]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Use arch_get_random_seed_long instead of powernv variant
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kvm / book3s_hv.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
de56a948
PM
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
de56a948
PM
16 */
17
18#include <linux/kvm_host.h>
4bb817ed 19#include <linux/kernel.h>
de56a948
PM
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
174cd4b1 23#include <linux/sched/signal.h>
03441a34 24#include <linux/sched/stat.h>
de56a948 25#include <linux/delay.h>
66b15db6 26#include <linux/export.h>
de56a948
PM
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
07f8ab25 29#include <linux/cpu.h>
de56a948 30#include <linux/cpumask.h>
aa04b4cc
PM
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
2c9097e4 33#include <linux/srcu.h>
398a76c6 34#include <linux/miscdevice.h>
e23a808b 35#include <linux/debugfs.h>
d3989143
BH
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
de56a948 45
d6ee76d3 46#include <asm/ftrace.h>
de56a948 47#include <asm/reg.h>
57900694 48#include <asm/ppc-opcode.h>
6de6638b 49#include <asm/asm-prototypes.h>
4bad7779 50#include <asm/archrandom.h>
e303c087 51#include <asm/debug.h>
57900694 52#include <asm/disassemble.h>
de56a948
PM
53#include <asm/cputable.h>
54#include <asm/cacheflush.h>
7c0f6ba6 55#include <linux/uaccess.h>
3a96570f 56#include <asm/interrupt.h>
de56a948
PM
57#include <asm/io.h>
58#include <asm/kvm_ppc.h>
59#include <asm/kvm_book3s.h>
60#include <asm/mmu_context.h>
61#include <asm/lppaca.h>
62#include <asm/processor.h>
371fefd6 63#include <asm/cputhreads.h>
aa04b4cc 64#include <asm/page.h>
de1d9248 65#include <asm/hvcall.h>
ae3a197e 66#include <asm/switch_to.h>
512691d4 67#include <asm/smp.h>
66feed61 68#include <asm/dbell.h>
fd7bacbc 69#include <asm/hmi.h>
c57875f5 70#include <asm/pnv-pci.h>
7a84084c 71#include <asm/mmu.h>
f725758b
PM
72#include <asm/opal.h>
73#include <asm/xics.h>
5af50993 74#include <asm/xive.h>
c1fe190c 75#include <asm/hw_breakpoint.h>
ca9f4942 76#include <asm/kvm_book3s_uvmem.h>
c3262257 77#include <asm/ultravisor.h>
d6bdceb6 78#include <asm/dtl.h>
f0c6fbbb 79#include <asm/plpar_wrappers.h>
de56a948 80
3a167bea
AK
81#include "book3s.h"
82
3c78f78a
SW
83#define CREATE_TRACE_POINTS
84#include "trace_hv.h"
85
de56a948
PM
86/* #define EXIT_DEBUG */
87/* #define EXIT_DEBUG_SIMPLE */
88/* #define EXIT_DEBUG_INT */
89
913d3ff9
PM
90/* Used to indicate that a guest page fault needs to be handled */
91#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
f7af5209
SW
92/* Used to indicate that a guest passthrough interrupt needs to be handled */
93#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
913d3ff9 94
c7b67670
PM
95/* Used as a "null" value for timebase values */
96#define TB_NIL (~(u64)0)
97
699a0ea0
PM
98static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
99
b4deba5c 100static int dynamic_mt_modes = 6;
57ad583f 101module_param(dynamic_mt_modes, int, 0644);
b4deba5c 102MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
ec257165 103static int target_smt_mode;
57ad583f 104module_param(target_smt_mode, int, 0644);
ec257165 105MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
9678cdaa 106
aa227864
PM
107static bool one_vm_per_core;
108module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
aaae8c79 109MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
aa227864 110
520fe9c6 111#ifdef CONFIG_KVM_XICS
a4f1d94e 112static const struct kernel_param_ops module_param_ops = {
520fe9c6
SW
113 .set = param_set_int,
114 .get = param_get_int,
115};
116
57ad583f 117module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
644abbb2
SW
118MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
119
57ad583f 120module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
520fe9c6
SW
121MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
122#endif
123
aa069a99
PM
124/* If set, guests are allowed to create and control nested guests */
125static bool nested = true;
126module_param(nested, bool, S_IRUGO | S_IWUSR);
127MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
128
129static inline bool nesting_enabled(struct kvm *kvm)
130{
131 return kvm->arch.nested_enable && kvm_is_radix(kvm);
132}
133
32fad281 134static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
19ccb76a 135
7aa15842
PM
136/*
137 * RWMR values for POWER8. These control the rate at which PURR
138 * and SPURR count and should be set according to the number of
139 * online threads in the vcore being run.
140 */
0abb75b7
NMG
141#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
142#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
143#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
144#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
145#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
146#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
147#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
148#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
7aa15842
PM
149
150static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
151 RWMR_RPA_P8_1THREAD,
152 RWMR_RPA_P8_1THREAD,
153 RWMR_RPA_P8_2THREAD,
154 RWMR_RPA_P8_3THREAD,
155 RWMR_RPA_P8_4THREAD,
156 RWMR_RPA_P8_5THREAD,
157 RWMR_RPA_P8_6THREAD,
158 RWMR_RPA_P8_7THREAD,
159 RWMR_RPA_P8_8THREAD,
160};
161
7b5f8272
SJS
162static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
163 int *ip)
164{
165 int i = *ip;
166 struct kvm_vcpu *vcpu;
167
168 while (++i < MAX_SMT_THREADS) {
169 vcpu = READ_ONCE(vc->runnable_threads[i]);
170 if (vcpu) {
171 *ip = i;
172 return vcpu;
173 }
174 }
175 return NULL;
176}
177
178/* Used to traverse the list of runnable threads for a given vcore */
179#define for_each_runnable_thread(i, vcpu, vc) \
180 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
181
66feed61
PM
182static bool kvmppc_ipi_thread(int cpu)
183{
1704a81c
PM
184 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
185
f3c18e93
PM
186 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
187 if (kvmhv_on_pseries())
188 return false;
189
1704a81c
PM
190 /* On POWER9 we can use msgsnd to IPI any cpu */
191 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
192 msg |= get_hard_smp_processor_id(cpu);
193 smp_mb();
194 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
195 return true;
196 }
197
66feed61
PM
198 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
199 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
200 preempt_disable();
201 if (cpu_first_thread_sibling(cpu) ==
202 cpu_first_thread_sibling(smp_processor_id())) {
66feed61
PM
203 msg |= cpu_thread_in_core(cpu);
204 smp_mb();
205 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
206 preempt_enable();
207 return true;
208 }
209 preempt_enable();
210 }
211
212#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
f725758b 213 if (cpu >= 0 && cpu < nr_cpu_ids) {
d2e60075 214 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
f725758b
PM
215 xics_wake_cpu(cpu);
216 return true;
217 }
218 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
66feed61
PM
219 return true;
220 }
221#endif
222
223 return false;
224}
225
3a167bea 226static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
54695c30 227{
ec257165 228 int cpu;
da4ad88c 229 struct rcuwait *waitp;
54695c30 230
da4ad88c
DB
231 waitp = kvm_arch_vcpu_get_wait(vcpu);
232 if (rcuwait_wake_up(waitp))
0193cc90 233 ++vcpu->stat.generic.halt_wakeup;
54695c30 234
3deda5e5
PM
235 cpu = READ_ONCE(vcpu->arch.thread_cpu);
236 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
66feed61 237 return;
54695c30
BH
238
239 /* CPU points to the first thread of the core */
ec257165 240 cpu = vcpu->cpu;
66feed61
PM
241 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
242 smp_send_reschedule(cpu);
54695c30
BH
243}
244
c7b67670
PM
245/*
246 * We use the vcpu_load/put functions to measure stolen time.
247 * Stolen time is counted as time when either the vcpu is able to
248 * run as part of a virtual core, but the task running the vcore
249 * is preempted or sleeping, or when the vcpu needs something done
250 * in the kernel by the task running the vcpu, but that task is
251 * preempted or sleeping. Those two things have to be counted
252 * separately, since one of the vcpu tasks will take on the job
253 * of running the core, and the other vcpu tasks in the vcore will
254 * sleep waiting for it to do that, but that sleep shouldn't count
255 * as stolen time.
256 *
257 * Hence we accumulate stolen time when the vcpu can run as part of
258 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
259 * needs its task to do other things in the kernel (for example,
260 * service a page fault) in busy_stolen. We don't accumulate
261 * stolen time for a vcore when it is inactive, or for a vcpu
262 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
263 * a misnomer; it means that the vcpu task is not executing in
264 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
265 * the kernel. We don't have any way of dividing up that time
266 * between time that the vcpu is genuinely stopped, time that
267 * the task is actively working on behalf of the vcpu, and time
268 * that the task is preempted, so we don't count any of it as
269 * stolen.
270 *
271 * Updates to busy_stolen are protected by arch.tbacct_lock;
2711e248
PM
272 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
273 * lock. The stolen times are measured in units of timebase ticks.
274 * (Note that the != TB_NIL checks below are purely defensive;
275 * they should never fail.)
c7b67670
PM
276 */
277
ec257165
PM
278static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
279{
280 unsigned long flags;
281
282 spin_lock_irqsave(&vc->stoltb_lock, flags);
283 vc->preempt_tb = mftb();
284 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285}
286
287static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
288{
289 unsigned long flags;
290
291 spin_lock_irqsave(&vc->stoltb_lock, flags);
292 if (vc->preempt_tb != TB_NIL) {
293 vc->stolen_tb += mftb() - vc->preempt_tb;
294 vc->preempt_tb = TB_NIL;
295 }
296 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
297}
298
3a167bea 299static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
de56a948 300{
0456ec4f 301 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 302 unsigned long flags;
0456ec4f 303
2711e248
PM
304 /*
305 * We can test vc->runner without taking the vcore lock,
306 * because only this task ever sets vc->runner to this
307 * vcpu, and once it is set to this vcpu, only this task
308 * ever sets it to NULL.
309 */
ec257165
PM
310 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
311 kvmppc_core_end_stolen(vc);
312
2711e248 313 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
314 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
315 vcpu->arch.busy_preempt != TB_NIL) {
316 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
317 vcpu->arch.busy_preempt = TB_NIL;
318 }
bf3d32e1 319 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
320}
321
3a167bea 322static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
de56a948 323{
0456ec4f 324 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 325 unsigned long flags;
0456ec4f 326
ec257165
PM
327 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
328 kvmppc_core_start_stolen(vc);
329
2711e248 330 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
331 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
332 vcpu->arch.busy_preempt = mftb();
bf3d32e1 333 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
334}
335
5358a963 336static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
de56a948
PM
337{
338 vcpu->arch.pvr = pvr;
339}
340
4cb4ade1
AP
341/* Dummy value used in computing PCR value below */
342#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
343
5358a963 344static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
388cc6e1 345{
2ee13be3 346 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
388cc6e1
PM
347 struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
2ee13be3 349 /* We can (emulate) our own architecture version and anything older */
4cb4ade1
AP
350 if (cpu_has_feature(CPU_FTR_ARCH_31))
351 host_pcr_bit = PCR_ARCH_31;
352 else if (cpu_has_feature(CPU_FTR_ARCH_300))
2ee13be3
SJS
353 host_pcr_bit = PCR_ARCH_300;
354 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
355 host_pcr_bit = PCR_ARCH_207;
356 else if (cpu_has_feature(CPU_FTR_ARCH_206))
357 host_pcr_bit = PCR_ARCH_206;
358 else
359 host_pcr_bit = PCR_ARCH_205;
360
361 /* Determine lowest PCR bit needed to run guest in given PVR level */
362 guest_pcr_bit = host_pcr_bit;
388cc6e1 363 if (arch_compat) {
388cc6e1
PM
364 switch (arch_compat) {
365 case PVR_ARCH_205:
2ee13be3 366 guest_pcr_bit = PCR_ARCH_205;
388cc6e1
PM
367 break;
368 case PVR_ARCH_206:
369 case PVR_ARCH_206p:
2ee13be3 370 guest_pcr_bit = PCR_ARCH_206;
5557ae0e
PM
371 break;
372 case PVR_ARCH_207:
2ee13be3
SJS
373 guest_pcr_bit = PCR_ARCH_207;
374 break;
375 case PVR_ARCH_300:
376 guest_pcr_bit = PCR_ARCH_300;
388cc6e1 377 break;
4cb4ade1
AP
378 case PVR_ARCH_31:
379 guest_pcr_bit = PCR_ARCH_31;
380 break;
388cc6e1
PM
381 default:
382 return -EINVAL;
383 }
384 }
385
2ee13be3
SJS
386 /* Check requested PCR bits don't exceed our capabilities */
387 if (guest_pcr_bit > host_pcr_bit)
388 return -EINVAL;
389
388cc6e1
PM
390 spin_lock(&vc->lock);
391 vc->arch_compat = arch_compat;
13c7bb3c
JN
392 /*
393 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
394 * Also set all reserved PCR bits
395 */
396 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
388cc6e1
PM
397 spin_unlock(&vc->lock);
398
399 return 0;
400}
401
5358a963 402static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
de56a948
PM
403{
404 int r;
405
406 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
407 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
173c520a 408 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
de56a948
PM
409 for (r = 0; r < 16; ++r)
410 pr_err("r%2d = %.16lx r%d = %.16lx\n",
411 r, kvmppc_get_gpr(vcpu, r),
412 r+16, kvmppc_get_gpr(vcpu, r+16));
413 pr_err("ctr = %.16lx lr = %.16lx\n",
173c520a 414 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
de56a948
PM
415 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
416 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
417 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
418 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
419 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
420 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
fd0944ba
PM
421 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
422 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
de56a948
PM
423 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
424 pr_err("fault dar = %.16lx dsisr = %.8x\n",
425 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
426 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
427 for (r = 0; r < vcpu->arch.slb_max; ++r)
428 pr_err(" ESID = %.16llx VSID = %.16llx\n",
429 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
430 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
a0144e2a 431 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
de56a948
PM
432 vcpu->arch.last_inst);
433}
434
5358a963 435static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
a8606e20 436{
5a3f4936 437 return kvm_get_vcpu_by_id(kvm, id);
a8606e20
PM
438}
439
440static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
441{
f13c13a0 442 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
02407552 443 vpa->yield_count = cpu_to_be32(1);
a8606e20
PM
444}
445
55b665b0
PM
446static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
447 unsigned long addr, unsigned long len)
448{
449 /* check address is cacheline aligned */
450 if (addr & (L1_CACHE_BYTES - 1))
451 return -EINVAL;
452 spin_lock(&vcpu->arch.vpa_update_lock);
453 if (v->next_gpa != addr || v->len != len) {
454 v->next_gpa = addr;
455 v->len = addr ? len : 0;
456 v->update_pending = 1;
457 }
458 spin_unlock(&vcpu->arch.vpa_update_lock);
459 return 0;
460}
461
2e25aa5f
PM
462/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
463struct reg_vpa {
464 u32 dummy;
465 union {
02407552
AG
466 __be16 hword;
467 __be32 word;
2e25aa5f
PM
468 } length;
469};
470
471static int vpa_is_registered(struct kvmppc_vpa *vpap)
472{
473 if (vpap->update_pending)
474 return vpap->next_gpa != 0;
475 return vpap->pinned_addr != NULL;
476}
477
a8606e20
PM
478static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
479 unsigned long flags,
480 unsigned long vcpuid, unsigned long vpa)
481{
482 struct kvm *kvm = vcpu->kvm;
93e60249 483 unsigned long len, nb;
a8606e20
PM
484 void *va;
485 struct kvm_vcpu *tvcpu;
2e25aa5f
PM
486 int err;
487 int subfunc;
488 struct kvmppc_vpa *vpap;
a8606e20
PM
489
490 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
491 if (!tvcpu)
492 return H_PARAMETER;
493
2e25aa5f
PM
494 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
495 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
496 subfunc == H_VPA_REG_SLB) {
497 /* Registering new area - address must be cache-line aligned */
498 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
a8606e20 499 return H_PARAMETER;
2e25aa5f
PM
500
501 /* convert logical addr to kernel addr and read length */
93e60249
PM
502 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
503 if (va == NULL)
b2b2f165 504 return H_PARAMETER;
2e25aa5f 505 if (subfunc == H_VPA_REG_VPA)
02407552 506 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
a8606e20 507 else
02407552 508 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
c35635ef 509 kvmppc_unpin_guest_page(kvm, va, vpa, false);
2e25aa5f
PM
510
511 /* Check length */
512 if (len > nb || len < sizeof(struct reg_vpa))
513 return H_PARAMETER;
514 } else {
515 vpa = 0;
516 len = 0;
517 }
518
519 err = H_PARAMETER;
520 vpap = NULL;
521 spin_lock(&tvcpu->arch.vpa_update_lock);
522
523 switch (subfunc) {
524 case H_VPA_REG_VPA: /* register VPA */
eaac112e
NP
525 /*
526 * The size of our lppaca is 1kB because of the way we align
527 * it for the guest to avoid crossing a 4kB boundary. We only
528 * use 640 bytes of the structure though, so we should accept
529 * clients that set a size of 640.
530 */
499dcd41
NP
531 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
532 if (len < sizeof(struct lppaca))
a8606e20 533 break;
2e25aa5f
PM
534 vpap = &tvcpu->arch.vpa;
535 err = 0;
536 break;
537
538 case H_VPA_REG_DTL: /* register DTL */
539 if (len < sizeof(struct dtl_entry))
a8606e20 540 break;
2e25aa5f
PM
541 len -= len % sizeof(struct dtl_entry);
542
543 /* Check that they have previously registered a VPA */
544 err = H_RESOURCE;
545 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 546 break;
2e25aa5f
PM
547
548 vpap = &tvcpu->arch.dtl;
549 err = 0;
550 break;
551
552 case H_VPA_REG_SLB: /* register SLB shadow buffer */
553 /* Check that they have previously registered a VPA */
554 err = H_RESOURCE;
555 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 556 break;
2e25aa5f
PM
557
558 vpap = &tvcpu->arch.slb_shadow;
559 err = 0;
560 break;
561
562 case H_VPA_DEREG_VPA: /* deregister VPA */
563 /* Check they don't still have a DTL or SLB buf registered */
564 err = H_RESOURCE;
565 if (vpa_is_registered(&tvcpu->arch.dtl) ||
566 vpa_is_registered(&tvcpu->arch.slb_shadow))
a8606e20 567 break;
2e25aa5f
PM
568
569 vpap = &tvcpu->arch.vpa;
570 err = 0;
571 break;
572
573 case H_VPA_DEREG_DTL: /* deregister DTL */
574 vpap = &tvcpu->arch.dtl;
575 err = 0;
576 break;
577
578 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
579 vpap = &tvcpu->arch.slb_shadow;
580 err = 0;
581 break;
582 }
583
584 if (vpap) {
585 vpap->next_gpa = vpa;
586 vpap->len = len;
587 vpap->update_pending = 1;
a8606e20 588 }
93e60249 589
2e25aa5f
PM
590 spin_unlock(&tvcpu->arch.vpa_update_lock);
591
93e60249 592 return err;
a8606e20
PM
593}
594
081f323b 595static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
2e25aa5f 596{
081f323b 597 struct kvm *kvm = vcpu->kvm;
2e25aa5f
PM
598 void *va;
599 unsigned long nb;
081f323b 600 unsigned long gpa;
2e25aa5f 601
081f323b
PM
602 /*
603 * We need to pin the page pointed to by vpap->next_gpa,
604 * but we can't call kvmppc_pin_guest_page under the lock
605 * as it does get_user_pages() and down_read(). So we
606 * have to drop the lock, pin the page, then get the lock
607 * again and check that a new area didn't get registered
608 * in the meantime.
609 */
610 for (;;) {
611 gpa = vpap->next_gpa;
612 spin_unlock(&vcpu->arch.vpa_update_lock);
613 va = NULL;
614 nb = 0;
615 if (gpa)
c35635ef 616 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
081f323b
PM
617 spin_lock(&vcpu->arch.vpa_update_lock);
618 if (gpa == vpap->next_gpa)
619 break;
620 /* sigh... unpin that one and try again */
621 if (va)
c35635ef 622 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b
PM
623 }
624
625 vpap->update_pending = 0;
626 if (va && nb < vpap->len) {
627 /*
628 * If it's now too short, it must be that userspace
629 * has changed the mappings underlying guest memory,
630 * so unregister the region.
631 */
c35635ef 632 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b 633 va = NULL;
2e25aa5f
PM
634 }
635 if (vpap->pinned_addr)
c35635ef
PM
636 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
637 vpap->dirty);
638 vpap->gpa = gpa;
2e25aa5f 639 vpap->pinned_addr = va;
c35635ef 640 vpap->dirty = false;
2e25aa5f
PM
641 if (va)
642 vpap->pinned_end = va + vpap->len;
643}
644
645static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
646{
2f12f034
PM
647 if (!(vcpu->arch.vpa.update_pending ||
648 vcpu->arch.slb_shadow.update_pending ||
649 vcpu->arch.dtl.update_pending))
650 return;
651
2e25aa5f
PM
652 spin_lock(&vcpu->arch.vpa_update_lock);
653 if (vcpu->arch.vpa.update_pending) {
081f323b 654 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
55b665b0
PM
655 if (vcpu->arch.vpa.pinned_addr)
656 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
2e25aa5f
PM
657 }
658 if (vcpu->arch.dtl.update_pending) {
081f323b 659 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
2e25aa5f
PM
660 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
661 vcpu->arch.dtl_index = 0;
662 }
663 if (vcpu->arch.slb_shadow.update_pending)
081f323b 664 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
2e25aa5f
PM
665 spin_unlock(&vcpu->arch.vpa_update_lock);
666}
667
c7b67670
PM
668/*
669 * Return the accumulated stolen time for the vcore up until `now'.
670 * The caller should hold the vcore lock.
671 */
672static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
673{
674 u64 p;
2711e248 675 unsigned long flags;
c7b67670 676
2711e248
PM
677 spin_lock_irqsave(&vc->stoltb_lock, flags);
678 p = vc->stolen_tb;
c7b67670 679 if (vc->vcore_state != VCORE_INACTIVE &&
2711e248
PM
680 vc->preempt_tb != TB_NIL)
681 p += now - vc->preempt_tb;
682 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
c7b67670
PM
683 return p;
684}
685
0456ec4f
PM
686static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
687 struct kvmppc_vcore *vc)
688{
689 struct dtl_entry *dt;
690 struct lppaca *vpa;
c7b67670
PM
691 unsigned long stolen;
692 unsigned long core_stolen;
693 u64 now;
8b24e69f 694 unsigned long flags;
0456ec4f
PM
695
696 dt = vcpu->arch.dtl_ptr;
697 vpa = vcpu->arch.vpa.pinned_addr;
c7b67670
PM
698 now = mftb();
699 core_stolen = vcore_stolen_time(vc, now);
700 stolen = core_stolen - vcpu->arch.stolen_logged;
701 vcpu->arch.stolen_logged = core_stolen;
8b24e69f 702 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
703 stolen += vcpu->arch.busy_stolen;
704 vcpu->arch.busy_stolen = 0;
8b24e69f 705 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
0456ec4f
PM
706 if (!dt || !vpa)
707 return;
708 memset(dt, 0, sizeof(struct dtl_entry));
709 dt->dispatch_reason = 7;
02407552
AG
710 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
711 dt->timebase = cpu_to_be64(now + vc->tb_offset);
712 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
713 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
714 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
0456ec4f
PM
715 ++dt;
716 if (dt == vcpu->arch.dtl.pinned_end)
717 dt = vcpu->arch.dtl.pinned_addr;
718 vcpu->arch.dtl_ptr = dt;
719 /* order writing *dt vs. writing vpa->dtl_idx */
720 smp_wmb();
02407552 721 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
c35635ef 722 vcpu->arch.dtl.dirty = true;
0456ec4f
PM
723}
724
1da4e2f4
PM
725/* See if there is a doorbell interrupt pending for a vcpu */
726static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
727{
728 int thr;
729 struct kvmppc_vcore *vc;
730
57900694
PM
731 if (vcpu->arch.doorbell_request)
732 return true;
733 /*
734 * Ensure that the read of vcore->dpdes comes after the read
735 * of vcpu->doorbell_request. This barrier matches the
6fabc9f2 736 * smp_wmb() in kvmppc_guest_entry_inject().
57900694
PM
737 */
738 smp_rmb();
1da4e2f4
PM
739 vc = vcpu->arch.vcore;
740 thr = vcpu->vcpu_id - vc->first_vcpuid;
741 return !!(vc->dpdes & (1 << thr));
742}
743
9642382e
MN
744static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
745{
746 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
747 return true;
748 if ((!vcpu->arch.vcore->arch_compat) &&
749 cpu_has_feature(CPU_FTR_ARCH_207S))
750 return true;
751 return false;
752}
753
754static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
755 unsigned long resource, unsigned long value1,
756 unsigned long value2)
757{
758 switch (resource) {
759 case H_SET_MODE_RESOURCE_SET_CIABR:
760 if (!kvmppc_power8_compatible(vcpu))
761 return H_P2;
762 if (value2)
763 return H_P4;
764 if (mflags)
765 return H_UNSUPPORTED_FLAG_START;
766 /* Guests can't breakpoint the hypervisor */
767 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
768 return H_P3;
769 vcpu->arch.ciabr = value1;
770 return H_SUCCESS;
6f3fe297 771 case H_SET_MODE_RESOURCE_SET_DAWR0:
9642382e
MN
772 if (!kvmppc_power8_compatible(vcpu))
773 return H_P2;
398e712c
MN
774 if (!ppc_breakpoint_available())
775 return H_P2;
9642382e
MN
776 if (mflags)
777 return H_UNSUPPORTED_FLAG_START;
778 if (value2 & DABRX_HYP)
779 return H_P4;
122954ed
RB
780 vcpu->arch.dawr0 = value1;
781 vcpu->arch.dawrx0 = value2;
9642382e 782 return H_SUCCESS;
bd1de1a0
RB
783 case H_SET_MODE_RESOURCE_SET_DAWR1:
784 if (!kvmppc_power8_compatible(vcpu))
785 return H_P2;
786 if (!ppc_breakpoint_available())
787 return H_P2;
788 if (!cpu_has_feature(CPU_FTR_DAWR1))
789 return H_P2;
790 if (!vcpu->kvm->arch.dawr1_enabled)
791 return H_FUNCTION;
792 if (mflags)
793 return H_UNSUPPORTED_FLAG_START;
794 if (value2 & DABRX_HYP)
795 return H_P4;
796 vcpu->arch.dawr1 = value1;
797 vcpu->arch.dawrx1 = value2;
798 return H_SUCCESS;
55d70042 799 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
bcc92a0d
NP
800 /*
801 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
802 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
803 */
2e1ae9cd
NP
804 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
805 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
55d70042
NP
806 return H_UNSUPPORTED_FLAG_START;
807 return H_TOO_HARD;
9642382e
MN
808 default:
809 return H_TOO_HARD;
810 }
811}
812
2d34d1c3
SJS
813/* Copy guest memory in place - must reside within a single memslot */
814static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
815 unsigned long len)
816{
817 struct kvm_memory_slot *to_memslot = NULL;
818 struct kvm_memory_slot *from_memslot = NULL;
819 unsigned long to_addr, from_addr;
820 int r;
821
822 /* Get HPA for from address */
823 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
824 if (!from_memslot)
825 return -EFAULT;
826 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
827 << PAGE_SHIFT))
828 return -EINVAL;
829 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
830 if (kvm_is_error_hva(from_addr))
831 return -EFAULT;
832 from_addr |= (from & (PAGE_SIZE - 1));
833
834 /* Get HPA for to address */
835 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
836 if (!to_memslot)
837 return -EFAULT;
838 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
839 << PAGE_SHIFT))
840 return -EINVAL;
841 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
842 if (kvm_is_error_hva(to_addr))
843 return -EFAULT;
844 to_addr |= (to & (PAGE_SIZE - 1));
845
846 /* Perform copy */
847 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
848 len);
849 if (r)
850 return -EFAULT;
851 mark_page_dirty(kvm, to >> PAGE_SHIFT);
852 return 0;
853}
854
855static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
856 unsigned long dest, unsigned long src)
857{
858 u64 pg_sz = SZ_4K; /* 4K page size */
859 u64 pg_mask = SZ_4K - 1;
860 int ret;
861
862 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
863 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
864 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
865 return H_PARAMETER;
866
867 /* dest (and src if copy_page flag set) must be page aligned */
868 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
869 return H_PARAMETER;
870
871 /* zero and/or copy the page as determined by the flags */
872 if (flags & H_COPY_PAGE) {
873 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
874 if (ret < 0)
875 return H_PARAMETER;
876 } else if (flags & H_ZERO_PAGE) {
877 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
878 if (ret < 0)
879 return H_PARAMETER;
880 }
881
882 /* We can ignore the remaining flags */
883
884 return H_SUCCESS;
885}
886
90fd09f8
SB
887static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
888{
889 struct kvmppc_vcore *vcore = target->arch.vcore;
890
891 /*
892 * We expect to have been called by the real mode handler
893 * (kvmppc_rm_h_confer()) which would have directly returned
894 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
895 * have useful work to do and should not confer) so we don't
896 * recheck that here.
9dc2babc
NP
897 *
898 * In the case of the P9 single vcpu per vcore case, the real
899 * mode handler is not called but no other threads are in the
900 * source vcore.
90fd09f8
SB
901 */
902
903 spin_lock(&vcore->lock);
904 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
ec257165
PM
905 vcore->vcore_state != VCORE_INACTIVE &&
906 vcore->runner)
90fd09f8
SB
907 target = vcore->runner;
908 spin_unlock(&vcore->lock);
909
910 return kvm_vcpu_yield_to(target);
911}
912
913static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
914{
915 int yield_count = 0;
916 struct lppaca *lppaca;
917
918 spin_lock(&vcpu->arch.vpa_update_lock);
919 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
920 if (lppaca)
ecb6d618 921 yield_count = be32_to_cpu(lppaca->yield_count);
90fd09f8
SB
922 spin_unlock(&vcpu->arch.vpa_update_lock);
923 return yield_count;
924}
925
53324b51
BR
926/*
927 * H_RPT_INVALIDATE hcall handler for nested guests.
928 *
929 * Handles only nested process-scoped invalidation requests in L0.
930 */
931static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
932{
933 unsigned long type = kvmppc_get_gpr(vcpu, 6);
934 unsigned long pid, pg_sizes, start, end;
935
936 /*
937 * The partition-scoped invalidations aren't handled here in L0.
938 */
939 if (type & H_RPTI_TYPE_NESTED)
940 return RESUME_HOST;
941
942 pid = kvmppc_get_gpr(vcpu, 4);
943 pg_sizes = kvmppc_get_gpr(vcpu, 7);
944 start = kvmppc_get_gpr(vcpu, 8);
945 end = kvmppc_get_gpr(vcpu, 9);
946
947 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
948 type, pg_sizes, start, end);
949
950 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
951 return RESUME_GUEST;
952}
953
f0c6fbbb
BR
954static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
955 unsigned long id, unsigned long target,
956 unsigned long type, unsigned long pg_sizes,
957 unsigned long start, unsigned long end)
958{
959 if (!kvm_is_radix(vcpu->kvm))
960 return H_UNSUPPORTED;
961
962 if (end < start)
963 return H_P5;
964
965 /*
966 * Partition-scoped invalidation for nested guests.
f0c6fbbb 967 */
53324b51
BR
968 if (type & H_RPTI_TYPE_NESTED) {
969 if (!nesting_enabled(vcpu->kvm))
970 return H_FUNCTION;
971
972 /* Support only cores as target */
973 if (target != H_RPTI_TARGET_CMMU)
974 return H_P2;
975
976 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
977 start, end);
978 }
f0c6fbbb
BR
979
980 /*
981 * Process-scoped invalidation for L1 guests.
982 */
983 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
984 type, pg_sizes, start, end);
985 return H_SUCCESS;
986}
987
a8606e20
PM
988int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
989{
a9aa86e0 990 struct kvm *kvm = vcpu->kvm;
a8606e20
PM
991 unsigned long req = kvmppc_get_gpr(vcpu, 3);
992 unsigned long target, ret = H_SUCCESS;
90fd09f8 993 int yield_count;
a8606e20 994 struct kvm_vcpu *tvcpu;
8e591cb7 995 int idx, rc;
a8606e20 996
699a0ea0
PM
997 if (req <= MAX_HCALL_OPCODE &&
998 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
999 return RESUME_HOST;
1000
a8606e20 1001 switch (req) {
6165d5dd
NP
1002 case H_REMOVE:
1003 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1004 kvmppc_get_gpr(vcpu, 5),
1005 kvmppc_get_gpr(vcpu, 6));
1006 if (ret == H_TOO_HARD)
1007 return RESUME_HOST;
1008 break;
1009 case H_ENTER:
1010 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1011 kvmppc_get_gpr(vcpu, 5),
1012 kvmppc_get_gpr(vcpu, 6),
1013 kvmppc_get_gpr(vcpu, 7));
1014 if (ret == H_TOO_HARD)
1015 return RESUME_HOST;
1016 break;
1017 case H_READ:
1018 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1019 kvmppc_get_gpr(vcpu, 5));
1020 if (ret == H_TOO_HARD)
1021 return RESUME_HOST;
1022 break;
1023 case H_CLEAR_MOD:
1024 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1025 kvmppc_get_gpr(vcpu, 5));
1026 if (ret == H_TOO_HARD)
1027 return RESUME_HOST;
1028 break;
1029 case H_CLEAR_REF:
1030 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1031 kvmppc_get_gpr(vcpu, 5));
1032 if (ret == H_TOO_HARD)
1033 return RESUME_HOST;
1034 break;
1035 case H_PROTECT:
1036 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1037 kvmppc_get_gpr(vcpu, 5),
1038 kvmppc_get_gpr(vcpu, 6));
1039 if (ret == H_TOO_HARD)
1040 return RESUME_HOST;
1041 break;
1042 case H_BULK_REMOVE:
1043 ret = kvmppc_h_bulk_remove(vcpu);
1044 if (ret == H_TOO_HARD)
1045 return RESUME_HOST;
1046 break;
1047
a8606e20 1048 case H_CEDE:
a8606e20
PM
1049 break;
1050 case H_PROD:
1051 target = kvmppc_get_gpr(vcpu, 4);
a9aa86e0 1052 tvcpu = kvmppc_find_vcpu(kvm, target);
a8606e20
PM
1053 if (!tvcpu) {
1054 ret = H_PARAMETER;
1055 break;
1056 }
1057 tvcpu->arch.prodded = 1;
1058 smp_mb();
8464c884
PM
1059 if (tvcpu->arch.ceded)
1060 kvmppc_fast_vcpu_kick_hv(tvcpu);
a8606e20
PM
1061 break;
1062 case H_CONFER:
42d7604d
PM
1063 target = kvmppc_get_gpr(vcpu, 4);
1064 if (target == -1)
1065 break;
a9aa86e0 1066 tvcpu = kvmppc_find_vcpu(kvm, target);
42d7604d
PM
1067 if (!tvcpu) {
1068 ret = H_PARAMETER;
1069 break;
1070 }
90fd09f8
SB
1071 yield_count = kvmppc_get_gpr(vcpu, 5);
1072 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1073 break;
1074 kvm_arch_vcpu_yield_to(tvcpu);
a8606e20
PM
1075 break;
1076 case H_REGISTER_VPA:
1077 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1078 kvmppc_get_gpr(vcpu, 5),
1079 kvmppc_get_gpr(vcpu, 6));
1080 break;
8e591cb7 1081 case H_RTAS:
a9aa86e0 1082 if (list_empty(&kvm->arch.rtas_tokens))
8e591cb7
ME
1083 return RESUME_HOST;
1084
a9aa86e0 1085 idx = srcu_read_lock(&kvm->srcu);
8e591cb7 1086 rc = kvmppc_rtas_hcall(vcpu);
a9aa86e0 1087 srcu_read_unlock(&kvm->srcu, idx);
8e591cb7
ME
1088
1089 if (rc == -ENOENT)
1090 return RESUME_HOST;
1091 else if (rc == 0)
1092 break;
1093
1094 /* Send the error out to userspace via KVM_RUN */
1095 return rc;
99342cf8
DG
1096 case H_LOGICAL_CI_LOAD:
1097 ret = kvmppc_h_logical_ci_load(vcpu);
1098 if (ret == H_TOO_HARD)
1099 return RESUME_HOST;
1100 break;
1101 case H_LOGICAL_CI_STORE:
1102 ret = kvmppc_h_logical_ci_store(vcpu);
1103 if (ret == H_TOO_HARD)
1104 return RESUME_HOST;
1105 break;
9642382e
MN
1106 case H_SET_MODE:
1107 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1108 kvmppc_get_gpr(vcpu, 5),
1109 kvmppc_get_gpr(vcpu, 6),
1110 kvmppc_get_gpr(vcpu, 7));
1111 if (ret == H_TOO_HARD)
1112 return RESUME_HOST;
1113 break;
bc5ad3f3
BH
1114 case H_XIRR:
1115 case H_CPPR:
1116 case H_EOI:
1117 case H_IPI:
8e44ddc3
PM
1118 case H_IPOLL:
1119 case H_XIRR_X:
bc5ad3f3 1120 if (kvmppc_xics_enabled(vcpu)) {
03f95332 1121 if (xics_on_xive()) {
5af50993
BH
1122 ret = H_NOT_AVAILABLE;
1123 return RESUME_GUEST;
1124 }
bc5ad3f3
BH
1125 ret = kvmppc_xics_hcall(vcpu, req);
1126 break;
d3695aa4
AK
1127 }
1128 return RESUME_HOST;
4bad7779
PM
1129 case H_SET_DABR:
1130 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1131 break;
1132 case H_SET_XDABR:
1133 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1134 kvmppc_get_gpr(vcpu, 5));
1135 break;
e40542af 1136#ifdef CONFIG_SPAPR_TCE_IOMMU
4bad7779
PM
1137 case H_GET_TCE:
1138 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1139 kvmppc_get_gpr(vcpu, 5));
1140 if (ret == H_TOO_HARD)
1141 return RESUME_HOST;
1142 break;
d3695aa4
AK
1143 case H_PUT_TCE:
1144 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1145 kvmppc_get_gpr(vcpu, 5),
1146 kvmppc_get_gpr(vcpu, 6));
1147 if (ret == H_TOO_HARD)
1148 return RESUME_HOST;
1149 break;
1150 case H_PUT_TCE_INDIRECT:
1151 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1152 kvmppc_get_gpr(vcpu, 5),
1153 kvmppc_get_gpr(vcpu, 6),
1154 kvmppc_get_gpr(vcpu, 7));
1155 if (ret == H_TOO_HARD)
1156 return RESUME_HOST;
1157 break;
1158 case H_STUFF_TCE:
1159 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1160 kvmppc_get_gpr(vcpu, 5),
1161 kvmppc_get_gpr(vcpu, 6),
1162 kvmppc_get_gpr(vcpu, 7));
1163 if (ret == H_TOO_HARD)
1164 return RESUME_HOST;
1165 break;
e40542af 1166#endif
4bad7779 1167 case H_RANDOM:
2ac78e0c 1168 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
4bad7779
PM
1169 ret = H_HARDWARE;
1170 break;
f0c6fbbb
BR
1171 case H_RPT_INVALIDATE:
1172 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1173 kvmppc_get_gpr(vcpu, 5),
1174 kvmppc_get_gpr(vcpu, 6),
1175 kvmppc_get_gpr(vcpu, 7),
1176 kvmppc_get_gpr(vcpu, 8),
1177 kvmppc_get_gpr(vcpu, 9));
1178 break;
8e3f5fc1
PM
1179
1180 case H_SET_PARTITION_TABLE:
1181 ret = H_FUNCTION;
a9aa86e0 1182 if (nesting_enabled(kvm))
8e3f5fc1
PM
1183 ret = kvmhv_set_partition_table(vcpu);
1184 break;
1185 case H_ENTER_NESTED:
1186 ret = H_FUNCTION;
a9aa86e0 1187 if (!nesting_enabled(kvm))
360cae31
PM
1188 break;
1189 ret = kvmhv_enter_nested_guest(vcpu);
1190 if (ret == H_INTERRUPT) {
1191 kvmppc_set_gpr(vcpu, 3, 0);
6c08ec12 1192 vcpu->arch.hcall_needed = 0;
360cae31 1193 return -EINTR;
873db2cd
SJS
1194 } else if (ret == H_TOO_HARD) {
1195 kvmppc_set_gpr(vcpu, 3, 0);
1196 vcpu->arch.hcall_needed = 0;
1197 return RESUME_HOST;
360cae31 1198 }
8e3f5fc1
PM
1199 break;
1200 case H_TLB_INVALIDATE:
1201 ret = H_FUNCTION;
a9aa86e0 1202 if (nesting_enabled(kvm))
aa069a99 1203 ret = kvmhv_do_nested_tlbie(vcpu);
8e3f5fc1 1204 break;
6ff887b8
SJS
1205 case H_COPY_TOFROM_GUEST:
1206 ret = H_FUNCTION;
a9aa86e0 1207 if (nesting_enabled(kvm))
6ff887b8
SJS
1208 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1209 break;
2d34d1c3
SJS
1210 case H_PAGE_INIT:
1211 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1212 kvmppc_get_gpr(vcpu, 5),
1213 kvmppc_get_gpr(vcpu, 6));
1214 break;
ca9f4942 1215 case H_SVM_PAGE_IN:
8c47b6ff
LD
1216 ret = H_UNSUPPORTED;
1217 if (kvmppc_get_srr1(vcpu) & MSR_S)
a9aa86e0 1218 ret = kvmppc_h_svm_page_in(kvm,
8c47b6ff
LD
1219 kvmppc_get_gpr(vcpu, 4),
1220 kvmppc_get_gpr(vcpu, 5),
1221 kvmppc_get_gpr(vcpu, 6));
ca9f4942
BR
1222 break;
1223 case H_SVM_PAGE_OUT:
8c47b6ff
LD
1224 ret = H_UNSUPPORTED;
1225 if (kvmppc_get_srr1(vcpu) & MSR_S)
a9aa86e0 1226 ret = kvmppc_h_svm_page_out(kvm,
8c47b6ff
LD
1227 kvmppc_get_gpr(vcpu, 4),
1228 kvmppc_get_gpr(vcpu, 5),
1229 kvmppc_get_gpr(vcpu, 6));
ca9f4942
BR
1230 break;
1231 case H_SVM_INIT_START:
8c47b6ff
LD
1232 ret = H_UNSUPPORTED;
1233 if (kvmppc_get_srr1(vcpu) & MSR_S)
a9aa86e0 1234 ret = kvmppc_h_svm_init_start(kvm);
ca9f4942
BR
1235 break;
1236 case H_SVM_INIT_DONE:
8c47b6ff
LD
1237 ret = H_UNSUPPORTED;
1238 if (kvmppc_get_srr1(vcpu) & MSR_S)
a9aa86e0 1239 ret = kvmppc_h_svm_init_done(kvm);
ca9f4942 1240 break;
3a43970d 1241 case H_SVM_INIT_ABORT:
e3326ae3
LD
1242 /*
1243 * Even if that call is made by the Ultravisor, the SSR1 value
1244 * is the guest context one, with the secure bit clear as it has
1245 * not yet been secured. So we can't check it here.
1246 * Instead the kvm->arch.secure_guest flag is checked inside
1247 * kvmppc_h_svm_init_abort().
1248 */
a9aa86e0 1249 ret = kvmppc_h_svm_init_abort(kvm);
3a43970d 1250 break;
ca9f4942 1251
a8606e20
PM
1252 default:
1253 return RESUME_HOST;
1254 }
6165d5dd 1255 WARN_ON_ONCE(ret == H_TOO_HARD);
a8606e20
PM
1256 kvmppc_set_gpr(vcpu, 3, ret);
1257 vcpu->arch.hcall_needed = 0;
1258 return RESUME_GUEST;
1259}
1260
4bad7779 1261/*
9dc2babc
NP
1262 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1263 * handlers in book3s_hv_rmhandlers.S.
1264 *
4bad7779
PM
1265 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1266 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1267 */
9dc2babc 1268static void kvmppc_cede(struct kvm_vcpu *vcpu)
4bad7779
PM
1269{
1270 vcpu->arch.shregs.msr |= MSR_EE;
1271 vcpu->arch.ceded = 1;
1272 smp_mb();
1273 if (vcpu->arch.prodded) {
1274 vcpu->arch.prodded = 0;
1275 smp_mb();
1276 vcpu->arch.ceded = 0;
1277 }
1278}
1279
ae2113a4
PM
1280static int kvmppc_hcall_impl_hv(unsigned long cmd)
1281{
1282 switch (cmd) {
1283 case H_CEDE:
1284 case H_PROD:
1285 case H_CONFER:
1286 case H_REGISTER_VPA:
9642382e 1287 case H_SET_MODE:
99342cf8
DG
1288 case H_LOGICAL_CI_LOAD:
1289 case H_LOGICAL_CI_STORE:
ae2113a4
PM
1290#ifdef CONFIG_KVM_XICS
1291 case H_XIRR:
1292 case H_CPPR:
1293 case H_EOI:
1294 case H_IPI:
1295 case H_IPOLL:
1296 case H_XIRR_X:
1297#endif
2d34d1c3 1298 case H_PAGE_INIT:
f0c6fbbb 1299 case H_RPT_INVALIDATE:
ae2113a4
PM
1300 return 1;
1301 }
1302
1303 /* See if it's in the real-mode table */
1304 return kvmppc_hcall_impl_hv_realmode(cmd);
1305}
1306
8c99d345 1307static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
a59c1d9e
MS
1308{
1309 u32 last_inst;
1310
1311 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1312 EMULATE_DONE) {
1313 /*
1314 * Fetch failed, so return to guest and
1315 * try executing it again.
1316 */
1317 return RESUME_GUEST;
1318 }
1319
1320 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
8c99d345
TZ
1321 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1322 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
a59c1d9e
MS
1323 return RESUME_HOST;
1324 } else {
1325 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1326 return RESUME_GUEST;
1327 }
1328}
1329
57900694
PM
1330static void do_nothing(void *x)
1331{
1332}
1333
1334static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1335{
1336 int thr, cpu, pcpu, nthreads;
1337 struct kvm_vcpu *v;
1338 unsigned long dpdes;
1339
1340 nthreads = vcpu->kvm->arch.emul_smt_mode;
1341 dpdes = 0;
1342 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1343 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1344 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1345 if (!v)
1346 continue;
1347 /*
1348 * If the vcpu is currently running on a physical cpu thread,
1349 * interrupt it in order to pull it out of the guest briefly,
1350 * which will update its vcore->dpdes value.
1351 */
1352 pcpu = READ_ONCE(v->cpu);
1353 if (pcpu >= 0)
1354 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1355 if (kvmppc_doorbell_pending(v))
1356 dpdes |= 1 << thr;
1357 }
1358 return dpdes;
1359}
1360
1361/*
1362 * On POWER9, emulate doorbell-related instructions in order to
1363 * give the guest the illusion of running on a multi-threaded core.
1364 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1365 * and mfspr DPDES.
1366 */
1367static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1368{
1369 u32 inst, rb, thr;
1370 unsigned long arg;
1371 struct kvm *kvm = vcpu->kvm;
1372 struct kvm_vcpu *tvcpu;
1373
57900694
PM
1374 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1375 return RESUME_GUEST;
1376 if (get_op(inst) != 31)
1377 return EMULATE_FAIL;
1378 rb = get_rb(inst);
1379 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1380 switch (get_xop(inst)) {
1381 case OP_31_XOP_MSGSNDP:
1382 arg = kvmppc_get_gpr(vcpu, rb);
87fb4978 1383 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
57900694 1384 break;
87fb4978 1385 arg &= 0x7f;
57900694
PM
1386 if (arg >= kvm->arch.emul_smt_mode)
1387 break;
1388 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1389 if (!tvcpu)
1390 break;
1391 if (!tvcpu->arch.doorbell_request) {
1392 tvcpu->arch.doorbell_request = 1;
1393 kvmppc_fast_vcpu_kick_hv(tvcpu);
1394 }
1395 break;
1396 case OP_31_XOP_MSGCLRP:
1397 arg = kvmppc_get_gpr(vcpu, rb);
87fb4978 1398 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
57900694
PM
1399 break;
1400 vcpu->arch.vcore->dpdes = 0;
1401 vcpu->arch.doorbell_request = 0;
1402 break;
1403 case OP_31_XOP_MFSPR:
1404 switch (get_sprn(inst)) {
1405 case SPRN_TIR:
1406 arg = thr;
1407 break;
1408 case SPRN_DPDES:
1409 arg = kvmppc_read_dpdes(vcpu);
1410 break;
1411 default:
1412 return EMULATE_FAIL;
1413 }
1414 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1415 break;
1416 default:
1417 return EMULATE_FAIL;
1418 }
1419 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1420 return RESUME_GUEST;
1421}
1422
8c99d345 1423static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
3a167bea 1424 struct task_struct *tsk)
de56a948 1425{
8c99d345 1426 struct kvm_run *run = vcpu->run;
de56a948
PM
1427 int r = RESUME_HOST;
1428
1429 vcpu->stat.sum_exits++;
1430
1c9e3d51
PM
1431 /*
1432 * This can happen if an interrupt occurs in the last stages
1433 * of guest entry or the first stages of guest exit (i.e. after
1434 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1435 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1436 * That can happen due to a bug, or due to a machine check
1437 * occurring at just the wrong time.
1438 */
1439 if (vcpu->arch.shregs.msr & MSR_HV) {
1440 printk(KERN_EMERG "KVM trap in HV mode!\n");
1441 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1442 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1443 vcpu->arch.shregs.msr);
1444 kvmppc_dump_regs(vcpu);
1445 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1446 run->hw.hardware_exit_reason = vcpu->arch.trap;
1447 return RESUME_HOST;
1448 }
de56a948
PM
1449 run->exit_reason = KVM_EXIT_UNKNOWN;
1450 run->ready_for_interrupt_injection = 1;
1451 switch (vcpu->arch.trap) {
1452 /* We're good on these - the host merely wanted to get our attention */
1453 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1454 vcpu->stat.dec_exits++;
1455 r = RESUME_GUEST;
1456 break;
1457 case BOOK3S_INTERRUPT_EXTERNAL:
5d00f66b 1458 case BOOK3S_INTERRUPT_H_DOORBELL:
84f7139c 1459 case BOOK3S_INTERRUPT_H_VIRT:
de56a948
PM
1460 vcpu->stat.ext_intr_exits++;
1461 r = RESUME_GUEST;
1462 break;
6de6638b 1463 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
dee6f24c 1464 case BOOK3S_INTERRUPT_HMI:
de56a948 1465 case BOOK3S_INTERRUPT_PERFMON:
6de6638b 1466 case BOOK3S_INTERRUPT_SYSTEM_RESET:
de56a948
PM
1467 r = RESUME_GUEST;
1468 break;
1d15ffdf
NP
1469 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1470 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1471 DEFAULT_RATELIMIT_BURST);
1472 /*
1473 * Print the MCE event to host console. Ratelimit so the guest
1474 * can't flood the host log.
1475 */
1476 if (__ratelimit(&rs))
1477 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
884dfb72
PM
1478
1479 /*
1480 * If the guest can do FWNMI, exit to userspace so it can
1481 * deliver a FWNMI to the guest.
1482 * Otherwise we synthesize a machine check for the guest
1483 * so that it knows that the machine check occurred.
1484 */
1485 if (!vcpu->kvm->arch.fwnmi_enabled) {
1486 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1487 kvmppc_core_queue_machine_check(vcpu, flags);
1488 r = RESUME_GUEST;
1489 break;
1490 }
1491
e20bbd3d
AP
1492 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1493 run->exit_reason = KVM_EXIT_NMI;
1494 run->hw.hardware_exit_reason = vcpu->arch.trap;
1495 /* Clear out the old NMI status from run->flags */
1496 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1497 /* Now set the NMI status */
1498 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1499 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1500 else
1501 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1502
1503 r = RESUME_HOST;
b4072df4 1504 break;
1d15ffdf 1505 }
de56a948
PM
1506 case BOOK3S_INTERRUPT_PROGRAM:
1507 {
1508 ulong flags;
1509 /*
1510 * Normally program interrupts are delivered directly
1511 * to the guest by the hardware, but we can get here
1512 * as a result of a hypervisor emulation interrupt
1513 * (e40) getting turned into a 700 by BML RTAS.
1514 */
1515 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1516 kvmppc_core_queue_program(vcpu, flags);
1517 r = RESUME_GUEST;
1518 break;
1519 }
1520 case BOOK3S_INTERRUPT_SYSCALL:
1521 {
de56a948
PM
1522 int i;
1523
9dc2babc
NP
1524 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1525 /*
1526 * Guest userspace executed sc 1. This can only be
1527 * reached by the P9 path because the old path
1528 * handles this case in realmode hcall handlers.
9dc2babc 1529 */
ac3c8b41
NP
1530 if (!kvmhv_vcpu_is_radix(vcpu)) {
1531 /*
1532 * A guest could be running PR KVM, so this
1533 * may be a PR KVM hcall. It must be reflected
1534 * to the guest kernel as a sc interrupt.
1535 */
1536 kvmppc_core_queue_syscall(vcpu);
1537 } else {
1538 /*
1539 * Radix guests can not run PR KVM or nested HV
1540 * hash guests which might run PR KVM, so this
1541 * is always a privilege fault. Send a program
1542 * check to guest kernel.
1543 */
1544 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1545 }
9dc2babc
NP
1546 r = RESUME_GUEST;
1547 break;
1548 }
27025a60 1549
9dc2babc
NP
1550 /*
1551 * hcall - gather args and set exit_reason. This will next be
1552 * handled by kvmppc_pseries_do_hcall which may be able to deal
1553 * with it and resume guest, or may punt to userspace.
1554 */
de56a948
PM
1555 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1556 for (i = 0; i < 9; ++i)
1557 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1558 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1559 vcpu->arch.hcall_needed = 1;
1560 r = RESUME_HOST;
1561 break;
1562 }
1563 /*
342d3db7
PM
1564 * We get these next two if the guest accesses a page which it thinks
1565 * it has mapped but which is not actually present, either because
1566 * it is for an emulated I/O device or because the corresonding
6165d5dd
NP
1567 * host page has been paged out.
1568 *
1569 * Any other HDSI/HISI interrupts have been handled already for P7/8
1570 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1571 * fault handling is done here.
de56a948 1572 */
6165d5dd
NP
1573 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1574 unsigned long vsid;
1575 long err;
1576
1577 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
89d35b23 1578 r = RESUME_GUEST; /* Just retry if it's the canary */
6165d5dd
NP
1579 break;
1580 }
1581
1582 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1583 /*
1584 * Radix doesn't require anything, and pre-ISAv3.0 hash
1585 * already attempted to handle this in rmhandlers. The
1586 * hash fault handling below is v3 only (it uses ASDR
1587 * via fault_gpa).
1588 */
1589 r = RESUME_PAGE_FAULT;
1590 break;
1591 }
1592
1593 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1594 kvmppc_core_queue_data_storage(vcpu,
1595 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1596 r = RESUME_GUEST;
1597 break;
1598 }
1599
1600 if (!(vcpu->arch.shregs.msr & MSR_DR))
1601 vsid = vcpu->kvm->arch.vrma_slb_v;
1602 else
1603 vsid = vcpu->arch.fault_gpa;
1604
1605 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1606 vsid, vcpu->arch.fault_dsisr, true);
1607 if (err == 0) {
1608 r = RESUME_GUEST;
1609 } else if (err == -1 || err == -2) {
1610 r = RESUME_PAGE_FAULT;
1611 } else {
1612 kvmppc_core_queue_data_storage(vcpu,
1613 vcpu->arch.fault_dar, err);
1614 r = RESUME_GUEST;
1615 }
de56a948 1616 break;
6165d5dd
NP
1617 }
1618 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1619 unsigned long vsid;
1620 long err;
1621
913d3ff9 1622 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
32eb150a
PM
1623 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1624 DSISR_SRR1_MATCH_64S;
6165d5dd
NP
1625 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1626 /*
1627 * Radix doesn't require anything, and pre-ISAv3.0 hash
1628 * already attempted to handle this in rmhandlers. The
1629 * hash fault handling below is v3 only (it uses ASDR
1630 * via fault_gpa).
1631 */
1632 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1633 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1634 r = RESUME_PAGE_FAULT;
1635 break;
1636 }
1637
1638 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1639 kvmppc_core_queue_inst_storage(vcpu,
1640 vcpu->arch.fault_dsisr);
1641 r = RESUME_GUEST;
1642 break;
1643 }
1644
1645 if (!(vcpu->arch.shregs.msr & MSR_IR))
1646 vsid = vcpu->kvm->arch.vrma_slb_v;
1647 else
1648 vsid = vcpu->arch.fault_gpa;
1649
1650 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1651 vsid, vcpu->arch.fault_dsisr, false);
1652 if (err == 0) {
1653 r = RESUME_GUEST;
1654 } else if (err == -1) {
1655 r = RESUME_PAGE_FAULT;
1656 } else {
1657 kvmppc_core_queue_inst_storage(vcpu, err);
1658 r = RESUME_GUEST;
1659 }
de56a948 1660 break;
6165d5dd
NP
1661 }
1662
de56a948
PM
1663 /*
1664 * This occurs if the guest executes an illegal instruction.
a59c1d9e
MS
1665 * If the guest debug is disabled, generate a program interrupt
1666 * to the guest. If guest debug is enabled, we need to check
1667 * whether the instruction is a software breakpoint instruction.
1668 * Accordingly return to Guest or Host.
de56a948
PM
1669 */
1670 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
4a157d61
PM
1671 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1672 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1673 swab32(vcpu->arch.emul_inst) :
1674 vcpu->arch.emul_inst;
a59c1d9e 1675 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
8c99d345 1676 r = kvmppc_emulate_debug_inst(vcpu);
a59c1d9e
MS
1677 } else {
1678 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1679 r = RESUME_GUEST;
1680 }
bd3048b8
ME
1681 break;
1682 /*
1683 * This occurs if the guest (kernel or userspace), does something that
57900694
PM
1684 * is prohibited by HFSCR.
1685 * On POWER9, this could be a doorbell instruction that we need
1686 * to emulate.
1687 * Otherwise, we just generate a program interrupt to the guest.
bd3048b8
ME
1688 */
1689 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
57900694 1690 r = EMULATE_FAIL;
36ee41d1 1691 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
53655ddd 1692 cpu_has_feature(CPU_FTR_ARCH_300))
57900694
PM
1693 r = kvmppc_emulate_doorbell_instr(vcpu);
1694 if (r == EMULATE_FAIL) {
1695 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1696 r = RESUME_GUEST;
1697 }
de56a948 1698 break;
4bb3c7a0
PM
1699
1700#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1701 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1702 /*
1703 * This occurs for various TM-related instructions that
1704 * we need to emulate on POWER9 DD2.2. We have already
1705 * handled the cases where the guest was in real-suspend
1706 * mode and was transitioning to transactional state.
1707 */
1708 r = kvmhv_p9_tm_emulation(vcpu);
1709 break;
1710#endif
1711
f7af5209
SW
1712 case BOOK3S_INTERRUPT_HV_RM_HARD:
1713 r = RESUME_PASSTHROUGH;
1714 break;
de56a948
PM
1715 default:
1716 kvmppc_dump_regs(vcpu);
1717 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1718 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1719 vcpu->arch.shregs.msr);
f3271d4c 1720 run->hw.hardware_exit_reason = vcpu->arch.trap;
de56a948 1721 r = RESUME_HOST;
de56a948
PM
1722 break;
1723 }
1724
de56a948
PM
1725 return r;
1726}
1727
8c99d345 1728static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
360cae31
PM
1729{
1730 int r;
1731 int srcu_idx;
1732
1733 vcpu->stat.sum_exits++;
1734
1735 /*
1736 * This can happen if an interrupt occurs in the last stages
1737 * of guest entry or the first stages of guest exit (i.e. after
1738 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1739 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1740 * That can happen due to a bug, or due to a machine check
1741 * occurring at just the wrong time.
1742 */
1743 if (vcpu->arch.shregs.msr & MSR_HV) {
1744 pr_emerg("KVM trap in HV mode while nested!\n");
1745 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1746 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1747 vcpu->arch.shregs.msr);
1748 kvmppc_dump_regs(vcpu);
1749 return RESUME_HOST;
1750 }
1751 switch (vcpu->arch.trap) {
1752 /* We're good on these - the host merely wanted to get our attention */
1753 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1754 vcpu->stat.dec_exits++;
1755 r = RESUME_GUEST;
1756 break;
1757 case BOOK3S_INTERRUPT_EXTERNAL:
1758 vcpu->stat.ext_intr_exits++;
1759 r = RESUME_HOST;
1760 break;
1761 case BOOK3S_INTERRUPT_H_DOORBELL:
1762 case BOOK3S_INTERRUPT_H_VIRT:
1763 vcpu->stat.ext_intr_exits++;
1764 r = RESUME_GUEST;
1765 break;
1766 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1767 case BOOK3S_INTERRUPT_HMI:
1768 case BOOK3S_INTERRUPT_PERFMON:
1769 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1770 r = RESUME_GUEST;
1771 break;
1772 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1d15ffdf
NP
1773 {
1774 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1775 DEFAULT_RATELIMIT_BURST);
360cae31
PM
1776 /* Pass the machine check to the L1 guest */
1777 r = RESUME_HOST;
1778 /* Print the MCE event to host console. */
1d15ffdf
NP
1779 if (__ratelimit(&rs))
1780 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
360cae31 1781 break;
1d15ffdf 1782 }
360cae31
PM
1783 /*
1784 * We get these next two if the guest accesses a page which it thinks
1785 * it has mapped but which is not actually present, either because
1786 * it is for an emulated I/O device or because the corresonding
1787 * host page has been paged out.
1788 */
1789 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1790 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8c99d345 1791 r = kvmhv_nested_page_fault(vcpu);
360cae31
PM
1792 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1793 break;
1794 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1795 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1796 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1797 DSISR_SRR1_MATCH_64S;
1798 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1799 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1800 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8c99d345 1801 r = kvmhv_nested_page_fault(vcpu);
360cae31
PM
1802 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1803 break;
1804
1805#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1806 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1807 /*
1808 * This occurs for various TM-related instructions that
1809 * we need to emulate on POWER9 DD2.2. We have already
1810 * handled the cases where the guest was in real-suspend
1811 * mode and was transitioning to transactional state.
1812 */
1813 r = kvmhv_p9_tm_emulation(vcpu);
1814 break;
1815#endif
1816
1817 case BOOK3S_INTERRUPT_HV_RM_HARD:
1818 vcpu->arch.trap = 0;
1819 r = RESUME_GUEST;
03f95332 1820 if (!xics_on_xive())
360cae31
PM
1821 kvmppc_xics_rm_complete(vcpu, 0);
1822 break;
53324b51
BR
1823 case BOOK3S_INTERRUPT_SYSCALL:
1824 {
1825 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1826
1827 /*
1828 * The H_RPT_INVALIDATE hcalls issued by nested
1829 * guests for process-scoped invalidations when
1830 * GTSE=0, are handled here in L0.
1831 */
1832 if (req == H_RPT_INVALIDATE) {
1833 r = kvmppc_nested_h_rpt_invalidate(vcpu);
1834 break;
1835 }
1836
1837 r = RESUME_HOST;
1838 break;
1839 }
360cae31
PM
1840 default:
1841 r = RESUME_HOST;
1842 break;
1843 }
1844
1845 return r;
1846}
1847
3a167bea
AK
1848static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1849 struct kvm_sregs *sregs)
de56a948
PM
1850{
1851 int i;
1852
de56a948 1853 memset(sregs, 0, sizeof(struct kvm_sregs));
87916442 1854 sregs->pvr = vcpu->arch.pvr;
de56a948
PM
1855 for (i = 0; i < vcpu->arch.slb_max; i++) {
1856 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1857 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1858 }
1859
1860 return 0;
1861}
1862
3a167bea
AK
1863static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1864 struct kvm_sregs *sregs)
de56a948
PM
1865{
1866 int i, j;
1867
9333e6c4
PM
1868 /* Only accept the same PVR as the host's, since we can't spoof it */
1869 if (sregs->pvr != vcpu->arch.pvr)
1870 return -EINVAL;
de56a948
PM
1871
1872 j = 0;
1873 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1874 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1875 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1876 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1877 ++j;
1878 }
1879 }
1880 vcpu->arch.slb_max = j;
1881
1882 return 0;
1883}
1884
67145ef4
NP
1885/*
1886 * Enforce limits on guest LPCR values based on hardware availability,
1887 * guest configuration, and possibly hypervisor support and security
1888 * concerns.
1889 */
1890unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1891{
72c15287
NP
1892 /* LPCR_TC only applies to HPT guests */
1893 if (kvm_is_radix(kvm))
1894 lpcr &= ~LPCR_TC;
1895
67145ef4
NP
1896 /* On POWER8 and above, userspace can modify AIL */
1897 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1898 lpcr &= ~LPCR_AIL;
bcc92a0d
NP
1899 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1900 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2e1ae9cd
NP
1901 /*
1902 * On some POWER9s we force AIL off for radix guests to prevent
1903 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1904 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1905 * be cached, which the host TLB management does not expect.
1906 */
1907 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1908 lpcr &= ~LPCR_AIL;
67145ef4
NP
1909
1910 /*
1911 * On POWER9, allow userspace to enable large decrementer for the
1912 * guest, whether or not the host has it enabled.
1913 */
1914 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1915 lpcr &= ~LPCR_LD;
1916
1917 return lpcr;
1918}
1919
1920static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1921{
1922 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1923 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1924 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1925 }
1926}
1927
a0840240
AK
1928static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1929 bool preserve_top32)
a0144e2a 1930{
8f902b00 1931 struct kvm *kvm = vcpu->kvm;
a0144e2a
PM
1932 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1933 u64 mask;
1934
1935 spin_lock(&vc->lock);
67145ef4
NP
1936
1937 /*
1938 * Userspace can only modify
1939 * DPFD (default prefetch depth), ILE (interrupt little-endian),
1940 * TC (translation control), AIL (alternate interrupt location),
1941 * LD (large decrementer).
1942 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1943 */
1944 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1945
1946 /* Broken 32-bit version of LPCR must not clear top bits */
1947 if (preserve_top32)
1948 mask &= 0xFFFFFFFF;
1949
1950 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1951 (vc->lpcr & ~mask) | (new_lpcr & mask));
1952
d682916a
AB
1953 /*
1954 * If ILE (interrupt little-endian) has changed, update the
1955 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1956 */
1957 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
d682916a
AB
1958 struct kvm_vcpu *vcpu;
1959 int i;
1960
d682916a
AB
1961 kvm_for_each_vcpu(i, vcpu, kvm) {
1962 if (vcpu->arch.vcore != vc)
1963 continue;
1964 if (new_lpcr & LPCR_ILE)
1965 vcpu->arch.intr_msr |= MSR_LE;
1966 else
1967 vcpu->arch.intr_msr &= ~MSR_LE;
1968 }
d682916a
AB
1969 }
1970
67145ef4 1971 vc->lpcr = new_lpcr;
a0840240 1972
a0144e2a
PM
1973 spin_unlock(&vc->lock);
1974}
1975
3a167bea
AK
1976static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1977 union kvmppc_one_reg *val)
31f3438e 1978{
a136a8bd
PM
1979 int r = 0;
1980 long int i;
31f3438e 1981
a136a8bd 1982 switch (id) {
a59c1d9e
MS
1983 case KVM_REG_PPC_DEBUG_INST:
1984 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1985 break;
31f3438e 1986 case KVM_REG_PPC_HIOR:
a136a8bd
PM
1987 *val = get_reg_val(id, 0);
1988 break;
1989 case KVM_REG_PPC_DABR:
1990 *val = get_reg_val(id, vcpu->arch.dabr);
1991 break;
8563bf52
PM
1992 case KVM_REG_PPC_DABRX:
1993 *val = get_reg_val(id, vcpu->arch.dabrx);
1994 break;
a136a8bd
PM
1995 case KVM_REG_PPC_DSCR:
1996 *val = get_reg_val(id, vcpu->arch.dscr);
1997 break;
1998 case KVM_REG_PPC_PURR:
1999 *val = get_reg_val(id, vcpu->arch.purr);
2000 break;
2001 case KVM_REG_PPC_SPURR:
2002 *val = get_reg_val(id, vcpu->arch.spurr);
2003 break;
2004 case KVM_REG_PPC_AMR:
2005 *val = get_reg_val(id, vcpu->arch.amr);
2006 break;
2007 case KVM_REG_PPC_UAMOR:
2008 *val = get_reg_val(id, vcpu->arch.uamor);
2009 break;
7e4a145e 2010 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
a136a8bd
PM
2011 i = id - KVM_REG_PPC_MMCR0;
2012 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2013 break;
7e4a145e
AR
2014 case KVM_REG_PPC_MMCR2:
2015 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2016 break;
2017 case KVM_REG_PPC_MMCRA:
2018 *val = get_reg_val(id, vcpu->arch.mmcra);
2019 break;
2020 case KVM_REG_PPC_MMCRS:
2021 *val = get_reg_val(id, vcpu->arch.mmcrs);
2022 break;
5752fe0b
AR
2023 case KVM_REG_PPC_MMCR3:
2024 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2025 break;
a136a8bd
PM
2026 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2027 i = id - KVM_REG_PPC_PMC1;
2028 *val = get_reg_val(id, vcpu->arch.pmc[i]);
31f3438e 2029 break;
b005255e
MN
2030 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2031 i = id - KVM_REG_PPC_SPMC1;
2032 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2033 break;
14941789
PM
2034 case KVM_REG_PPC_SIAR:
2035 *val = get_reg_val(id, vcpu->arch.siar);
2036 break;
2037 case KVM_REG_PPC_SDAR:
2038 *val = get_reg_val(id, vcpu->arch.sdar);
2039 break;
b005255e 2040 case KVM_REG_PPC_SIER:
5752fe0b
AR
2041 *val = get_reg_val(id, vcpu->arch.sier[0]);
2042 break;
2043 case KVM_REG_PPC_SIER2:
2044 *val = get_reg_val(id, vcpu->arch.sier[1]);
2045 break;
2046 case KVM_REG_PPC_SIER3:
2047 *val = get_reg_val(id, vcpu->arch.sier[2]);
a8bd19ef 2048 break;
b005255e
MN
2049 case KVM_REG_PPC_IAMR:
2050 *val = get_reg_val(id, vcpu->arch.iamr);
2051 break;
b005255e
MN
2052 case KVM_REG_PPC_PSPB:
2053 *val = get_reg_val(id, vcpu->arch.pspb);
2054 break;
b005255e 2055 case KVM_REG_PPC_DPDES:
ff42df49
PM
2056 /*
2057 * On POWER9, where we are emulating msgsndp etc.,
2058 * we return 1 bit for each vcpu, which can come from
2059 * either vcore->dpdes or doorbell_request.
2060 * On POWER8, doorbell_request is 0.
2061 */
2062 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2063 vcpu->arch.doorbell_request);
b005255e 2064 break;
88b02cf9
PM
2065 case KVM_REG_PPC_VTB:
2066 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2067 break;
b005255e 2068 case KVM_REG_PPC_DAWR:
122954ed 2069 *val = get_reg_val(id, vcpu->arch.dawr0);
b005255e
MN
2070 break;
2071 case KVM_REG_PPC_DAWRX:
122954ed 2072 *val = get_reg_val(id, vcpu->arch.dawrx0);
b005255e 2073 break;
bd1de1a0
RB
2074 case KVM_REG_PPC_DAWR1:
2075 *val = get_reg_val(id, vcpu->arch.dawr1);
2076 break;
2077 case KVM_REG_PPC_DAWRX1:
2078 *val = get_reg_val(id, vcpu->arch.dawrx1);
2079 break;
b005255e
MN
2080 case KVM_REG_PPC_CIABR:
2081 *val = get_reg_val(id, vcpu->arch.ciabr);
2082 break;
b005255e
MN
2083 case KVM_REG_PPC_CSIGR:
2084 *val = get_reg_val(id, vcpu->arch.csigr);
2085 break;
2086 case KVM_REG_PPC_TACR:
2087 *val = get_reg_val(id, vcpu->arch.tacr);
2088 break;
2089 case KVM_REG_PPC_TCSCR:
2090 *val = get_reg_val(id, vcpu->arch.tcscr);
2091 break;
2092 case KVM_REG_PPC_PID:
2093 *val = get_reg_val(id, vcpu->arch.pid);
2094 break;
2095 case KVM_REG_PPC_ACOP:
2096 *val = get_reg_val(id, vcpu->arch.acop);
2097 break;
2098 case KVM_REG_PPC_WORT:
2099 *val = get_reg_val(id, vcpu->arch.wort);
a8bd19ef 2100 break;
e9cf1e08
PM
2101 case KVM_REG_PPC_TIDR:
2102 *val = get_reg_val(id, vcpu->arch.tid);
2103 break;
2104 case KVM_REG_PPC_PSSCR:
2105 *val = get_reg_val(id, vcpu->arch.psscr);
2106 break;
55b665b0
PM
2107 case KVM_REG_PPC_VPA_ADDR:
2108 spin_lock(&vcpu->arch.vpa_update_lock);
2109 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2110 spin_unlock(&vcpu->arch.vpa_update_lock);
2111 break;
2112 case KVM_REG_PPC_VPA_SLB:
2113 spin_lock(&vcpu->arch.vpa_update_lock);
2114 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2115 val->vpaval.length = vcpu->arch.slb_shadow.len;
2116 spin_unlock(&vcpu->arch.vpa_update_lock);
2117 break;
2118 case KVM_REG_PPC_VPA_DTL:
2119 spin_lock(&vcpu->arch.vpa_update_lock);
2120 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2121 val->vpaval.length = vcpu->arch.dtl.len;
2122 spin_unlock(&vcpu->arch.vpa_update_lock);
2123 break;
93b0f4dc
PM
2124 case KVM_REG_PPC_TB_OFFSET:
2125 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2126 break;
a0144e2a 2127 case KVM_REG_PPC_LPCR:
a0840240 2128 case KVM_REG_PPC_LPCR_64:
a0144e2a
PM
2129 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2130 break;
4b8473c9
PM
2131 case KVM_REG_PPC_PPR:
2132 *val = get_reg_val(id, vcpu->arch.ppr);
2133 break;
a7d80d01
MN
2134#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2135 case KVM_REG_PPC_TFHAR:
2136 *val = get_reg_val(id, vcpu->arch.tfhar);
2137 break;
2138 case KVM_REG_PPC_TFIAR:
2139 *val = get_reg_val(id, vcpu->arch.tfiar);
2140 break;
2141 case KVM_REG_PPC_TEXASR:
2142 *val = get_reg_val(id, vcpu->arch.texasr);
2143 break;
2144 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2145 i = id - KVM_REG_PPC_TM_GPR0;
2146 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2147 break;
2148 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2149 {
2150 int j;
2151 i = id - KVM_REG_PPC_TM_VSR0;
2152 if (i < 32)
2153 for (j = 0; j < TS_FPRWIDTH; j++)
2154 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2155 else {
2156 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2157 val->vval = vcpu->arch.vr_tm.vr[i-32];
2158 else
2159 r = -ENXIO;
2160 }
2161 break;
2162 }
2163 case KVM_REG_PPC_TM_CR:
2164 *val = get_reg_val(id, vcpu->arch.cr_tm);
2165 break;
0d808df0
PM
2166 case KVM_REG_PPC_TM_XER:
2167 *val = get_reg_val(id, vcpu->arch.xer_tm);
2168 break;
a7d80d01
MN
2169 case KVM_REG_PPC_TM_LR:
2170 *val = get_reg_val(id, vcpu->arch.lr_tm);
2171 break;
2172 case KVM_REG_PPC_TM_CTR:
2173 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2174 break;
2175 case KVM_REG_PPC_TM_FPSCR:
2176 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2177 break;
2178 case KVM_REG_PPC_TM_AMR:
2179 *val = get_reg_val(id, vcpu->arch.amr_tm);
2180 break;
2181 case KVM_REG_PPC_TM_PPR:
2182 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2183 break;
2184 case KVM_REG_PPC_TM_VRSAVE:
2185 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2186 break;
2187 case KVM_REG_PPC_TM_VSCR:
2188 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2189 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2190 else
2191 r = -ENXIO;
2192 break;
2193 case KVM_REG_PPC_TM_DSCR:
2194 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2195 break;
2196 case KVM_REG_PPC_TM_TAR:
2197 *val = get_reg_val(id, vcpu->arch.tar_tm);
2198 break;
2199#endif
388cc6e1
PM
2200 case KVM_REG_PPC_ARCH_COMPAT:
2201 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2202 break;
5855564c
PM
2203 case KVM_REG_PPC_DEC_EXPIRY:
2204 *val = get_reg_val(id, vcpu->arch.dec_expires +
2205 vcpu->arch.vcore->tb_offset);
2206 break;
a1f15826
PM
2207 case KVM_REG_PPC_ONLINE:
2208 *val = get_reg_val(id, vcpu->arch.online);
2209 break;
30323418
PM
2210 case KVM_REG_PPC_PTCR:
2211 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2212 break;
31f3438e 2213 default:
a136a8bd 2214 r = -EINVAL;
31f3438e
PM
2215 break;
2216 }
2217
2218 return r;
2219}
2220
3a167bea
AK
2221static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2222 union kvmppc_one_reg *val)
31f3438e 2223{
a136a8bd
PM
2224 int r = 0;
2225 long int i;
55b665b0 2226 unsigned long addr, len;
31f3438e 2227
a136a8bd 2228 switch (id) {
31f3438e 2229 case KVM_REG_PPC_HIOR:
31f3438e 2230 /* Only allow this to be set to zero */
a136a8bd 2231 if (set_reg_val(id, *val))
31f3438e
PM
2232 r = -EINVAL;
2233 break;
a136a8bd
PM
2234 case KVM_REG_PPC_DABR:
2235 vcpu->arch.dabr = set_reg_val(id, *val);
2236 break;
8563bf52
PM
2237 case KVM_REG_PPC_DABRX:
2238 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2239 break;
a136a8bd
PM
2240 case KVM_REG_PPC_DSCR:
2241 vcpu->arch.dscr = set_reg_val(id, *val);
2242 break;
2243 case KVM_REG_PPC_PURR:
2244 vcpu->arch.purr = set_reg_val(id, *val);
2245 break;
2246 case KVM_REG_PPC_SPURR:
2247 vcpu->arch.spurr = set_reg_val(id, *val);
2248 break;
2249 case KVM_REG_PPC_AMR:
2250 vcpu->arch.amr = set_reg_val(id, *val);
2251 break;
2252 case KVM_REG_PPC_UAMOR:
2253 vcpu->arch.uamor = set_reg_val(id, *val);
2254 break;
7e4a145e 2255 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
a136a8bd
PM
2256 i = id - KVM_REG_PPC_MMCR0;
2257 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2258 break;
7e4a145e
AR
2259 case KVM_REG_PPC_MMCR2:
2260 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2261 break;
2262 case KVM_REG_PPC_MMCRA:
2263 vcpu->arch.mmcra = set_reg_val(id, *val);
2264 break;
2265 case KVM_REG_PPC_MMCRS:
2266 vcpu->arch.mmcrs = set_reg_val(id, *val);
2267 break;
5752fe0b
AR
2268 case KVM_REG_PPC_MMCR3:
2269 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2270 break;
a136a8bd
PM
2271 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2272 i = id - KVM_REG_PPC_PMC1;
2273 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2274 break;
b005255e
MN
2275 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2276 i = id - KVM_REG_PPC_SPMC1;
2277 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2278 break;
14941789
PM
2279 case KVM_REG_PPC_SIAR:
2280 vcpu->arch.siar = set_reg_val(id, *val);
2281 break;
2282 case KVM_REG_PPC_SDAR:
2283 vcpu->arch.sdar = set_reg_val(id, *val);
2284 break;
b005255e 2285 case KVM_REG_PPC_SIER:
5752fe0b
AR
2286 vcpu->arch.sier[0] = set_reg_val(id, *val);
2287 break;
2288 case KVM_REG_PPC_SIER2:
2289 vcpu->arch.sier[1] = set_reg_val(id, *val);
2290 break;
2291 case KVM_REG_PPC_SIER3:
2292 vcpu->arch.sier[2] = set_reg_val(id, *val);
a8bd19ef 2293 break;
b005255e
MN
2294 case KVM_REG_PPC_IAMR:
2295 vcpu->arch.iamr = set_reg_val(id, *val);
2296 break;
b005255e
MN
2297 case KVM_REG_PPC_PSPB:
2298 vcpu->arch.pspb = set_reg_val(id, *val);
2299 break;
b005255e
MN
2300 case KVM_REG_PPC_DPDES:
2301 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2302 break;
88b02cf9
PM
2303 case KVM_REG_PPC_VTB:
2304 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2305 break;
b005255e 2306 case KVM_REG_PPC_DAWR:
122954ed 2307 vcpu->arch.dawr0 = set_reg_val(id, *val);
b005255e
MN
2308 break;
2309 case KVM_REG_PPC_DAWRX:
122954ed 2310 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
b005255e 2311 break;
bd1de1a0
RB
2312 case KVM_REG_PPC_DAWR1:
2313 vcpu->arch.dawr1 = set_reg_val(id, *val);
2314 break;
2315 case KVM_REG_PPC_DAWRX1:
2316 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2317 break;
b005255e
MN
2318 case KVM_REG_PPC_CIABR:
2319 vcpu->arch.ciabr = set_reg_val(id, *val);
2320 /* Don't allow setting breakpoints in hypervisor code */
2321 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2322 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2323 break;
b005255e
MN
2324 case KVM_REG_PPC_CSIGR:
2325 vcpu->arch.csigr = set_reg_val(id, *val);
2326 break;
2327 case KVM_REG_PPC_TACR:
2328 vcpu->arch.tacr = set_reg_val(id, *val);
2329 break;
2330 case KVM_REG_PPC_TCSCR:
2331 vcpu->arch.tcscr = set_reg_val(id, *val);
2332 break;
2333 case KVM_REG_PPC_PID:
2334 vcpu->arch.pid = set_reg_val(id, *val);
2335 break;
2336 case KVM_REG_PPC_ACOP:
2337 vcpu->arch.acop = set_reg_val(id, *val);
2338 break;
2339 case KVM_REG_PPC_WORT:
2340 vcpu->arch.wort = set_reg_val(id, *val);
a8bd19ef 2341 break;
e9cf1e08
PM
2342 case KVM_REG_PPC_TIDR:
2343 vcpu->arch.tid = set_reg_val(id, *val);
2344 break;
2345 case KVM_REG_PPC_PSSCR:
2346 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2347 break;
55b665b0
PM
2348 case KVM_REG_PPC_VPA_ADDR:
2349 addr = set_reg_val(id, *val);
2350 r = -EINVAL;
2351 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2352 vcpu->arch.dtl.next_gpa))
2353 break;
2354 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2355 break;
2356 case KVM_REG_PPC_VPA_SLB:
2357 addr = val->vpaval.addr;
2358 len = val->vpaval.length;
2359 r = -EINVAL;
2360 if (addr && !vcpu->arch.vpa.next_gpa)
2361 break;
2362 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2363 break;
2364 case KVM_REG_PPC_VPA_DTL:
2365 addr = val->vpaval.addr;
2366 len = val->vpaval.length;
2367 r = -EINVAL;
9f8c8c78
PM
2368 if (addr && (len < sizeof(struct dtl_entry) ||
2369 !vcpu->arch.vpa.next_gpa))
55b665b0
PM
2370 break;
2371 len -= len % sizeof(struct dtl_entry);
2372 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2373 break;
93b0f4dc
PM
2374 case KVM_REG_PPC_TB_OFFSET:
2375 /* round up to multiple of 2^24 */
2376 vcpu->arch.vcore->tb_offset =
2377 ALIGN(set_reg_val(id, *val), 1UL << 24);
2378 break;
a0144e2a 2379 case KVM_REG_PPC_LPCR:
a0840240
AK
2380 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2381 break;
2382 case KVM_REG_PPC_LPCR_64:
2383 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
a0144e2a 2384 break;
4b8473c9
PM
2385 case KVM_REG_PPC_PPR:
2386 vcpu->arch.ppr = set_reg_val(id, *val);
2387 break;
a7d80d01
MN
2388#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2389 case KVM_REG_PPC_TFHAR:
2390 vcpu->arch.tfhar = set_reg_val(id, *val);
2391 break;
2392 case KVM_REG_PPC_TFIAR:
2393 vcpu->arch.tfiar = set_reg_val(id, *val);
2394 break;
2395 case KVM_REG_PPC_TEXASR:
2396 vcpu->arch.texasr = set_reg_val(id, *val);
2397 break;
2398 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2399 i = id - KVM_REG_PPC_TM_GPR0;
2400 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2401 break;
2402 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2403 {
2404 int j;
2405 i = id - KVM_REG_PPC_TM_VSR0;
2406 if (i < 32)
2407 for (j = 0; j < TS_FPRWIDTH; j++)
2408 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2409 else
2410 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2411 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2412 else
2413 r = -ENXIO;
2414 break;
2415 }
2416 case KVM_REG_PPC_TM_CR:
2417 vcpu->arch.cr_tm = set_reg_val(id, *val);
2418 break;
0d808df0
PM
2419 case KVM_REG_PPC_TM_XER:
2420 vcpu->arch.xer_tm = set_reg_val(id, *val);
2421 break;
a7d80d01
MN
2422 case KVM_REG_PPC_TM_LR:
2423 vcpu->arch.lr_tm = set_reg_val(id, *val);
2424 break;
2425 case KVM_REG_PPC_TM_CTR:
2426 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2427 break;
2428 case KVM_REG_PPC_TM_FPSCR:
2429 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2430 break;
2431 case KVM_REG_PPC_TM_AMR:
2432 vcpu->arch.amr_tm = set_reg_val(id, *val);
2433 break;
2434 case KVM_REG_PPC_TM_PPR:
2435 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2436 break;
2437 case KVM_REG_PPC_TM_VRSAVE:
2438 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2439 break;
2440 case KVM_REG_PPC_TM_VSCR:
2441 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2442 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2443 else
2444 r = - ENXIO;
2445 break;
2446 case KVM_REG_PPC_TM_DSCR:
2447 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2448 break;
2449 case KVM_REG_PPC_TM_TAR:
2450 vcpu->arch.tar_tm = set_reg_val(id, *val);
2451 break;
2452#endif
388cc6e1
PM
2453 case KVM_REG_PPC_ARCH_COMPAT:
2454 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2455 break;
5855564c
PM
2456 case KVM_REG_PPC_DEC_EXPIRY:
2457 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2458 vcpu->arch.vcore->tb_offset;
2459 break;
a1f15826 2460 case KVM_REG_PPC_ONLINE:
7aa15842
PM
2461 i = set_reg_val(id, *val);
2462 if (i && !vcpu->arch.online)
2463 atomic_inc(&vcpu->arch.vcore->online_count);
2464 else if (!i && vcpu->arch.online)
2465 atomic_dec(&vcpu->arch.vcore->online_count);
2466 vcpu->arch.online = i;
a1f15826 2467 break;
30323418
PM
2468 case KVM_REG_PPC_PTCR:
2469 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2470 break;
31f3438e 2471 default:
a136a8bd 2472 r = -EINVAL;
31f3438e
PM
2473 break;
2474 }
2475
2476 return r;
2477}
2478
45c940ba
PM
2479/*
2480 * On POWER9, threads are independent and can be in different partitions.
2481 * Therefore we consider each thread to be a subcore.
2482 * There is a restriction that all threads have to be in the same
2483 * MMU mode (radix or HPT), unfortunately, but since we only support
2484 * HPT guests on a HPT host so far, that isn't an impediment yet.
2485 */
516f7898 2486static int threads_per_vcore(struct kvm *kvm)
45c940ba 2487{
aaae8c79 2488 if (cpu_has_feature(CPU_FTR_ARCH_300))
45c940ba
PM
2489 return 1;
2490 return threads_per_subcore;
2491}
2492
1e175d2e 2493static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
de9bdd1a
SS
2494{
2495 struct kvmppc_vcore *vcore;
2496
2497 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2498
2499 if (vcore == NULL)
2500 return NULL;
2501
de9bdd1a 2502 spin_lock_init(&vcore->lock);
2711e248 2503 spin_lock_init(&vcore->stoltb_lock);
da4ad88c 2504 rcuwait_init(&vcore->wait);
de9bdd1a
SS
2505 vcore->preempt_tb = TB_NIL;
2506 vcore->lpcr = kvm->arch.lpcr;
1e175d2e 2507 vcore->first_vcpuid = id;
de9bdd1a 2508 vcore->kvm = kvm;
ec257165 2509 INIT_LIST_HEAD(&vcore->preempt_list);
de9bdd1a
SS
2510
2511 return vcore;
2512}
2513
b6c295df
PM
2514#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2515static struct debugfs_timings_element {
2516 const char *name;
2517 size_t offset;
2518} timings[] = {
2519 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2520 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2521 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2522 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2523 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2524};
2525
4bb817ed 2526#define N_TIMINGS (ARRAY_SIZE(timings))
b6c295df
PM
2527
2528struct debugfs_timings_state {
2529 struct kvm_vcpu *vcpu;
2530 unsigned int buflen;
2531 char buf[N_TIMINGS * 100];
2532};
2533
2534static int debugfs_timings_open(struct inode *inode, struct file *file)
2535{
2536 struct kvm_vcpu *vcpu = inode->i_private;
2537 struct debugfs_timings_state *p;
2538
2539 p = kzalloc(sizeof(*p), GFP_KERNEL);
2540 if (!p)
2541 return -ENOMEM;
2542
2543 kvm_get_kvm(vcpu->kvm);
2544 p->vcpu = vcpu;
2545 file->private_data = p;
2546
2547 return nonseekable_open(inode, file);
2548}
2549
2550static int debugfs_timings_release(struct inode *inode, struct file *file)
2551{
2552 struct debugfs_timings_state *p = file->private_data;
2553
2554 kvm_put_kvm(p->vcpu->kvm);
2555 kfree(p);
2556 return 0;
2557}
2558
2559static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2560 size_t len, loff_t *ppos)
2561{
2562 struct debugfs_timings_state *p = file->private_data;
2563 struct kvm_vcpu *vcpu = p->vcpu;
2564 char *s, *buf_end;
2565 struct kvmhv_tb_accumulator tb;
2566 u64 count;
2567 loff_t pos;
2568 ssize_t n;
2569 int i, loops;
2570 bool ok;
2571
2572 if (!p->buflen) {
2573 s = p->buf;
2574 buf_end = s + sizeof(p->buf);
2575 for (i = 0; i < N_TIMINGS; ++i) {
2576 struct kvmhv_tb_accumulator *acc;
2577
2578 acc = (struct kvmhv_tb_accumulator *)
2579 ((unsigned long)vcpu + timings[i].offset);
2580 ok = false;
2581 for (loops = 0; loops < 1000; ++loops) {
2582 count = acc->seqcount;
2583 if (!(count & 1)) {
2584 smp_rmb();
2585 tb = *acc;
2586 smp_rmb();
2587 if (count == acc->seqcount) {
2588 ok = true;
2589 break;
2590 }
2591 }
2592 udelay(1);
2593 }
2594 if (!ok)
2595 snprintf(s, buf_end - s, "%s: stuck\n",
2596 timings[i].name);
2597 else
2598 snprintf(s, buf_end - s,
2599 "%s: %llu %llu %llu %llu\n",
2600 timings[i].name, count / 2,
2601 tb_to_ns(tb.tb_total),
2602 tb_to_ns(tb.tb_min),
2603 tb_to_ns(tb.tb_max));
2604 s += strlen(s);
2605 }
2606 p->buflen = s - p->buf;
2607 }
2608
2609 pos = *ppos;
2610 if (pos >= p->buflen)
2611 return 0;
2612 if (len > p->buflen - pos)
2613 len = p->buflen - pos;
2614 n = copy_to_user(buf, p->buf + pos, len);
2615 if (n) {
2616 if (n == len)
2617 return -EFAULT;
2618 len -= n;
2619 }
2620 *ppos = pos + len;
2621 return len;
2622}
2623
2624static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2625 size_t len, loff_t *ppos)
2626{
2627 return -EACCES;
2628}
2629
2630static const struct file_operations debugfs_timings_ops = {
2631 .owner = THIS_MODULE,
2632 .open = debugfs_timings_open,
2633 .release = debugfs_timings_release,
2634 .read = debugfs_timings_read,
2635 .write = debugfs_timings_write,
2636 .llseek = generic_file_llseek,
2637};
2638
2639/* Create a debugfs directory for the vcpu */
2640static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2641{
2642 char buf[16];
2643 struct kvm *kvm = vcpu->kvm;
2644
2645 snprintf(buf, sizeof(buf), "vcpu%u", id);
b6c295df 2646 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
c4fd527f
GKH
2647 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2648 &debugfs_timings_ops);
b6c295df
PM
2649}
2650
2651#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2652static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2653{
2654}
2655#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2656
ff030fdf 2657static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
de56a948 2658{
3c313524 2659 int err;
371fefd6
PM
2660 int core;
2661 struct kvmppc_vcore *vcore;
ff030fdf
SC
2662 struct kvm *kvm;
2663 unsigned int id;
de56a948 2664
ff030fdf
SC
2665 kvm = vcpu->kvm;
2666 id = vcpu->vcpu_id;
de56a948
PM
2667
2668 vcpu->arch.shared = &vcpu->arch.shregs;
5deb8e7a
AG
2669#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2670 /*
2671 * The shared struct is never shared on HV,
2672 * so we can always use host endianness
2673 */
2674#ifdef __BIG_ENDIAN__
2675 vcpu->arch.shared_big_endian = true;
2676#else
2677 vcpu->arch.shared_big_endian = false;
2678#endif
2679#endif
de56a948
PM
2680 vcpu->arch.mmcr[0] = MMCR0_FC;
2681 vcpu->arch.ctrl = CTRL_RUNLATCH;
2682 /* default to host PVR, since we can't spoof it */
3a167bea 2683 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2e25aa5f 2684 spin_lock_init(&vcpu->arch.vpa_update_lock);
c7b67670
PM
2685 spin_lock_init(&vcpu->arch.tbacct_lock);
2686 vcpu->arch.busy_preempt = TB_NIL;
d682916a 2687 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
de56a948 2688
769377f7
PM
2689 /*
2690 * Set the default HFSCR for the guest from the host value.
2691 * This value is only used on POWER9.
57900694 2692 * On POWER9, we want to virtualize the doorbell facility, so we
f3c99f97
PM
2693 * don't set the HFSCR_MSGP bit, and that causes those instructions
2694 * to trap and then we emulate them.
769377f7 2695 */
f3c99f97 2696 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
4cb4ade1 2697 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
f3c99f97
PM
2698 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2699 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
bd31ecf4 2700#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
f3c99f97
PM
2701 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2702 vcpu->arch.hfscr |= HFSCR_TM;
bd31ecf4 2703#endif
f3c99f97
PM
2704 }
2705 if (cpu_has_feature(CPU_FTR_TM_COMP))
4bb3c7a0 2706 vcpu->arch.hfscr |= HFSCR_TM;
769377f7 2707
de56a948
PM
2708 kvmppc_mmu_book3s_hv_init(vcpu);
2709
8455d79e 2710 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
371fefd6
PM
2711
2712 init_waitqueue_head(&vcpu->arch.cpu_run);
2713
2714 mutex_lock(&kvm->lock);
3c313524
PM
2715 vcore = NULL;
2716 err = -EINVAL;
1e175d2e 2717 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
b5c6f760
PM
2718 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2719 pr_devel("KVM: VCPU ID too high\n");
2720 core = KVM_MAX_VCORES;
2721 } else {
2722 BUG_ON(kvm->arch.smt_mode != 1);
2723 core = kvmppc_pack_vcpu_id(kvm, id);
2724 }
1e175d2e
SB
2725 } else {
2726 core = id / kvm->arch.smt_mode;
2727 }
3c313524
PM
2728 if (core < KVM_MAX_VCORES) {
2729 vcore = kvm->arch.vcores[core];
1e175d2e
SB
2730 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2731 pr_devel("KVM: collision on id %u", id);
2732 vcore = NULL;
2733 } else if (!vcore) {
0d4ee88d
PM
2734 /*
2735 * Take mmu_setup_lock for mutual exclusion
2736 * with kvmppc_update_lpcr().
2737 */
3c313524 2738 err = -ENOMEM;
1e175d2e
SB
2739 vcore = kvmppc_vcore_create(kvm,
2740 id & ~(kvm->arch.smt_mode - 1));
0d4ee88d 2741 mutex_lock(&kvm->arch.mmu_setup_lock);
3c313524
PM
2742 kvm->arch.vcores[core] = vcore;
2743 kvm->arch.online_vcores++;
0d4ee88d 2744 mutex_unlock(&kvm->arch.mmu_setup_lock);
3c313524 2745 }
371fefd6
PM
2746 }
2747 mutex_unlock(&kvm->lock);
2748
2749 if (!vcore)
ff030fdf 2750 return err;
371fefd6
PM
2751
2752 spin_lock(&vcore->lock);
2753 ++vcore->num_threads;
371fefd6
PM
2754 spin_unlock(&vcore->lock);
2755 vcpu->arch.vcore = vcore;
e0b7ec05 2756 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
ec257165 2757 vcpu->arch.thread_cpu = -1;
a29ebeaf 2758 vcpu->arch.prev_cpu = -1;
371fefd6 2759
af8f38b3
AG
2760 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2761 kvmppc_sanity_check(vcpu);
2762
b6c295df
PM
2763 debugfs_vcpu_init(vcpu, id);
2764
c50bfbdc 2765 return 0;
de56a948
PM
2766}
2767
3c313524
PM
2768static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2769 unsigned long flags)
2770{
2771 int err;
57900694 2772 int esmt = 0;
3c313524
PM
2773
2774 if (flags)
2775 return -EINVAL;
2776 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2777 return -EINVAL;
2778 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2779 /*
2780 * On POWER8 (or POWER7), the threading mode is "strict",
2781 * so we pack smt_mode vcpus per vcore.
2782 */
2783 if (smt_mode > threads_per_subcore)
2784 return -EINVAL;
2785 } else {
2786 /*
2787 * On POWER9, the threading mode is "loose",
2788 * so each vcpu gets its own vcore.
2789 */
57900694 2790 esmt = smt_mode;
3c313524
PM
2791 smt_mode = 1;
2792 }
2793 mutex_lock(&kvm->lock);
2794 err = -EBUSY;
2795 if (!kvm->arch.online_vcores) {
2796 kvm->arch.smt_mode = smt_mode;
57900694 2797 kvm->arch.emul_smt_mode = esmt;
3c313524
PM
2798 err = 0;
2799 }
2800 mutex_unlock(&kvm->lock);
2801
2802 return err;
2803}
2804
c35635ef
PM
2805static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2806{
2807 if (vpa->pinned_addr)
2808 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2809 vpa->dirty);
2810}
2811
3a167bea 2812static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
de56a948 2813{
2e25aa5f 2814 spin_lock(&vcpu->arch.vpa_update_lock);
c35635ef
PM
2815 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2816 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2817 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2e25aa5f 2818 spin_unlock(&vcpu->arch.vpa_update_lock);
de56a948
PM
2819}
2820
3a167bea
AK
2821static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2822{
2823 /* Indicate we want to get back into the guest */
2824 return 1;
2825}
2826
19ccb76a 2827static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
371fefd6 2828{
19ccb76a 2829 unsigned long dec_nsec, now;
371fefd6 2830
19ccb76a
PM
2831 now = get_tb();
2832 if (now > vcpu->arch.dec_expires) {
2833 /* decrementer has already gone negative */
2834 kvmppc_core_queue_dec(vcpu);
7e28e60e 2835 kvmppc_core_prepare_to_enter(vcpu);
19ccb76a 2836 return;
371fefd6 2837 }
c43befca 2838 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
8b0e1953 2839 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
19ccb76a 2840 vcpu->arch.timer_running = 1;
371fefd6
PM
2841}
2842
8b24e69f 2843extern int __kvmppc_vcore_entry(void);
de56a948 2844
371fefd6
PM
2845static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2846 struct kvm_vcpu *vcpu)
de56a948 2847{
c7b67670
PM
2848 u64 now;
2849
371fefd6
PM
2850 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2851 return;
bf3d32e1 2852 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
2853 now = mftb();
2854 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2855 vcpu->arch.stolen_logged;
2856 vcpu->arch.busy_preempt = now;
2857 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
bf3d32e1 2858 spin_unlock_irq(&vcpu->arch.tbacct_lock);
371fefd6 2859 --vc->n_runnable;
7b5f8272 2860 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
371fefd6
PM
2861}
2862
f0888f70
PM
2863static int kvmppc_grab_hwthread(int cpu)
2864{
2865 struct paca_struct *tpaca;
b754c739 2866 long timeout = 10000;
f0888f70 2867
d2e60075 2868 tpaca = paca_ptrs[cpu];
f0888f70
PM
2869
2870 /* Ensure the thread won't go into the kernel if it wakes */
7b444c67 2871 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c 2872 tpaca->kvm_hstate.kvm_vcore = NULL;
5d5b99cd
PM
2873 tpaca->kvm_hstate.napping = 0;
2874 smp_wmb();
2875 tpaca->kvm_hstate.hwthread_req = 1;
f0888f70
PM
2876
2877 /*
2878 * If the thread is already executing in the kernel (e.g. handling
2879 * a stray interrupt), wait for it to get back to nap mode.
2880 * The smp_mb() is to ensure that our setting of hwthread_req
2881 * is visible before we look at hwthread_state, so if this
2882 * races with the code at system_reset_pSeries and the thread
2883 * misses our setting of hwthread_req, we are sure to see its
2884 * setting of hwthread_state, and vice versa.
2885 */
2886 smp_mb();
2887 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2888 if (--timeout <= 0) {
2889 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2890 return -EBUSY;
2891 }
2892 udelay(1);
2893 }
2894 return 0;
2895}
2896
2897static void kvmppc_release_hwthread(int cpu)
2898{
2899 struct paca_struct *tpaca;
2900
d2e60075 2901 tpaca = paca_ptrs[cpu];
31a4d448 2902 tpaca->kvm_hstate.hwthread_req = 0;
f0888f70 2903 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c
PM
2904 tpaca->kvm_hstate.kvm_vcore = NULL;
2905 tpaca->kvm_hstate.kvm_split_mode = NULL;
f0888f70
PM
2906}
2907
a29ebeaf
PM
2908static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2909{
9d0b048d
SJS
2910 struct kvm_nested_guest *nested = vcpu->arch.nested;
2911 cpumask_t *cpu_in_guest;
a29ebeaf
PM
2912 int i;
2913
77bbbc0c 2914 cpu = cpu_first_tlb_thread_sibling(cpu);
9d0b048d
SJS
2915 if (nested) {
2916 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2917 cpu_in_guest = &nested->cpu_in_guest;
2918 } else {
2919 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2920 cpu_in_guest = &kvm->arch.cpu_in_guest;
2921 }
a29ebeaf
PM
2922 /*
2923 * Make sure setting of bit in need_tlb_flush precedes
2924 * testing of cpu_in_guest bits. The matching barrier on
2925 * the other side is the first smp_mb() in kvmppc_run_core().
2926 */
2927 smp_mb();
77bbbc0c
SJS
2928 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2929 i += cpu_tlb_thread_sibling_step())
2930 if (cpumask_test_cpu(i, cpu_in_guest))
2931 smp_call_function_single(i, do_nothing, NULL, 1);
a29ebeaf
PM
2932}
2933
8b24e69f
PM
2934static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2935{
9d0b048d 2936 struct kvm_nested_guest *nested = vcpu->arch.nested;
8b24e69f 2937 struct kvm *kvm = vcpu->kvm;
9d0b048d
SJS
2938 int prev_cpu;
2939
2940 if (!cpu_has_feature(CPU_FTR_HVMODE))
2941 return;
2942
2943 if (nested)
2944 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2945 else
2946 prev_cpu = vcpu->arch.prev_cpu;
8b24e69f
PM
2947
2948 /*
2949 * With radix, the guest can do TLB invalidations itself,
2950 * and it could choose to use the local form (tlbiel) if
2951 * it is invalidating a translation that has only ever been
2952 * used on one vcpu. However, that doesn't mean it has
2953 * only ever been used on one physical cpu, since vcpus
2954 * can move around between pcpus. To cope with this, when
2955 * a vcpu moves from one pcpu to another, we need to tell
2956 * any vcpus running on the same core as this vcpu previously
2957 * ran to flush the TLB. The TLB is shared between threads,
2958 * so we use a single bit in .need_tlb_flush for all 4 threads.
2959 */
9d0b048d
SJS
2960 if (prev_cpu != pcpu) {
2961 if (prev_cpu >= 0 &&
77bbbc0c
SJS
2962 cpu_first_tlb_thread_sibling(prev_cpu) !=
2963 cpu_first_tlb_thread_sibling(pcpu))
9d0b048d
SJS
2964 radix_flush_cpu(kvm, prev_cpu, vcpu);
2965 if (nested)
2966 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2967 else
2968 vcpu->arch.prev_cpu = pcpu;
2969 }
2970}
2971
b4deba5c 2972static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
371fefd6
PM
2973{
2974 int cpu;
2975 struct paca_struct *tpaca;
a29ebeaf 2976 struct kvm *kvm = vc->kvm;
371fefd6 2977
b4deba5c
PM
2978 cpu = vc->pcpu;
2979 if (vcpu) {
2980 if (vcpu->arch.timer_running) {
2981 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2982 vcpu->arch.timer_running = 0;
2983 }
2984 cpu += vcpu->arch.ptid;
898b25b2 2985 vcpu->cpu = vc->pcpu;
b4deba5c 2986 vcpu->arch.thread_cpu = cpu;
a29ebeaf 2987 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
19ccb76a 2988 }
d2e60075 2989 tpaca = paca_ptrs[cpu];
5d5b99cd 2990 tpaca->kvm_hstate.kvm_vcpu = vcpu;
898b25b2 2991 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
4bb3c7a0 2992 tpaca->kvm_hstate.fake_suspend = 0;
ec257165 2993 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
371fefd6 2994 smp_wmb();
898b25b2 2995 tpaca->kvm_hstate.kvm_vcore = vc;
5d5b99cd 2996 if (cpu != smp_processor_id())
66feed61 2997 kvmppc_ipi_thread(cpu);
371fefd6 2998}
de56a948 2999
516f7898 3000static void kvmppc_wait_for_nap(int n_threads)
371fefd6 3001{
5d5b99cd
PM
3002 int cpu = smp_processor_id();
3003 int i, loops;
371fefd6 3004
45c940ba
PM
3005 if (n_threads <= 1)
3006 return;
5d5b99cd
PM
3007 for (loops = 0; loops < 1000000; ++loops) {
3008 /*
3009 * Check if all threads are finished.
b4deba5c 3010 * We set the vcore pointer when starting a thread
5d5b99cd 3011 * and the thread clears it when finished, so we look
b4deba5c 3012 * for any threads that still have a non-NULL vcore ptr.
5d5b99cd 3013 */
45c940ba 3014 for (i = 1; i < n_threads; ++i)
d2e60075 3015 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
5d5b99cd 3016 break;
45c940ba 3017 if (i == n_threads) {
5d5b99cd
PM
3018 HMT_medium();
3019 return;
371fefd6 3020 }
5d5b99cd 3021 HMT_low();
371fefd6
PM
3022 }
3023 HMT_medium();
45c940ba 3024 for (i = 1; i < n_threads; ++i)
d2e60075 3025 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
5d5b99cd 3026 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
371fefd6
PM
3027}
3028
3029/*
3030 * Check that we are on thread 0 and that any other threads in
7b444c67
PM
3031 * this core are off-line. Then grab the threads so they can't
3032 * enter the kernel.
371fefd6
PM
3033 */
3034static int on_primary_thread(void)
3035{
3036 int cpu = smp_processor_id();
3102f784 3037 int thr;
371fefd6 3038
3102f784
ME
3039 /* Are we on a primary subcore? */
3040 if (cpu_thread_in_subcore(cpu))
371fefd6 3041 return 0;
3102f784
ME
3042
3043 thr = 0;
3044 while (++thr < threads_per_subcore)
371fefd6
PM
3045 if (cpu_online(cpu + thr))
3046 return 0;
7b444c67
PM
3047
3048 /* Grab all hw threads so they can't go into the kernel */
3102f784 3049 for (thr = 1; thr < threads_per_subcore; ++thr) {
7b444c67
PM
3050 if (kvmppc_grab_hwthread(cpu + thr)) {
3051 /* Couldn't grab one; let the others go */
3052 do {
3053 kvmppc_release_hwthread(cpu + thr);
3054 } while (--thr > 0);
3055 return 0;
3056 }
3057 }
371fefd6
PM
3058 return 1;
3059}
3060
ec257165
PM
3061/*
3062 * A list of virtual cores for each physical CPU.
3063 * These are vcores that could run but their runner VCPU tasks are
3064 * (or may be) preempted.
3065 */
3066struct preempted_vcore_list {
3067 struct list_head list;
3068 spinlock_t lock;
3069};
3070
3071static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3072
3073static void init_vcore_lists(void)
3074{
3075 int cpu;
3076
3077 for_each_possible_cpu(cpu) {
3078 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3079 spin_lock_init(&lp->lock);
3080 INIT_LIST_HEAD(&lp->list);
3081 }
3082}
3083
3084static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3085{
3086 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3087
3088 vc->vcore_state = VCORE_PREEMPT;
3089 vc->pcpu = smp_processor_id();
516f7898 3090 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
ec257165
PM
3091 spin_lock(&lp->lock);
3092 list_add_tail(&vc->preempt_list, &lp->list);
3093 spin_unlock(&lp->lock);
3094 }
3095
3096 /* Start accumulating stolen time */
3097 kvmppc_core_start_stolen(vc);
3098}
3099
3100static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3101{
402813fe 3102 struct preempted_vcore_list *lp;
ec257165
PM
3103
3104 kvmppc_core_end_stolen(vc);
3105 if (!list_empty(&vc->preempt_list)) {
402813fe 3106 lp = &per_cpu(preempted_vcores, vc->pcpu);
ec257165
PM
3107 spin_lock(&lp->lock);
3108 list_del_init(&vc->preempt_list);
3109 spin_unlock(&lp->lock);
3110 }
3111 vc->vcore_state = VCORE_INACTIVE;
3112}
3113
b4deba5c
PM
3114/*
3115 * This stores information about the virtual cores currently
3116 * assigned to a physical core.
3117 */
ec257165 3118struct core_info {
b4deba5c
PM
3119 int n_subcores;
3120 int max_subcore_threads;
ec257165 3121 int total_threads;
b4deba5c 3122 int subcore_threads[MAX_SUBCORES];
898b25b2 3123 struct kvmppc_vcore *vc[MAX_SUBCORES];
ec257165
PM
3124};
3125
b4deba5c
PM
3126/*
3127 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
516f7898 3128 * respectively in 2-way micro-threading (split-core) mode on POWER8.
b4deba5c
PM
3129 */
3130static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3131
ec257165
PM
3132static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3133{
3134 memset(cip, 0, sizeof(*cip));
b4deba5c
PM
3135 cip->n_subcores = 1;
3136 cip->max_subcore_threads = vc->num_threads;
ec257165 3137 cip->total_threads = vc->num_threads;
b4deba5c 3138 cip->subcore_threads[0] = vc->num_threads;
898b25b2 3139 cip->vc[0] = vc;
b4deba5c
PM
3140}
3141
3142static bool subcore_config_ok(int n_subcores, int n_threads)
3143{
516f7898 3144 /*
00608e1f
PM
3145 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3146 * split-core mode, with one thread per subcore.
516f7898
PM
3147 */
3148 if (cpu_has_feature(CPU_FTR_ARCH_300))
3149 return n_subcores <= 4 && n_threads == 1;
3150
3151 /* On POWER8, can only dynamically split if unsplit to begin with */
b4deba5c
PM
3152 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3153 return false;
3154 if (n_subcores > MAX_SUBCORES)
3155 return false;
3156 if (n_subcores > 1) {
3157 if (!(dynamic_mt_modes & 2))
3158 n_subcores = 4;
3159 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3160 return false;
3161 }
3162
3163 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
ec257165
PM
3164}
3165
898b25b2 3166static void init_vcore_to_run(struct kvmppc_vcore *vc)
ec257165 3167{
ec257165
PM
3168 vc->entry_exit_map = 0;
3169 vc->in_guest = 0;
3170 vc->napping_threads = 0;
3171 vc->conferring_threads = 0;
57b8daa7 3172 vc->tb_offset_applied = 0;
ec257165
PM
3173}
3174
b4deba5c
PM
3175static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3176{
3177 int n_threads = vc->num_threads;
3178 int sub;
3179
3180 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3181 return false;
3182
aa227864
PM
3183 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3184 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3185 return false;
3186
b4deba5c
PM
3187 if (n_threads < cip->max_subcore_threads)
3188 n_threads = cip->max_subcore_threads;
b009031f 3189 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
b4deba5c 3190 return false;
b009031f 3191 cip->max_subcore_threads = n_threads;
b4deba5c
PM
3192
3193 sub = cip->n_subcores;
3194 ++cip->n_subcores;
3195 cip->total_threads += vc->num_threads;
3196 cip->subcore_threads[sub] = vc->num_threads;
898b25b2
PM
3197 cip->vc[sub] = vc;
3198 init_vcore_to_run(vc);
3199 list_del_init(&vc->preempt_list);
b4deba5c
PM
3200
3201 return true;
3202}
3203
b4deba5c
PM
3204/*
3205 * Work out whether it is possible to piggyback the execution of
3206 * vcore *pvc onto the execution of the other vcores described in *cip.
3207 */
3208static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3209 int target_threads)
3210{
b4deba5c
PM
3211 if (cip->total_threads + pvc->num_threads > target_threads)
3212 return false;
b4deba5c 3213
b009031f 3214 return can_dynamic_split(pvc, cip);
b4deba5c
PM
3215}
3216
d911f0be
PM
3217static void prepare_threads(struct kvmppc_vcore *vc)
3218{
7b5f8272
SJS
3219 int i;
3220 struct kvm_vcpu *vcpu;
d911f0be 3221
7b5f8272 3222 for_each_runnable_thread(i, vcpu, vc) {
d911f0be
PM
3223 if (signal_pending(vcpu->arch.run_task))
3224 vcpu->arch.ret = -EINTR;
3225 else if (vcpu->arch.vpa.update_pending ||
3226 vcpu->arch.slb_shadow.update_pending ||
3227 vcpu->arch.dtl.update_pending)
3228 vcpu->arch.ret = RESUME_GUEST;
3229 else
3230 continue;
3231 kvmppc_remove_runnable(vc, vcpu);
3232 wake_up(&vcpu->arch.cpu_run);
3233 }
3234}
3235
ec257165
PM
3236static void collect_piggybacks(struct core_info *cip, int target_threads)
3237{
3238 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3239 struct kvmppc_vcore *pvc, *vcnext;
3240
3241 spin_lock(&lp->lock);
3242 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3243 if (!spin_trylock(&pvc->lock))
3244 continue;
3245 prepare_threads(pvc);
d28eafc5 3246 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
ec257165
PM
3247 list_del_init(&pvc->preempt_list);
3248 if (pvc->runner == NULL) {
3249 pvc->vcore_state = VCORE_INACTIVE;
3250 kvmppc_core_end_stolen(pvc);
3251 }
3252 spin_unlock(&pvc->lock);
3253 continue;
3254 }
3255 if (!can_piggyback(pvc, cip, target_threads)) {
3256 spin_unlock(&pvc->lock);
3257 continue;
3258 }
3259 kvmppc_core_end_stolen(pvc);
3260 pvc->vcore_state = VCORE_PIGGYBACK;
3261 if (cip->total_threads >= target_threads)
3262 break;
3263 }
3264 spin_unlock(&lp->lock);
3265}
3266
d28eafc5 3267static bool recheck_signals_and_mmu(struct core_info *cip)
8b24e69f
PM
3268{
3269 int sub, i;
3270 struct kvm_vcpu *vcpu;
d28eafc5 3271 struct kvmppc_vcore *vc;
8b24e69f 3272
d28eafc5
PM
3273 for (sub = 0; sub < cip->n_subcores; ++sub) {
3274 vc = cip->vc[sub];
3275 if (!vc->kvm->arch.mmu_ready)
3276 return true;
3277 for_each_runnable_thread(i, vcpu, vc)
8b24e69f
PM
3278 if (signal_pending(vcpu->arch.run_task))
3279 return true;
d28eafc5 3280 }
8b24e69f
PM
3281 return false;
3282}
3283
ec257165 3284static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
25fedfca 3285{
7b5f8272 3286 int still_running = 0, i;
25fedfca
PM
3287 u64 now;
3288 long ret;
7b5f8272 3289 struct kvm_vcpu *vcpu;
25fedfca 3290
ec257165 3291 spin_lock(&vc->lock);
25fedfca 3292 now = get_tb();
7b5f8272 3293 for_each_runnable_thread(i, vcpu, vc) {
53655ddd
PM
3294 /*
3295 * It's safe to unlock the vcore in the loop here, because
3296 * for_each_runnable_thread() is safe against removal of
3297 * the vcpu, and the vcore state is VCORE_EXITING here,
3298 * so any vcpus becoming runnable will have their arch.trap
3299 * set to zero and can't actually run in the guest.
3300 */
3301 spin_unlock(&vc->lock);
25fedfca
PM
3302 /* cancel pending dec exception if dec is positive */
3303 if (now < vcpu->arch.dec_expires &&
3304 kvmppc_core_pending_dec(vcpu))
3305 kvmppc_core_dequeue_dec(vcpu);
3306
3307 trace_kvm_guest_exit(vcpu);
3308
3309 ret = RESUME_GUEST;
3310 if (vcpu->arch.trap)
8c99d345 3311 ret = kvmppc_handle_exit_hv(vcpu,
25fedfca
PM
3312 vcpu->arch.run_task);
3313
3314 vcpu->arch.ret = ret;
3315 vcpu->arch.trap = 0;
3316
53655ddd 3317 spin_lock(&vc->lock);
ec257165
PM
3318 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3319 if (vcpu->arch.pending_exceptions)
3320 kvmppc_core_prepare_to_enter(vcpu);
3321 if (vcpu->arch.ceded)
25fedfca 3322 kvmppc_set_timer(vcpu);
ec257165
PM
3323 else
3324 ++still_running;
3325 } else {
25fedfca
PM
3326 kvmppc_remove_runnable(vc, vcpu);
3327 wake_up(&vcpu->arch.cpu_run);
3328 }
3329 }
ec257165 3330 if (!is_master) {
563a1e93 3331 if (still_running > 0) {
ec257165 3332 kvmppc_vcore_preempt(vc);
563a1e93
PM
3333 } else if (vc->runner) {
3334 vc->vcore_state = VCORE_PREEMPT;
3335 kvmppc_core_start_stolen(vc);
3336 } else {
3337 vc->vcore_state = VCORE_INACTIVE;
3338 }
ec257165
PM
3339 if (vc->n_runnable > 0 && vc->runner == NULL) {
3340 /* make sure there's a candidate runner awake */
7b5f8272
SJS
3341 i = -1;
3342 vcpu = next_runnable_thread(vc, &i);
ec257165
PM
3343 wake_up(&vcpu->arch.cpu_run);
3344 }
3345 }
3346 spin_unlock(&vc->lock);
25fedfca
PM
3347}
3348
b8e6a87c
SW
3349/*
3350 * Clear core from the list of active host cores as we are about to
3351 * enter the guest. Only do this if it is the primary thread of the
3352 * core (not if a subcore) that is entering the guest.
3353 */
3f7cd919 3354static inline int kvmppc_clear_host_core(unsigned int cpu)
b8e6a87c
SW
3355{
3356 int core;
3357
3358 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 3359 return 0;
b8e6a87c
SW
3360 /*
3361 * Memory barrier can be omitted here as we will do a smp_wmb()
3362 * later in kvmppc_start_thread and we need ensure that state is
3363 * visible to other CPUs only after we enter guest.
3364 */
3365 core = cpu >> threads_shift;
3366 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3f7cd919 3367 return 0;
b8e6a87c
SW
3368}
3369
3370/*
3371 * Advertise this core as an active host core since we exited the guest
3372 * Only need to do this if it is the primary thread of the core that is
3373 * exiting.
3374 */
3f7cd919 3375static inline int kvmppc_set_host_core(unsigned int cpu)
b8e6a87c
SW
3376{
3377 int core;
3378
3379 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 3380 return 0;
b8e6a87c
SW
3381
3382 /*
3383 * Memory barrier can be omitted here because we do a spin_unlock
3384 * immediately after this which provides the memory barrier.
3385 */
3386 core = cpu >> threads_shift;
3387 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3f7cd919 3388 return 0;
b8e6a87c
SW
3389}
3390
8b24e69f
PM
3391static void set_irq_happened(int trap)
3392{
3393 switch (trap) {
3394 case BOOK3S_INTERRUPT_EXTERNAL:
3395 local_paca->irq_happened |= PACA_IRQ_EE;
3396 break;
3397 case BOOK3S_INTERRUPT_H_DOORBELL:
3398 local_paca->irq_happened |= PACA_IRQ_DBELL;
3399 break;
3400 case BOOK3S_INTERRUPT_HMI:
3401 local_paca->irq_happened |= PACA_IRQ_HMI;
3402 break;
6de6638b
NP
3403 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3404 replay_system_reset();
3405 break;
8b24e69f
PM
3406 }
3407}
3408
371fefd6
PM
3409/*
3410 * Run a set of guest threads on a physical core.
3411 * Called with vc->lock held.
3412 */
66feed61 3413static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
371fefd6 3414{
7b5f8272 3415 struct kvm_vcpu *vcpu;
d911f0be 3416 int i;
2c9097e4 3417 int srcu_idx;
ec257165 3418 struct core_info core_info;
898b25b2 3419 struct kvmppc_vcore *pvc;
b4deba5c
PM
3420 struct kvm_split_mode split_info, *sip;
3421 int split, subcore_size, active;
3422 int sub;
3423 bool thr0_done;
3424 unsigned long cmd_bit, stat_bit;
ec257165
PM
3425 int pcpu, thr;
3426 int target_threads;
45c940ba 3427 int controlled_threads;
8b24e69f 3428 int trap;
516f7898 3429 bool is_power8;
371fefd6 3430
fae5c9f3
NP
3431 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3432 return;
3433
d911f0be
PM
3434 /*
3435 * Remove from the list any threads that have a signal pending
3436 * or need a VPA update done
3437 */
3438 prepare_threads(vc);
3439
3440 /* if the runner is no longer runnable, let the caller pick a new one */
3441 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3442 return;
081f323b
PM
3443
3444 /*
d911f0be 3445 * Initialize *vc.
081f323b 3446 */
898b25b2 3447 init_vcore_to_run(vc);
2711e248 3448 vc->preempt_tb = TB_NIL;
081f323b 3449
45c940ba
PM
3450 /*
3451 * Number of threads that we will be controlling: the same as
3452 * the number of threads per subcore, except on POWER9,
3453 * where it's 1 because the threads are (mostly) independent.
3454 */
516f7898 3455 controlled_threads = threads_per_vcore(vc->kvm);
45c940ba 3456
7b444c67 3457 /*
3102f784
ME
3458 * Make sure we are running on primary threads, and that secondary
3459 * threads are offline. Also check if the number of threads in this
3460 * guest are greater than the current system threads per guest.
7b444c67 3461 */
b1b1697a
NP
3462 if ((controlled_threads > 1) &&
3463 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
7b5f8272 3464 for_each_runnable_thread(i, vcpu, vc) {
7b444c67 3465 vcpu->arch.ret = -EBUSY;
25fedfca
PM
3466 kvmppc_remove_runnable(vc, vcpu);
3467 wake_up(&vcpu->arch.cpu_run);
3468 }
7b444c67
PM
3469 goto out;
3470 }
3471
ec257165
PM
3472 /*
3473 * See if we could run any other vcores on the physical core
3474 * along with this one.
3475 */
3476 init_core_info(&core_info, vc);
3477 pcpu = smp_processor_id();
45c940ba 3478 target_threads = controlled_threads;
ec257165
PM
3479 if (target_smt_mode && target_smt_mode < target_threads)
3480 target_threads = target_smt_mode;
3481 if (vc->num_threads < target_threads)
3482 collect_piggybacks(&core_info, target_threads);
3102f784 3483
8b24e69f
PM
3484 /*
3485 * Hard-disable interrupts, and check resched flag and signals.
3486 * If we need to reschedule or deliver a signal, clean up
3487 * and return without going into the guest(s).
072df813 3488 * If the mmu_ready flag has been cleared, don't go into the
38c53af8 3489 * guest because that means a HPT resize operation is in progress.
8b24e69f
PM
3490 */
3491 local_irq_disable();
3492 hard_irq_disable();
3493 if (lazy_irq_pending() || need_resched() ||
d28eafc5 3494 recheck_signals_and_mmu(&core_info)) {
8b24e69f
PM
3495 local_irq_enable();
3496 vc->vcore_state = VCORE_INACTIVE;
3497 /* Unlock all except the primary vcore */
3498 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3499 pvc = core_info.vc[sub];
3500 /* Put back on to the preempted vcores list */
3501 kvmppc_vcore_preempt(pvc);
3502 spin_unlock(&pvc->lock);
3503 }
3504 for (i = 0; i < controlled_threads; ++i)
3505 kvmppc_release_hwthread(pcpu + i);
3506 return;
3507 }
3508
3509 kvmppc_clear_host_core(pcpu);
3510
b4deba5c
PM
3511 /* Decide on micro-threading (split-core) mode */
3512 subcore_size = threads_per_subcore;
3513 cmd_bit = stat_bit = 0;
3514 split = core_info.n_subcores;
3515 sip = NULL;
fae5c9f3 3516 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
516f7898 3517
b1b1697a 3518 if (split > 1) {
b4deba5c
PM
3519 sip = &split_info;
3520 memset(&split_info, 0, sizeof(split_info));
b4deba5c 3521 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 3522 split_info.vc[sub] = core_info.vc[sub];
516f7898
PM
3523
3524 if (is_power8) {
3525 if (split == 2 && (dynamic_mt_modes & 2)) {
3526 cmd_bit = HID0_POWER8_1TO2LPAR;
3527 stat_bit = HID0_POWER8_2LPARMODE;
3528 } else {
3529 split = 4;
3530 cmd_bit = HID0_POWER8_1TO4LPAR;
3531 stat_bit = HID0_POWER8_4LPARMODE;
3532 }
3533 subcore_size = MAX_SMT_THREADS / split;
3534 split_info.rpr = mfspr(SPRN_RPR);
3535 split_info.pmmar = mfspr(SPRN_PMMAR);
3536 split_info.ldbar = mfspr(SPRN_LDBAR);
3537 split_info.subcore_size = subcore_size;
3538 } else {
3539 split_info.subcore_size = 1;
3540 }
3541
b4deba5c
PM
3542 /* order writes to split_info before kvm_split_mode pointer */
3543 smp_wmb();
3544 }
c0101509
PM
3545
3546 for (thr = 0; thr < controlled_threads; ++thr) {
d2e60075
NP
3547 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3548
d2e60075
NP
3549 paca->kvm_hstate.napping = 0;
3550 paca->kvm_hstate.kvm_split_mode = sip;
c0101509 3551 }
b4deba5c 3552
516f7898 3553 /* Initiate micro-threading (split-core) on POWER8 if required */
b4deba5c
PM
3554 if (cmd_bit) {
3555 unsigned long hid0 = mfspr(SPRN_HID0);
3556
3557 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3558 mb();
3559 mtspr(SPRN_HID0, hid0);
3560 isync();
3561 for (;;) {
3562 hid0 = mfspr(SPRN_HID0);
3563 if (hid0 & stat_bit)
3564 break;
3565 cpu_relax();
ec257165 3566 }
2e25aa5f 3567 }
3102f784 3568
7aa15842
PM
3569 /*
3570 * On POWER8, set RWMR register.
3571 * Since it only affects PURR and SPURR, it doesn't affect
3572 * the host, so we don't save/restore the host value.
3573 */
3574 if (is_power8) {
3575 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3576 int n_online = atomic_read(&vc->online_count);
3577
3578 /*
3579 * Use the 8-thread value if we're doing split-core
3580 * or if the vcore's online count looks bogus.
3581 */
3582 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3583 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3584 rwmr_val = p8_rwmr_values[n_online];
3585 mtspr(SPRN_RWMR, rwmr_val);
3586 }
3587
b4deba5c
PM
3588 /* Start all the threads */
3589 active = 0;
3590 for (sub = 0; sub < core_info.n_subcores; ++sub) {
516f7898 3591 thr = is_power8 ? subcore_thread_map[sub] : sub;
b4deba5c
PM
3592 thr0_done = false;
3593 active |= 1 << thr;
898b25b2
PM
3594 pvc = core_info.vc[sub];
3595 pvc->pcpu = pcpu + thr;
3596 for_each_runnable_thread(i, vcpu, pvc) {
3597 kvmppc_start_thread(vcpu, pvc);
3598 kvmppc_create_dtl_entry(vcpu, pvc);
3599 trace_kvm_guest_enter(vcpu);
3600 if (!vcpu->arch.ptid)
3601 thr0_done = true;
3602 active |= 1 << (thr + vcpu->arch.ptid);
b4deba5c 3603 }
898b25b2
PM
3604 /*
3605 * We need to start the first thread of each subcore
3606 * even if it doesn't have a vcpu.
3607 */
3608 if (!thr0_done)
3609 kvmppc_start_thread(NULL, pvc);
2e25aa5f 3610 }
371fefd6 3611
7f235328
GS
3612 /*
3613 * Ensure that split_info.do_nap is set after setting
3614 * the vcore pointer in the PACA of the secondaries.
3615 */
3616 smp_mb();
7f235328 3617
b4deba5c
PM
3618 /*
3619 * When doing micro-threading, poke the inactive threads as well.
3620 * This gets them to the nap instruction after kvm_do_nap,
3621 * which reduces the time taken to unsplit later.
3622 */
b1b1697a 3623 if (cmd_bit) {
516f7898 3624 split_info.do_nap = 1; /* ask secondaries to nap when done */
b4deba5c
PM
3625 for (thr = 1; thr < threads_per_subcore; ++thr)
3626 if (!(active & (1 << thr)))
3627 kvmppc_ipi_thread(pcpu + thr);
516f7898 3628 }
e0b7ec05 3629
2f12f034 3630 vc->vcore_state = VCORE_RUNNING;
19ccb76a 3631 preempt_disable();
3c78f78a
SW
3632
3633 trace_kvmppc_run_core(vc, 0);
3634
b4deba5c 3635 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 3636 spin_unlock(&core_info.vc[sub]->lock);
de56a948 3637
61bd0f66 3638 guest_enter_irqoff();
2c9097e4 3639
e0b7ec05 3640 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2c9097e4 3641
a4bc64d3
NR
3642 this_cpu_disable_ftrace();
3643
3309bec8
AK
3644 /*
3645 * Interrupts will be enabled once we get into the guest,
3646 * so tell lockdep that we're about to enable interrupts.
3647 */
3648 trace_hardirqs_on();
3649
8b24e69f 3650 trap = __kvmppc_vcore_entry();
de56a948 3651
3309bec8
AK
3652 trace_hardirqs_off();
3653
a4bc64d3
NR
3654 this_cpu_enable_ftrace();
3655
ec257165
PM
3656 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3657
8b24e69f
PM
3658 set_irq_happened(trap);
3659
ec257165 3660 spin_lock(&vc->lock);
371fefd6 3661 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
19ccb76a 3662 vc->vcore_state = VCORE_EXITING;
371fefd6 3663
19ccb76a 3664 /* wait for secondary threads to finish writing their state to memory */
516f7898 3665 kvmppc_wait_for_nap(controlled_threads);
b4deba5c
PM
3666
3667 /* Return to whole-core mode if we split the core earlier */
516f7898 3668 if (cmd_bit) {
b4deba5c
PM
3669 unsigned long hid0 = mfspr(SPRN_HID0);
3670 unsigned long loops = 0;
3671
3672 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3673 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3674 mb();
3675 mtspr(SPRN_HID0, hid0);
3676 isync();
3677 for (;;) {
3678 hid0 = mfspr(SPRN_HID0);
3679 if (!(hid0 & stat_bit))
3680 break;
3681 cpu_relax();
3682 ++loops;
3683 }
b1b1697a 3684 split_info.do_nap = 0;
b4deba5c
PM
3685 }
3686
8b24e69f
PM
3687 kvmppc_set_host_core(pcpu);
3688
11266528
NP
3689 guest_exit_irqoff();
3690
8b24e69f
PM
3691 local_irq_enable();
3692
b4deba5c 3693 /* Let secondaries go back to the offline loop */
45c940ba 3694 for (i = 0; i < controlled_threads; ++i) {
b4deba5c
PM
3695 kvmppc_release_hwthread(pcpu + i);
3696 if (sip && sip->napped[i])
3697 kvmppc_ipi_thread(pcpu + i);
a29ebeaf 3698 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
b4deba5c
PM
3699 }
3700
371fefd6 3701 spin_unlock(&vc->lock);
2c9097e4 3702
371fefd6
PM
3703 /* make sure updates to secondary vcpu structs are visible now */
3704 smp_mb();
de56a948 3705
36ee41d1
PM
3706 preempt_enable();
3707
898b25b2
PM
3708 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3709 pvc = core_info.vc[sub];
3710 post_guest_process(pvc, pvc == vc);
3711 }
de56a948 3712
913d3ff9 3713 spin_lock(&vc->lock);
de56a948
PM
3714
3715 out:
19ccb76a 3716 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 3717 trace_kvmppc_run_core(vc, 1);
371fefd6
PM
3718}
3719
edba6aff 3720static void load_spr_state(struct kvm_vcpu *vcpu)
95a6432c 3721{
edba6aff
NP
3722 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3723 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3724 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3725 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3726 mtspr(SPRN_TAR, vcpu->arch.tar);
3727 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3728 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3729 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3730 mtspr(SPRN_WORT, vcpu->arch.wort);
3731 mtspr(SPRN_TIDR, vcpu->arch.tid);
3732 mtspr(SPRN_AMR, vcpu->arch.amr);
3733 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
95a6432c 3734
35dfb43c 3735 /*
edba6aff
NP
3736 * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3737 * clear (or hstate set appropriately to catch those registers
3738 * being clobbered if we take a MCE or SRESET), so those are done
3739 * later.
35dfb43c 3740 */
95a6432c 3741
edba6aff
NP
3742 if (!(vcpu->arch.ctrl & 1))
3743 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3744}
95a6432c 3745
edba6aff
NP
3746static void store_spr_state(struct kvm_vcpu *vcpu)
3747{
3748 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
95a6432c 3749
edba6aff
NP
3750 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3751 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3752 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3753 vcpu->arch.tar = mfspr(SPRN_TAR);
3754 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3755 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3756 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3757 vcpu->arch.wort = mfspr(SPRN_WORT);
3758 vcpu->arch.tid = mfspr(SPRN_TIDR);
3759 vcpu->arch.amr = mfspr(SPRN_AMR);
3760 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3761 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3762}
95a6432c 3763
edba6aff
NP
3764/*
3765 * Privileged (non-hypervisor) host registers to save.
3766 */
3767struct p9_host_os_sprs {
3768 unsigned long dscr;
3769 unsigned long tidr;
3770 unsigned long iamr;
3771 unsigned long amr;
3772 unsigned long fscr;
3773};
95a6432c 3774
edba6aff
NP
3775static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3776{
3777 host_os_sprs->dscr = mfspr(SPRN_DSCR);
3778 host_os_sprs->tidr = mfspr(SPRN_TIDR);
3779 host_os_sprs->iamr = mfspr(SPRN_IAMR);
3780 host_os_sprs->amr = mfspr(SPRN_AMR);
3781 host_os_sprs->fscr = mfspr(SPRN_FSCR);
3782}
95a6432c 3783
edba6aff
NP
3784/* vcpu guest regs must already be saved */
3785static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3786 struct p9_host_os_sprs *host_os_sprs)
3787{
3788 mtspr(SPRN_PSPB, 0);
3789 mtspr(SPRN_WORT, 0);
3790 mtspr(SPRN_UAMOR, 0);
dc462267 3791
edba6aff
NP
3792 mtspr(SPRN_DSCR, host_os_sprs->dscr);
3793 mtspr(SPRN_TIDR, host_os_sprs->tidr);
3794 mtspr(SPRN_IAMR, host_os_sprs->iamr);
95a6432c 3795
edba6aff
NP
3796 if (host_os_sprs->amr != vcpu->arch.amr)
3797 mtspr(SPRN_AMR, host_os_sprs->amr);
95a6432c 3798
edba6aff
NP
3799 if (host_os_sprs->fscr != vcpu->arch.fscr)
3800 mtspr(SPRN_FSCR, host_os_sprs->fscr);
95a6432c 3801
edba6aff
NP
3802 /* Save guest CTRL register, set runlatch to 1 */
3803 if (!(vcpu->arch.ctrl & 1))
3804 mtspr(SPRN_CTRLT, 1);
3805}
95a6432c 3806
9dc2babc
NP
3807static inline bool hcall_is_xics(unsigned long req)
3808{
3809 return req == H_EOI || req == H_CPPR || req == H_IPI ||
3810 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
95a6432c
PM
3811}
3812
3813/*
fae5c9f3 3814 * Guest entry for POWER9 and later CPUs.
95a6432c 3815 */
cf59eb13 3816static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
360cae31 3817 unsigned long lpcr)
95a6432c
PM
3818{
3819 struct kvmppc_vcore *vc = vcpu->arch.vcore;
edba6aff 3820 struct p9_host_os_sprs host_os_sprs;
95a6432c
PM
3821 s64 dec;
3822 u64 tb;
3823 int trap, save_pmu;
3824
89d35b23
NP
3825 WARN_ON_ONCE(vcpu->arch.ceded);
3826
95a6432c
PM
3827 dec = mfspr(SPRN_DEC);
3828 tb = mftb();
35dfb43c 3829 if (dec < 0)
95a6432c
PM
3830 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3831 local_paca->kvm_hstate.dec_expires = dec + tb;
3832 if (local_paca->kvm_hstate.dec_expires < time_limit)
3833 time_limit = local_paca->kvm_hstate.dec_expires;
3834
edba6aff 3835 save_p9_host_os_sprs(&host_os_sprs);
95a6432c
PM
3836
3837 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3838
3839 kvmppc_subcore_enter_guest();
3840
3841 vc->entry_exit_map = 1;
3842 vc->in_guest = 1;
3843
3844 if (vcpu->arch.vpa.pinned_addr) {
3845 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3846 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3847 lp->yield_count = cpu_to_be32(yield_count);
3848 vcpu->arch.vpa.dirty = 1;
3849 }
3850
3851 if (cpu_has_feature(CPU_FTR_TM) ||
3852 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3853 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3854
3855 kvmhv_load_guest_pmu(vcpu);
3856
3857 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3858 load_fp_state(&vcpu->arch.fp);
3859#ifdef CONFIG_ALTIVEC
3860 load_vr_state(&vcpu->arch.vr);
3861#endif
44b198ae 3862 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
95a6432c 3863
edba6aff 3864 load_spr_state(vcpu);
95a6432c 3865
6ffe2c6e
NP
3866 /*
3867 * When setting DEC, we must always deal with irq_work_raise via NMI vs
3868 * setting DEC. The problem occurs right as we switch into guest mode
3869 * if a NMI hits and sets pending work and sets DEC, then that will
3870 * apply to the guest and not bring us back to the host.
3871 *
3872 * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3873 * example) and set HDEC to 1? That wouldn't solve the nested hv
3874 * case which needs to abort the hcall or zero the time limit.
3875 *
3876 * XXX: Another day's problem.
3877 */
95a6432c
PM
3878 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3879
360cae31 3880 if (kvmhv_on_pseries()) {
c8b4083d
SJS
3881 /*
3882 * We need to save and restore the guest visible part of the
3883 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3884 * doesn't do this for us. Note only required if pseries since
c00366e2 3885 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
c8b4083d
SJS
3886 */
3887 unsigned long host_psscr;
360cae31
PM
3888 /* call our hypervisor to load up HV regs and go */
3889 struct hv_guest_state hvregs;
3890
c8b4083d
SJS
3891 host_psscr = mfspr(SPRN_PSSCR_PR);
3892 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
360cae31
PM
3893 kvmhv_save_hv_regs(vcpu, &hvregs);
3894 hvregs.lpcr = lpcr;
3895 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3896 hvregs.version = HV_GUEST_STATE_VERSION;
3897 if (vcpu->arch.nested) {
3898 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3899 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3900 } else {
3901 hvregs.lpid = vcpu->kvm->arch.lpid;
3902 hvregs.vcpu_token = vcpu->vcpu_id;
3903 }
3904 hvregs.hdec_expiry = time_limit;
6d770e3f
NP
3905 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3906 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
360cae31
PM
3907 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3908 __pa(&vcpu->arch.regs));
3909 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3910 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3911 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3912 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
c8b4083d
SJS
3913 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3914 mtspr(SPRN_PSSCR_PR, host_psscr);
4bad7779
PM
3915
3916 /* H_CEDE has to be handled now, not later */
3917 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3918 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
9dc2babc 3919 kvmppc_cede(vcpu);
1f50cc17 3920 kvmppc_set_gpr(vcpu, 3, 0);
4bad7779
PM
3921 trap = 0;
3922 }
360cae31 3923 } else {
09512c29 3924 kvmppc_xive_push_vcpu(vcpu);
c00366e2 3925 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
9dc2babc
NP
3926 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3927 !(vcpu->arch.shregs.msr & MSR_PR)) {
3928 unsigned long req = kvmppc_get_gpr(vcpu, 3);
3929
3930 /* H_CEDE has to be handled now, not later */
3931 if (req == H_CEDE) {
3932 kvmppc_cede(vcpu);
3933 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3934 kvmppc_set_gpr(vcpu, 3, 0);
3935 trap = 0;
3936
3937 /* XICS hcalls must be handled before xive is pulled */
3938 } else if (hcall_is_xics(req)) {
3939 int ret;
3940
3941 ret = kvmppc_xive_xics_hcall(vcpu, req);
3942 if (ret != H_TOO_HARD) {
3943 kvmppc_set_gpr(vcpu, 3, ret);
3944 trap = 0;
3945 }
3946 }
3947 }
09512c29 3948 kvmppc_xive_pull_vcpu(vcpu);
89d35b23 3949
079a09a5
NP
3950 if (kvm_is_radix(vcpu->kvm))
3951 vcpu->arch.slb_max = 0;
95a6432c
PM
3952 }
3953
95a6432c 3954 dec = mfspr(SPRN_DEC);
86953770
SJS
3955 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3956 dec = (s32) dec;
95a6432c
PM
3957 tb = mftb();
3958 vcpu->arch.dec_expires = dec + tb;
3959 vcpu->cpu = -1;
3960 vcpu->arch.thread_cpu = -1;
95a6432c 3961
edba6aff 3962 store_spr_state(vcpu);
95a6432c 3963
edba6aff 3964 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
25edcc50 3965
95a6432c
PM
3966 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3967 store_fp_state(&vcpu->arch.fp);
3968#ifdef CONFIG_ALTIVEC
3969 store_vr_state(&vcpu->arch.vr);
3970#endif
44b198ae 3971 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
95a6432c
PM
3972
3973 if (cpu_has_feature(CPU_FTR_TM) ||
3974 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3975 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3976
3977 save_pmu = 1;
3978 if (vcpu->arch.vpa.pinned_addr) {
3979 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3980 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3981 lp->yield_count = cpu_to_be32(yield_count);
3982 vcpu->arch.vpa.dirty = 1;
3983 save_pmu = lp->pmcregs_in_use;
3984 }
63279eeb
SJS
3985 /* Must save pmu if this guest is capable of running nested guests */
3986 save_pmu |= nesting_enabled(vcpu->kvm);
95a6432c
PM
3987
3988 kvmhv_save_guest_pmu(vcpu, save_pmu);
3989
3990 vc->entry_exit_map = 0x101;
3991 vc->in_guest = 0;
3992
3993 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
6ffe2c6e
NP
3994 /* We may have raced with new irq work */
3995 if (test_irq_work_pending())
3996 set_dec(1);
d724c9e5 3997 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
95a6432c
PM
3998
3999 kvmhv_load_host_pmu();
4000
4001 kvmppc_subcore_exit_guest();
4002
4003 return trap;
4004}
4005
19ccb76a
PM
4006/*
4007 * Wait for some other vcpu thread to execute us, and
4008 * wake us up when we need to handle something in the host.
4009 */
ec257165
PM
4010static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4011 struct kvm_vcpu *vcpu, int wait_state)
371fefd6 4012{
371fefd6
PM
4013 DEFINE_WAIT(wait);
4014
19ccb76a 4015 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
ec257165
PM
4016 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4017 spin_unlock(&vc->lock);
19ccb76a 4018 schedule();
ec257165
PM
4019 spin_lock(&vc->lock);
4020 }
19ccb76a
PM
4021 finish_wait(&vcpu->arch.cpu_run, &wait);
4022}
4023
0cda69dd
SJS
4024static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4025{
7fa08e71
NW
4026 if (!halt_poll_ns_grow)
4027 return;
4028
dee339b5
NW
4029 vc->halt_poll_ns *= halt_poll_ns_grow;
4030 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
49113d36 4031 vc->halt_poll_ns = halt_poll_ns_grow_start;
0cda69dd
SJS
4032}
4033
4034static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4035{
4036 if (halt_poll_ns_shrink == 0)
4037 vc->halt_poll_ns = 0;
4038 else
4039 vc->halt_poll_ns /= halt_poll_ns_shrink;
4040}
4041
ee3308a2
PM
4042#ifdef CONFIG_KVM_XICS
4043static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4044{
03f95332 4045 if (!xics_on_xive())
ee3308a2 4046 return false;
2267ea76 4047 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
ee3308a2
PM
4048 vcpu->arch.xive_saved_state.cppr;
4049}
4050#else
4051static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4052{
4053 return false;
4054}
4055#endif /* CONFIG_KVM_XICS */
4056
1da4e2f4
PM
4057static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4058{
4059 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
ee3308a2 4060 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
1da4e2f4
PM
4061 return true;
4062
4063 return false;
4064}
4065
908a0935
SJS
4066/*
4067 * Check to see if any of the runnable vcpus on the vcore have pending
0cda69dd
SJS
4068 * exceptions or are no longer ceded
4069 */
4070static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4071{
4072 struct kvm_vcpu *vcpu;
4073 int i;
4074
4075 for_each_runnable_thread(i, vcpu, vc) {
1da4e2f4 4076 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
0cda69dd
SJS
4077 return 1;
4078 }
4079
4080 return 0;
4081}
4082
19ccb76a
PM
4083/*
4084 * All the vcpus in this vcore are idle, so wait for a decrementer
4085 * or external interrupt to one of the vcpus. vc->lock is held.
4086 */
4087static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4088{
2a27f514 4089 ktime_t cur, start_poll, start_wait;
0cda69dd 4090 int do_sleep = 1;
0cda69dd 4091 u64 block_ns;
1bc5d59c 4092
0cda69dd 4093 /* Poll for pending exceptions and ceded state */
2a27f514 4094 cur = start_poll = ktime_get();
0cda69dd 4095 if (vc->halt_poll_ns) {
2a27f514 4096 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
0193cc90 4097 ++vc->runner->stat.generic.halt_attempted_poll;
1bc5d59c 4098
0cda69dd
SJS
4099 vc->vcore_state = VCORE_POLLING;
4100 spin_unlock(&vc->lock);
4101
4102 do {
4103 if (kvmppc_vcore_check_block(vc)) {
4104 do_sleep = 0;
4105 break;
4106 }
4107 cur = ktime_get();
6bd5b743 4108 } while (kvm_vcpu_can_poll(cur, stop));
0cda69dd
SJS
4109
4110 spin_lock(&vc->lock);
4111 vc->vcore_state = VCORE_INACTIVE;
4112
2a27f514 4113 if (!do_sleep) {
0193cc90 4114 ++vc->runner->stat.generic.halt_successful_poll;
0cda69dd 4115 goto out;
2a27f514 4116 }
1bc5d59c
SW
4117 }
4118
da4ad88c
DB
4119 prepare_to_rcuwait(&vc->wait);
4120 set_current_state(TASK_INTERRUPTIBLE);
0cda69dd 4121 if (kvmppc_vcore_check_block(vc)) {
da4ad88c 4122 finish_rcuwait(&vc->wait);
0cda69dd 4123 do_sleep = 0;
2a27f514
SJS
4124 /* If we polled, count this as a successful poll */
4125 if (vc->halt_poll_ns)
0193cc90 4126 ++vc->runner->stat.generic.halt_successful_poll;
0cda69dd 4127 goto out;
1bc5d59c
SW
4128 }
4129
2a27f514
SJS
4130 start_wait = ktime_get();
4131
19ccb76a 4132 vc->vcore_state = VCORE_SLEEPING;
3c78f78a 4133 trace_kvmppc_vcore_blocked(vc, 0);
19ccb76a 4134 spin_unlock(&vc->lock);
913d3ff9 4135 schedule();
da4ad88c 4136 finish_rcuwait(&vc->wait);
19ccb76a
PM
4137 spin_lock(&vc->lock);
4138 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 4139 trace_kvmppc_vcore_blocked(vc, 1);
2a27f514 4140 ++vc->runner->stat.halt_successful_wait;
0cda69dd
SJS
4141
4142 cur = ktime_get();
4143
4144out:
2a27f514
SJS
4145 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4146
4147 /* Attribute wait time */
4148 if (do_sleep) {
4149 vc->runner->stat.halt_wait_ns +=
4150 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4151 /* Attribute failed poll time */
4152 if (vc->halt_poll_ns)
0193cc90 4153 vc->runner->stat.generic.halt_poll_fail_ns +=
2a27f514
SJS
4154 ktime_to_ns(start_wait) -
4155 ktime_to_ns(start_poll);
4156 } else {
4157 /* Attribute successful poll time */
4158 if (vc->halt_poll_ns)
0193cc90 4159 vc->runner->stat.generic.halt_poll_success_ns +=
2a27f514
SJS
4160 ktime_to_ns(cur) -
4161 ktime_to_ns(start_poll);
4162 }
0cda69dd
SJS
4163
4164 /* Adjust poll time */
307d93e4 4165 if (halt_poll_ns) {
0cda69dd
SJS
4166 if (block_ns <= vc->halt_poll_ns)
4167 ;
4168 /* We slept and blocked for longer than the max halt time */
307d93e4 4169 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
0cda69dd
SJS
4170 shrink_halt_poll_ns(vc);
4171 /* We slept and our poll time is too small */
307d93e4
SJS
4172 else if (vc->halt_poll_ns < halt_poll_ns &&
4173 block_ns < halt_poll_ns)
0cda69dd 4174 grow_halt_poll_ns(vc);
e03f3921
SJS
4175 if (vc->halt_poll_ns > halt_poll_ns)
4176 vc->halt_poll_ns = halt_poll_ns;
0cda69dd
SJS
4177 } else
4178 vc->halt_poll_ns = 0;
4179
4180 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
19ccb76a 4181}
371fefd6 4182
360cae31
PM
4183/*
4184 * This never fails for a radix guest, as none of the operations it does
4185 * for a radix guest can fail or have a way to report failure.
360cae31 4186 */
432953b4
PM
4187static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4188{
4189 int r = 0;
4190 struct kvm *kvm = vcpu->kvm;
4191
0d4ee88d 4192 mutex_lock(&kvm->arch.mmu_setup_lock);
432953b4
PM
4193 if (!kvm->arch.mmu_ready) {
4194 if (!kvm_is_radix(kvm))
4195 r = kvmppc_hv_setup_htab_rma(vcpu);
4196 if (!r) {
4197 if (cpu_has_feature(CPU_FTR_ARCH_300))
4198 kvmppc_setup_partition_table(kvm);
4199 kvm->arch.mmu_ready = 1;
4200 }
4201 }
0d4ee88d 4202 mutex_unlock(&kvm->arch.mmu_setup_lock);
432953b4
PM
4203 return r;
4204}
4205
8c99d345 4206static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
19ccb76a 4207{
8c99d345 4208 struct kvm_run *run = vcpu->run;
38c53af8 4209 int n_ceded, i, r;
19ccb76a 4210 struct kvmppc_vcore *vc;
7b5f8272 4211 struct kvm_vcpu *v;
9e368f29 4212
3c78f78a
SW
4213 trace_kvmppc_run_vcpu_enter(vcpu);
4214
8c99d345 4215 run->exit_reason = 0;
371fefd6
PM
4216 vcpu->arch.ret = RESUME_GUEST;
4217 vcpu->arch.trap = 0;
2f12f034 4218 kvmppc_update_vpas(vcpu);
371fefd6 4219
371fefd6
PM
4220 /*
4221 * Synchronize with other threads in this virtual core
4222 */
4223 vc = vcpu->arch.vcore;
4224 spin_lock(&vc->lock);
19ccb76a 4225 vcpu->arch.ceded = 0;
371fefd6 4226 vcpu->arch.run_task = current;
c7b67670 4227 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
19ccb76a 4228 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
c7b67670 4229 vcpu->arch.busy_preempt = TB_NIL;
7b5f8272 4230 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
371fefd6
PM
4231 ++vc->n_runnable;
4232
19ccb76a
PM
4233 /*
4234 * This happens the first time this is called for a vcpu.
4235 * If the vcore is already running, we may be able to start
4236 * this thread straight away and have it join in.
4237 */
8455d79e 4238 if (!signal_pending(current)) {
c0093f1a
PM
4239 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4240 vc->vcore_state == VCORE_RUNNING) &&
ec257165 4241 !VCORE_IS_EXITING(vc)) {
2f12f034 4242 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 4243 kvmppc_start_thread(vcpu, vc);
3c78f78a 4244 trace_kvm_guest_enter(vcpu);
8455d79e 4245 } else if (vc->vcore_state == VCORE_SLEEPING) {
da4ad88c 4246 rcuwait_wake_up(&vc->wait);
371fefd6
PM
4247 }
4248
8455d79e 4249 }
371fefd6 4250
19ccb76a
PM
4251 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4252 !signal_pending(current)) {
072df813
PM
4253 /* See if the MMU is ready to go */
4254 if (!vcpu->kvm->arch.mmu_ready) {
38c53af8 4255 spin_unlock(&vc->lock);
432953b4 4256 r = kvmhv_setup_mmu(vcpu);
38c53af8
PM
4257 spin_lock(&vc->lock);
4258 if (r) {
8c99d345
TZ
4259 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4260 run->fail_entry.
432953b4 4261 hardware_entry_failure_reason = 0;
38c53af8
PM
4262 vcpu->arch.ret = r;
4263 break;
4264 }
4265 }
4266
ec257165
PM
4267 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4268 kvmppc_vcore_end_preempt(vc);
4269
8455d79e 4270 if (vc->vcore_state != VCORE_INACTIVE) {
ec257165 4271 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
19ccb76a
PM
4272 continue;
4273 }
7b5f8272 4274 for_each_runnable_thread(i, v, vc) {
7e28e60e 4275 kvmppc_core_prepare_to_enter(v);
19ccb76a
PM
4276 if (signal_pending(v->arch.run_task)) {
4277 kvmppc_remove_runnable(vc, v);
4278 v->stat.signal_exits++;
2610a57f 4279 v->run->exit_reason = KVM_EXIT_INTR;
19ccb76a
PM
4280 v->arch.ret = -EINTR;
4281 wake_up(&v->arch.cpu_run);
4282 }
4283 }
8455d79e
PM
4284 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4285 break;
8455d79e 4286 n_ceded = 0;
7b5f8272 4287 for_each_runnable_thread(i, v, vc) {
1da4e2f4 4288 if (!kvmppc_vcpu_woken(v))
8455d79e 4289 n_ceded += v->arch.ceded;
4619ac88
PM
4290 else
4291 v->arch.ceded = 0;
4292 }
25fedfca
PM
4293 vc->runner = vcpu;
4294 if (n_ceded == vc->n_runnable) {
8455d79e 4295 kvmppc_vcore_blocked(vc);
c56dadf3 4296 } else if (need_resched()) {
ec257165 4297 kvmppc_vcore_preempt(vc);
25fedfca
PM
4298 /* Let something else run */
4299 cond_resched_lock(&vc->lock);
ec257165
PM
4300 if (vc->vcore_state == VCORE_PREEMPT)
4301 kvmppc_vcore_end_preempt(vc);
25fedfca 4302 } else {
8455d79e 4303 kvmppc_run_core(vc);
25fedfca 4304 }
0456ec4f 4305 vc->runner = NULL;
19ccb76a 4306 }
371fefd6 4307
8455d79e
PM
4308 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4309 (vc->vcore_state == VCORE_RUNNING ||
5fc3e64f
PM
4310 vc->vcore_state == VCORE_EXITING ||
4311 vc->vcore_state == VCORE_PIGGYBACK))
ec257165 4312 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
8455d79e 4313
5fc3e64f
PM
4314 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4315 kvmppc_vcore_end_preempt(vc);
4316
8455d79e
PM
4317 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4318 kvmppc_remove_runnable(vc, vcpu);
4319 vcpu->stat.signal_exits++;
8c99d345 4320 run->exit_reason = KVM_EXIT_INTR;
8455d79e
PM
4321 vcpu->arch.ret = -EINTR;
4322 }
4323
4324 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4325 /* Wake up some vcpu to run the core */
7b5f8272
SJS
4326 i = -1;
4327 v = next_runnable_thread(vc, &i);
8455d79e 4328 wake_up(&v->arch.cpu_run);
371fefd6
PM
4329 }
4330
8c99d345 4331 trace_kvmppc_run_vcpu_exit(vcpu);
371fefd6 4332 spin_unlock(&vc->lock);
371fefd6 4333 return vcpu->arch.ret;
de56a948
PM
4334}
4335
8c99d345 4336int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
360cae31 4337 unsigned long lpcr)
95a6432c 4338{
8c99d345 4339 struct kvm_run *run = vcpu->run;
9d0b048d 4340 int trap, r, pcpu;
48013cbc 4341 int srcu_idx;
95a6432c
PM
4342 struct kvmppc_vcore *vc;
4343 struct kvm *kvm = vcpu->kvm;
360cae31 4344 struct kvm_nested_guest *nested = vcpu->arch.nested;
95a6432c
PM
4345
4346 trace_kvmppc_run_vcpu_enter(vcpu);
4347
8c99d345 4348 run->exit_reason = 0;
95a6432c
PM
4349 vcpu->arch.ret = RESUME_GUEST;
4350 vcpu->arch.trap = 0;
4351
4352 vc = vcpu->arch.vcore;
4353 vcpu->arch.ceded = 0;
4354 vcpu->arch.run_task = current;
95a6432c
PM
4355 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4356 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4357 vcpu->arch.busy_preempt = TB_NIL;
4358 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4359 vc->runnable_threads[0] = vcpu;
4360 vc->n_runnable = 1;
4361 vc->runner = vcpu;
4362
4363 /* See if the MMU is ready to go */
079a09a5
NP
4364 if (!kvm->arch.mmu_ready) {
4365 r = kvmhv_setup_mmu(vcpu);
4366 if (r) {
4367 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4368 run->fail_entry.hardware_entry_failure_reason = 0;
4369 vcpu->arch.ret = r;
4370 return r;
4371 }
4372 }
95a6432c
PM
4373
4374 if (need_resched())
4375 cond_resched();
4376
4377 kvmppc_update_vpas(vcpu);
4378
4379 init_vcore_to_run(vc);
4380 vc->preempt_tb = TB_NIL;
4381
4382 preempt_disable();
4383 pcpu = smp_processor_id();
4384 vc->pcpu = pcpu;
079a09a5
NP
4385 if (kvm_is_radix(kvm))
4386 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
95a6432c
PM
4387
4388 local_irq_disable();
4389 hard_irq_disable();
4390 if (signal_pending(current))
4391 goto sigpend;
4392 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4393 goto out;
4394
360cae31
PM
4395 if (!nested) {
4396 kvmppc_core_prepare_to_enter(vcpu);
4397 if (vcpu->arch.doorbell_request) {
4398 vc->dpdes = 1;
4399 smp_wmb();
4400 vcpu->arch.doorbell_request = 0;
4401 }
4402 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4403 &vcpu->arch.pending_exceptions))
4404 lpcr |= LPCR_MER;
4405 } else if (vcpu->arch.pending_exceptions ||
4406 vcpu->arch.doorbell_request ||
4407 xive_interrupt_pending(vcpu)) {
4408 vcpu->arch.ret = RESUME_HOST;
4409 goto out;
4410 }
95a6432c
PM
4411
4412 kvmppc_clear_host_core(pcpu);
4413
95a6432c
PM
4414 local_paca->kvm_hstate.napping = 0;
4415 local_paca->kvm_hstate.kvm_split_mode = NULL;
4416 kvmppc_start_thread(vcpu, vc);
4417 kvmppc_create_dtl_entry(vcpu, vc);
4418 trace_kvm_guest_enter(vcpu);
4419
4420 vc->vcore_state = VCORE_RUNNING;
4421 trace_kvmppc_run_core(vc, 0);
4422
95a6432c
PM
4423 guest_enter_irqoff();
4424
4425 srcu_idx = srcu_read_lock(&kvm->srcu);
4426
4427 this_cpu_disable_ftrace();
4428
1b28d553
PM
4429 /* Tell lockdep that we're about to enable interrupts */
4430 trace_hardirqs_on();
4431
360cae31 4432 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
95a6432c
PM
4433 vcpu->arch.trap = trap;
4434
1b28d553
PM
4435 trace_hardirqs_off();
4436
95a6432c
PM
4437 this_cpu_enable_ftrace();
4438
4439 srcu_read_unlock(&kvm->srcu, srcu_idx);
4440
95a6432c
PM
4441 set_irq_happened(trap);
4442
4443 kvmppc_set_host_core(pcpu);
4444
11266528
NP
4445 guest_exit_irqoff();
4446
95a6432c 4447 local_irq_enable();
95a6432c
PM
4448
4449 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4450
4451 preempt_enable();
4452
3c25ab35
SJS
4453 /*
4454 * cancel pending decrementer exception if DEC is now positive, or if
4455 * entering a nested guest in which case the decrementer is now owned
4456 * by L2 and the L1 decrementer is provided in hdec_expires
4457 */
4458 if (kvmppc_core_pending_dec(vcpu) &&
4459 ((get_tb() < vcpu->arch.dec_expires) ||
4460 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4461 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
95a6432c
PM
4462 kvmppc_core_dequeue_dec(vcpu);
4463
4464 trace_kvm_guest_exit(vcpu);
4465 r = RESUME_GUEST;
360cae31
PM
4466 if (trap) {
4467 if (!nested)
8c99d345 4468 r = kvmppc_handle_exit_hv(vcpu, current);
360cae31 4469 else
8c99d345 4470 r = kvmppc_handle_nested_exit(vcpu);
360cae31 4471 }
95a6432c
PM
4472 vcpu->arch.ret = r;
4473
4474 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4475 !kvmppc_vcpu_woken(vcpu)) {
4476 kvmppc_set_timer(vcpu);
4477 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4478 if (signal_pending(current)) {
4479 vcpu->stat.signal_exits++;
8c99d345 4480 run->exit_reason = KVM_EXIT_INTR;
95a6432c
PM
4481 vcpu->arch.ret = -EINTR;
4482 break;
4483 }
4484 spin_lock(&vc->lock);
4485 kvmppc_vcore_blocked(vc);
4486 spin_unlock(&vc->lock);
4487 }
4488 }
4489 vcpu->arch.ceded = 0;
4490
4491 vc->vcore_state = VCORE_INACTIVE;
4492 trace_kvmppc_run_core(vc, 1);
4493
4494 done:
4495 kvmppc_remove_runnable(vc, vcpu);
8c99d345 4496 trace_kvmppc_run_vcpu_exit(vcpu);
95a6432c
PM
4497
4498 return vcpu->arch.ret;
4499
4500 sigpend:
4501 vcpu->stat.signal_exits++;
8c99d345 4502 run->exit_reason = KVM_EXIT_INTR;
95a6432c
PM
4503 vcpu->arch.ret = -EINTR;
4504 out:
4505 local_irq_enable();
4506 preempt_enable();
4507 goto done;
4508}
4509
8c99d345 4510static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
a8606e20 4511{
8c99d345 4512 struct kvm_run *run = vcpu->run;
a8606e20 4513 int r;
913d3ff9 4514 int srcu_idx;
ca8efa1d 4515 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4c3bb4cc
PM
4516 unsigned long user_tar = 0;
4517 unsigned int user_vrsave;
1b151ce4 4518 struct kvm *kvm;
a8606e20 4519
af8f38b3
AG
4520 if (!vcpu->arch.sane) {
4521 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4522 return -EINVAL;
4523 }
4524
46a704f8
PM
4525 /*
4526 * Don't allow entry with a suspended transaction, because
4527 * the guest entry/exit code will lose it.
4528 * If the guest has TM enabled, save away their TM-related SPRs
4529 * (they will get restored by the TM unavailable interrupt).
4530 */
4531#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4532 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4533 (current->thread.regs->msr & MSR_TM)) {
4534 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4535 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4536 run->fail_entry.hardware_entry_failure_reason = 0;
4537 return -EINVAL;
4538 }
e4705715
PM
4539 /* Enable TM so we can read the TM SPRs */
4540 mtmsr(mfmsr() | MSR_TM);
46a704f8
PM
4541 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4542 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4543 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4544 current->thread.regs->msr &= ~MSR_TM;
4545 }
4546#endif
4547
7aa15842
PM
4548 /*
4549 * Force online to 1 for the sake of old userspace which doesn't
4550 * set it.
4551 */
4552 if (!vcpu->arch.online) {
4553 atomic_inc(&vcpu->arch.vcore->online_count);
4554 vcpu->arch.online = 1;
4555 }
4556
25051b5a
SW
4557 kvmppc_core_prepare_to_enter(vcpu);
4558
19ccb76a
PM
4559 /* No need to go into the guest when all we'll do is come back out */
4560 if (signal_pending(current)) {
4561 run->exit_reason = KVM_EXIT_INTR;
4562 return -EINTR;
4563 }
4564
1b151ce4
PM
4565 kvm = vcpu->kvm;
4566 atomic_inc(&kvm->arch.vcpus_running);
4567 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
32fad281
PM
4568 smp_mb();
4569
579e633e
AB
4570 flush_all_to_thread(current);
4571
4c3bb4cc 4572 /* Save userspace EBB and other register values */
ca8efa1d
PM
4573 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4574 ebb_regs[0] = mfspr(SPRN_EBBHR);
4575 ebb_regs[1] = mfspr(SPRN_EBBRR);
4576 ebb_regs[2] = mfspr(SPRN_BESCR);
4c3bb4cc 4577 user_tar = mfspr(SPRN_TAR);
ca8efa1d 4578 }
4c3bb4cc 4579 user_vrsave = mfspr(SPRN_VRSAVE);
ca8efa1d 4580
da4ad88c 4581 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
8a9c8925 4582 vcpu->arch.pgdir = kvm->mm->pgd;
c7b67670 4583 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
19ccb76a 4584
a8606e20 4585 do {
0bf7e1b2 4586 if (cpu_has_feature(CPU_FTR_ARCH_300))
8c99d345 4587 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
360cae31 4588 vcpu->arch.vcore->lpcr);
95a6432c 4589 else
8c99d345 4590 r = kvmppc_run_vcpu(vcpu);
a8606e20 4591
9dc2babc
NP
4592 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4593 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4594 /*
4595 * These should have been caught reflected
4596 * into the guest by now. Final sanity check:
4597 * don't allow userspace to execute hcalls in
4598 * the hypervisor.
4599 */
4600 r = RESUME_GUEST;
4601 continue;
4602 }
3c78f78a 4603 trace_kvm_hcall_enter(vcpu);
a8606e20 4604 r = kvmppc_pseries_do_hcall(vcpu);
3c78f78a 4605 trace_kvm_hcall_exit(vcpu, r);
7e28e60e 4606 kvmppc_core_prepare_to_enter(vcpu);
913d3ff9 4607 } else if (r == RESUME_PAGE_FAULT) {
432953b4 4608 srcu_idx = srcu_read_lock(&kvm->srcu);
8c99d345 4609 r = kvmppc_book3s_hv_page_fault(vcpu,
913d3ff9 4610 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432953b4 4611 srcu_read_unlock(&kvm->srcu, srcu_idx);
5af50993 4612 } else if (r == RESUME_PASSTHROUGH) {
03f95332 4613 if (WARN_ON(xics_on_xive()))
5af50993
BH
4614 r = H_SUCCESS;
4615 else
4616 r = kvmppc_xics_rm_complete(vcpu, 0);
4617 }
e59d24e6 4618 } while (is_kvmppc_resume_guest(r));
32fad281 4619
4c3bb4cc 4620 /* Restore userspace EBB and other register values */
ca8efa1d
PM
4621 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4622 mtspr(SPRN_EBBHR, ebb_regs[0]);
4623 mtspr(SPRN_EBBRR, ebb_regs[1]);
4624 mtspr(SPRN_BESCR, ebb_regs[2]);
4c3bb4cc 4625 mtspr(SPRN_TAR, user_tar);
ca8efa1d 4626 }
4c3bb4cc 4627 mtspr(SPRN_VRSAVE, user_vrsave);
ca8efa1d 4628
c7b67670 4629 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
432953b4 4630 atomic_dec(&kvm->arch.vcpus_running);
59dc5bfc
NP
4631
4632 srr_regs_clobbered();
4633
a8606e20
PM
4634 return r;
4635}
4636
5b74716e 4637static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
8dc6cca5 4638 int shift, int sllp)
5b74716e 4639{
8dc6cca5
PM
4640 (*sps)->page_shift = shift;
4641 (*sps)->slb_enc = sllp;
4642 (*sps)->enc[0].page_shift = shift;
4643 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
1f365bb0 4644 /*
8dc6cca5 4645 * Add 16MB MPSS support (may get filtered out by userspace)
1f365bb0 4646 */
8dc6cca5
PM
4647 if (shift != 24) {
4648 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4649 if (penc != -1) {
4650 (*sps)->enc[1].page_shift = 24;
4651 (*sps)->enc[1].pte_enc = penc;
4652 }
1f365bb0 4653 }
5b74716e
BH
4654 (*sps)++;
4655}
4656
3a167bea
AK
4657static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4658 struct kvm_ppc_smmu_info *info)
5b74716e
BH
4659{
4660 struct kvm_ppc_one_seg_page_size *sps;
4661
e3bfed1d
PM
4662 /*
4663 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4664 * POWER7 doesn't support keys for instruction accesses,
4665 * POWER8 and POWER9 do.
4666 */
4667 info->data_keys = 32;
4668 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4669
8dc6cca5
PM
4670 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4671 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4672 info->slb_size = 32;
5b74716e
BH
4673
4674 /* We only support these sizes for now, and no muti-size segments */
4675 sps = &info->sps[0];
8dc6cca5
PM
4676 kvmppc_add_seg_page_size(&sps, 12, 0);
4677 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4678 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5b74716e 4679
901f8c3f
PM
4680 /* If running as a nested hypervisor, we don't support HPT guests */
4681 if (kvmhv_on_pseries())
4682 info->flags |= KVM_PPC_NO_HASH;
4683
5b74716e
BH
4684 return 0;
4685}
4686
82ed3616
PM
4687/*
4688 * Get (and clear) the dirty memory log for a memory slot.
4689 */
3a167bea
AK
4690static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4691 struct kvm_dirty_log *log)
82ed3616 4692{
9f6b8029 4693 struct kvm_memslots *slots;
82ed3616 4694 struct kvm_memory_slot *memslot;
8f7b79b8 4695 int i, r;
82ed3616 4696 unsigned long n;
e641a317 4697 unsigned long *buf, *p;
8f7b79b8 4698 struct kvm_vcpu *vcpu;
82ed3616
PM
4699
4700 mutex_lock(&kvm->slots_lock);
4701
4702 r = -EINVAL;
bbacc0c1 4703 if (log->slot >= KVM_USER_MEM_SLOTS)
82ed3616
PM
4704 goto out;
4705
9f6b8029
PB
4706 slots = kvm_memslots(kvm);
4707 memslot = id_to_memslot(slots, log->slot);
82ed3616 4708 r = -ENOENT;
0577d1ab 4709 if (!memslot || !memslot->dirty_bitmap)
82ed3616
PM
4710 goto out;
4711
8f7b79b8 4712 /*
e641a317
PM
4713 * Use second half of bitmap area because both HPT and radix
4714 * accumulate bits in the first half.
8f7b79b8 4715 */
82ed3616 4716 n = kvm_dirty_bitmap_bytes(memslot);
8f7b79b8
PM
4717 buf = memslot->dirty_bitmap + n / sizeof(long);
4718 memset(buf, 0, n);
82ed3616 4719
8f7b79b8
PM
4720 if (kvm_is_radix(kvm))
4721 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4722 else
4723 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
82ed3616
PM
4724 if (r)
4725 goto out;
4726
e641a317
PM
4727 /*
4728 * We accumulate dirty bits in the first half of the
4729 * memslot's dirty_bitmap area, for when pages are paged
4730 * out or modified by the host directly. Pick up these
4731 * bits and add them to the map.
4732 */
4733 p = memslot->dirty_bitmap;
4734 for (i = 0; i < n / sizeof(long); ++i)
4735 buf[i] |= xchg(&p[i], 0);
4736
8f7b79b8
PM
4737 /* Harvest dirty bits from VPA and DTL updates */
4738 /* Note: we never modify the SLB shadow buffer areas */
4739 kvm_for_each_vcpu(i, vcpu, kvm) {
4740 spin_lock(&vcpu->arch.vpa_update_lock);
4741 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4742 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4743 spin_unlock(&vcpu->arch.vpa_update_lock);
4744 }
4745
82ed3616 4746 r = -EFAULT;
8f7b79b8 4747 if (copy_to_user(log->dirty_bitmap, buf, n))
82ed3616
PM
4748 goto out;
4749
4750 r = 0;
4751out:
4752 mutex_unlock(&kvm->slots_lock);
4753 return r;
4754}
4755
e96c81ee 4756static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
a66b48c3 4757{
e96c81ee
SC
4758 vfree(slot->arch.rmap);
4759 slot->arch.rmap = NULL;
a66b48c3
PM
4760}
4761
82307e67
SC
4762static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4763 struct kvm_memory_slot *slot,
4764 const struct kvm_userspace_memory_region *mem,
4765 enum kvm_mr_change change)
a66b48c3 4766{
82307e67 4767 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
aa04b4cc 4768
82307e67
SC
4769 if (change == KVM_MR_CREATE) {
4770 slot->arch.rmap = vzalloc(array_size(npages,
4771 sizeof(*slot->arch.rmap)));
4772 if (!slot->arch.rmap)
4773 return -ENOMEM;
4774 }
aa04b4cc 4775
a66b48c3 4776 return 0;
c77162de
PM
4777}
4778
3a167bea 4779static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
09170a49 4780 const struct kvm_userspace_memory_region *mem,
f36f3f28 4781 const struct kvm_memory_slot *old,
f032b734
BR
4782 const struct kvm_memory_slot *new,
4783 enum kvm_mr_change change)
c77162de 4784{
dfe49dbd 4785 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
dfe49dbd 4786
a56ee9f8
YX
4787 /*
4788 * If we are making a new memslot, it might make
4789 * some address that was previously cached as emulated
4790 * MMIO be no longer emulated MMIO, so invalidate
4791 * all the caches of emulated MMIO translations.
4792 */
4793 if (npages)
4794 atomic64_inc(&kvm->arch.mmio_update);
5af3e9d0
PM
4795
4796 /*
4797 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4798 * have already called kvm_arch_flush_shadow_memslot() to
4799 * flush shadow mappings. For KVM_MR_CREATE we have no
4800 * previous mappings. So the only case to handle is
4801 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4802 * has been changed.
4803 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4804 * to get rid of any THP PTEs in the partition-scoped page tables
4805 * so we can track dirtiness at the page level; we flush when
4806 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4807 * using THP PTEs.
4808 */
4809 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4810 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4811 kvmppc_radix_flush_memslot(kvm, old);
c3262257
BR
4812 /*
4813 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4814 */
4815 if (!kvm->arch.secure_guest)
4816 return;
4817
4818 switch (change) {
4819 case KVM_MR_CREATE:
a2ce7200
LD
4820 /*
4821 * @TODO kvmppc_uvmem_memslot_create() can fail and
4822 * return error. Fix this.
4823 */
4824 kvmppc_uvmem_memslot_create(kvm, new);
c3262257
BR
4825 break;
4826 case KVM_MR_DELETE:
a2ce7200 4827 kvmppc_uvmem_memslot_delete(kvm, old);
c3262257
BR
4828 break;
4829 default:
4830 /* TODO: Handle KVM_MR_MOVE */
4831 break;
4832 }
c77162de
PM
4833}
4834
a0144e2a
PM
4835/*
4836 * Update LPCR values in kvm->arch and in vcores.
0d4ee88d
PM
4837 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4838 * of kvm->arch.lpcr update).
a0144e2a
PM
4839 */
4840void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4841{
4842 long int i;
4843 u32 cores_done = 0;
4844
4845 if ((kvm->arch.lpcr & mask) == lpcr)
4846 return;
4847
4848 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4849
4850 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4851 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4852 if (!vc)
4853 continue;
67145ef4 4854
a0144e2a
PM
4855 spin_lock(&vc->lock);
4856 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
67145ef4 4857 verify_lpcr(kvm, vc->lpcr);
a0144e2a
PM
4858 spin_unlock(&vc->lock);
4859 if (++cores_done >= kvm->arch.online_vcores)
4860 break;
4861 }
4862}
4863
ded13fc1 4864void kvmppc_setup_partition_table(struct kvm *kvm)
7a84084c
PM
4865{
4866 unsigned long dw0, dw1;
4867
8cf4ecc0
PM
4868 if (!kvm_is_radix(kvm)) {
4869 /* PS field - page size for VRMA */
4870 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4871 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4872 /* HTABSIZE and HTABORG fields */
4873 dw0 |= kvm->arch.sdr1;
7a84084c 4874
8cf4ecc0
PM
4875 /* Second dword as set by userspace */
4876 dw1 = kvm->arch.process_table;
4877 } else {
4878 dw0 = PATB_HR | radix__get_tree_size() |
4879 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4880 dw1 = PATB_GR | kvm->arch.process_table;
4881 }
8e3f5fc1 4882 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
7a84084c
PM
4883}
4884
1b151ce4
PM
4885/*
4886 * Set up HPT (hashed page table) and RMA (real-mode area).
0d4ee88d 4887 * Must be called with kvm->arch.mmu_setup_lock held.
1b151ce4 4888 */
32fad281 4889static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
c77162de
PM
4890{
4891 int err = 0;
4892 struct kvm *kvm = vcpu->kvm;
c77162de
PM
4893 unsigned long hva;
4894 struct kvm_memory_slot *memslot;
4895 struct vm_area_struct *vma;
a0144e2a 4896 unsigned long lpcr = 0, senc;
c77162de 4897 unsigned long psize, porder;
2c9097e4 4898 int srcu_idx;
c77162de 4899
32fad281 4900 /* Allocate hashed page table (if not done already) and reset it */
3f9d4f5a 4901 if (!kvm->arch.hpt.virt) {
aae0777f
DG
4902 int order = KVM_DEFAULT_HPT_ORDER;
4903 struct kvm_hpt_info info;
4904
4905 err = kvmppc_allocate_hpt(&info, order);
4906 /* If we get here, it means userspace didn't specify a
4907 * size explicitly. So, try successively smaller
4908 * sizes if the default failed. */
4909 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4910 err = kvmppc_allocate_hpt(&info, order);
4911
4912 if (err < 0) {
32fad281
PM
4913 pr_err("KVM: Couldn't alloc HPT\n");
4914 goto out;
4915 }
aae0777f
DG
4916
4917 kvmppc_set_hpt(kvm, &info);
32fad281
PM
4918 }
4919
c77162de 4920 /* Look up the memslot for guest physical address 0 */
2c9097e4 4921 srcu_idx = srcu_read_lock(&kvm->srcu);
c77162de 4922 memslot = gfn_to_memslot(kvm, 0);
aa04b4cc 4923
c77162de
PM
4924 /* We must have some memory at 0 by now */
4925 err = -EINVAL;
4926 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 4927 goto out_srcu;
c77162de
PM
4928
4929 /* Look up the VMA for the start of this memory slot */
4930 hva = memslot->userspace_addr;
d8ed45c5 4931 mmap_read_lock(kvm->mm);
900c83f8
LH
4932 vma = vma_lookup(kvm->mm, hva);
4933 if (!vma || (vma->vm_flags & VM_IO))
c77162de
PM
4934 goto up_out;
4935
4936 psize = vma_kernel_pagesize(vma);
c77162de 4937
d8ed45c5 4938 mmap_read_unlock(kvm->mm);
c77162de 4939
c17b98cf 4940 /* We can handle 4k, 64k or 16M pages in the VRMA */
debd574f
PM
4941 if (psize >= 0x1000000)
4942 psize = 0x1000000;
4943 else if (psize >= 0x10000)
4944 psize = 0x10000;
4945 else
4946 psize = 0x1000;
4947 porder = __ilog2(psize);
c77162de 4948
c17b98cf
PM
4949 senc = slb_pgsize_encoding(psize);
4950 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4951 (VRMA_VSID << SLB_VSID_SHIFT_1T);
c17b98cf
PM
4952 /* Create HPTEs in the hash page table for the VRMA */
4953 kvmppc_map_vrma(vcpu, memslot, porder);
aa04b4cc 4954
7a84084c
PM
4955 /* Update VRMASD field in the LPCR */
4956 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4957 /* the -4 is to account for senc values starting at 0x10 */
4958 lpcr = senc << (LPCR_VRMASD_SH - 4);
4959 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
7a84084c 4960 }
a0144e2a 4961
1b151ce4 4962 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
c77162de 4963 smp_wmb();
c77162de 4964 err = 0;
2c9097e4
PM
4965 out_srcu:
4966 srcu_read_unlock(&kvm->srcu, srcu_idx);
c77162de 4967 out:
c77162de 4968 return err;
b2b2f165 4969
c77162de 4970 up_out:
d8ed45c5 4971 mmap_read_unlock(kvm->mm);
505d6421 4972 goto out_srcu;
de56a948
PM
4973}
4974
0d4ee88d
PM
4975/*
4976 * Must be called with kvm->arch.mmu_setup_lock held and
4977 * mmu_ready = 0 and no vcpus running.
4978 */
18c3640c
PM
4979int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4980{
aa069a99 4981 if (nesting_enabled(kvm))
8e3f5fc1 4982 kvmhv_release_all_nested(kvm);
234ff0b7
PM
4983 kvmppc_rmap_reset(kvm);
4984 kvm->arch.process_table = 0;
b1c5356e 4985 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
234ff0b7
PM
4986 spin_lock(&kvm->mmu_lock);
4987 kvm->arch.radix = 0;
4988 spin_unlock(&kvm->mmu_lock);
18c3640c
PM
4989 kvmppc_free_radix(kvm);
4990 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4991 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
18c3640c
PM
4992 return 0;
4993}
4994
0d4ee88d
PM
4995/*
4996 * Must be called with kvm->arch.mmu_setup_lock held and
4997 * mmu_ready = 0 and no vcpus running.
4998 */
18c3640c
PM
4999int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5000{
5001 int err;
5002
5003 err = kvmppc_init_vm_radix(kvm);
5004 if (err)
5005 return err;
234ff0b7 5006 kvmppc_rmap_reset(kvm);
b1c5356e 5007 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
234ff0b7
PM
5008 spin_lock(&kvm->mmu_lock);
5009 kvm->arch.radix = 1;
5010 spin_unlock(&kvm->mmu_lock);
18c3640c
PM
5011 kvmppc_free_hpt(&kvm->arch.hpt);
5012 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
5013 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
18c3640c
PM
5014 return 0;
5015}
5016
79b6c247
SW
5017#ifdef CONFIG_KVM_XICS
5018/*
5019 * Allocate a per-core structure for managing state about which cores are
5020 * running in the host versus the guest and for exchanging data between
5021 * real mode KVM and CPU running in the host.
5022 * This is only done for the first VM.
5023 * The allocated structure stays even if all VMs have stopped.
5024 * It is only freed when the kvm-hv module is unloaded.
5025 * It's OK for this routine to fail, we just don't support host
5026 * core operations like redirecting H_IPI wakeups.
5027 */
5028void kvmppc_alloc_host_rm_ops(void)
5029{
5030 struct kvmppc_host_rm_ops *ops;
5031 unsigned long l_ops;
5032 int cpu, core;
5033 int size;
5034
5035 /* Not the first time here ? */
5036 if (kvmppc_host_rm_ops_hv != NULL)
5037 return;
5038
5039 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5040 if (!ops)
5041 return;
5042
5043 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5044 ops->rm_core = kzalloc(size, GFP_KERNEL);
5045
5046 if (!ops->rm_core) {
5047 kfree(ops);
5048 return;
5049 }
5050
419af25f 5051 cpus_read_lock();
6f3bb809 5052
79b6c247
SW
5053 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5054 if (!cpu_online(cpu))
5055 continue;
5056
5057 core = cpu >> threads_shift;
5058 ops->rm_core[core].rm_state.in_host = 1;
5059 }
5060
0c2a6606
SW
5061 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5062
79b6c247
SW
5063 /*
5064 * Make the contents of the kvmppc_host_rm_ops structure visible
5065 * to other CPUs before we assign it to the global variable.
5066 * Do an atomic assignment (no locks used here), but if someone
5067 * beats us to it, just free our copy and return.
5068 */
5069 smp_wmb();
5070 l_ops = (unsigned long) ops;
5071
5072 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
419af25f 5073 cpus_read_unlock();
79b6c247
SW
5074 kfree(ops->rm_core);
5075 kfree(ops);
6f3bb809 5076 return;
79b6c247 5077 }
6f3bb809 5078
419af25f
SAS
5079 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5080 "ppc/kvm_book3s:prepare",
5081 kvmppc_set_host_core,
5082 kvmppc_clear_host_core);
5083 cpus_read_unlock();
79b6c247
SW
5084}
5085
5086void kvmppc_free_host_rm_ops(void)
5087{
5088 if (kvmppc_host_rm_ops_hv) {
3f7cd919 5089 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
79b6c247
SW
5090 kfree(kvmppc_host_rm_ops_hv->rm_core);
5091 kfree(kvmppc_host_rm_ops_hv);
5092 kvmppc_host_rm_ops_hv = NULL;
5093 }
5094}
5095#endif
5096
3a167bea 5097static int kvmppc_core_init_vm_hv(struct kvm *kvm)
de56a948 5098{
32fad281 5099 unsigned long lpcr, lpid;
e23a808b 5100 char buf[32];
8cf4ecc0 5101 int ret;
de56a948 5102
ca9f4942
BR
5103 mutex_init(&kvm->arch.uvmem_lock);
5104 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
0d4ee88d
PM
5105 mutex_init(&kvm->arch.mmu_setup_lock);
5106
32fad281
PM
5107 /* Allocate the guest's logical partition ID */
5108
5109 lpid = kvmppc_alloc_lpid();
5d226ae5 5110 if ((long)lpid < 0)
32fad281
PM
5111 return -ENOMEM;
5112 kvm->arch.lpid = lpid;
de56a948 5113
79b6c247
SW
5114 kvmppc_alloc_host_rm_ops();
5115
8e3f5fc1
PM
5116 kvmhv_vm_nested_init(kvm);
5117
1b400ba0
PM
5118 /*
5119 * Since we don't flush the TLB when tearing down a VM,
5120 * and this lpid might have previously been used,
5121 * make sure we flush on each core before running the new VM.
7c5b06ca
PM
5122 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5123 * does this flush for us.
1b400ba0 5124 */
7c5b06ca
PM
5125 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5126 cpumask_setall(&kvm->arch.need_tlb_flush);
1b400ba0 5127
699a0ea0
PM
5128 /* Start out with the default set of hcalls enabled */
5129 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5130 sizeof(kvm->arch.enabled_hcalls));
5131
7a84084c
PM
5132 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5133 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
aa04b4cc 5134
c17b98cf 5135 /* Init LPCR for virtual RMA mode */
f3c99f97
PM
5136 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5137 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5138 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5139 lpcr &= LPCR_PECE | LPCR_LPES;
5140 } else {
5141 lpcr = 0;
5142 }
c17b98cf
PM
5143 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5144 LPCR_VPM0 | LPCR_VPM1;
5145 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5146 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5147 /* On POWER8 turn on online bit to enable PURR/SPURR */
5148 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5149 lpcr |= LPCR_ONL;
84f7139c
PM
5150 /*
5151 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5152 * Set HVICE bit to enable hypervisor virtualization interrupts.
5af50993
BH
5153 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5154 * be unnecessary but better safe than sorry in case we re-enable
5155 * EE in HV mode with this LPCR still set)
84f7139c
PM
5156 */
5157 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
7a84084c 5158 lpcr &= ~LPCR_VPM0;
5af50993
BH
5159 lpcr |= LPCR_HVICE | LPCR_HEIC;
5160
5161 /*
5162 * If xive is enabled, we route 0x500 interrupts directly
5163 * to the guest.
5164 */
03f95332 5165 if (xics_on_xive())
5af50993 5166 lpcr |= LPCR_LPES;
84f7139c
PM
5167 }
5168
8cf4ecc0 5169 /*
18c3640c 5170 * If the host uses radix, the guest starts out as radix.
8cf4ecc0
PM
5171 */
5172 if (radix_enabled()) {
5173 kvm->arch.radix = 1;
1b151ce4 5174 kvm->arch.mmu_ready = 1;
8cf4ecc0
PM
5175 lpcr &= ~LPCR_VPM1;
5176 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5177 ret = kvmppc_init_vm_radix(kvm);
5178 if (ret) {
5179 kvmppc_free_lpid(kvm->arch.lpid);
5180 return ret;
5181 }
5182 kvmppc_setup_partition_table(kvm);
5183 }
5184
67145ef4 5185 verify_lpcr(kvm, lpcr);
9e368f29 5186 kvm->arch.lpcr = lpcr;
aa04b4cc 5187
5e985969
DG
5188 /* Initialization for future HPT resizes */
5189 kvm->arch.resize_hpt = NULL;
5190
7c5b06ca
PM
5191 /*
5192 * Work out how many sets the TLB has, for the use of
5193 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5194 */
e8063940
AK
5195 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5196 /*
5197 * P10 will flush all the congruence class with a single tlbiel
5198 */
5199 kvm->arch.tlb_sets = 1;
5200 } else if (radix_enabled())
8cf4ecc0
PM
5201 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5202 else if (cpu_has_feature(CPU_FTR_ARCH_300))
7c5b06ca
PM
5203 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5204 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5205 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5206 else
5207 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5208
512691d4 5209 /*
441c19c8
ME
5210 * Track that we now have a HV mode VM active. This blocks secondary
5211 * CPU threads from coming online.
512691d4 5212 */
aaae8c79 5213 if (!cpu_has_feature(CPU_FTR_ARCH_300))
8cf4ecc0 5214 kvm_hv_vm_activated();
512691d4 5215
3c313524
PM
5216 /*
5217 * Initialize smt_mode depending on processor.
5218 * POWER8 and earlier have to use "strict" threading, where
5219 * all vCPUs in a vcore have to run on the same (sub)core,
5220 * whereas on POWER9 the threads can each run a different
5221 * guest.
5222 */
5223 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5224 kvm->arch.smt_mode = threads_per_subcore;
5225 else
5226 kvm->arch.smt_mode = 1;
57900694 5227 kvm->arch.emul_smt_mode = 1;
3c313524 5228
e23a808b
PM
5229 /*
5230 * Create a debugfs directory for the VM
5231 */
5232 snprintf(buf, sizeof(buf), "vm%d", current->pid);
5233 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
929f45e3 5234 kvmppc_mmu_debugfs_init(kvm);
9a94d3ee
PM
5235 if (radix_enabled())
5236 kvmhv_radix_debugfs_init(kvm);
e23a808b 5237
54738c09 5238 return 0;
de56a948
PM
5239}
5240
f1378b1c
PM
5241static void kvmppc_free_vcores(struct kvm *kvm)
5242{
5243 long int i;
5244
23316316 5245 for (i = 0; i < KVM_MAX_VCORES; ++i)
f1378b1c
PM
5246 kfree(kvm->arch.vcores[i]);
5247 kvm->arch.online_vcores = 0;
5248}
5249
3a167bea 5250static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
de56a948 5251{
e23a808b
PM
5252 debugfs_remove_recursive(kvm->arch.debugfs_dir);
5253
aaae8c79 5254 if (!cpu_has_feature(CPU_FTR_ARCH_300))
8cf4ecc0 5255 kvm_hv_vm_deactivated();
512691d4 5256
f1378b1c 5257 kvmppc_free_vcores(kvm);
aa04b4cc 5258
8cf4ecc0 5259
5a319350
PM
5260 if (kvm_is_radix(kvm))
5261 kvmppc_free_radix(kvm);
5262 else
aae0777f 5263 kvmppc_free_hpt(&kvm->arch.hpt);
c57875f5 5264
89329c0b
SJS
5265 /* Perform global invalidation and return lpid to the pool */
5266 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
aa069a99 5267 if (nesting_enabled(kvm))
8e3f5fc1 5268 kvmhv_release_all_nested(kvm);
89329c0b 5269 kvm->arch.process_table = 0;
d89c69f4
PM
5270 if (kvm->arch.secure_guest)
5271 uv_svm_terminate(kvm->arch.lpid);
8e3f5fc1 5272 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
89329c0b 5273 }
ca9f4942 5274
89329c0b
SJS
5275 kvmppc_free_lpid(kvm->arch.lpid);
5276
c57875f5 5277 kvmppc_free_pimap(kvm);
de56a948
PM
5278}
5279
3a167bea 5280/* We don't need to emulate any privileged instructions or dcbz */
8c99d345 5281static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
3a167bea 5282 unsigned int inst, int *advance)
de56a948 5283{
3a167bea 5284 return EMULATE_FAIL;
de56a948
PM
5285}
5286
3a167bea
AK
5287static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5288 ulong spr_val)
de56a948
PM
5289{
5290 return EMULATE_FAIL;
5291}
5292
3a167bea
AK
5293static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5294 ulong *spr_val)
de56a948
PM
5295{
5296 return EMULATE_FAIL;
5297}
5298
3a167bea 5299static int kvmppc_core_check_processor_compat_hv(void)
de56a948 5300{
de760db4
PM
5301 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5302 cpu_has_feature(CPU_FTR_ARCH_206))
5303 return 0;
50de596d 5304
de760db4
PM
5305 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5306 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5307 return 0;
5308
5309 return -EIO;
de56a948
PM
5310}
5311
8daaafc8
SW
5312#ifdef CONFIG_KVM_XICS
5313
5314void kvmppc_free_pimap(struct kvm *kvm)
5315{
5316 kfree(kvm->arch.pimap);
5317}
5318
c57875f5 5319static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
8daaafc8
SW
5320{
5321 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5322}
c57875f5
SW
5323
5324static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5325{
5326 struct irq_desc *desc;
5327 struct kvmppc_irq_map *irq_map;
5328 struct kvmppc_passthru_irqmap *pimap;
5329 struct irq_chip *chip;
5af50993 5330 int i, rc = 0;
c57875f5 5331
644abbb2
SW
5332 if (!kvm_irq_bypass)
5333 return 1;
5334
c57875f5
SW
5335 desc = irq_to_desc(host_irq);
5336 if (!desc)
5337 return -EIO;
5338
5339 mutex_lock(&kvm->lock);
5340
5341 pimap = kvm->arch.pimap;
5342 if (pimap == NULL) {
5343 /* First call, allocate structure to hold IRQ map */
5344 pimap = kvmppc_alloc_pimap();
5345 if (pimap == NULL) {
5346 mutex_unlock(&kvm->lock);
5347 return -ENOMEM;
5348 }
5349 kvm->arch.pimap = pimap;
5350 }
5351
5352 /*
5353 * For now, we only support interrupts for which the EOI operation
5354 * is an OPAL call followed by a write to XIRR, since that's
5af50993 5355 * what our real-mode EOI code does, or a XIVE interrupt
c57875f5
SW
5356 */
5357 chip = irq_data_get_irq_chip(&desc->irq_data);
5af50993 5358 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
c57875f5
SW
5359 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5360 host_irq, guest_gsi);
5361 mutex_unlock(&kvm->lock);
5362 return -ENOENT;
5363 }
5364
5365 /*
5366 * See if we already have an entry for this guest IRQ number.
5367 * If it's mapped to a hardware IRQ number, that's an error,
5368 * otherwise re-use this entry.
5369 */
5370 for (i = 0; i < pimap->n_mapped; i++) {
5371 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5372 if (pimap->mapped[i].r_hwirq) {
5373 mutex_unlock(&kvm->lock);
5374 return -EINVAL;
5375 }
5376 break;
5377 }
5378 }
5379
5380 if (i == KVMPPC_PIRQ_MAPPED) {
5381 mutex_unlock(&kvm->lock);
5382 return -EAGAIN; /* table is full */
5383 }
5384
5385 irq_map = &pimap->mapped[i];
5386
5387 irq_map->v_hwirq = guest_gsi;
c57875f5
SW
5388 irq_map->desc = desc;
5389
e3c13e56
SW
5390 /*
5391 * Order the above two stores before the next to serialize with
5392 * the KVM real mode handler.
5393 */
5394 smp_wmb();
5395 irq_map->r_hwirq = desc->irq_data.hwirq;
5396
c57875f5
SW
5397 if (i == pimap->n_mapped)
5398 pimap->n_mapped++;
5399
03f95332 5400 if (xics_on_xive())
5af50993
BH
5401 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5402 else
5403 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5404 if (rc)
5405 irq_map->r_hwirq = 0;
5d375199 5406
c57875f5
SW
5407 mutex_unlock(&kvm->lock);
5408
5409 return 0;
5410}
5411
5412static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5413{
5414 struct irq_desc *desc;
5415 struct kvmppc_passthru_irqmap *pimap;
5af50993 5416 int i, rc = 0;
c57875f5 5417
644abbb2
SW
5418 if (!kvm_irq_bypass)
5419 return 0;
5420
c57875f5
SW
5421 desc = irq_to_desc(host_irq);
5422 if (!desc)
5423 return -EIO;
5424
5425 mutex_lock(&kvm->lock);
a1c52e1c
ME
5426 if (!kvm->arch.pimap)
5427 goto unlock;
c57875f5 5428
c57875f5
SW
5429 pimap = kvm->arch.pimap;
5430
5431 for (i = 0; i < pimap->n_mapped; i++) {
5432 if (guest_gsi == pimap->mapped[i].v_hwirq)
5433 break;
5434 }
5435
5436 if (i == pimap->n_mapped) {
5437 mutex_unlock(&kvm->lock);
5438 return -ENODEV;
5439 }
5440
03f95332 5441 if (xics_on_xive())
5af50993
BH
5442 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5443 else
5444 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5d375199 5445
5af50993 5446 /* invalidate the entry (what do do on error from the above ?) */
c57875f5
SW
5447 pimap->mapped[i].r_hwirq = 0;
5448
5449 /*
5450 * We don't free this structure even when the count goes to
5451 * zero. The structure is freed when we destroy the VM.
5452 */
a1c52e1c 5453 unlock:
c57875f5 5454 mutex_unlock(&kvm->lock);
5af50993 5455 return rc;
c57875f5
SW
5456}
5457
5458static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5459 struct irq_bypass_producer *prod)
5460{
5461 int ret = 0;
5462 struct kvm_kernel_irqfd *irqfd =
5463 container_of(cons, struct kvm_kernel_irqfd, consumer);
5464
5465 irqfd->producer = prod;
5466
5467 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5468 if (ret)
5469 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5470 prod->irq, irqfd->gsi, ret);
5471
5472 return ret;
5473}
5474
5475static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5476 struct irq_bypass_producer *prod)
5477{
5478 int ret;
5479 struct kvm_kernel_irqfd *irqfd =
5480 container_of(cons, struct kvm_kernel_irqfd, consumer);
5481
5482 irqfd->producer = NULL;
5483
5484 /*
5485 * When producer of consumer is unregistered, we change back to
5486 * default external interrupt handling mode - KVM real mode
5487 * will switch back to host.
5488 */
5489 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5490 if (ret)
5491 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5492 prod->irq, irqfd->gsi, ret);
5493}
8daaafc8
SW
5494#endif
5495
3a167bea
AK
5496static long kvm_arch_vm_ioctl_hv(struct file *filp,
5497 unsigned int ioctl, unsigned long arg)
5498{
5499 struct kvm *kvm __maybe_unused = filp->private_data;
5500 void __user *argp = (void __user *)arg;
5501 long r;
5502
5503 switch (ioctl) {
5504
3a167bea
AK
5505 case KVM_PPC_ALLOCATE_HTAB: {
5506 u32 htab_order;
5507
05e6295d
FR
5508 /* If we're a nested hypervisor, we currently only support radix */
5509 if (kvmhv_on_pseries()) {
5510 r = -EOPNOTSUPP;
5511 break;
5512 }
5513
3a167bea
AK
5514 r = -EFAULT;
5515 if (get_user(htab_order, (u32 __user *)argp))
5516 break;
f98a8bf9 5517 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3a167bea
AK
5518 if (r)
5519 break;
3a167bea
AK
5520 r = 0;
5521 break;
5522 }
5523
5524 case KVM_PPC_GET_HTAB_FD: {
5525 struct kvm_get_htab_fd ghf;
5526
5527 r = -EFAULT;
5528 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5529 break;
5530 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5531 break;
5532 }
5533
5e985969
DG
5534 case KVM_PPC_RESIZE_HPT_PREPARE: {
5535 struct kvm_ppc_resize_hpt rhpt;
5536
5537 r = -EFAULT;
5538 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5539 break;
5540
5541 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5542 break;
5543 }
5544
5545 case KVM_PPC_RESIZE_HPT_COMMIT: {
5546 struct kvm_ppc_resize_hpt rhpt;
5547
5548 r = -EFAULT;
5549 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5550 break;
5551
5552 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5553 break;
5554 }
5555
3a167bea
AK
5556 default:
5557 r = -ENOTTY;
5558 }
5559
5560 return r;
5561}
5562
699a0ea0
PM
5563/*
5564 * List of hcall numbers to enable by default.
5565 * For compatibility with old userspace, we enable by default
5566 * all hcalls that were implemented before the hcall-enabling
5567 * facility was added. Note this list should not include H_RTAS.
5568 */
5569static unsigned int default_hcall_list[] = {
5570 H_REMOVE,
5571 H_ENTER,
5572 H_READ,
5573 H_PROTECT,
5574 H_BULK_REMOVE,
0fd85cb8 5575#ifdef CONFIG_SPAPR_TCE_IOMMU
699a0ea0
PM
5576 H_GET_TCE,
5577 H_PUT_TCE,
0fd85cb8 5578#endif
699a0ea0
PM
5579 H_SET_DABR,
5580 H_SET_XDABR,
5581 H_CEDE,
5582 H_PROD,
5583 H_CONFER,
5584 H_REGISTER_VPA,
5585#ifdef CONFIG_KVM_XICS
5586 H_EOI,
5587 H_CPPR,
5588 H_IPI,
5589 H_IPOLL,
5590 H_XIRR,
5591 H_XIRR_X,
5592#endif
5593 0
5594};
5595
5596static void init_default_hcalls(void)
5597{
5598 int i;
ae2113a4 5599 unsigned int hcall;
699a0ea0 5600
ae2113a4
PM
5601 for (i = 0; default_hcall_list[i]; ++i) {
5602 hcall = default_hcall_list[i];
5603 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5604 __set_bit(hcall / 4, default_enabled_hcalls);
5605 }
699a0ea0
PM
5606}
5607
c9270132
PM
5608static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5609{
468808bd 5610 unsigned long lpcr;
8cf4ecc0 5611 int radix;
18c3640c 5612 int err;
468808bd
PM
5613
5614 /* If not on a POWER9, reject it */
5615 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5616 return -ENODEV;
5617
5618 /* If any unknown flags set, reject it */
5619 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5620 return -EINVAL;
5621
468808bd 5622 /* GR (guest radix) bit in process_table field must match */
18c3640c 5623 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
8cf4ecc0 5624 if (!!(cfg->process_table & PATB_GR) != radix)
468808bd
PM
5625 return -EINVAL;
5626
5627 /* Process table size field must be reasonable, i.e. <= 24 */
5628 if ((cfg->process_table & PRTS_MASK) > 24)
5629 return -EINVAL;
5630
18c3640c
PM
5631 /* We can change a guest to/from radix now, if the host is radix */
5632 if (radix && !radix_enabled())
5633 return -EINVAL;
5634
de760db4
PM
5635 /* If we're a nested hypervisor, we currently only support radix */
5636 if (kvmhv_on_pseries() && !radix)
5637 return -EINVAL;
5638
0d4ee88d 5639 mutex_lock(&kvm->arch.mmu_setup_lock);
18c3640c
PM
5640 if (radix != kvm_is_radix(kvm)) {
5641 if (kvm->arch.mmu_ready) {
5642 kvm->arch.mmu_ready = 0;
5643 /* order mmu_ready vs. vcpus_running */
5644 smp_mb();
5645 if (atomic_read(&kvm->arch.vcpus_running)) {
5646 kvm->arch.mmu_ready = 1;
5647 err = -EBUSY;
5648 goto out_unlock;
5649 }
5650 }
5651 if (radix)
5652 err = kvmppc_switch_mmu_to_radix(kvm);
5653 else
5654 err = kvmppc_switch_mmu_to_hpt(kvm);
5655 if (err)
5656 goto out_unlock;
5657 }
5658
468808bd
PM
5659 kvm->arch.process_table = cfg->process_table;
5660 kvmppc_setup_partition_table(kvm);
5661
5662 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5663 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
18c3640c 5664 err = 0;
468808bd 5665
18c3640c 5666 out_unlock:
0d4ee88d 5667 mutex_unlock(&kvm->arch.mmu_setup_lock);
18c3640c 5668 return err;
c9270132
PM
5669}
5670
aa069a99
PM
5671static int kvmhv_enable_nested(struct kvm *kvm)
5672{
5673 if (!nested)
5674 return -EPERM;
cbcff8b1 5675 if (!cpu_has_feature(CPU_FTR_ARCH_300))
aa069a99 5676 return -ENODEV;
0bf7e1b2 5677 if (!radix_enabled())
aa069a99
PM
5678 return -ENODEV;
5679
5680 /* kvm == NULL means the caller is testing if the capability exists */
5681 if (kvm)
5682 kvm->arch.nested_enable = true;
5683 return 0;
5684}
5685
dceadcf9
SJS
5686static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5687 int size)
5688{
5689 int rc = -EINVAL;
5690
5691 if (kvmhv_vcpu_is_radix(vcpu)) {
5692 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5693
5694 if (rc > 0)
5695 rc = -EINVAL;
5696 }
5697
5698 /* For now quadrants are the only way to access nested guest memory */
5699 if (rc && vcpu->arch.nested)
5700 rc = -EAGAIN;
5701
5702 return rc;
5703}
5704
5705static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5706 int size)
5707{
5708 int rc = -EINVAL;
5709
5710 if (kvmhv_vcpu_is_radix(vcpu)) {
5711 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5712
5713 if (rc > 0)
5714 rc = -EINVAL;
5715 }
5716
5717 /* For now quadrants are the only way to access nested guest memory */
5718 if (rc && vcpu->arch.nested)
5719 rc = -EAGAIN;
5720
5721 return rc;
5722}
5723
22945688
BR
5724static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5725{
5726 unpin_vpa(kvm, vpa);
5727 vpa->gpa = 0;
5728 vpa->pinned_addr = NULL;
5729 vpa->dirty = false;
5730 vpa->update_pending = 0;
5731}
5732
9a5788c6
PM
5733/*
5734 * Enable a guest to become a secure VM, or test whether
5735 * that could be enabled.
5736 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5737 * tested (kvm == NULL) or enabled (kvm != NULL).
5738 */
5739static int kvmhv_enable_svm(struct kvm *kvm)
5740{
5741 if (!kvmppc_uvmem_available())
5742 return -EINVAL;
5743 if (kvm)
5744 kvm->arch.svm_enabled = 1;
5745 return 0;
5746}
5747
22945688
BR
5748/*
5749 * IOCTL handler to turn off secure mode of guest
5750 *
5751 * - Release all device pages
5752 * - Issue ucall to terminate the guest on the UV side
5753 * - Unpin the VPA pages.
5754 * - Reinit the partition scoped page tables
5755 */
5756static int kvmhv_svm_off(struct kvm *kvm)
5757{
5758 struct kvm_vcpu *vcpu;
5759 int mmu_was_ready;
5760 int srcu_idx;
5761 int ret = 0;
5762 int i;
5763
5764 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5765 return ret;
5766
5767 mutex_lock(&kvm->arch.mmu_setup_lock);
5768 mmu_was_ready = kvm->arch.mmu_ready;
5769 if (kvm->arch.mmu_ready) {
5770 kvm->arch.mmu_ready = 0;
5771 /* order mmu_ready vs. vcpus_running */
5772 smp_mb();
5773 if (atomic_read(&kvm->arch.vcpus_running)) {
5774 kvm->arch.mmu_ready = 1;
5775 ret = -EBUSY;
5776 goto out;
5777 }
5778 }
5779
5780 srcu_idx = srcu_read_lock(&kvm->srcu);
5781 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5782 struct kvm_memory_slot *memslot;
5783 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5784
5785 if (!slots)
5786 continue;
5787
5788 kvm_for_each_memslot(memslot, slots) {
ce477a7a 5789 kvmppc_uvmem_drop_pages(memslot, kvm, true);
22945688
BR
5790 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5791 }
5792 }
5793 srcu_read_unlock(&kvm->srcu, srcu_idx);
5794
5795 ret = uv_svm_terminate(kvm->arch.lpid);
5796 if (ret != U_SUCCESS) {
5797 ret = -EINVAL;
5798 goto out;
5799 }
5800
5801 /*
5802 * When secure guest is reset, all the guest pages are sent
5803 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5804 * chance to run and unpin their VPA pages. Unpinning of all
5805 * VPA pages is done here explicitly so that VPA pages
5806 * can be migrated to the secure side.
5807 *
5808 * This is required to for the secure SMP guest to reboot
5809 * correctly.
5810 */
5811 kvm_for_each_vcpu(i, vcpu, kvm) {
5812 spin_lock(&vcpu->arch.vpa_update_lock);
5813 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5814 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5815 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5816 spin_unlock(&vcpu->arch.vpa_update_lock);
5817 }
5818
5819 kvmppc_setup_partition_table(kvm);
5820 kvm->arch.secure_guest = 0;
5821 kvm->arch.mmu_ready = mmu_was_ready;
5822out:
5823 mutex_unlock(&kvm->arch.mmu_setup_lock);
5824 return ret;
5825}
5826
d9a47eda
RB
5827static int kvmhv_enable_dawr1(struct kvm *kvm)
5828{
5829 if (!cpu_has_feature(CPU_FTR_DAWR1))
5830 return -ENODEV;
5831
5832 /* kvm == NULL means the caller is testing if the capability exists */
5833 if (kvm)
5834 kvm->arch.dawr1_enabled = true;
5835 return 0;
5836}
5837
a722076e
FR
5838static bool kvmppc_hash_v3_possible(void)
5839{
fae5c9f3 5840 if (!cpu_has_feature(CPU_FTR_ARCH_300))
a722076e
FR
5841 return false;
5842
fae5c9f3 5843 if (!cpu_has_feature(CPU_FTR_HVMODE))
a722076e
FR
5844 return false;
5845
fae5c9f3
NP
5846 /*
5847 * POWER9 chips before version 2.02 can't have some threads in
5848 * HPT mode and some in radix mode on the same core.
5849 */
5850 if (radix_enabled()) {
5851 unsigned int pvr = mfspr(SPRN_PVR);
5852 if ((pvr >> 16) == PVR_POWER9 &&
5853 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5854 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5855 return false;
5856 }
5857
5858 return true;
a722076e
FR
5859}
5860
cbbc58d4 5861static struct kvmppc_ops kvm_ops_hv = {
3a167bea
AK
5862 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5863 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5864 .get_one_reg = kvmppc_get_one_reg_hv,
5865 .set_one_reg = kvmppc_set_one_reg_hv,
5866 .vcpu_load = kvmppc_core_vcpu_load_hv,
5867 .vcpu_put = kvmppc_core_vcpu_put_hv,
87a45e07 5868 .inject_interrupt = kvmppc_inject_interrupt_hv,
3a167bea
AK
5869 .set_msr = kvmppc_set_msr_hv,
5870 .vcpu_run = kvmppc_vcpu_run_hv,
5871 .vcpu_create = kvmppc_core_vcpu_create_hv,
5872 .vcpu_free = kvmppc_core_vcpu_free_hv,
5873 .check_requests = kvmppc_core_check_requests_hv,
5874 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5875 .flush_memslot = kvmppc_core_flush_memslot_hv,
5876 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5877 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
b1c5356e
SC
5878 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5879 .age_gfn = kvm_age_gfn_hv,
5880 .test_age_gfn = kvm_test_age_gfn_hv,
5881 .set_spte_gfn = kvm_set_spte_gfn_hv,
3a167bea 5882 .free_memslot = kvmppc_core_free_memslot_hv,
3a167bea
AK
5883 .init_vm = kvmppc_core_init_vm_hv,
5884 .destroy_vm = kvmppc_core_destroy_vm_hv,
3a167bea
AK
5885 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5886 .emulate_op = kvmppc_core_emulate_op_hv,
5887 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5888 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5889 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5890 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
ae2113a4 5891 .hcall_implemented = kvmppc_hcall_impl_hv,
c57875f5
SW
5892#ifdef CONFIG_KVM_XICS
5893 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5894 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5895#endif
c9270132
PM
5896 .configure_mmu = kvmhv_configure_mmu,
5897 .get_rmmu_info = kvmhv_get_rmmu_info,
3c313524 5898 .set_smt_mode = kvmhv_set_smt_mode,
aa069a99 5899 .enable_nested = kvmhv_enable_nested,
dceadcf9
SJS
5900 .load_from_eaddr = kvmhv_load_from_eaddr,
5901 .store_to_eaddr = kvmhv_store_to_eaddr,
9a5788c6 5902 .enable_svm = kvmhv_enable_svm,
22945688 5903 .svm_off = kvmhv_svm_off,
d9a47eda 5904 .enable_dawr1 = kvmhv_enable_dawr1,
a722076e 5905 .hash_v3_possible = kvmppc_hash_v3_possible,
3a167bea
AK
5906};
5907
fd7bacbc
MS
5908static int kvm_init_subcore_bitmap(void)
5909{
5910 int i, j;
5911 int nr_cores = cpu_nr_cores();
5912 struct sibling_subcore_state *sibling_subcore_state;
5913
5914 for (i = 0; i < nr_cores; i++) {
5915 int first_cpu = i * threads_per_core;
5916 int node = cpu_to_node(first_cpu);
5917
5918 /* Ignore if it is already allocated. */
d2e60075 5919 if (paca_ptrs[first_cpu]->sibling_subcore_state)
fd7bacbc
MS
5920 continue;
5921
5922 sibling_subcore_state =
08434ab4 5923 kzalloc_node(sizeof(struct sibling_subcore_state),
fd7bacbc
MS
5924 GFP_KERNEL, node);
5925 if (!sibling_subcore_state)
5926 return -ENOMEM;
5927
fd7bacbc
MS
5928
5929 for (j = 0; j < threads_per_core; j++) {
5930 int cpu = first_cpu + j;
5931
d2e60075
NP
5932 paca_ptrs[cpu]->sibling_subcore_state =
5933 sibling_subcore_state;
fd7bacbc
MS
5934 }
5935 }
5936 return 0;
5937}
5938
5a319350
PM
5939static int kvmppc_radix_possible(void)
5940{
5941 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5942}
5943
3a167bea 5944static int kvmppc_book3s_init_hv(void)
de56a948
PM
5945{
5946 int r;
2275d7b5
NP
5947
5948 if (!tlbie_capable) {
5949 pr_err("KVM-HV: Host does not support TLBIE\n");
5950 return -ENODEV;
5951 }
5952
cbbc58d4
AK
5953 /*
5954 * FIXME!! Do we need to check on all cpus ?
5955 */
5956 r = kvmppc_core_check_processor_compat_hv();
5957 if (r < 0)
739e2425 5958 return -ENODEV;
de56a948 5959
8e3f5fc1
PM
5960 r = kvmhv_nested_init();
5961 if (r)
5962 return r;
5963
fd7bacbc
MS
5964 r = kvm_init_subcore_bitmap();
5965 if (r)
5966 return r;
5967
f725758b
PM
5968 /*
5969 * We need a way of accessing the XICS interrupt controller,
d2e60075 5970 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
f725758b
PM
5971 * indirectly, via OPAL.
5972 */
5973#ifdef CONFIG_SMP
03f95332 5974 if (!xics_on_xive() && !kvmhv_on_pseries() &&
f3c18e93 5975 !local_paca->kvm_hstate.xics_phys) {
f725758b
PM
5976 struct device_node *np;
5977
5978 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5979 if (!np) {
5980 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5981 return -ENODEV;
5982 }
51eaa08f
NMG
5983 /* presence of intc confirmed - node can be dropped again */
5984 of_node_put(np);
f725758b
PM
5985 }
5986#endif
5987
cbbc58d4
AK
5988 kvm_ops_hv.owner = THIS_MODULE;
5989 kvmppc_hv_ops = &kvm_ops_hv;
de56a948 5990
699a0ea0
PM
5991 init_default_hcalls();
5992
ec257165
PM
5993 init_vcore_lists();
5994
cbbc58d4 5995 r = kvmppc_mmu_hv_init();
5a319350
PM
5996 if (r)
5997 return r;
5998
5999 if (kvmppc_radix_possible())
6000 r = kvmppc_radix_init();
00608e1f 6001
ca9f4942
BR
6002 r = kvmppc_uvmem_init();
6003 if (r < 0)
6004 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6005
de56a948
PM
6006 return r;
6007}
6008
3a167bea 6009static void kvmppc_book3s_exit_hv(void)
de56a948 6010{
ca9f4942 6011 kvmppc_uvmem_free();
79b6c247 6012 kvmppc_free_host_rm_ops();
5a319350
PM
6013 if (kvmppc_radix_possible())
6014 kvmppc_radix_exit();
cbbc58d4 6015 kvmppc_hv_ops = NULL;
8e3f5fc1 6016 kvmhv_nested_exit();
de56a948
PM
6017}
6018
3a167bea
AK
6019module_init(kvmppc_book3s_init_hv);
6020module_exit(kvmppc_book3s_exit_hv);
2ba9f0d8 6021MODULE_LICENSE("GPL");
398a76c6
AG
6022MODULE_ALIAS_MISCDEV(KVM_MINOR);
6023MODULE_ALIAS("devname:kvm");