]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/kvm/book3s_64_mmu_hv.c
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
de56a948
PM
27
28#include <asm/tlbflush.h>
29#include <asm/kvm_ppc.h>
30#include <asm/kvm_book3s.h>
31#include <asm/mmu-hash64.h>
32#include <asm/hvcall.h>
33#include <asm/synch.h>
34#include <asm/ppc-opcode.h>
35#include <asm/cputable.h>
36
9e368f29
PM
37/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
38#define MAX_LPID_970 63
de56a948
PM
39#define NR_LPIDS (LPID_RSVD + 1)
40unsigned long lpid_inuse[BITS_TO_LONGS(NR_LPIDS)];
41
42long kvmppc_alloc_hpt(struct kvm *kvm)
43{
44 unsigned long hpt;
45 unsigned long lpid;
8936dda4 46 struct revmap_entry *rev;
de56a948 47
8936dda4 48 /* Allocate guest's hashed page table */
de56a948
PM
49 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|__GFP_NOWARN,
50 HPT_ORDER - PAGE_SHIFT);
51 if (!hpt) {
52 pr_err("kvm_alloc_hpt: Couldn't alloc HPT\n");
53 return -ENOMEM;
54 }
55 kvm->arch.hpt_virt = hpt;
56
8936dda4
PM
57 /* Allocate reverse map array */
58 rev = vmalloc(sizeof(struct revmap_entry) * HPT_NPTE);
59 if (!rev) {
60 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
61 goto out_freehpt;
62 }
63 kvm->arch.revmap = rev;
64
65 /* Allocate the guest's logical partition ID */
de56a948
PM
66 do {
67 lpid = find_first_zero_bit(lpid_inuse, NR_LPIDS);
68 if (lpid >= NR_LPIDS) {
69 pr_err("kvm_alloc_hpt: No LPIDs free\n");
8936dda4 70 goto out_freeboth;
de56a948
PM
71 }
72 } while (test_and_set_bit(lpid, lpid_inuse));
73
74 kvm->arch.sdr1 = __pa(hpt) | (HPT_ORDER - 18);
75 kvm->arch.lpid = lpid;
de56a948
PM
76
77 pr_info("KVM guest htab at %lx, LPID %lx\n", hpt, lpid);
78 return 0;
8936dda4
PM
79
80 out_freeboth:
81 vfree(rev);
82 out_freehpt:
83 free_pages(hpt, HPT_ORDER - PAGE_SHIFT);
84 return -ENOMEM;
de56a948
PM
85}
86
87void kvmppc_free_hpt(struct kvm *kvm)
88{
de56a948 89 clear_bit(kvm->arch.lpid, lpid_inuse);
8936dda4 90 vfree(kvm->arch.revmap);
de56a948 91 free_pages(kvm->arch.hpt_virt, HPT_ORDER - PAGE_SHIFT);
de56a948
PM
92}
93
da9d1d7f
PM
94/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
95static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
96{
97 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
98}
99
100/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
101static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
102{
103 return (pgsize == 0x10000) ? 0x1000 : 0;
104}
105
106void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
107 unsigned long porder)
de56a948
PM
108{
109 unsigned long i;
b2b2f165 110 unsigned long npages;
c77162de
PM
111 unsigned long hp_v, hp_r;
112 unsigned long addr, hash;
da9d1d7f
PM
113 unsigned long psize;
114 unsigned long hp0, hp1;
c77162de 115 long ret;
de56a948 116
da9d1d7f
PM
117 psize = 1ul << porder;
118 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
119
120 /* VRMA can't be > 1TB */
8936dda4
PM
121 if (npages > 1ul << (40 - porder))
122 npages = 1ul << (40 - porder);
de56a948
PM
123 /* Can't use more than 1 HPTE per HPTEG */
124 if (npages > HPT_NPTEG)
125 npages = HPT_NPTEG;
126
da9d1d7f
PM
127 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
128 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
129 hp1 = hpte1_pgsize_encoding(psize) |
130 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
131
de56a948 132 for (i = 0; i < npages; ++i) {
c77162de 133 addr = i << porder;
de56a948
PM
134 /* can't use hpt_hash since va > 64 bits */
135 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & HPT_HASH_MASK;
136 /*
137 * We assume that the hash table is empty and no
138 * vcpus are using it at this stage. Since we create
139 * at most one HPTE per HPTEG, we just assume entry 7
140 * is available and use it.
141 */
8936dda4 142 hash = (hash << 3) + 7;
da9d1d7f
PM
143 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
144 hp_r = hp1 | addr;
c77162de
PM
145 ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
146 if (ret != H_SUCCESS) {
147 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
148 addr, ret);
149 break;
150 }
de56a948
PM
151 }
152}
153
154int kvmppc_mmu_hv_init(void)
155{
9e368f29
PM
156 unsigned long host_lpid, rsvd_lpid;
157
158 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 159 return -EINVAL;
9e368f29 160
de56a948 161 memset(lpid_inuse, 0, sizeof(lpid_inuse));
9e368f29
PM
162
163 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
164 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
165 rsvd_lpid = LPID_RSVD;
166 } else {
167 host_lpid = 0; /* PPC970 */
168 rsvd_lpid = MAX_LPID_970;
169 }
170
171 set_bit(host_lpid, lpid_inuse);
172 /* rsvd_lpid is reserved for use in partition switching */
173 set_bit(rsvd_lpid, lpid_inuse);
de56a948
PM
174
175 return 0;
176}
177
178void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
179{
180}
181
182static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
183{
184 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
185}
186
c77162de
PM
187/*
188 * This is called to get a reference to a guest page if there isn't
189 * one already in the kvm->arch.slot_phys[][] arrays.
190 */
191static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
da9d1d7f
PM
192 struct kvm_memory_slot *memslot,
193 unsigned long psize)
c77162de
PM
194{
195 unsigned long start;
da9d1d7f
PM
196 long np, err;
197 struct page *page, *hpage, *pages[1];
198 unsigned long s, pgsize;
c77162de 199 unsigned long *physp;
9d0ef5ea
PM
200 unsigned int is_io, got, pgorder;
201 struct vm_area_struct *vma;
da9d1d7f 202 unsigned long pfn, i, npages;
c77162de
PM
203
204 physp = kvm->arch.slot_phys[memslot->id];
205 if (!physp)
206 return -EINVAL;
da9d1d7f 207 if (physp[gfn - memslot->base_gfn])
c77162de
PM
208 return 0;
209
9d0ef5ea
PM
210 is_io = 0;
211 got = 0;
c77162de 212 page = NULL;
da9d1d7f 213 pgsize = psize;
9d0ef5ea 214 err = -EINVAL;
c77162de
PM
215 start = gfn_to_hva_memslot(memslot, gfn);
216
217 /* Instantiate and get the page we want access to */
218 np = get_user_pages_fast(start, 1, 1, pages);
9d0ef5ea
PM
219 if (np != 1) {
220 /* Look up the vma for the page */
221 down_read(&current->mm->mmap_sem);
222 vma = find_vma(current->mm, start);
223 if (!vma || vma->vm_start > start ||
224 start + psize > vma->vm_end ||
225 !(vma->vm_flags & VM_PFNMAP))
226 goto up_err;
227 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
228 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
229 /* check alignment of pfn vs. requested page size */
230 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
231 goto up_err;
232 up_read(&current->mm->mmap_sem);
233
234 } else {
235 page = pages[0];
236 got = KVMPPC_GOT_PAGE;
237
238 /* See if this is a large page */
239 s = PAGE_SIZE;
240 if (PageHuge(page)) {
241 hpage = compound_head(page);
242 s <<= compound_order(hpage);
243 /* Get the whole large page if slot alignment is ok */
244 if (s > psize && slot_is_aligned(memslot, s) &&
245 !(memslot->userspace_addr & (s - 1))) {
246 start &= ~(s - 1);
247 pgsize = s;
248 page = hpage;
249 }
da9d1d7f 250 }
9d0ef5ea
PM
251 if (s < psize)
252 goto out;
253 pfn = page_to_pfn(page);
c77162de 254 }
c77162de 255
da9d1d7f
PM
256 npages = pgsize >> PAGE_SHIFT;
257 pgorder = __ilog2(npages);
258 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
c77162de 259 spin_lock(&kvm->arch.slot_phys_lock);
da9d1d7f
PM
260 for (i = 0; i < npages; ++i) {
261 if (!physp[i]) {
9d0ef5ea
PM
262 physp[i] = ((pfn + i) << PAGE_SHIFT) +
263 got + is_io + pgorder;
da9d1d7f
PM
264 got = 0;
265 }
266 }
c77162de 267 spin_unlock(&kvm->arch.slot_phys_lock);
da9d1d7f 268 err = 0;
c77162de 269
da9d1d7f
PM
270 out:
271 if (got) {
272 if (PageHuge(page))
273 page = compound_head(page);
274 put_page(page);
275 }
276 return err;
9d0ef5ea
PM
277
278 up_err:
279 up_read(&current->mm->mmap_sem);
280 return err;
c77162de
PM
281}
282
283/*
284 * We come here on a H_ENTER call from the guest when
285 * we don't have the requested page pinned already.
286 */
287long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
288 long pte_index, unsigned long pteh, unsigned long ptel)
289{
290 struct kvm *kvm = vcpu->kvm;
291 unsigned long psize, gpa, gfn;
292 struct kvm_memory_slot *memslot;
293 long ret;
294
295 psize = hpte_page_size(pteh, ptel);
296 if (!psize)
297 return H_PARAMETER;
298
697d3899
PM
299 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
300
c77162de
PM
301 /* Find the memslot (if any) for this address */
302 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
303 gfn = gpa >> PAGE_SHIFT;
304 memslot = gfn_to_memslot(kvm, gfn);
697d3899
PM
305 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
306 if (!slot_is_aligned(memslot, psize))
307 return H_PARAMETER;
308 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
309 return H_PARAMETER;
310 }
c77162de
PM
311
312 preempt_disable();
313 ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
314 preempt_enable();
315 if (ret == H_TOO_HARD) {
316 /* this can't happen */
317 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
318 ret = H_RESOURCE; /* or something */
319 }
320 return ret;
321
322}
323
697d3899
PM
324static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
325 gva_t eaddr)
326{
327 u64 mask;
328 int i;
329
330 for (i = 0; i < vcpu->arch.slb_nr; i++) {
331 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
332 continue;
333
334 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
335 mask = ESID_MASK_1T;
336 else
337 mask = ESID_MASK;
338
339 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
340 return &vcpu->arch.slb[i];
341 }
342 return NULL;
343}
344
345static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
346 unsigned long ea)
347{
348 unsigned long ra_mask;
349
350 ra_mask = hpte_page_size(v, r) - 1;
351 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
352}
353
de56a948 354static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
697d3899 355 struct kvmppc_pte *gpte, bool data)
de56a948 356{
697d3899
PM
357 struct kvm *kvm = vcpu->kvm;
358 struct kvmppc_slb *slbe;
359 unsigned long slb_v;
360 unsigned long pp, key;
361 unsigned long v, gr;
362 unsigned long *hptep;
363 int index;
364 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
365
366 /* Get SLB entry */
367 if (virtmode) {
368 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
369 if (!slbe)
370 return -EINVAL;
371 slb_v = slbe->origv;
372 } else {
373 /* real mode access */
374 slb_v = vcpu->kvm->arch.vrma_slb_v;
375 }
376
377 /* Find the HPTE in the hash table */
378 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
379 HPTE_V_VALID | HPTE_V_ABSENT);
380 if (index < 0)
381 return -ENOENT;
382 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
383 v = hptep[0] & ~HPTE_V_HVLOCK;
384 gr = kvm->arch.revmap[index].guest_rpte;
385
386 /* Unlock the HPTE */
387 asm volatile("lwsync" : : : "memory");
388 hptep[0] = v;
389
390 gpte->eaddr = eaddr;
391 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
392
393 /* Get PP bits and key for permission check */
394 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
395 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
396 key &= slb_v;
397
398 /* Calculate permissions */
399 gpte->may_read = hpte_read_permission(pp, key);
400 gpte->may_write = hpte_write_permission(pp, key);
401 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
402
403 /* Storage key permission check for POWER7 */
404 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
405 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
406 if (amrfield & 1)
407 gpte->may_read = 0;
408 if (amrfield & 2)
409 gpte->may_write = 0;
410 }
411
412 /* Get the guest physical address */
413 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
414 return 0;
415}
416
417/*
418 * Quick test for whether an instruction is a load or a store.
419 * If the instruction is a load or a store, then this will indicate
420 * which it is, at least on server processors. (Embedded processors
421 * have some external PID instructions that don't follow the rule
422 * embodied here.) If the instruction isn't a load or store, then
423 * this doesn't return anything useful.
424 */
425static int instruction_is_store(unsigned int instr)
426{
427 unsigned int mask;
428
429 mask = 0x10000000;
430 if ((instr & 0xfc000000) == 0x7c000000)
431 mask = 0x100; /* major opcode 31 */
432 return (instr & mask) != 0;
433}
434
435static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
436 unsigned long gpa, int is_store)
437{
438 int ret;
439 u32 last_inst;
440 unsigned long srr0 = kvmppc_get_pc(vcpu);
441
442 /* We try to load the last instruction. We don't let
443 * emulate_instruction do it as it doesn't check what
444 * kvmppc_ld returns.
445 * If we fail, we just return to the guest and try executing it again.
446 */
447 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
448 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
449 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
450 return RESUME_GUEST;
451 vcpu->arch.last_inst = last_inst;
452 }
453
454 /*
455 * WARNING: We do not know for sure whether the instruction we just
456 * read from memory is the same that caused the fault in the first
457 * place. If the instruction we read is neither an load or a store,
458 * then it can't access memory, so we don't need to worry about
459 * enforcing access permissions. So, assuming it is a load or
460 * store, we just check that its direction (load or store) is
461 * consistent with the original fault, since that's what we
462 * checked the access permissions against. If there is a mismatch
463 * we just return and retry the instruction.
464 */
465
466 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
467 return RESUME_GUEST;
468
469 /*
470 * Emulated accesses are emulated by looking at the hash for
471 * translation once, then performing the access later. The
472 * translation could be invalidated in the meantime in which
473 * point performing the subsequent memory access on the old
474 * physical address could possibly be a security hole for the
475 * guest (but not the host).
476 *
477 * This is less of an issue for MMIO stores since they aren't
478 * globally visible. It could be an issue for MMIO loads to
479 * a certain extent but we'll ignore it for now.
480 */
481
482 vcpu->arch.paddr_accessed = gpa;
483 return kvmppc_emulate_mmio(run, vcpu);
484}
485
486int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
487 unsigned long ea, unsigned long dsisr)
488{
489 struct kvm *kvm = vcpu->kvm;
490 unsigned long *hptep, hpte[3];
491 unsigned long psize;
492 unsigned long gfn;
493 struct kvm_memory_slot *memslot;
494 struct revmap_entry *rev;
495 long index;
496
497 /*
498 * Real-mode code has already searched the HPT and found the
499 * entry we're interested in. Lock the entry and check that
500 * it hasn't changed. If it has, just return and re-execute the
501 * instruction.
502 */
503 if (ea != vcpu->arch.pgfault_addr)
504 return RESUME_GUEST;
505 index = vcpu->arch.pgfault_index;
506 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
507 rev = &kvm->arch.revmap[index];
508 preempt_disable();
509 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
510 cpu_relax();
511 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
512 hpte[1] = hptep[1];
513 hpte[2] = rev->guest_rpte;
514 asm volatile("lwsync" : : : "memory");
515 hptep[0] = hpte[0];
516 preempt_enable();
517
518 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
519 hpte[1] != vcpu->arch.pgfault_hpte[1])
520 return RESUME_GUEST;
521
522 /* Translate the logical address and get the page */
523 psize = hpte_page_size(hpte[0], hpte[1]);
524 gfn = hpte_rpn(hpte[2], psize);
525 memslot = gfn_to_memslot(kvm, gfn);
526
527 /* No memslot means it's an emulated MMIO region */
528 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
529 unsigned long gpa = (gfn << PAGE_SHIFT) | (ea & (psize - 1));
530 return kvmppc_hv_emulate_mmio(run, vcpu, gpa,
531 dsisr & DSISR_ISSTORE);
532 }
533
534 /* should never get here otherwise */
535 return -EFAULT;
de56a948
PM
536}
537
93e60249
PM
538void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
539 unsigned long *nb_ret)
540{
541 struct kvm_memory_slot *memslot;
542 unsigned long gfn = gpa >> PAGE_SHIFT;
543 struct page *page;
da9d1d7f
PM
544 unsigned long psize, offset;
545 unsigned long pa;
93e60249
PM
546 unsigned long *physp;
547
548 memslot = gfn_to_memslot(kvm, gfn);
549 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
550 return NULL;
551 physp = kvm->arch.slot_phys[memslot->id];
552 if (!physp)
553 return NULL;
da9d1d7f 554 physp += gfn - memslot->base_gfn;
93e60249 555 pa = *physp;
c77162de 556 if (!pa) {
da9d1d7f 557 if (kvmppc_get_guest_page(kvm, gfn, memslot, PAGE_SIZE) < 0)
c77162de
PM
558 return NULL;
559 pa = *physp;
560 }
da9d1d7f
PM
561 page = pfn_to_page(pa >> PAGE_SHIFT);
562 psize = PAGE_SIZE;
563 if (PageHuge(page)) {
564 page = compound_head(page);
565 psize <<= compound_order(page);
566 }
93e60249 567 get_page(page);
da9d1d7f 568 offset = gpa & (psize - 1);
93e60249 569 if (nb_ret)
da9d1d7f 570 *nb_ret = psize - offset;
93e60249
PM
571 return page_address(page) + offset;
572}
573
574void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
575{
576 struct page *page = virt_to_page(va);
577
578 page = compound_head(page);
579 put_page(page);
580}
581
de56a948
PM
582void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
583{
584 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
585
9e368f29
PM
586 if (cpu_has_feature(CPU_FTR_ARCH_206))
587 vcpu->arch.slb_nr = 32; /* POWER7 */
588 else
589 vcpu->arch.slb_nr = 64;
de56a948
PM
590
591 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
592 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
593
594 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
595}