]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kvm/book3s_64_mmu_hv.c
kvm: powerpc: Add kvmppc_ops callback
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
2c9097e4 27#include <linux/srcu.h>
a2932923
PM
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
de56a948
PM
30
31#include <asm/tlbflush.h>
32#include <asm/kvm_ppc.h>
33#include <asm/kvm_book3s.h>
34#include <asm/mmu-hash64.h>
35#include <asm/hvcall.h>
36#include <asm/synch.h>
37#include <asm/ppc-opcode.h>
38#include <asm/cputable.h>
39
990978e9
AK
40#include "book3s_hv_cma.h"
41
9e368f29
PM
42/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43#define MAX_LPID_970 63
de56a948 44
32fad281
PM
45/* Power architecture requires HPT is at least 256kB */
46#define PPC_MIN_HPT_ORDER 18
47
7ed661bf
PM
48static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
49 long pte_index, unsigned long pteh,
50 unsigned long ptel, unsigned long *pte_idx_ret);
a64fd707 51static void kvmppc_rmap_reset(struct kvm *kvm);
7ed661bf 52
32fad281 53long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
de56a948
PM
54{
55 unsigned long hpt;
8936dda4 56 struct revmap_entry *rev;
fa61a4e3
AK
57 struct page *page = NULL;
58 long order = KVM_DEFAULT_HPT_ORDER;
de56a948 59
32fad281
PM
60 if (htab_orderp) {
61 order = *htab_orderp;
62 if (order < PPC_MIN_HPT_ORDER)
63 order = PPC_MIN_HPT_ORDER;
64 }
65
fa61a4e3 66 kvm->arch.hpt_cma_alloc = 0;
32fad281 67 /*
32fad281 68 * try first to allocate it from the kernel page allocator.
fa61a4e3 69 * We keep the CMA reserved for failed allocation.
32fad281 70 */
fa61a4e3
AK
71 hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
72 __GFP_NOWARN, order - PAGE_SHIFT);
d2a1b483 73
32fad281 74 /* Next try to allocate from the preallocated pool */
de56a948 75 if (!hpt) {
990978e9 76 VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
fa61a4e3
AK
77 page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
78 if (page) {
79 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
80 kvm->arch.hpt_cma_alloc = 1;
81 } else
82 --order;
de56a948 83 }
32fad281
PM
84
85 /* Lastly try successively smaller sizes from the page allocator */
86 while (!hpt && order > PPC_MIN_HPT_ORDER) {
87 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
88 __GFP_NOWARN, order - PAGE_SHIFT);
89 if (!hpt)
90 --order;
91 }
92
93 if (!hpt)
94 return -ENOMEM;
95
de56a948 96 kvm->arch.hpt_virt = hpt;
32fad281
PM
97 kvm->arch.hpt_order = order;
98 /* HPTEs are 2**4 bytes long */
99 kvm->arch.hpt_npte = 1ul << (order - 4);
100 /* 128 (2**7) bytes in each HPTEG */
101 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
de56a948 102
8936dda4 103 /* Allocate reverse map array */
32fad281 104 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
8936dda4
PM
105 if (!rev) {
106 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
107 goto out_freehpt;
108 }
109 kvm->arch.revmap = rev;
32fad281 110 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
8936dda4 111
32fad281
PM
112 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
113 hpt, order, kvm->arch.lpid);
de56a948 114
32fad281
PM
115 if (htab_orderp)
116 *htab_orderp = order;
de56a948 117 return 0;
8936dda4 118
8936dda4 119 out_freehpt:
fa61a4e3
AK
120 if (kvm->arch.hpt_cma_alloc)
121 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
32fad281
PM
122 else
123 free_pages(hpt, order - PAGE_SHIFT);
8936dda4 124 return -ENOMEM;
de56a948
PM
125}
126
32fad281
PM
127long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
128{
129 long err = -EBUSY;
130 long order;
131
132 mutex_lock(&kvm->lock);
133 if (kvm->arch.rma_setup_done) {
134 kvm->arch.rma_setup_done = 0;
135 /* order rma_setup_done vs. vcpus_running */
136 smp_mb();
137 if (atomic_read(&kvm->arch.vcpus_running)) {
138 kvm->arch.rma_setup_done = 1;
139 goto out;
140 }
141 }
142 if (kvm->arch.hpt_virt) {
143 order = kvm->arch.hpt_order;
144 /* Set the entire HPT to 0, i.e. invalid HPTEs */
145 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
a64fd707
PM
146 /*
147 * Reset all the reverse-mapping chains for all memslots
148 */
149 kvmppc_rmap_reset(kvm);
1b400ba0
PM
150 /* Ensure that each vcpu will flush its TLB on next entry. */
151 cpumask_setall(&kvm->arch.need_tlb_flush);
32fad281
PM
152 *htab_orderp = order;
153 err = 0;
154 } else {
155 err = kvmppc_alloc_hpt(kvm, htab_orderp);
156 order = *htab_orderp;
157 }
158 out:
159 mutex_unlock(&kvm->lock);
160 return err;
161}
162
de56a948
PM
163void kvmppc_free_hpt(struct kvm *kvm)
164{
043cc4d7 165 kvmppc_free_lpid(kvm->arch.lpid);
8936dda4 166 vfree(kvm->arch.revmap);
fa61a4e3
AK
167 if (kvm->arch.hpt_cma_alloc)
168 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
169 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
d2a1b483 170 else
32fad281
PM
171 free_pages(kvm->arch.hpt_virt,
172 kvm->arch.hpt_order - PAGE_SHIFT);
de56a948
PM
173}
174
da9d1d7f
PM
175/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177{
178 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179}
180
181/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183{
184 return (pgsize == 0x10000) ? 0x1000 : 0;
185}
186
187void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188 unsigned long porder)
de56a948
PM
189{
190 unsigned long i;
b2b2f165 191 unsigned long npages;
c77162de
PM
192 unsigned long hp_v, hp_r;
193 unsigned long addr, hash;
da9d1d7f
PM
194 unsigned long psize;
195 unsigned long hp0, hp1;
7ed661bf 196 unsigned long idx_ret;
c77162de 197 long ret;
32fad281 198 struct kvm *kvm = vcpu->kvm;
de56a948 199
da9d1d7f
PM
200 psize = 1ul << porder;
201 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
202
203 /* VRMA can't be > 1TB */
8936dda4
PM
204 if (npages > 1ul << (40 - porder))
205 npages = 1ul << (40 - porder);
de56a948 206 /* Can't use more than 1 HPTE per HPTEG */
32fad281
PM
207 if (npages > kvm->arch.hpt_mask + 1)
208 npages = kvm->arch.hpt_mask + 1;
de56a948 209
da9d1d7f
PM
210 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212 hp1 = hpte1_pgsize_encoding(psize) |
213 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
de56a948 215 for (i = 0; i < npages; ++i) {
c77162de 216 addr = i << porder;
de56a948 217 /* can't use hpt_hash since va > 64 bits */
32fad281 218 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
de56a948
PM
219 /*
220 * We assume that the hash table is empty and no
221 * vcpus are using it at this stage. Since we create
222 * at most one HPTE per HPTEG, we just assume entry 7
223 * is available and use it.
224 */
8936dda4 225 hash = (hash << 3) + 7;
da9d1d7f
PM
226 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227 hp_r = hp1 | addr;
7ed661bf
PM
228 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229 &idx_ret);
c77162de
PM
230 if (ret != H_SUCCESS) {
231 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232 addr, ret);
233 break;
234 }
de56a948
PM
235 }
236}
237
238int kvmppc_mmu_hv_init(void)
239{
9e368f29
PM
240 unsigned long host_lpid, rsvd_lpid;
241
242 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 243 return -EINVAL;
9e368f29 244
043cc4d7 245 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
9e368f29
PM
246 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
248 rsvd_lpid = LPID_RSVD;
249 } else {
250 host_lpid = 0; /* PPC970 */
251 rsvd_lpid = MAX_LPID_970;
252 }
253
043cc4d7
SW
254 kvmppc_init_lpid(rsvd_lpid + 1);
255
256 kvmppc_claim_lpid(host_lpid);
9e368f29 257 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 258 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
259
260 return 0;
261}
262
de56a948
PM
263static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
264{
265 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
266}
267
c77162de
PM
268/*
269 * This is called to get a reference to a guest page if there isn't
a66b48c3 270 * one already in the memslot->arch.slot_phys[] array.
c77162de
PM
271 */
272static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
da9d1d7f
PM
273 struct kvm_memory_slot *memslot,
274 unsigned long psize)
c77162de
PM
275{
276 unsigned long start;
da9d1d7f
PM
277 long np, err;
278 struct page *page, *hpage, *pages[1];
279 unsigned long s, pgsize;
c77162de 280 unsigned long *physp;
9d0ef5ea
PM
281 unsigned int is_io, got, pgorder;
282 struct vm_area_struct *vma;
da9d1d7f 283 unsigned long pfn, i, npages;
c77162de 284
a66b48c3 285 physp = memslot->arch.slot_phys;
c77162de
PM
286 if (!physp)
287 return -EINVAL;
da9d1d7f 288 if (physp[gfn - memslot->base_gfn])
c77162de
PM
289 return 0;
290
9d0ef5ea
PM
291 is_io = 0;
292 got = 0;
c77162de 293 page = NULL;
da9d1d7f 294 pgsize = psize;
9d0ef5ea 295 err = -EINVAL;
c77162de
PM
296 start = gfn_to_hva_memslot(memslot, gfn);
297
298 /* Instantiate and get the page we want access to */
299 np = get_user_pages_fast(start, 1, 1, pages);
9d0ef5ea
PM
300 if (np != 1) {
301 /* Look up the vma for the page */
302 down_read(&current->mm->mmap_sem);
303 vma = find_vma(current->mm, start);
304 if (!vma || vma->vm_start > start ||
305 start + psize > vma->vm_end ||
306 !(vma->vm_flags & VM_PFNMAP))
307 goto up_err;
308 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
309 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
310 /* check alignment of pfn vs. requested page size */
311 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
312 goto up_err;
313 up_read(&current->mm->mmap_sem);
314
315 } else {
316 page = pages[0];
317 got = KVMPPC_GOT_PAGE;
318
319 /* See if this is a large page */
320 s = PAGE_SIZE;
321 if (PageHuge(page)) {
322 hpage = compound_head(page);
323 s <<= compound_order(hpage);
324 /* Get the whole large page if slot alignment is ok */
325 if (s > psize && slot_is_aligned(memslot, s) &&
326 !(memslot->userspace_addr & (s - 1))) {
327 start &= ~(s - 1);
328 pgsize = s;
de6c0b02
DG
329 get_page(hpage);
330 put_page(page);
9d0ef5ea
PM
331 page = hpage;
332 }
da9d1d7f 333 }
9d0ef5ea
PM
334 if (s < psize)
335 goto out;
336 pfn = page_to_pfn(page);
c77162de 337 }
c77162de 338
da9d1d7f
PM
339 npages = pgsize >> PAGE_SHIFT;
340 pgorder = __ilog2(npages);
341 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
c77162de 342 spin_lock(&kvm->arch.slot_phys_lock);
da9d1d7f
PM
343 for (i = 0; i < npages; ++i) {
344 if (!physp[i]) {
9d0ef5ea
PM
345 physp[i] = ((pfn + i) << PAGE_SHIFT) +
346 got + is_io + pgorder;
da9d1d7f
PM
347 got = 0;
348 }
349 }
c77162de 350 spin_unlock(&kvm->arch.slot_phys_lock);
da9d1d7f 351 err = 0;
c77162de 352
da9d1d7f 353 out:
de6c0b02 354 if (got)
da9d1d7f 355 put_page(page);
da9d1d7f 356 return err;
9d0ef5ea
PM
357
358 up_err:
359 up_read(&current->mm->mmap_sem);
360 return err;
c77162de
PM
361}
362
7ed661bf
PM
363long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
364 long pte_index, unsigned long pteh,
365 unsigned long ptel, unsigned long *pte_idx_ret)
c77162de 366{
c77162de
PM
367 unsigned long psize, gpa, gfn;
368 struct kvm_memory_slot *memslot;
369 long ret;
370
342d3db7
PM
371 if (kvm->arch.using_mmu_notifiers)
372 goto do_insert;
373
c77162de
PM
374 psize = hpte_page_size(pteh, ptel);
375 if (!psize)
376 return H_PARAMETER;
377
697d3899
PM
378 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
379
c77162de
PM
380 /* Find the memslot (if any) for this address */
381 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
382 gfn = gpa >> PAGE_SHIFT;
383 memslot = gfn_to_memslot(kvm, gfn);
697d3899
PM
384 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
385 if (!slot_is_aligned(memslot, psize))
386 return H_PARAMETER;
387 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
388 return H_PARAMETER;
389 }
c77162de 390
342d3db7
PM
391 do_insert:
392 /* Protect linux PTE lookup from page table destruction */
393 rcu_read_lock_sched(); /* this disables preemption too */
7ed661bf
PM
394 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
395 current->mm->pgd, false, pte_idx_ret);
342d3db7 396 rcu_read_unlock_sched();
c77162de
PM
397 if (ret == H_TOO_HARD) {
398 /* this can't happen */
399 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
400 ret = H_RESOURCE; /* or something */
401 }
402 return ret;
403
404}
405
7ed661bf
PM
406/*
407 * We come here on a H_ENTER call from the guest when we are not
408 * using mmu notifiers and we don't have the requested page pinned
409 * already.
410 */
411long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
412 long pte_index, unsigned long pteh,
413 unsigned long ptel)
414{
415 return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
416 pteh, ptel, &vcpu->arch.gpr[4]);
417}
418
697d3899
PM
419static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
420 gva_t eaddr)
421{
422 u64 mask;
423 int i;
424
425 for (i = 0; i < vcpu->arch.slb_nr; i++) {
426 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
427 continue;
428
429 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
430 mask = ESID_MASK_1T;
431 else
432 mask = ESID_MASK;
433
434 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
435 return &vcpu->arch.slb[i];
436 }
437 return NULL;
438}
439
440static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
441 unsigned long ea)
442{
443 unsigned long ra_mask;
444
445 ra_mask = hpte_page_size(v, r) - 1;
446 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
447}
448
de56a948 449static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
93b159b4 450 struct kvmppc_pte *gpte, bool data, bool iswrite)
de56a948 451{
697d3899
PM
452 struct kvm *kvm = vcpu->kvm;
453 struct kvmppc_slb *slbe;
454 unsigned long slb_v;
455 unsigned long pp, key;
456 unsigned long v, gr;
457 unsigned long *hptep;
458 int index;
459 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
460
461 /* Get SLB entry */
462 if (virtmode) {
463 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
464 if (!slbe)
465 return -EINVAL;
466 slb_v = slbe->origv;
467 } else {
468 /* real mode access */
469 slb_v = vcpu->kvm->arch.vrma_slb_v;
470 }
471
472 /* Find the HPTE in the hash table */
473 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
474 HPTE_V_VALID | HPTE_V_ABSENT);
475 if (index < 0)
476 return -ENOENT;
477 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
478 v = hptep[0] & ~HPTE_V_HVLOCK;
479 gr = kvm->arch.revmap[index].guest_rpte;
480
481 /* Unlock the HPTE */
482 asm volatile("lwsync" : : : "memory");
483 hptep[0] = v;
484
485 gpte->eaddr = eaddr;
486 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
487
488 /* Get PP bits and key for permission check */
489 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
490 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
491 key &= slb_v;
492
493 /* Calculate permissions */
494 gpte->may_read = hpte_read_permission(pp, key);
495 gpte->may_write = hpte_write_permission(pp, key);
496 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
497
498 /* Storage key permission check for POWER7 */
499 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
500 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
501 if (amrfield & 1)
502 gpte->may_read = 0;
503 if (amrfield & 2)
504 gpte->may_write = 0;
505 }
506
507 /* Get the guest physical address */
508 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
509 return 0;
510}
511
512/*
513 * Quick test for whether an instruction is a load or a store.
514 * If the instruction is a load or a store, then this will indicate
515 * which it is, at least on server processors. (Embedded processors
516 * have some external PID instructions that don't follow the rule
517 * embodied here.) If the instruction isn't a load or store, then
518 * this doesn't return anything useful.
519 */
520static int instruction_is_store(unsigned int instr)
521{
522 unsigned int mask;
523
524 mask = 0x10000000;
525 if ((instr & 0xfc000000) == 0x7c000000)
526 mask = 0x100; /* major opcode 31 */
527 return (instr & mask) != 0;
528}
529
530static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
6020c0f6 531 unsigned long gpa, gva_t ea, int is_store)
697d3899
PM
532{
533 int ret;
534 u32 last_inst;
535 unsigned long srr0 = kvmppc_get_pc(vcpu);
536
537 /* We try to load the last instruction. We don't let
538 * emulate_instruction do it as it doesn't check what
539 * kvmppc_ld returns.
540 * If we fail, we just return to the guest and try executing it again.
541 */
542 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
543 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
544 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
545 return RESUME_GUEST;
546 vcpu->arch.last_inst = last_inst;
547 }
548
549 /*
550 * WARNING: We do not know for sure whether the instruction we just
551 * read from memory is the same that caused the fault in the first
552 * place. If the instruction we read is neither an load or a store,
553 * then it can't access memory, so we don't need to worry about
554 * enforcing access permissions. So, assuming it is a load or
555 * store, we just check that its direction (load or store) is
556 * consistent with the original fault, since that's what we
557 * checked the access permissions against. If there is a mismatch
558 * we just return and retry the instruction.
559 */
560
561 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
562 return RESUME_GUEST;
563
564 /*
565 * Emulated accesses are emulated by looking at the hash for
566 * translation once, then performing the access later. The
567 * translation could be invalidated in the meantime in which
568 * point performing the subsequent memory access on the old
569 * physical address could possibly be a security hole for the
570 * guest (but not the host).
571 *
572 * This is less of an issue for MMIO stores since they aren't
573 * globally visible. It could be an issue for MMIO loads to
574 * a certain extent but we'll ignore it for now.
575 */
576
577 vcpu->arch.paddr_accessed = gpa;
6020c0f6 578 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
579 return kvmppc_emulate_mmio(run, vcpu);
580}
581
582int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
583 unsigned long ea, unsigned long dsisr)
584{
585 struct kvm *kvm = vcpu->kvm;
342d3db7
PM
586 unsigned long *hptep, hpte[3], r;
587 unsigned long mmu_seq, psize, pte_size;
70bddfef 588 unsigned long gpa, gfn, hva, pfn;
697d3899 589 struct kvm_memory_slot *memslot;
342d3db7 590 unsigned long *rmap;
697d3899 591 struct revmap_entry *rev;
342d3db7
PM
592 struct page *page, *pages[1];
593 long index, ret, npages;
594 unsigned long is_io;
4cf302bc 595 unsigned int writing, write_ok;
342d3db7 596 struct vm_area_struct *vma;
bad3b507 597 unsigned long rcbits;
697d3899
PM
598
599 /*
600 * Real-mode code has already searched the HPT and found the
601 * entry we're interested in. Lock the entry and check that
602 * it hasn't changed. If it has, just return and re-execute the
603 * instruction.
604 */
605 if (ea != vcpu->arch.pgfault_addr)
606 return RESUME_GUEST;
607 index = vcpu->arch.pgfault_index;
608 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
609 rev = &kvm->arch.revmap[index];
610 preempt_disable();
611 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
612 cpu_relax();
613 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
614 hpte[1] = hptep[1];
342d3db7 615 hpte[2] = r = rev->guest_rpte;
697d3899
PM
616 asm volatile("lwsync" : : : "memory");
617 hptep[0] = hpte[0];
618 preempt_enable();
619
620 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
621 hpte[1] != vcpu->arch.pgfault_hpte[1])
622 return RESUME_GUEST;
623
624 /* Translate the logical address and get the page */
342d3db7 625 psize = hpte_page_size(hpte[0], r);
70bddfef
PM
626 gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
627 gfn = gpa >> PAGE_SHIFT;
697d3899
PM
628 memslot = gfn_to_memslot(kvm, gfn);
629
630 /* No memslot means it's an emulated MMIO region */
70bddfef 631 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
6020c0f6 632 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899 633 dsisr & DSISR_ISSTORE);
697d3899 634
342d3db7
PM
635 if (!kvm->arch.using_mmu_notifiers)
636 return -EFAULT; /* should never get here */
637
638 /* used to check for invalidations in progress */
639 mmu_seq = kvm->mmu_notifier_seq;
640 smp_rmb();
641
642 is_io = 0;
643 pfn = 0;
644 page = NULL;
645 pte_size = PAGE_SIZE;
4cf302bc
PM
646 writing = (dsisr & DSISR_ISSTORE) != 0;
647 /* If writing != 0, then the HPTE must allow writing, if we get here */
648 write_ok = writing;
342d3db7 649 hva = gfn_to_hva_memslot(memslot, gfn);
4cf302bc 650 npages = get_user_pages_fast(hva, 1, writing, pages);
342d3db7
PM
651 if (npages < 1) {
652 /* Check if it's an I/O mapping */
653 down_read(&current->mm->mmap_sem);
654 vma = find_vma(current->mm, hva);
655 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
656 (vma->vm_flags & VM_PFNMAP)) {
657 pfn = vma->vm_pgoff +
658 ((hva - vma->vm_start) >> PAGE_SHIFT);
659 pte_size = psize;
660 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
4cf302bc 661 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
662 }
663 up_read(&current->mm->mmap_sem);
664 if (!pfn)
665 return -EFAULT;
666 } else {
667 page = pages[0];
668 if (PageHuge(page)) {
669 page = compound_head(page);
670 pte_size <<= compound_order(page);
671 }
4cf302bc
PM
672 /* if the guest wants write access, see if that is OK */
673 if (!writing && hpte_is_writable(r)) {
db7cb5b9 674 unsigned int hugepage_shift;
4cf302bc
PM
675 pte_t *ptep, pte;
676
677 /*
678 * We need to protect against page table destruction
679 * while looking up and updating the pte.
680 */
681 rcu_read_lock_sched();
682 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
db7cb5b9
AK
683 hva, &hugepage_shift);
684 if (ptep) {
685 pte = kvmppc_read_update_linux_pte(ptep, 1,
686 hugepage_shift);
4cf302bc
PM
687 if (pte_write(pte))
688 write_ok = 1;
689 }
690 rcu_read_unlock_sched();
691 }
342d3db7
PM
692 pfn = page_to_pfn(page);
693 }
694
695 ret = -EFAULT;
696 if (psize > pte_size)
697 goto out_put;
698
699 /* Check WIMG vs. the actual page we're accessing */
700 if (!hpte_cache_flags_ok(r, is_io)) {
701 if (is_io)
702 return -EFAULT;
703 /*
704 * Allow guest to map emulated device memory as
705 * uncacheable, but actually make it cacheable.
706 */
707 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
708 }
709
710 /* Set the HPTE to point to pfn */
711 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
4cf302bc
PM
712 if (hpte_is_writable(r) && !write_ok)
713 r = hpte_make_readonly(r);
342d3db7
PM
714 ret = RESUME_GUEST;
715 preempt_disable();
716 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
717 cpu_relax();
718 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
719 rev->guest_rpte != hpte[2])
720 /* HPTE has been changed under us; let the guest retry */
721 goto out_unlock;
722 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
723
d89cc617 724 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
342d3db7
PM
725 lock_rmap(rmap);
726
727 /* Check if we might have been invalidated; let the guest retry if so */
728 ret = RESUME_GUEST;
8ca40a70 729 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
342d3db7
PM
730 unlock_rmap(rmap);
731 goto out_unlock;
732 }
4cf302bc 733
bad3b507
PM
734 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
735 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
736 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
737
4cf302bc
PM
738 if (hptep[0] & HPTE_V_VALID) {
739 /* HPTE was previously valid, so we need to invalidate it */
740 unlock_rmap(rmap);
741 hptep[0] |= HPTE_V_ABSENT;
742 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507
PM
743 /* don't lose previous R and C bits */
744 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
745 } else {
746 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
747 }
342d3db7
PM
748
749 hptep[1] = r;
750 eieio();
751 hptep[0] = hpte[0];
752 asm volatile("ptesync" : : : "memory");
753 preempt_enable();
4cf302bc 754 if (page && hpte_is_writable(r))
342d3db7
PM
755 SetPageDirty(page);
756
757 out_put:
de6c0b02
DG
758 if (page) {
759 /*
760 * We drop pages[0] here, not page because page might
761 * have been set to the head page of a compound, but
762 * we have to drop the reference on the correct tail
763 * page to match the get inside gup()
764 */
765 put_page(pages[0]);
766 }
342d3db7
PM
767 return ret;
768
769 out_unlock:
770 hptep[0] &= ~HPTE_V_HVLOCK;
771 preempt_enable();
772 goto out_put;
773}
774
a64fd707
PM
775static void kvmppc_rmap_reset(struct kvm *kvm)
776{
777 struct kvm_memslots *slots;
778 struct kvm_memory_slot *memslot;
779 int srcu_idx;
780
781 srcu_idx = srcu_read_lock(&kvm->srcu);
782 slots = kvm->memslots;
783 kvm_for_each_memslot(memslot, slots) {
784 /*
785 * This assumes it is acceptable to lose reference and
786 * change bits across a reset.
787 */
788 memset(memslot->arch.rmap, 0,
789 memslot->npages * sizeof(*memslot->arch.rmap));
790 }
791 srcu_read_unlock(&kvm->srcu, srcu_idx);
792}
793
84504ef3
TY
794static int kvm_handle_hva_range(struct kvm *kvm,
795 unsigned long start,
796 unsigned long end,
797 int (*handler)(struct kvm *kvm,
798 unsigned long *rmapp,
799 unsigned long gfn))
342d3db7
PM
800{
801 int ret;
802 int retval = 0;
803 struct kvm_memslots *slots;
804 struct kvm_memory_slot *memslot;
805
806 slots = kvm_memslots(kvm);
807 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
808 unsigned long hva_start, hva_end;
809 gfn_t gfn, gfn_end;
810
811 hva_start = max(start, memslot->userspace_addr);
812 hva_end = min(end, memslot->userspace_addr +
813 (memslot->npages << PAGE_SHIFT));
814 if (hva_start >= hva_end)
815 continue;
816 /*
817 * {gfn(page) | page intersects with [hva_start, hva_end)} =
818 * {gfn, gfn+1, ..., gfn_end-1}.
819 */
820 gfn = hva_to_gfn_memslot(hva_start, memslot);
821 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
342d3db7 822
84504ef3 823 for (; gfn < gfn_end; ++gfn) {
d19a748b 824 gfn_t gfn_offset = gfn - memslot->base_gfn;
342d3db7 825
d89cc617 826 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
342d3db7
PM
827 retval |= ret;
828 }
829 }
830
831 return retval;
832}
833
84504ef3
TY
834static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
835 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
836 unsigned long gfn))
837{
838 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
839}
840
342d3db7
PM
841static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
842 unsigned long gfn)
843{
844 struct revmap_entry *rev = kvm->arch.revmap;
845 unsigned long h, i, j;
846 unsigned long *hptep;
bad3b507 847 unsigned long ptel, psize, rcbits;
342d3db7
PM
848
849 for (;;) {
bad3b507 850 lock_rmap(rmapp);
342d3db7 851 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 852 unlock_rmap(rmapp);
342d3db7
PM
853 break;
854 }
855
856 /*
857 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
858 * we can't spin on the HPTE lock while holding the
859 * rmap chain lock.
342d3db7
PM
860 */
861 i = *rmapp & KVMPPC_RMAP_INDEX;
bad3b507
PM
862 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
863 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
864 /* unlock rmap before spinning on the HPTE lock */
865 unlock_rmap(rmapp);
866 while (hptep[0] & HPTE_V_HVLOCK)
867 cpu_relax();
868 continue;
869 }
342d3db7
PM
870 j = rev[i].forw;
871 if (j == i) {
872 /* chain is now empty */
bad3b507 873 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
342d3db7
PM
874 } else {
875 /* remove i from chain */
876 h = rev[i].back;
877 rev[h].forw = j;
878 rev[j].back = h;
879 rev[i].forw = rev[i].back = i;
bad3b507 880 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
342d3db7 881 }
342d3db7 882
bad3b507 883 /* Now check and modify the HPTE */
342d3db7
PM
884 ptel = rev[i].guest_rpte;
885 psize = hpte_page_size(hptep[0], ptel);
886 if ((hptep[0] & HPTE_V_VALID) &&
887 hpte_rpn(ptel, psize) == gfn) {
dfe49dbd
PM
888 if (kvm->arch.using_mmu_notifiers)
889 hptep[0] |= HPTE_V_ABSENT;
bad3b507
PM
890 kvmppc_invalidate_hpte(kvm, hptep, i);
891 /* Harvest R and C */
892 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
893 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
a1b4a0f6
PM
894 if (rcbits & ~rev[i].guest_rpte) {
895 rev[i].guest_rpte = ptel | rcbits;
896 note_hpte_modification(kvm, &rev[i]);
897 }
342d3db7 898 }
bad3b507 899 unlock_rmap(rmapp);
342d3db7
PM
900 hptep[0] &= ~HPTE_V_HVLOCK;
901 }
902 return 0;
903}
904
3a167bea 905int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7
PM
906{
907 if (kvm->arch.using_mmu_notifiers)
908 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
909 return 0;
910}
911
3a167bea 912int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
b3ae2096
TY
913{
914 if (kvm->arch.using_mmu_notifiers)
915 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
916 return 0;
917}
918
3a167bea
AK
919void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
920 struct kvm_memory_slot *memslot)
dfe49dbd
PM
921{
922 unsigned long *rmapp;
923 unsigned long gfn;
924 unsigned long n;
925
926 rmapp = memslot->arch.rmap;
927 gfn = memslot->base_gfn;
928 for (n = memslot->npages; n; --n) {
929 /*
930 * Testing the present bit without locking is OK because
931 * the memslot has been marked invalid already, and hence
932 * no new HPTEs referencing this page can be created,
933 * thus the present bit can't go from 0 to 1.
934 */
935 if (*rmapp & KVMPPC_RMAP_PRESENT)
936 kvm_unmap_rmapp(kvm, rmapp, gfn);
937 ++rmapp;
938 ++gfn;
939 }
940}
941
342d3db7
PM
942static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
943 unsigned long gfn)
944{
55514893
PM
945 struct revmap_entry *rev = kvm->arch.revmap;
946 unsigned long head, i, j;
947 unsigned long *hptep;
948 int ret = 0;
949
950 retry:
951 lock_rmap(rmapp);
952 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
953 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
954 ret = 1;
955 }
956 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
957 unlock_rmap(rmapp);
958 return ret;
959 }
960
961 i = head = *rmapp & KVMPPC_RMAP_INDEX;
962 do {
963 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
964 j = rev[i].forw;
965
966 /* If this HPTE isn't referenced, ignore it */
967 if (!(hptep[1] & HPTE_R_R))
968 continue;
969
970 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
971 /* unlock rmap before spinning on the HPTE lock */
972 unlock_rmap(rmapp);
973 while (hptep[0] & HPTE_V_HVLOCK)
974 cpu_relax();
975 goto retry;
976 }
977
978 /* Now check and modify the HPTE */
979 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
980 kvmppc_clear_ref_hpte(kvm, hptep, i);
a1b4a0f6
PM
981 if (!(rev[i].guest_rpte & HPTE_R_R)) {
982 rev[i].guest_rpte |= HPTE_R_R;
983 note_hpte_modification(kvm, &rev[i]);
984 }
55514893
PM
985 ret = 1;
986 }
987 hptep[0] &= ~HPTE_V_HVLOCK;
988 } while ((i = j) != head);
989
990 unlock_rmap(rmapp);
991 return ret;
342d3db7
PM
992}
993
3a167bea 994int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7
PM
995{
996 if (!kvm->arch.using_mmu_notifiers)
997 return 0;
998 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
999}
1000
1001static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1002 unsigned long gfn)
1003{
55514893
PM
1004 struct revmap_entry *rev = kvm->arch.revmap;
1005 unsigned long head, i, j;
1006 unsigned long *hp;
1007 int ret = 1;
1008
1009 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1010 return 1;
1011
1012 lock_rmap(rmapp);
1013 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1014 goto out;
1015
1016 if (*rmapp & KVMPPC_RMAP_PRESENT) {
1017 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1018 do {
1019 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1020 j = rev[i].forw;
1021 if (hp[1] & HPTE_R_R)
1022 goto out;
1023 } while ((i = j) != head);
1024 }
1025 ret = 0;
1026
1027 out:
1028 unlock_rmap(rmapp);
1029 return ret;
342d3db7
PM
1030}
1031
3a167bea 1032int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7
PM
1033{
1034 if (!kvm->arch.using_mmu_notifiers)
1035 return 0;
1036 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1037}
1038
3a167bea 1039void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
342d3db7
PM
1040{
1041 if (!kvm->arch.using_mmu_notifiers)
1042 return;
1043 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
de56a948
PM
1044}
1045
82ed3616
PM
1046static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1047{
1048 struct revmap_entry *rev = kvm->arch.revmap;
1049 unsigned long head, i, j;
1050 unsigned long *hptep;
1051 int ret = 0;
1052
1053 retry:
1054 lock_rmap(rmapp);
1055 if (*rmapp & KVMPPC_RMAP_CHANGED) {
1056 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1057 ret = 1;
1058 }
1059 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1060 unlock_rmap(rmapp);
1061 return ret;
1062 }
1063
1064 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1065 do {
1066 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1067 j = rev[i].forw;
1068
1069 if (!(hptep[1] & HPTE_R_C))
1070 continue;
1071
1072 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1073 /* unlock rmap before spinning on the HPTE lock */
1074 unlock_rmap(rmapp);
1075 while (hptep[0] & HPTE_V_HVLOCK)
1076 cpu_relax();
1077 goto retry;
1078 }
1079
1080 /* Now check and modify the HPTE */
1081 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1082 /* need to make it temporarily absent to clear C */
1083 hptep[0] |= HPTE_V_ABSENT;
1084 kvmppc_invalidate_hpte(kvm, hptep, i);
1085 hptep[1] &= ~HPTE_R_C;
1086 eieio();
1087 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
a1b4a0f6
PM
1088 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1089 rev[i].guest_rpte |= HPTE_R_C;
1090 note_hpte_modification(kvm, &rev[i]);
1091 }
82ed3616
PM
1092 ret = 1;
1093 }
1094 hptep[0] &= ~HPTE_V_HVLOCK;
1095 } while ((i = j) != head);
1096
1097 unlock_rmap(rmapp);
1098 return ret;
1099}
1100
c35635ef
PM
1101static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1102 struct kvm_memory_slot *memslot,
1103 unsigned long *map)
1104{
1105 unsigned long gfn;
1106
1107 if (!vpa->dirty || !vpa->pinned_addr)
1108 return;
1109 gfn = vpa->gpa >> PAGE_SHIFT;
1110 if (gfn < memslot->base_gfn ||
1111 gfn >= memslot->base_gfn + memslot->npages)
1112 return;
1113
1114 vpa->dirty = false;
1115 if (map)
1116 __set_bit_le(gfn - memslot->base_gfn, map);
1117}
1118
dfe49dbd
PM
1119long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1120 unsigned long *map)
82ed3616
PM
1121{
1122 unsigned long i;
dfe49dbd 1123 unsigned long *rmapp;
c35635ef 1124 struct kvm_vcpu *vcpu;
82ed3616
PM
1125
1126 preempt_disable();
d89cc617 1127 rmapp = memslot->arch.rmap;
82ed3616 1128 for (i = 0; i < memslot->npages; ++i) {
dfe49dbd 1129 if (kvm_test_clear_dirty(kvm, rmapp) && map)
82ed3616
PM
1130 __set_bit_le(i, map);
1131 ++rmapp;
1132 }
c35635ef
PM
1133
1134 /* Harvest dirty bits from VPA and DTL updates */
1135 /* Note: we never modify the SLB shadow buffer areas */
1136 kvm_for_each_vcpu(i, vcpu, kvm) {
1137 spin_lock(&vcpu->arch.vpa_update_lock);
1138 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1139 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1140 spin_unlock(&vcpu->arch.vpa_update_lock);
1141 }
82ed3616
PM
1142 preempt_enable();
1143 return 0;
1144}
1145
93e60249
PM
1146void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1147 unsigned long *nb_ret)
1148{
1149 struct kvm_memory_slot *memslot;
1150 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
1151 struct page *page, *pages[1];
1152 int npages;
c35635ef 1153 unsigned long hva, offset;
da9d1d7f 1154 unsigned long pa;
93e60249 1155 unsigned long *physp;
2c9097e4 1156 int srcu_idx;
93e60249 1157
2c9097e4 1158 srcu_idx = srcu_read_lock(&kvm->srcu);
93e60249
PM
1159 memslot = gfn_to_memslot(kvm, gfn);
1160 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 1161 goto err;
342d3db7 1162 if (!kvm->arch.using_mmu_notifiers) {
a66b48c3 1163 physp = memslot->arch.slot_phys;
342d3db7 1164 if (!physp)
2c9097e4 1165 goto err;
342d3db7 1166 physp += gfn - memslot->base_gfn;
c77162de 1167 pa = *physp;
342d3db7
PM
1168 if (!pa) {
1169 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1170 PAGE_SIZE) < 0)
2c9097e4 1171 goto err;
342d3db7
PM
1172 pa = *physp;
1173 }
1174 page = pfn_to_page(pa >> PAGE_SHIFT);
de6c0b02 1175 get_page(page);
342d3db7
PM
1176 } else {
1177 hva = gfn_to_hva_memslot(memslot, gfn);
1178 npages = get_user_pages_fast(hva, 1, 1, pages);
1179 if (npages < 1)
2c9097e4 1180 goto err;
342d3db7 1181 page = pages[0];
c77162de 1182 }
2c9097e4
PM
1183 srcu_read_unlock(&kvm->srcu, srcu_idx);
1184
c35635ef 1185 offset = gpa & (PAGE_SIZE - 1);
93e60249 1186 if (nb_ret)
c35635ef 1187 *nb_ret = PAGE_SIZE - offset;
93e60249 1188 return page_address(page) + offset;
2c9097e4
PM
1189
1190 err:
1191 srcu_read_unlock(&kvm->srcu, srcu_idx);
1192 return NULL;
93e60249
PM
1193}
1194
c35635ef
PM
1195void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1196 bool dirty)
93e60249
PM
1197{
1198 struct page *page = virt_to_page(va);
c35635ef
PM
1199 struct kvm_memory_slot *memslot;
1200 unsigned long gfn;
1201 unsigned long *rmap;
1202 int srcu_idx;
93e60249 1203
93e60249 1204 put_page(page);
c35635ef
PM
1205
1206 if (!dirty || !kvm->arch.using_mmu_notifiers)
1207 return;
1208
1209 /* We need to mark this page dirty in the rmap chain */
1210 gfn = gpa >> PAGE_SHIFT;
1211 srcu_idx = srcu_read_lock(&kvm->srcu);
1212 memslot = gfn_to_memslot(kvm, gfn);
1213 if (memslot) {
1214 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1215 lock_rmap(rmap);
1216 *rmap |= KVMPPC_RMAP_CHANGED;
1217 unlock_rmap(rmap);
1218 }
1219 srcu_read_unlock(&kvm->srcu, srcu_idx);
93e60249
PM
1220}
1221
a2932923
PM
1222/*
1223 * Functions for reading and writing the hash table via reads and
1224 * writes on a file descriptor.
1225 *
1226 * Reads return the guest view of the hash table, which has to be
1227 * pieced together from the real hash table and the guest_rpte
1228 * values in the revmap array.
1229 *
1230 * On writes, each HPTE written is considered in turn, and if it
1231 * is valid, it is written to the HPT as if an H_ENTER with the
1232 * exact flag set was done. When the invalid count is non-zero
1233 * in the header written to the stream, the kernel will make
1234 * sure that that many HPTEs are invalid, and invalidate them
1235 * if not.
1236 */
1237
1238struct kvm_htab_ctx {
1239 unsigned long index;
1240 unsigned long flags;
1241 struct kvm *kvm;
1242 int first_pass;
1243};
1244
1245#define HPTE_SIZE (2 * sizeof(unsigned long))
1246
a1b4a0f6
PM
1247/*
1248 * Returns 1 if this HPT entry has been modified or has pending
1249 * R/C bit changes.
1250 */
1251static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1252{
1253 unsigned long rcbits_unset;
1254
1255 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1256 return 1;
1257
1258 /* Also need to consider changes in reference and changed bits */
1259 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1260 if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1261 return 1;
1262
1263 return 0;
1264}
1265
a2932923
PM
1266static long record_hpte(unsigned long flags, unsigned long *hptp,
1267 unsigned long *hpte, struct revmap_entry *revp,
1268 int want_valid, int first_pass)
1269{
1270 unsigned long v, r;
a1b4a0f6 1271 unsigned long rcbits_unset;
a2932923
PM
1272 int ok = 1;
1273 int valid, dirty;
1274
1275 /* Unmodified entries are uninteresting except on the first pass */
a1b4a0f6 1276 dirty = hpte_dirty(revp, hptp);
a2932923
PM
1277 if (!first_pass && !dirty)
1278 return 0;
1279
1280 valid = 0;
1281 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1282 valid = 1;
1283 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1284 !(hptp[0] & HPTE_V_BOLTED))
1285 valid = 0;
1286 }
1287 if (valid != want_valid)
1288 return 0;
1289
1290 v = r = 0;
1291 if (valid || dirty) {
1292 /* lock the HPTE so it's stable and read it */
1293 preempt_disable();
1294 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1295 cpu_relax();
1296 v = hptp[0];
a1b4a0f6
PM
1297
1298 /* re-evaluate valid and dirty from synchronized HPTE value */
1299 valid = !!(v & HPTE_V_VALID);
1300 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1301
1302 /* Harvest R and C into guest view if necessary */
1303 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1304 if (valid && (rcbits_unset & hptp[1])) {
1305 revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1306 HPTE_GR_MODIFIED;
1307 dirty = 1;
1308 }
1309
a2932923
PM
1310 if (v & HPTE_V_ABSENT) {
1311 v &= ~HPTE_V_ABSENT;
1312 v |= HPTE_V_VALID;
a1b4a0f6 1313 valid = 1;
a2932923 1314 }
a2932923
PM
1315 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1316 valid = 0;
a1b4a0f6
PM
1317
1318 r = revp->guest_rpte;
a2932923
PM
1319 /* only clear modified if this is the right sort of entry */
1320 if (valid == want_valid && dirty) {
1321 r &= ~HPTE_GR_MODIFIED;
1322 revp->guest_rpte = r;
1323 }
1324 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1325 hptp[0] &= ~HPTE_V_HVLOCK;
1326 preempt_enable();
1327 if (!(valid == want_valid && (first_pass || dirty)))
1328 ok = 0;
1329 }
1330 hpte[0] = v;
1331 hpte[1] = r;
1332 return ok;
1333}
1334
1335static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1336 size_t count, loff_t *ppos)
1337{
1338 struct kvm_htab_ctx *ctx = file->private_data;
1339 struct kvm *kvm = ctx->kvm;
1340 struct kvm_get_htab_header hdr;
1341 unsigned long *hptp;
1342 struct revmap_entry *revp;
1343 unsigned long i, nb, nw;
1344 unsigned long __user *lbuf;
1345 struct kvm_get_htab_header __user *hptr;
1346 unsigned long flags;
1347 int first_pass;
1348 unsigned long hpte[2];
1349
1350 if (!access_ok(VERIFY_WRITE, buf, count))
1351 return -EFAULT;
1352
1353 first_pass = ctx->first_pass;
1354 flags = ctx->flags;
1355
1356 i = ctx->index;
1357 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1358 revp = kvm->arch.revmap + i;
1359 lbuf = (unsigned long __user *)buf;
1360
1361 nb = 0;
1362 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1363 /* Initialize header */
1364 hptr = (struct kvm_get_htab_header __user *)buf;
a2932923
PM
1365 hdr.n_valid = 0;
1366 hdr.n_invalid = 0;
1367 nw = nb;
1368 nb += sizeof(hdr);
1369 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1370
1371 /* Skip uninteresting entries, i.e. clean on not-first pass */
1372 if (!first_pass) {
1373 while (i < kvm->arch.hpt_npte &&
a1b4a0f6 1374 !hpte_dirty(revp, hptp)) {
a2932923
PM
1375 ++i;
1376 hptp += 2;
1377 ++revp;
1378 }
1379 }
05dd85f7 1380 hdr.index = i;
a2932923
PM
1381
1382 /* Grab a series of valid entries */
1383 while (i < kvm->arch.hpt_npte &&
1384 hdr.n_valid < 0xffff &&
1385 nb + HPTE_SIZE < count &&
1386 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1387 /* valid entry, write it out */
1388 ++hdr.n_valid;
1389 if (__put_user(hpte[0], lbuf) ||
1390 __put_user(hpte[1], lbuf + 1))
1391 return -EFAULT;
1392 nb += HPTE_SIZE;
1393 lbuf += 2;
1394 ++i;
1395 hptp += 2;
1396 ++revp;
1397 }
1398 /* Now skip invalid entries while we can */
1399 while (i < kvm->arch.hpt_npte &&
1400 hdr.n_invalid < 0xffff &&
1401 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1402 /* found an invalid entry */
1403 ++hdr.n_invalid;
1404 ++i;
1405 hptp += 2;
1406 ++revp;
1407 }
1408
1409 if (hdr.n_valid || hdr.n_invalid) {
1410 /* write back the header */
1411 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1412 return -EFAULT;
1413 nw = nb;
1414 buf = (char __user *)lbuf;
1415 } else {
1416 nb = nw;
1417 }
1418
1419 /* Check if we've wrapped around the hash table */
1420 if (i >= kvm->arch.hpt_npte) {
1421 i = 0;
1422 ctx->first_pass = 0;
1423 break;
1424 }
1425 }
1426
1427 ctx->index = i;
1428
1429 return nb;
1430}
1431
1432static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1433 size_t count, loff_t *ppos)
1434{
1435 struct kvm_htab_ctx *ctx = file->private_data;
1436 struct kvm *kvm = ctx->kvm;
1437 struct kvm_get_htab_header hdr;
1438 unsigned long i, j;
1439 unsigned long v, r;
1440 unsigned long __user *lbuf;
1441 unsigned long *hptp;
1442 unsigned long tmp[2];
1443 ssize_t nb;
1444 long int err, ret;
1445 int rma_setup;
1446
1447 if (!access_ok(VERIFY_READ, buf, count))
1448 return -EFAULT;
1449
1450 /* lock out vcpus from running while we're doing this */
1451 mutex_lock(&kvm->lock);
1452 rma_setup = kvm->arch.rma_setup_done;
1453 if (rma_setup) {
1454 kvm->arch.rma_setup_done = 0; /* temporarily */
1455 /* order rma_setup_done vs. vcpus_running */
1456 smp_mb();
1457 if (atomic_read(&kvm->arch.vcpus_running)) {
1458 kvm->arch.rma_setup_done = 1;
1459 mutex_unlock(&kvm->lock);
1460 return -EBUSY;
1461 }
1462 }
1463
1464 err = 0;
1465 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1466 err = -EFAULT;
1467 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1468 break;
1469
1470 err = 0;
1471 if (nb + hdr.n_valid * HPTE_SIZE > count)
1472 break;
1473
1474 nb += sizeof(hdr);
1475 buf += sizeof(hdr);
1476
1477 err = -EINVAL;
1478 i = hdr.index;
1479 if (i >= kvm->arch.hpt_npte ||
1480 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1481 break;
1482
1483 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1484 lbuf = (unsigned long __user *)buf;
1485 for (j = 0; j < hdr.n_valid; ++j) {
1486 err = -EFAULT;
1487 if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1488 goto out;
1489 err = -EINVAL;
1490 if (!(v & HPTE_V_VALID))
1491 goto out;
1492 lbuf += 2;
1493 nb += HPTE_SIZE;
1494
1495 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1496 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1497 err = -EIO;
1498 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1499 tmp);
1500 if (ret != H_SUCCESS) {
1501 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1502 "r=%lx\n", ret, i, v, r);
1503 goto out;
1504 }
1505 if (!rma_setup && is_vrma_hpte(v)) {
1506 unsigned long psize = hpte_page_size(v, r);
1507 unsigned long senc = slb_pgsize_encoding(psize);
1508 unsigned long lpcr;
1509
1510 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1511 (VRMA_VSID << SLB_VSID_SHIFT_1T);
a0144e2a
PM
1512 lpcr = senc << (LPCR_VRMASD_SH - 4);
1513 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
a2932923
PM
1514 rma_setup = 1;
1515 }
1516 ++i;
1517 hptp += 2;
1518 }
1519
1520 for (j = 0; j < hdr.n_invalid; ++j) {
1521 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1522 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1523 ++i;
1524 hptp += 2;
1525 }
1526 err = 0;
1527 }
1528
1529 out:
1530 /* Order HPTE updates vs. rma_setup_done */
1531 smp_wmb();
1532 kvm->arch.rma_setup_done = rma_setup;
1533 mutex_unlock(&kvm->lock);
1534
1535 if (err)
1536 return err;
1537 return nb;
1538}
1539
1540static int kvm_htab_release(struct inode *inode, struct file *filp)
1541{
1542 struct kvm_htab_ctx *ctx = filp->private_data;
1543
1544 filp->private_data = NULL;
1545 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1546 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1547 kvm_put_kvm(ctx->kvm);
1548 kfree(ctx);
1549 return 0;
1550}
1551
75ef9de1 1552static const struct file_operations kvm_htab_fops = {
a2932923
PM
1553 .read = kvm_htab_read,
1554 .write = kvm_htab_write,
1555 .llseek = default_llseek,
1556 .release = kvm_htab_release,
1557};
1558
1559int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1560{
1561 int ret;
1562 struct kvm_htab_ctx *ctx;
1563 int rwflag;
1564
1565 /* reject flags we don't recognize */
1566 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1567 return -EINVAL;
1568 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1569 if (!ctx)
1570 return -ENOMEM;
1571 kvm_get_kvm(kvm);
1572 ctx->kvm = kvm;
1573 ctx->index = ghf->start_index;
1574 ctx->flags = ghf->flags;
1575 ctx->first_pass = 1;
1576
1577 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2f84d5ea 1578 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
a2932923
PM
1579 if (ret < 0) {
1580 kvm_put_kvm(kvm);
1581 return ret;
1582 }
1583
1584 if (rwflag == O_RDONLY) {
1585 mutex_lock(&kvm->slots_lock);
1586 atomic_inc(&kvm->arch.hpte_mod_interest);
1587 /* make sure kvmppc_do_h_enter etc. see the increment */
1588 synchronize_srcu_expedited(&kvm->srcu);
1589 mutex_unlock(&kvm->slots_lock);
1590 }
1591
1592 return ret;
1593}
1594
de56a948
PM
1595void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1596{
1597 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1598
9e368f29
PM
1599 if (cpu_has_feature(CPU_FTR_ARCH_206))
1600 vcpu->arch.slb_nr = 32; /* POWER7 */
1601 else
1602 vcpu->arch.slb_nr = 64;
de56a948
PM
1603
1604 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1605 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1606
1607 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1608}