059#ifdef CONFIG_VSX
1060 /* Real mode flagged P9 special emu is needed */
1061 if (local_paca->hmi_p9_special_emu) {
1062 local_paca->hmi_p9_special_emu = 0;
1063
1064 /*
1065 * We don't want to take page faults while doing the
1066 * emulation, we just replay the instruction if necessary.
1067 */
1068 pagefault_disable();
1069 p9_hmi_special_emu(regs);
1070 pagefault_enable();
1071 }
1072#endif /* CONFIG_VSX */
1073
0869b6fd
MS
1074 if (ppc_md.handle_hmi_exception)
1075 ppc_md.handle_hmi_exception(regs);
1076
1077 irq_exit();
1078 set_irq_regs(old_regs);
1079}
1080
dc1c1ca3 1081void unknown_exception(struct pt_regs *regs)
14cf11af 1082{
ba12eede
LZ
1083 enum ctx_state prev_state = exception_enter();
1084
14cf11af
PM
1085 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1086 regs->nip, regs->msr, regs->trap);
1087
e821fa42 1088 _exception(SIGTRAP, regs, TRAP_UNK, 0);
ba12eede
LZ
1089
1090 exception_exit(prev_state);
14cf11af
PM
1091}
1092
dc1c1ca3 1093void instruction_breakpoint_exception(struct pt_regs *regs)
14cf11af 1094{
ba12eede
LZ
1095 enum ctx_state prev_state = exception_enter();
1096
14cf11af
PM
1097 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1098 5, SIGTRAP) == NOTIFY_STOP)
ba12eede 1099 goto bail;
14cf11af 1100 if (debugger_iabr_match(regs))
ba12eede 1101 goto bail;
14cf11af 1102 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
ba12eede
LZ
1103
1104bail:
1105 exception_exit(prev_state);
14cf11af
PM
1106}
1107
1108void RunModeException(struct pt_regs *regs)
1109{
e821fa42 1110 _exception(SIGTRAP, regs, TRAP_UNK, 0);
14cf11af
PM
1111}
1112
03465f89 1113void single_step_exception(struct pt_regs *regs)
14cf11af 1114{
ba12eede
LZ
1115 enum ctx_state prev_state = exception_enter();
1116
2538c2d0 1117 clear_single_step(regs);
0e524e76 1118 clear_br_trace(regs);
14cf11af 1119
6cc89bad
NR
1120 if (kprobe_post_handler(regs))
1121 return;
1122
14cf11af
PM
1123 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1124 5, SIGTRAP) == NOTIFY_STOP)
ba12eede 1125 goto bail;
14cf11af 1126 if (debugger_sstep(regs))
ba12eede 1127 goto bail;
14cf11af
PM
1128
1129 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
ba12eede
LZ
1130
1131bail:
1132 exception_exit(prev_state);
14cf11af 1133}
03465f89 1134NOKPROBE_SYMBOL(single_step_exception);
14cf11af
PM
1135
1136/*
1137 * After we have successfully emulated an instruction, we have to
1138 * check if the instruction was being single-stepped, and if so,
1139 * pretend we got a single-step exception. This was pointed out
1140 * by Kumar Gala. -- paulus
1141 */
8dad3f92 1142static void emulate_single_step(struct pt_regs *regs)
14cf11af 1143{
2538c2d0
P
1144 if (single_stepping(regs))
1145 single_step_exception(regs);
14cf11af
PM
1146}
1147
5fad293b 1148static inline int __parse_fpscr(unsigned long fpscr)
dc1c1ca3 1149{
aeb1c0f6 1150 int ret = FPE_FLTUNK;
dc1c1ca3
SR
1151
1152 /* Invalid operation */
1153 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
5fad293b 1154 ret = FPE_FLTINV;
dc1c1ca3
SR
1155
1156 /* Overflow */
1157 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
5fad293b 1158 ret = FPE_FLTOVF;
dc1c1ca3
SR
1159
1160 /* Underflow */
1161 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
5fad293b 1162 ret = FPE_FLTUND;
dc1c1ca3
SR
1163
1164 /* Divide by zero */
1165 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
5fad293b 1166 ret = FPE_FLTDIV;
dc1c1ca3
SR
1167
1168 /* Inexact result */
1169 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
5fad293b
KG
1170 ret = FPE_FLTRES;
1171
1172 return ret;
1173}
1174
1175static void parse_fpe(struct pt_regs *regs)
1176{
1177 int code = 0;
1178
1179 flush_fp_to_thread(current);
1180
de79f7b9 1181 code = __parse_fpscr(current->thread.fp_state.fpscr);
dc1c1ca3
SR
1182
1183 _exception(SIGFPE, regs, code, regs->nip);
1184}
1185
1186/*
1187 * Illegal instruction emulation support. Originally written to
14cf11af
PM
1188 * provide the PVR to user applications using the mfspr rd, PVR.
1189 * Return non-zero if we can't emulate, or -EFAULT if the associated
1190 * memory access caused an access fault. Return zero on success.
1191 *
1192 * There are a couple of ways to do this, either "decode" the instruction
1193 * or directly match lots of bits. In this case, matching lots of
1194 * bits is faster and easier.
86417780 1195 *
14cf11af 1196 */
14cf11af
PM
1197static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1198{
1199 u8 rT = (instword >> 21) & 0x1f;
1200 u8 rA = (instword >> 16) & 0x1f;
1201 u8 NB_RB = (instword >> 11) & 0x1f;
1202 u32 num_bytes;
1203 unsigned long EA;
1204 int pos = 0;
1205
1206 /* Early out if we are an invalid form of lswx */
16c57b36 1207 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
14cf11af
PM
1208 if ((rT == rA) || (rT == NB_RB))
1209 return -EINVAL;
1210
1211 EA = (rA == 0) ? 0 : regs->gpr[rA];
1212
16c57b36
KG
1213 switch (instword & PPC_INST_STRING_MASK) {
1214 case PPC_INST_LSWX:
1215 case PPC_INST_STSWX:
14cf11af
PM
1216 EA += NB_RB;
1217 num_bytes = regs->xer & 0x7f;
1218 break;
16c57b36
KG
1219 case PPC_INST_LSWI:
1220 case PPC_INST_STSWI:
14cf11af
PM
1221 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1222 break;
1223 default:
1224 return -EINVAL;
1225 }
1226
1227 while (num_bytes != 0)
1228 {
1229 u8 val;
1230 u32 shift = 8 * (3 - (pos & 0x3));
1231
80aa0fb4
JY
1232 /* if process is 32-bit, clear upper 32 bits of EA */
1233 if ((regs->msr & MSR_64BIT) == 0)
1234 EA &= 0xFFFFFFFF;
1235
16c57b36
KG
1236 switch ((instword & PPC_INST_STRING_MASK)) {
1237 case PPC_INST_LSWX:
1238 case PPC_INST_LSWI:
14cf11af
PM
1239 if (get_user(val, (u8 __user *)EA))
1240 return -EFAULT;
1241 /* first time updating this reg,
1242 * zero it out */
1243 if (pos == 0)
1244 regs->gpr[rT] = 0;
1245 regs->gpr[rT] |= val << shift;
1246 break;
16c57b36
KG
1247 case PPC_INST_STSWI:
1248 case PPC_INST_STSWX:
14cf11af
PM
1249 val = regs->gpr[rT] >> shift;
1250 if (put_user(val, (u8 __user *)EA))
1251 return -EFAULT;
1252 break;
1253 }
1254 /* move EA to next address */
1255 EA += 1;
1256 num_bytes--;
1257
1258 /* manage our position within the register */
1259 if (++pos == 4) {
1260 pos = 0;
1261 if (++rT == 32)
1262 rT = 0;
1263 }
1264 }
1265
1266 return 0;
1267}
1268
c3412dcb
WS
1269static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1270{
1271 u32 ra,rs;
1272 unsigned long tmp;
1273
1274 ra = (instword >> 16) & 0x1f;
1275 rs = (instword >> 21) & 0x1f;
1276
1277 tmp = regs->gpr[rs];
1278 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1279 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1280 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1281 regs->gpr[ra] = tmp;
1282
1283 return 0;
1284}
1285
c1469f13
KG
1286static int emulate_isel(struct pt_regs *regs, u32 instword)
1287{
1288 u8 rT = (instword >> 21) & 0x1f;
1289 u8 rA = (instword >> 16) & 0x1f;
1290 u8 rB = (instword >> 11) & 0x1f;
1291 u8 BC = (instword >> 6) & 0x1f;
1292 u8 bit;
1293 unsigned long tmp;
1294
1295 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1296 bit = (regs->ccr >> (31 - BC)) & 0x1;
1297
1298 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1299
1300 return 0;
1301}
1302
6ce6c629
MN
1303#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1305{
1306 /* If we're emulating a load/store in an active transaction, we cannot
1307 * emulate it as the kernel operates in transaction suspended context.
1308 * We need to abort the transaction. This creates a persistent TM
1309 * abort so tell the user what caused it with a new code.
1310 */
1311 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1312 tm_enable();
1313 tm_abort(cause);
1314 return true;
1315 }
1316 return false;
1317}
1318#else
1319static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1320{
1321 return false;
1322}
1323#endif
1324
14cf11af
PM
1325static int emulate_instruction(struct pt_regs *regs)
1326{
1327 u32 instword;
1328 u32 rd;
1329
4288e343 1330 if (!user_mode(regs))
14cf11af
PM
1331 return -EINVAL;
1332 CHECK_FULL_REGS(regs);
1333
1334 if (get_user(instword, (u32 __user *)(regs->nip)))
1335 return -EFAULT;
1336
1337 /* Emulate the mfspr rD, PVR. */
16c57b36 1338 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
eecff81d 1339 PPC_WARN_EMULATED(mfpvr, regs);
14cf11af
PM
1340 rd = (instword >> 21) & 0x1f;
1341 regs->gpr[rd] = mfspr(SPRN_PVR);
1342 return 0;
1343 }
1344
1345 /* Emulating the dcba insn is just a no-op. */
80947e7c 1346 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
eecff81d 1347 PPC_WARN_EMULATED(dcba, regs);
14cf11af 1348 return 0;
80947e7c 1349 }
14cf11af
PM
1350
1351 /* Emulate the mcrxr insn. */
16c57b36 1352 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
86417780 1353 int shift = (instword >> 21) & 0x1c;
14cf11af
PM
1354 unsigned long msk = 0xf0000000UL >> shift;
1355
eecff81d 1356 PPC_WARN_EMULATED(mcrxr, regs);
14cf11af
PM
1357 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1358 regs->xer &= ~0xf0000000UL;
1359 return 0;
1360 }
1361
1362 /* Emulate load/store string insn. */
80947e7c 1363 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
6ce6c629
MN
1364 if (tm_abort_check(regs,
1365 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1366 return -EINVAL;
eecff81d 1367 PPC_WARN_EMULATED(string, regs);
14cf11af 1368 return emulate_string_inst(regs, instword);
80947e7c 1369 }
14cf11af 1370
c3412dcb 1371 /* Emulate the popcntb (Population Count Bytes) instruction. */
16c57b36 1372 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
eecff81d 1373 PPC_WARN_EMULATED(popcntb, regs);
c3412dcb
WS
1374 return emulate_popcntb_inst(regs, instword);
1375 }
1376
c1469f13 1377 /* Emulate isel (Integer Select) instruction */
16c57b36 1378 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
eecff81d 1379 PPC_WARN_EMULATED(isel, regs);
c1469f13
KG
1380 return emulate_isel(regs, instword);
1381 }
1382
9863c28a
JY
1383 /* Emulate sync instruction variants */
1384 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1385 PPC_WARN_EMULATED(sync, regs);
1386 asm volatile("sync");
1387 return 0;
1388 }
1389
efcac658
AK
1390#ifdef CONFIG_PPC64
1391 /* Emulate the mfspr rD, DSCR. */
73d2fb75
AB
1392 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1393 PPC_INST_MFSPR_DSCR_USER) ||
1394 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1395 PPC_INST_MFSPR_DSCR)) &&
efcac658
AK
1396 cpu_has_feature(CPU_FTR_DSCR)) {
1397 PPC_WARN_EMULATED(mfdscr, regs);
1398 rd = (instword >> 21) & 0x1f;
1399 regs->gpr[rd] = mfspr(SPRN_DSCR);
1400 return 0;
1401 }
1402 /* Emulate the mtspr DSCR, rD. */
73d2fb75
AB
1403 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1404 PPC_INST_MTSPR_DSCR_USER) ||
1405 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1406 PPC_INST_MTSPR_DSCR)) &&
efcac658
AK
1407 cpu_has_feature(CPU_FTR_DSCR)) {
1408 PPC_WARN_EMULATED(mtdscr, regs);
1409 rd = (instword >> 21) & 0x1f;
00ca0de0 1410 current->thread.dscr = regs->gpr[rd];
efcac658 1411 current->thread.dscr_inherit = 1;
00ca0de0 1412 mtspr(SPRN_DSCR, current->thread.dscr);
efcac658
AK
1413 return 0;
1414 }
1415#endif
1416
14cf11af
PM
1417 return -EINVAL;
1418}
1419
73c9ceab 1420int is_valid_bugaddr(unsigned long addr)
14cf11af 1421{
73c9ceab 1422 return is_kernel_addr(addr);
14cf11af
PM
1423}
1424
3a3b5aa6
KH
1425#ifdef CONFIG_MATH_EMULATION
1426static int emulate_math(struct pt_regs *regs)
1427{
1428 int ret;
1429 extern int do_mathemu(struct pt_regs *regs);
1430
1431 ret = do_mathemu(regs);
1432 if (ret >= 0)
1433 PPC_WARN_EMULATED(math, regs);
1434
1435 switch (ret) {
1436 case 0:
1437 emulate_single_step(regs);
1438 return 0;
1439 case 1: {
1440 int code = 0;
de79f7b9 1441 code = __parse_fpscr(current->thread.fp_state.fpscr);
3a3b5aa6
KH
1442 _exception(SIGFPE, regs, code, regs->nip);
1443 return 0;
1444 }
1445 case -EFAULT:
1446 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1447 return 0;
1448 }
1449
1450 return -1;
1451}
1452#else
1453static inline int emulate_math(struct pt_regs *regs) { return -1; }
1454#endif
1455
03465f89 1456void program_check_exception(struct pt_regs *regs)
14cf11af 1457{
ba12eede 1458 enum ctx_state prev_state = exception_enter();
14cf11af 1459 unsigned int reason = get_reason(regs);
14cf11af 1460
aa42c69c 1461 /* We can now get here via a FP Unavailable exception if the core
04903a30 1462 * has no FPU, in that case the reason flags will be 0 */
14cf11af 1463
dc1c1ca3
SR
1464 if (reason & REASON_FP) {
1465 /* IEEE FP exception */
1466 parse_fpe(regs);
ba12eede 1467 goto bail;
8dad3f92
PM
1468 }
1469 if (reason & REASON_TRAP) {
a4c3f909 1470 unsigned long bugaddr;
ba797b28
JW
1471 /* Debugger is first in line to stop recursive faults in
1472 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1473 if (debugger_bpt(regs))
ba12eede 1474 goto bail;
ba797b28 1475
6cc89bad
NR
1476 if (kprobe_handler(regs))
1477 goto bail;
1478
14cf11af 1479 /* trap exception */
dc1c1ca3
SR
1480 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1481 == NOTIFY_STOP)
ba12eede 1482 goto bail;
73c9ceab 1483
a4c3f909
BS
1484 bugaddr = regs->nip;
1485 /*
1486 * Fixup bugaddr for BUG_ON() in real mode
1487 */
1488 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1489 bugaddr += PAGE_OFFSET;
1490
73c9ceab 1491 if (!(regs->msr & MSR_PR) && /* not user-mode */
a4c3f909 1492 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
14cf11af 1493 regs->nip += 4;
ba12eede 1494 goto bail;
14cf11af 1495 }
8dad3f92 1496 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
ba12eede 1497 goto bail;
8dad3f92 1498 }
bc2a9408
MN
1499#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1500 if (reason & REASON_TM) {
1501 /* This is a TM "Bad Thing Exception" program check.
1502 * This occurs when:
1503 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1504 * transition in TM states.
1505 * - A trechkpt is attempted when transactional.
1506 * - A treclaim is attempted when non transactional.
1507 * - A tend is illegally attempted.
1508 * - writing a TM SPR when transactional.
632f0574
ME
1509 *
1510 * If usermode caused this, it's done something illegal and
bc2a9408
MN
1511 * gets a SIGILL slap on the wrist. We call it an illegal
1512 * operand to distinguish from the instruction just being bad
1513 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1514 * illegal /placement/ of a valid instruction.
1515 */
1516 if (user_mode(regs)) {
1517 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
ba12eede 1518 goto bail;
bc2a9408
MN
1519 } else {
1520 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
11be3958
BL
1521 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1522 regs->nip, regs->msr, get_paca()->tm_scratch);
bc2a9408
MN
1523 die("Unrecoverable exception", regs, SIGABRT);
1524 }
1525 }
1526#endif
8dad3f92 1527
b3f6a459
ME
1528 /*
1529 * If we took the program check in the kernel skip down to sending a
1530 * SIGILL. The subsequent cases all relate to emulating instructions
1531 * which we should only do for userspace. We also do not want to enable
1532 * interrupts for kernel faults because that might lead to further
1533 * faults, and loose the context of the original exception.
1534 */
1535 if (!user_mode(regs))
1536 goto sigill;
1537
a3512b2d
BH
1538 /* We restore the interrupt state now */
1539 if (!arch_irq_disabled_regs(regs))
1540 local_irq_enable();
cd8a5673 1541
04903a30
KG
1542 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1543 * but there seems to be a hardware bug on the 405GP (RevD)
1544 * that means ESR is sometimes set incorrectly - either to
1545 * ESR_DST (!?) or 0. In the process of chasing this with the
1546 * hardware people - not sure if it can happen on any illegal
1547 * instruction or only on FP instructions, whether there is a
4e63f8ed
BH
1548 * pattern to occurrences etc. -dgibson 31/Mar/2003
1549 */
3a3b5aa6 1550 if (!emulate_math(regs))
ba12eede 1551 goto bail;
04903a30 1552
8dad3f92
PM
1553 /* Try to emulate it if we should. */
1554 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
14cf11af
PM
1555 switch (emulate_instruction(regs)) {
1556 case 0:
1557 regs->nip += 4;
1558 emulate_single_step(regs);
ba12eede 1559 goto bail;
14cf11af
PM
1560 case -EFAULT:
1561 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
ba12eede 1562 goto bail;
14cf11af
PM
1563 }
1564 }
8dad3f92 1565
b3f6a459 1566sigill:
8dad3f92
PM
1567 if (reason & REASON_PRIVILEGED)
1568 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1569 else
1570 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
ba12eede
LZ
1571
1572bail:
1573 exception_exit(prev_state);
14cf11af 1574}
03465f89 1575NOKPROBE_SYMBOL(program_check_exception);
14cf11af 1576
bf593907
PM
1577/*
1578 * This occurs when running in hypervisor mode on POWER6 or later
1579 * and an illegal instruction is encountered.
1580 */
03465f89 1581void emulation_assist_interrupt(struct pt_regs *regs)
bf593907
PM
1582{
1583 regs->msr |= REASON_ILLEGAL;
1584 program_check_exception(regs);
1585}
03465f89 1586NOKPROBE_SYMBOL(emulation_assist_interrupt);
bf593907 1587
dc1c1ca3 1588void alignment_exception(struct pt_regs *regs)
14cf11af 1589{
ba12eede 1590 enum ctx_state prev_state = exception_enter();
4393c4f6 1591 int sig, code, fixed = 0;
14cf11af 1592
a3512b2d
BH
1593 /* We restore the interrupt state now */
1594 if (!arch_irq_disabled_regs(regs))
1595 local_irq_enable();
1596
6ce6c629
MN
1597 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1598 goto bail;
1599
e9370ae1
PM
1600 /* we don't implement logging of alignment exceptions */
1601 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1602 fixed = fix_alignment(regs);
14cf11af
PM
1603
1604 if (fixed == 1) {
1605 regs->nip += 4; /* skip over emulated instruction */
1606 emulate_single_step(regs);
ba12eede 1607 goto bail;
14cf11af
PM
1608 }
1609
dc1c1ca3 1610 /* Operand address was bad */
14cf11af 1611 if (fixed == -EFAULT) {
4393c4f6
BH
1612 sig = SIGSEGV;
1613 code = SEGV_ACCERR;
1614 } else {
1615 sig = SIGBUS;
1616 code = BUS_ADRALN;
14cf11af 1617 }
4393c4f6
BH
1618 if (user_mode(regs))
1619 _exception(sig, regs, code, regs->dar);
1620 else
1621 bad_page_fault(regs, regs->dar, sig);
ba12eede
LZ
1622
1623bail:
1624 exception_exit(prev_state);
14cf11af
PM
1625}
1626
1627void StackOverflow(struct pt_regs *regs)
1628{
9bf3d3c4
CL
1629 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1630 current->comm, task_pid_nr(current), regs->gpr[1]);
14cf11af
PM
1631 debugger(regs);
1632 show_regs(regs);
1633 panic("kernel stack overflow");
1634}
1635
dc1c1ca3
SR
1636void kernel_fp_unavailable_exception(struct pt_regs *regs)
1637{
ba12eede
LZ
1638 enum ctx_state prev_state = exception_enter();
1639
dc1c1ca3
SR
1640 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1641 "%lx at %lx\n", regs->trap, regs->nip);
1642 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
ba12eede
LZ
1643
1644 exception_exit(prev_state);
dc1c1ca3 1645}
dc1c1ca3
SR
1646
1647void altivec_unavailable_exception(struct pt_regs *regs)
1648{
ba12eede
LZ
1649 enum ctx_state prev_state = exception_enter();
1650
dc1c1ca3
SR
1651 if (user_mode(regs)) {
1652 /* A user program has executed an altivec instruction,
1653 but this kernel doesn't support altivec. */
1654 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
ba12eede 1655 goto bail;
dc1c1ca3 1656 }
6c4841c2 1657
dc1c1ca3
SR
1658 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1659 "%lx at %lx\n", regs->trap, regs->nip);
1660 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
ba12eede
LZ
1661
1662bail:
1663 exception_exit(prev_state);
dc1c1ca3
SR
1664}
1665
ce48b210
MN
1666void vsx_unavailable_exception(struct pt_regs *regs)
1667{
1668 if (user_mode(regs)) {
1669 /* A user program has executed an vsx instruction,
1670 but this kernel doesn't support vsx. */
1671 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1672 return;
1673 }
1674
1675 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1676 "%lx at %lx\n", regs->trap, regs->nip);
1677 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1678}
1679
2517617e 1680#ifdef CONFIG_PPC64
172f7aaa
CB
1681static void tm_unavailable(struct pt_regs *regs)
1682{
5d176f75
CB
1683#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1684 if (user_mode(regs)) {
1685 current->thread.load_tm++;
1686 regs->msr |= MSR_TM;
1687 tm_enable();
1688 tm_restore_sprs(&current->thread);
1689 return;
1690 }
1691#endif
172f7aaa
CB
1692 pr_emerg("Unrecoverable TM Unavailable Exception "
1693 "%lx at %lx\n", regs->trap, regs->nip);
1694 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1695}
1696
021424a1 1697void facility_unavailable_exception(struct pt_regs *regs)
d0c0c9a1 1698{
021424a1 1699 static char *facility_strings[] = {
2517617e
MN
1700 [FSCR_FP_LG] = "FPU",
1701 [FSCR_VECVSX_LG] = "VMX/VSX",
1702 [FSCR_DSCR_LG] = "DSCR",
1703 [FSCR_PM_LG] = "PMU SPRs",
1704 [FSCR_BHRB_LG] = "BHRB",
1705 [FSCR_TM_LG] = "TM",
1706 [FSCR_EBB_LG] = "EBB",
1707 [FSCR_TAR_LG] = "TAR",
794464f4 1708 [FSCR_MSGP_LG] = "MSGP",
9b7ff0c6 1709 [FSCR_SCV_LG] = "SCV",
021424a1 1710 };
2517617e 1711 char *facility = "unknown";
021424a1 1712 u64 value;
c952c1c4 1713 u32 instword, rd;
2517617e
MN
1714 u8 status;
1715 bool hv;
021424a1 1716
2271db20 1717 hv = (TRAP(regs) == 0xf80);
2517617e 1718 if (hv)
b14b6260 1719 value = mfspr(SPRN_HFSCR);
2517617e
MN
1720 else
1721 value = mfspr(SPRN_FSCR);
1722
1723 status = value >> 56;
709b973c
AK
1724 if ((hv || status >= 2) &&
1725 (status < ARRAY_SIZE(facility_strings)) &&
1726 facility_strings[status])
1727 facility = facility_strings[status];
1728
1729 /* We should not have taken this interrupt in kernel */
1730 if (!user_mode(regs)) {
1731 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1732 facility, status, regs->nip);
1733 die("Unexpected facility unavailable exception", regs, SIGABRT);
1734 }
1735
1736 /* We restore the interrupt state now */
1737 if (!arch_irq_disabled_regs(regs))
1738 local_irq_enable();
1739
2517617e 1740 if (status == FSCR_DSCR_LG) {
c952c1c4
AK
1741 /*
1742 * User is accessing the DSCR register using the problem
1743 * state only SPR number (0x03) either through a mfspr or
1744 * a mtspr instruction. If it is a write attempt through
1745 * a mtspr, then we set the inherit bit. This also allows
1746 * the user to write or read the register directly in the
1747 * future by setting via the FSCR DSCR bit. But in case it
1748 * is a read DSCR attempt through a mfspr instruction, we
1749 * just emulate the instruction instead. This code path will
1750 * always emulate all the mfspr instructions till the user
446957ba 1751 * has attempted at least one mtspr instruction. This way it
c952c1c4
AK
1752 * preserves the same behaviour when the user is accessing
1753 * the DSCR through privilege level only SPR number (0x11)
1754 * which is emulated through illegal instruction exception.
1755 * We always leave HFSCR DSCR set.
2517617e 1756 */
c952c1c4
AK
1757 if (get_user(instword, (u32 __user *)(regs->nip))) {
1758 pr_err("Failed to fetch the user instruction\n");
1759 return;
1760 }
1761
1762 /* Write into DSCR (mtspr 0x03, RS) */
1763 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1764 == PPC_INST_MTSPR_DSCR_USER) {
1765 rd = (instword >> 21) & 0x1f;
1766 current->thread.dscr = regs->gpr[rd];
1767 current->thread.dscr_inherit = 1;
b57bd2de
MN
1768 current->thread.fscr |= FSCR_DSCR;
1769 mtspr(SPRN_FSCR, current->thread.fscr);
c952c1c4
AK
1770 }
1771
1772 /* Read from DSCR (mfspr RT, 0x03) */
1773 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1774 == PPC_INST_MFSPR_DSCR_USER) {
1775 if (emulate_instruction(regs)) {
1776 pr_err("DSCR based mfspr emulation failed\n");
1777 return;
1778 }
1779 regs->nip += 4;
1780 emulate_single_step(regs);
1781 }
2517617e 1782 return;
b14b6260
ME
1783 }
1784
172f7aaa
CB
1785 if (status == FSCR_TM_LG) {
1786 /*
1787 * If we're here then the hardware is TM aware because it
1788 * generated an exception with FSRM_TM set.
1789 *
1790 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1791 * told us not to do TM, or the kernel is not built with TM
1792 * support.
1793 *
1794 * If both of those things are true, then userspace can spam the
1795 * console by triggering the printk() below just by continually
1796 * doing tbegin (or any TM instruction). So in that case just
1797 * send the process a SIGILL immediately.
1798 */
1799 if (!cpu_has_feature(CPU_FTR_TM))
1800 goto out;
1801
1802 tm_unavailable(regs);
1803 return;
1804 }
1805
93c2ec0f
BS
1806 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1807 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
d0c0c9a1 1808
172f7aaa 1809out:
709b973c 1810 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
d0c0c9a1 1811}
2517617e 1812#endif
d0c0c9a1 1813
f54db641
MN
1814#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1815
f54db641
MN
1816void fp_unavailable_tm(struct pt_regs *regs)
1817{
1818 /* Note: This does not handle any kind of FP laziness. */
1819
1820 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1821 regs->nip, regs->msr);
f54db641
MN
1822
1823 /* We can only have got here if the task started using FP after
1824 * beginning the transaction. So, the transactional regs are just a
1825 * copy of the checkpointed ones. But, we still need to recheckpoint
1826 * as we're enabling FP for the process; it will return, abort the
1827 * transaction, and probably retry but now with FP enabled. So the
1828 * checkpointed FP registers need to be loaded.
1829 */
d31626f7 1830 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
96695563
BL
1831
1832 /*
1833 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1834 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1835 *
1836 * At this point, ck{fp,vr}_state contains the exact values we want to
1837 * recheckpoint.
1838 */
f54db641
MN
1839
1840 /* Enable FP for the task: */
a7771176 1841 current->thread.load_fp = 1;
f54db641 1842
96695563
BL
1843 /*
1844 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
f54db641 1845 */
eb5c3f1c 1846 tm_recheckpoint(&current->thread);
f54db641
MN
1847}
1848
f54db641
MN
1849void altivec_unavailable_tm(struct pt_regs *regs)
1850{
1851 /* See the comments in fp_unavailable_tm(). This function operates
1852 * the same way.
1853 */
1854
1855 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1856 "MSR=%lx\n",
1857 regs->nip, regs->msr);
d31626f7 1858 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
a7771176 1859 current->thread.load_vec = 1;
eb5c3f1c 1860 tm_recheckpoint(&current->thread);
f54db641
MN
1861 current->thread.used_vr = 1;
1862}
f54db641 1863
f54db641
MN
1864void vsx_unavailable_tm(struct pt_regs *regs)
1865{
1866 /* See the comments in fp_unavailable_tm(). This works similarly,
1867 * though we're loading both FP and VEC registers in here.
1868 *
1869 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1870 * regs. Either way, set MSR_VSX.
1871 */
1872
1873 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1874 "MSR=%lx\n",
1875 regs->nip, regs->msr);
1876
3ac8ff1c
PM
1877 current->thread.used_vsr = 1;
1878
f54db641 1879 /* This reclaims FP and/or VR regs if they're already enabled */
d31626f7 1880 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
f54db641 1881
a7771176
CB
1882 current->thread.load_vec = 1;
1883 current->thread.load_fp = 1;
3ac8ff1c 1884
eb5c3f1c 1885 tm_recheckpoint(&current->thread);
f54db641 1886}
f54db641
MN
1887#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1888
dc1c1ca3
SR
1889void performance_monitor_exception(struct pt_regs *regs)
1890{
69111bac 1891 __this_cpu_inc(irq_stat.pmu_irqs);
89713ed1 1892
dc1c1ca3
SR
1893 perf_irq(regs);
1894}
dc1c1ca3 1895
172ae2e7 1896#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
1897static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1898{
1899 int changed = 0;
1900 /*
1901 * Determine the cause of the debug event, clear the
1902 * event flags and send a trap to the handler. Torez
1903 */
1904 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1905 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1906#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1907 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 1908#endif
47355040 1909 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
3bffb652
DK
1910 5);
1911 changed |= 0x01;
1912 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1913 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
47355040 1914 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
3bffb652
DK
1915 6);
1916 changed |= 0x01;
1917 } else if (debug_status & DBSR_IAC1) {
51ae8d4a 1918 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652 1919 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
47355040 1920 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
3bffb652
DK
1921 1);
1922 changed |= 0x01;
1923 } else if (debug_status & DBSR_IAC2) {
51ae8d4a 1924 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
47355040 1925 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
3bffb652
DK
1926 2);
1927 changed |= 0x01;
1928 } else if (debug_status & DBSR_IAC3) {
51ae8d4a 1929 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652 1930 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
47355040 1931 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
3bffb652
DK
1932 3);
1933 changed |= 0x01;
1934 } else if (debug_status & DBSR_IAC4) {
51ae8d4a 1935 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
47355040 1936 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
3bffb652
DK
1937 4);
1938 changed |= 0x01;
1939 }
1940 /*
1941 * At the point this routine was called, the MSR(DE) was turned off.
1942 * Check all other debug flags and see if that bit needs to be turned
1943 * back on or not.
1944 */
51ae8d4a 1945 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
95791988 1946 current->thread.debug.dbcr1))
3bffb652
DK
1947 regs->msr |= MSR_DE;
1948 else
1949 /* Make sure the IDM flag is off */
51ae8d4a 1950 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
1951
1952 if (changed & 0x01)
51ae8d4a 1953 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
3bffb652 1954}
14cf11af 1955
03465f89 1956void DebugException(struct pt_regs *regs, unsigned long debug_status)
14cf11af 1957{
51ae8d4a 1958 current->thread.debug.dbsr = debug_status;
3bffb652 1959
ec097c84
RM
1960 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1961 * on server, it stops on the target of the branch. In order to simulate
1962 * the server behaviour, we thus restart right away with a single step
1963 * instead of stopping here when hitting a BT
1964 */
1965 if (debug_status & DBSR_BT) {
1966 regs->msr &= ~MSR_DE;
1967
1968 /* Disable BT */
1969 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1970 /* Clear the BT event */
1971 mtspr(SPRN_DBSR, DBSR_BT);
1972
1973 /* Do the single step trick only when coming from userspace */
1974 if (user_mode(regs)) {
51ae8d4a
BB
1975 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1976 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
ec097c84
RM
1977 regs->msr |= MSR_DE;
1978 return;
1979 }
1980
6cc89bad
NR
1981 if (kprobe_post_handler(regs))
1982 return;
1983
ec097c84
RM
1984 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1985 5, SIGTRAP) == NOTIFY_STOP) {
1986 return;
1987 }
1988 if (debugger_sstep(regs))
1989 return;
1990 } else if (debug_status & DBSR_IC) { /* Instruction complete */
14cf11af 1991 regs->msr &= ~MSR_DE;
f8279621
KG
1992
1993 /* Disable instruction completion */
1994 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1995 /* Clear the instruction completion event */
1996 mtspr(SPRN_DBSR, DBSR_IC);
1997
6cc89bad
NR
1998 if (kprobe_post_handler(regs))
1999 return;
2000
f8279621
KG
2001 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2002 5, SIGTRAP) == NOTIFY_STOP) {
2003 return;
2004 }
2005
2006 if (debugger_sstep(regs))
2007 return;
2008
d6a61bfc 2009 if (user_mode(regs)) {
51ae8d4a
BB
2010 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2011 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2012 current->thread.debug.dbcr1))
3bffb652
DK
2013 regs->msr |= MSR_DE;
2014 else
2015 /* Make sure the IDM bit is off */
51ae8d4a 2016 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
d6a61bfc 2017 }
3bffb652
DK
2018
2019 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2020 } else
2021 handle_debug(regs, debug_status);
14cf11af 2022}
03465f89 2023NOKPROBE_SYMBOL(DebugException);
172ae2e7 2024#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
14cf11af
PM
2025
2026#if !defined(CONFIG_TAU_INT)
2027void TAUException(struct pt_regs *regs)
2028{
2029 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
2030 regs->nip, regs->msr, regs->trap, print_tainted());
2031}
2032#endif /* CONFIG_INT_TAU */
14cf11af
PM
2033
2034#ifdef CONFIG_ALTIVEC
dc1c1ca3 2035void altivec_assist_exception(struct pt_regs *regs)
14cf11af
PM
2036{
2037 int err;
2038
14cf11af
PM
2039 if (!user_mode(regs)) {
2040 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2041 " at %lx\n", regs->nip);
8dad3f92 2042 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
14cf11af
PM
2043 }
2044
dc1c1ca3 2045 flush_altivec_to_thread(current);
dc1c1ca3 2046
eecff81d 2047 PPC_WARN_EMULATED(altivec, regs);
14cf11af
PM
2048 err = emulate_altivec(regs);
2049 if (err == 0) {
2050 regs->nip += 4; /* skip emulated instruction */
2051 emulate_single_step(regs);
2052 return;
2053 }
2054
2055 if (err == -EFAULT) {
2056 /* got an error reading the instruction */
2057 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2058 } else {
2059 /* didn't recognize the instruction */
2060 /* XXX quick hack for now: set the non-Java bit in the VSCR */
76462232
CD
2061 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2062 "in %s at %lx\n", current->comm, regs->nip);
de79f7b9 2063 current->thread.vr_state.vscr.u[3] |= 0x10000;
14cf11af
PM
2064 }
2065}
2066#endif /* CONFIG_ALTIVEC */
2067
14cf11af
PM
2068#ifdef CONFIG_FSL_BOOKE
2069void CacheLockingException(struct pt_regs *regs, unsigned long address,
2070 unsigned long error_code)
2071{
2072 /* We treat cache locking instructions from the user
2073 * as priv ops, in the future we could try to do
2074 * something smarter
2075 */
2076 if (error_code & (ESR_DLK|ESR_ILK))
2077 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2078 return;
2079}
2080#endif /* CONFIG_FSL_BOOKE */
2081
2082#ifdef CONFIG_SPE
2083void SPEFloatingPointException(struct pt_regs *regs)
2084{
6a800f36 2085 extern int do_spe_mathemu(struct pt_regs *regs);
14cf11af
PM
2086 unsigned long spefscr;
2087 int fpexc_mode;
aeb1c0f6 2088 int code = FPE_FLTUNK;
6a800f36
LY
2089 int err;
2090
ef429124
CL
2091 /* We restore the interrupt state now */
2092 if (!arch_irq_disabled_regs(regs))
2093 local_irq_enable();
2094
685659ee 2095 flush_spe_to_thread(current);
14cf11af
PM
2096
2097 spefscr = current->thread.spefscr;
2098 fpexc_mode = current->thread.fpexc_mode;
2099
14cf11af
PM
2100 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2101 code = FPE_FLTOVF;
14cf11af
PM
2102 }
2103 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2104 code = FPE_FLTUND;
14cf11af
PM
2105 }
2106 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2107 code = FPE_FLTDIV;
2108 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2109 code = FPE_FLTINV;
14cf11af
PM
2110 }
2111 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2112 code = FPE_FLTRES;
2113
6a800f36
LY
2114 err = do_spe_mathemu(regs);
2115 if (err == 0) {
2116 regs->nip += 4; /* skip emulated instruction */
2117 emulate_single_step(regs);
2118 return;
2119 }
2120
2121 if (err == -EFAULT) {
2122 /* got an error reading the instruction */
2123 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2124 } else if (err == -EINVAL) {
2125 /* didn't recognize the instruction */
2126 printk(KERN_ERR "unrecognized spe instruction "
2127 "in %s at %lx\n", current->comm, regs->nip);
2128 } else {
2129 _exception(SIGFPE, regs, code, regs->nip);
2130 }
14cf11af 2131
14cf11af
PM
2132 return;
2133}
6a800f36
LY
2134
2135void SPEFloatingPointRoundException(struct pt_regs *regs)
2136{
2137 extern int speround_handler(struct pt_regs *regs);
2138 int err;
2139
ef429124
CL
2140 /* We restore the interrupt state now */
2141 if (!arch_irq_disabled_regs(regs))
2142 local_irq_enable();
2143
6a800f36
LY
2144 preempt_disable();
2145 if (regs->msr & MSR_SPE)
2146 giveup_spe(current);
2147 preempt_enable();
2148
2149 regs->nip -= 4;
2150 err = speround_handler(regs);
2151 if (err == 0) {
2152 regs->nip += 4; /* skip emulated instruction */
2153 emulate_single_step(regs);
2154 return;
2155 }
2156
2157 if (err == -EFAULT) {
2158 /* got an error reading the instruction */
2159 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2160 } else if (err == -EINVAL) {
2161 /* didn't recognize the instruction */
2162 printk(KERN_ERR "unrecognized spe instruction "
2163 "in %s at %lx\n", current->comm, regs->nip);
2164 } else {
aeb1c0f6 2165 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
6a800f36
LY
2166 return;
2167 }
2168}
14cf11af
PM
2169#endif
2170
dc1c1ca3
SR
2171/*
2172 * We enter here if we get an unrecoverable exception, that is, one
2173 * that happened at a point where the RI (recoverable interrupt) bit
2174 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2175 * we therefore lost state by taking this exception.
2176 */
2177void unrecoverable_exception(struct pt_regs *regs)
2178{
51423a9c
CL
2179 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2180 regs->trap, regs->nip, regs->msr);
dc1c1ca3
SR
2181 die("Unrecoverable exception", regs, SIGABRT);
2182}
15770a13 2183NOKPROBE_SYMBOL(unrecoverable_exception);
dc1c1ca3 2184
1e18c17a 2185#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
14cf11af
PM
2186/*
2187 * Default handler for a Watchdog exception,
2188 * spins until a reboot occurs
2189 */
2190void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2191{
2192 /* Generic WatchdogHandler, implement your own */
2193 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2194 return;
2195}
2196
2197void WatchdogException(struct pt_regs *regs)
2198{
2199 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2200 WatchdogHandler(regs);
2201}
2202#endif
dc1c1ca3 2203
dc1c1ca3
SR
2204/*
2205 * We enter here if we discover during exception entry that we are
2206 * running in supervisor mode with a userspace value in the stack pointer.
2207 */
2208void kernel_bad_stack(struct pt_regs *regs)
2209{
2210 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2211 regs->gpr[1], regs->nip);
2212 die("Bad kernel stack pointer", regs, SIGABRT);
2213}
15770a13 2214NOKPROBE_SYMBOL(kernel_bad_stack);
14cf11af
PM
2215
2216void __init trap_init(void)
2217{
2218}
80947e7c
GU
2219
2220
2221#ifdef CONFIG_PPC_EMULATED_STATS
2222
2223#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2224
2225struct ppc_emulated ppc_emulated = {
2226#ifdef CONFIG_ALTIVEC
2227 WARN_EMULATED_SETUP(altivec),
2228#endif
2229 WARN_EMULATED_SETUP(dcba),
2230 WARN_EMULATED_SETUP(dcbz),
2231 WARN_EMULATED_SETUP(fp_pair),
2232 WARN_EMULATED_SETUP(isel),
2233 WARN_EMULATED_SETUP(mcrxr),
2234 WARN_EMULATED_SETUP(mfpvr),
2235 WARN_EMULATED_SETUP(multiple),
2236 WARN_EMULATED_SETUP(popcntb),
2237 WARN_EMULATED_SETUP(spe),
2238 WARN_EMULATED_SETUP(string),
a3821b2a 2239 WARN_EMULATED_SETUP(sync),
80947e7c
GU
2240 WARN_EMULATED_SETUP(unaligned),
2241#ifdef CONFIG_MATH_EMULATION
2242 WARN_EMULATED_SETUP(math),
80947e7c
GU
2243#endif
2244#ifdef CONFIG_VSX
2245 WARN_EMULATED_SETUP(vsx),
2246#endif
efcac658
AK
2247#ifdef CONFIG_PPC64
2248 WARN_EMULATED_SETUP(mfdscr),
2249 WARN_EMULATED_SETUP(mtdscr),
f83319d7 2250 WARN_EMULATED_SETUP(lq_stq),
5080332c
MN
2251 WARN_EMULATED_SETUP(lxvw4x),
2252 WARN_EMULATED_SETUP(lxvh8x),
2253 WARN_EMULATED_SETUP(lxvd2x),
2254 WARN_EMULATED_SETUP(lxvb16x),
efcac658 2255#endif
80947e7c
GU
2256};
2257
2258u32 ppc_warn_emulated;
2259
2260void ppc_warn_emulated_print(const char *type)
2261{
76462232
CD
2262 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2263 type);
80947e7c
GU
2264}
2265
2266static int __init ppc_warn_emulated_init(void)
2267{
2268 struct dentry *dir, *d;
2269 unsigned int i;
2270 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2271
2272 if (!powerpc_debugfs_root)
2273 return -ENODEV;
2274
2275 dir = debugfs_create_dir("emulated_instructions",
2276 powerpc_debugfs_root);
2277 if (!dir)
2278 return -ENOMEM;
2279
57ad583f 2280 d = debugfs_create_u32("do_warn", 0644, dir,
80947e7c
GU
2281 &ppc_warn_emulated);
2282 if (!d)
2283 goto fail;
2284
2285 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
57ad583f 2286 d = debugfs_create_u32(entries[i].name, 0644, dir,
80947e7c
GU
2287 (u32 *)&entries[i].val.counter);
2288 if (!d)
2289 goto fail;
2290 }
2291
2292 return 0;
2293
2294fail:
2295 debugfs_remove_recursive(dir);
2296 return -ENOMEM;
2297}
2298
2299device_initcall(ppc_warn_emulated_init);
2300
2301#endif /* CONFIG_PPC_EMULATED_STATS */