]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Book3S HV: Don't access XIVE PIPR register using byte accesses
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv.c
CommitLineData
de56a948
PM
1/*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21#include <linux/kvm_host.h>
22#include <linux/err.h>
23#include <linux/slab.h>
24#include <linux/preempt.h>
174cd4b1 25#include <linux/sched/signal.h>
03441a34 26#include <linux/sched/stat.h>
de56a948 27#include <linux/delay.h>
66b15db6 28#include <linux/export.h>
de56a948
PM
29#include <linux/fs.h>
30#include <linux/anon_inodes.h>
07f8ab25 31#include <linux/cpu.h>
de56a948 32#include <linux/cpumask.h>
aa04b4cc
PM
33#include <linux/spinlock.h>
34#include <linux/page-flags.h>
2c9097e4 35#include <linux/srcu.h>
398a76c6 36#include <linux/miscdevice.h>
e23a808b 37#include <linux/debugfs.h>
d3989143
BH
38#include <linux/gfp.h>
39#include <linux/vmalloc.h>
40#include <linux/highmem.h>
41#include <linux/hugetlb.h>
42#include <linux/kvm_irqfd.h>
43#include <linux/irqbypass.h>
44#include <linux/module.h>
45#include <linux/compiler.h>
46#include <linux/of.h>
de56a948
PM
47
48#include <asm/reg.h>
57900694
PM
49#include <asm/ppc-opcode.h>
50#include <asm/disassemble.h>
de56a948
PM
51#include <asm/cputable.h>
52#include <asm/cacheflush.h>
53#include <asm/tlbflush.h>
7c0f6ba6 54#include <linux/uaccess.h>
de56a948
PM
55#include <asm/io.h>
56#include <asm/kvm_ppc.h>
57#include <asm/kvm_book3s.h>
58#include <asm/mmu_context.h>
59#include <asm/lppaca.h>
60#include <asm/processor.h>
371fefd6 61#include <asm/cputhreads.h>
aa04b4cc 62#include <asm/page.h>
de1d9248 63#include <asm/hvcall.h>
ae3a197e 64#include <asm/switch_to.h>
512691d4 65#include <asm/smp.h>
66feed61 66#include <asm/dbell.h>
fd7bacbc 67#include <asm/hmi.h>
c57875f5 68#include <asm/pnv-pci.h>
7a84084c 69#include <asm/mmu.h>
f725758b
PM
70#include <asm/opal.h>
71#include <asm/xics.h>
5af50993 72#include <asm/xive.h>
de56a948 73
3a167bea
AK
74#include "book3s.h"
75
3c78f78a
SW
76#define CREATE_TRACE_POINTS
77#include "trace_hv.h"
78
de56a948
PM
79/* #define EXIT_DEBUG */
80/* #define EXIT_DEBUG_SIMPLE */
81/* #define EXIT_DEBUG_INT */
82
913d3ff9
PM
83/* Used to indicate that a guest page fault needs to be handled */
84#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
f7af5209
SW
85/* Used to indicate that a guest passthrough interrupt needs to be handled */
86#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
913d3ff9 87
c7b67670
PM
88/* Used as a "null" value for timebase values */
89#define TB_NIL (~(u64)0)
90
699a0ea0
PM
91static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92
b4deba5c
PM
93static int dynamic_mt_modes = 6;
94module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
ec257165
PM
96static int target_smt_mode;
97module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
9678cdaa 99
520fe9c6
SW
100#ifdef CONFIG_KVM_XICS
101static struct kernel_param_ops module_param_ops = {
102 .set = param_set_int,
103 .get = param_get_int,
104};
105
644abbb2
SW
106module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107 S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109
520fe9c6
SW
110module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111 S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113#endif
114
19ccb76a 115static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
32fad281 116static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
19ccb76a 117
7b5f8272
SJS
118static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119 int *ip)
120{
121 int i = *ip;
122 struct kvm_vcpu *vcpu;
123
124 while (++i < MAX_SMT_THREADS) {
125 vcpu = READ_ONCE(vc->runnable_threads[i]);
126 if (vcpu) {
127 *ip = i;
128 return vcpu;
129 }
130 }
131 return NULL;
132}
133
134/* Used to traverse the list of runnable threads for a given vcore */
135#define for_each_runnable_thread(i, vcpu, vc) \
136 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137
66feed61
PM
138static bool kvmppc_ipi_thread(int cpu)
139{
1704a81c
PM
140 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141
142 /* On POWER9 we can use msgsnd to IPI any cpu */
143 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144 msg |= get_hard_smp_processor_id(cpu);
145 smp_mb();
146 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147 return true;
148 }
149
66feed61
PM
150 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152 preempt_disable();
153 if (cpu_first_thread_sibling(cpu) ==
154 cpu_first_thread_sibling(smp_processor_id())) {
66feed61
PM
155 msg |= cpu_thread_in_core(cpu);
156 smp_mb();
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 preempt_enable();
159 return true;
160 }
161 preempt_enable();
162 }
163
164#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
f725758b
PM
165 if (cpu >= 0 && cpu < nr_cpu_ids) {
166 if (paca[cpu].kvm_hstate.xics_phys) {
167 xics_wake_cpu(cpu);
168 return true;
169 }
170 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
66feed61
PM
171 return true;
172 }
173#endif
174
175 return false;
176}
177
3a167bea 178static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
54695c30 179{
ec257165 180 int cpu;
8577370f 181 struct swait_queue_head *wqp;
54695c30
BH
182
183 wqp = kvm_arch_vcpu_wq(vcpu);
8577370f
MT
184 if (swait_active(wqp)) {
185 swake_up(wqp);
54695c30
BH
186 ++vcpu->stat.halt_wakeup;
187 }
188
3deda5e5
PM
189 cpu = READ_ONCE(vcpu->arch.thread_cpu);
190 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
66feed61 191 return;
54695c30
BH
192
193 /* CPU points to the first thread of the core */
ec257165 194 cpu = vcpu->cpu;
66feed61
PM
195 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196 smp_send_reschedule(cpu);
54695c30
BH
197}
198
c7b67670
PM
199/*
200 * We use the vcpu_load/put functions to measure stolen time.
201 * Stolen time is counted as time when either the vcpu is able to
202 * run as part of a virtual core, but the task running the vcore
203 * is preempted or sleeping, or when the vcpu needs something done
204 * in the kernel by the task running the vcpu, but that task is
205 * preempted or sleeping. Those two things have to be counted
206 * separately, since one of the vcpu tasks will take on the job
207 * of running the core, and the other vcpu tasks in the vcore will
208 * sleep waiting for it to do that, but that sleep shouldn't count
209 * as stolen time.
210 *
211 * Hence we accumulate stolen time when the vcpu can run as part of
212 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213 * needs its task to do other things in the kernel (for example,
214 * service a page fault) in busy_stolen. We don't accumulate
215 * stolen time for a vcore when it is inactive, or for a vcpu
216 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
217 * a misnomer; it means that the vcpu task is not executing in
218 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219 * the kernel. We don't have any way of dividing up that time
220 * between time that the vcpu is genuinely stopped, time that
221 * the task is actively working on behalf of the vcpu, and time
222 * that the task is preempted, so we don't count any of it as
223 * stolen.
224 *
225 * Updates to busy_stolen are protected by arch.tbacct_lock;
2711e248
PM
226 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227 * lock. The stolen times are measured in units of timebase ticks.
228 * (Note that the != TB_NIL checks below are purely defensive;
229 * they should never fail.)
c7b67670
PM
230 */
231
ec257165
PM
232static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233{
234 unsigned long flags;
235
236 spin_lock_irqsave(&vc->stoltb_lock, flags);
237 vc->preempt_tb = mftb();
238 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239}
240
241static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242{
243 unsigned long flags;
244
245 spin_lock_irqsave(&vc->stoltb_lock, flags);
246 if (vc->preempt_tb != TB_NIL) {
247 vc->stolen_tb += mftb() - vc->preempt_tb;
248 vc->preempt_tb = TB_NIL;
249 }
250 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251}
252
3a167bea 253static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
de56a948 254{
0456ec4f 255 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 256 unsigned long flags;
0456ec4f 257
2711e248
PM
258 /*
259 * We can test vc->runner without taking the vcore lock,
260 * because only this task ever sets vc->runner to this
261 * vcpu, and once it is set to this vcpu, only this task
262 * ever sets it to NULL.
263 */
ec257165
PM
264 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265 kvmppc_core_end_stolen(vc);
266
2711e248 267 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
268 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269 vcpu->arch.busy_preempt != TB_NIL) {
270 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271 vcpu->arch.busy_preempt = TB_NIL;
272 }
bf3d32e1 273 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
274}
275
3a167bea 276static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
de56a948 277{
0456ec4f 278 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 279 unsigned long flags;
0456ec4f 280
ec257165
PM
281 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282 kvmppc_core_start_stolen(vc);
283
2711e248 284 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
285 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286 vcpu->arch.busy_preempt = mftb();
bf3d32e1 287 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
288}
289
3a167bea 290static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
de56a948 291{
c20875a3
PM
292 /*
293 * Check for illegal transactional state bit combination
294 * and if we find it, force the TS field to a safe state.
295 */
296 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297 msr &= ~MSR_TS_MASK;
de56a948 298 vcpu->arch.shregs.msr = msr;
19ccb76a 299 kvmppc_end_cede(vcpu);
de56a948
PM
300}
301
5358a963 302static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
de56a948
PM
303{
304 vcpu->arch.pvr = pvr;
305}
306
2ee13be3
SJS
307/* Dummy value used in computing PCR value below */
308#define PCR_ARCH_300 (PCR_ARCH_207 << 1)
309
5358a963 310static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
388cc6e1 311{
2ee13be3 312 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
388cc6e1
PM
313 struct kvmppc_vcore *vc = vcpu->arch.vcore;
314
2ee13be3
SJS
315 /* We can (emulate) our own architecture version and anything older */
316 if (cpu_has_feature(CPU_FTR_ARCH_300))
317 host_pcr_bit = PCR_ARCH_300;
318 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319 host_pcr_bit = PCR_ARCH_207;
320 else if (cpu_has_feature(CPU_FTR_ARCH_206))
321 host_pcr_bit = PCR_ARCH_206;
322 else
323 host_pcr_bit = PCR_ARCH_205;
324
325 /* Determine lowest PCR bit needed to run guest in given PVR level */
326 guest_pcr_bit = host_pcr_bit;
388cc6e1 327 if (arch_compat) {
388cc6e1
PM
328 switch (arch_compat) {
329 case PVR_ARCH_205:
2ee13be3 330 guest_pcr_bit = PCR_ARCH_205;
388cc6e1
PM
331 break;
332 case PVR_ARCH_206:
333 case PVR_ARCH_206p:
2ee13be3 334 guest_pcr_bit = PCR_ARCH_206;
5557ae0e
PM
335 break;
336 case PVR_ARCH_207:
2ee13be3
SJS
337 guest_pcr_bit = PCR_ARCH_207;
338 break;
339 case PVR_ARCH_300:
340 guest_pcr_bit = PCR_ARCH_300;
388cc6e1
PM
341 break;
342 default:
343 return -EINVAL;
344 }
345 }
346
2ee13be3
SJS
347 /* Check requested PCR bits don't exceed our capabilities */
348 if (guest_pcr_bit > host_pcr_bit)
349 return -EINVAL;
350
388cc6e1
PM
351 spin_lock(&vc->lock);
352 vc->arch_compat = arch_compat;
2ee13be3
SJS
353 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354 vc->pcr = host_pcr_bit - guest_pcr_bit;
388cc6e1
PM
355 spin_unlock(&vc->lock);
356
357 return 0;
358}
359
5358a963 360static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
de56a948
PM
361{
362 int r;
363
364 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
366 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367 for (r = 0; r < 16; ++r)
368 pr_err("r%2d = %.16lx r%d = %.16lx\n",
369 r, kvmppc_get_gpr(vcpu, r),
370 r+16, kvmppc_get_gpr(vcpu, r+16));
371 pr_err("ctr = %.16lx lr = %.16lx\n",
372 vcpu->arch.ctr, vcpu->arch.lr);
373 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
380 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382 pr_err("fault dar = %.16lx dsisr = %.8x\n",
383 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385 for (r = 0; r < vcpu->arch.slb_max; ++r)
386 pr_err(" ESID = %.16llx VSID = %.16llx\n",
387 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
a0144e2a 389 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
de56a948
PM
390 vcpu->arch.last_inst);
391}
392
5358a963 393static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
a8606e20 394{
e09fefde 395 struct kvm_vcpu *ret;
a8606e20
PM
396
397 mutex_lock(&kvm->lock);
e09fefde 398 ret = kvm_get_vcpu_by_id(kvm, id);
a8606e20
PM
399 mutex_unlock(&kvm->lock);
400 return ret;
401}
402
403static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
404{
f13c13a0 405 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
02407552 406 vpa->yield_count = cpu_to_be32(1);
a8606e20
PM
407}
408
55b665b0
PM
409static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
410 unsigned long addr, unsigned long len)
411{
412 /* check address is cacheline aligned */
413 if (addr & (L1_CACHE_BYTES - 1))
414 return -EINVAL;
415 spin_lock(&vcpu->arch.vpa_update_lock);
416 if (v->next_gpa != addr || v->len != len) {
417 v->next_gpa = addr;
418 v->len = addr ? len : 0;
419 v->update_pending = 1;
420 }
421 spin_unlock(&vcpu->arch.vpa_update_lock);
422 return 0;
423}
424
2e25aa5f
PM
425/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
426struct reg_vpa {
427 u32 dummy;
428 union {
02407552
AG
429 __be16 hword;
430 __be32 word;
2e25aa5f
PM
431 } length;
432};
433
434static int vpa_is_registered(struct kvmppc_vpa *vpap)
435{
436 if (vpap->update_pending)
437 return vpap->next_gpa != 0;
438 return vpap->pinned_addr != NULL;
439}
440
a8606e20
PM
441static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
442 unsigned long flags,
443 unsigned long vcpuid, unsigned long vpa)
444{
445 struct kvm *kvm = vcpu->kvm;
93e60249 446 unsigned long len, nb;
a8606e20
PM
447 void *va;
448 struct kvm_vcpu *tvcpu;
2e25aa5f
PM
449 int err;
450 int subfunc;
451 struct kvmppc_vpa *vpap;
a8606e20
PM
452
453 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
454 if (!tvcpu)
455 return H_PARAMETER;
456
2e25aa5f
PM
457 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
458 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
459 subfunc == H_VPA_REG_SLB) {
460 /* Registering new area - address must be cache-line aligned */
461 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
a8606e20 462 return H_PARAMETER;
2e25aa5f
PM
463
464 /* convert logical addr to kernel addr and read length */
93e60249
PM
465 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
466 if (va == NULL)
b2b2f165 467 return H_PARAMETER;
2e25aa5f 468 if (subfunc == H_VPA_REG_VPA)
02407552 469 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
a8606e20 470 else
02407552 471 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
c35635ef 472 kvmppc_unpin_guest_page(kvm, va, vpa, false);
2e25aa5f
PM
473
474 /* Check length */
475 if (len > nb || len < sizeof(struct reg_vpa))
476 return H_PARAMETER;
477 } else {
478 vpa = 0;
479 len = 0;
480 }
481
482 err = H_PARAMETER;
483 vpap = NULL;
484 spin_lock(&tvcpu->arch.vpa_update_lock);
485
486 switch (subfunc) {
487 case H_VPA_REG_VPA: /* register VPA */
eaac112e
NP
488 /*
489 * The size of our lppaca is 1kB because of the way we align
490 * it for the guest to avoid crossing a 4kB boundary. We only
491 * use 640 bytes of the structure though, so we should accept
492 * clients that set a size of 640.
493 */
494 if (len < 640)
a8606e20 495 break;
2e25aa5f
PM
496 vpap = &tvcpu->arch.vpa;
497 err = 0;
498 break;
499
500 case H_VPA_REG_DTL: /* register DTL */
501 if (len < sizeof(struct dtl_entry))
a8606e20 502 break;
2e25aa5f
PM
503 len -= len % sizeof(struct dtl_entry);
504
505 /* Check that they have previously registered a VPA */
506 err = H_RESOURCE;
507 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 508 break;
2e25aa5f
PM
509
510 vpap = &tvcpu->arch.dtl;
511 err = 0;
512 break;
513
514 case H_VPA_REG_SLB: /* register SLB shadow buffer */
515 /* Check that they have previously registered a VPA */
516 err = H_RESOURCE;
517 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 518 break;
2e25aa5f
PM
519
520 vpap = &tvcpu->arch.slb_shadow;
521 err = 0;
522 break;
523
524 case H_VPA_DEREG_VPA: /* deregister VPA */
525 /* Check they don't still have a DTL or SLB buf registered */
526 err = H_RESOURCE;
527 if (vpa_is_registered(&tvcpu->arch.dtl) ||
528 vpa_is_registered(&tvcpu->arch.slb_shadow))
a8606e20 529 break;
2e25aa5f
PM
530
531 vpap = &tvcpu->arch.vpa;
532 err = 0;
533 break;
534
535 case H_VPA_DEREG_DTL: /* deregister DTL */
536 vpap = &tvcpu->arch.dtl;
537 err = 0;
538 break;
539
540 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
541 vpap = &tvcpu->arch.slb_shadow;
542 err = 0;
543 break;
544 }
545
546 if (vpap) {
547 vpap->next_gpa = vpa;
548 vpap->len = len;
549 vpap->update_pending = 1;
a8606e20 550 }
93e60249 551
2e25aa5f
PM
552 spin_unlock(&tvcpu->arch.vpa_update_lock);
553
93e60249 554 return err;
a8606e20
PM
555}
556
081f323b 557static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
2e25aa5f 558{
081f323b 559 struct kvm *kvm = vcpu->kvm;
2e25aa5f
PM
560 void *va;
561 unsigned long nb;
081f323b 562 unsigned long gpa;
2e25aa5f 563
081f323b
PM
564 /*
565 * We need to pin the page pointed to by vpap->next_gpa,
566 * but we can't call kvmppc_pin_guest_page under the lock
567 * as it does get_user_pages() and down_read(). So we
568 * have to drop the lock, pin the page, then get the lock
569 * again and check that a new area didn't get registered
570 * in the meantime.
571 */
572 for (;;) {
573 gpa = vpap->next_gpa;
574 spin_unlock(&vcpu->arch.vpa_update_lock);
575 va = NULL;
576 nb = 0;
577 if (gpa)
c35635ef 578 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
081f323b
PM
579 spin_lock(&vcpu->arch.vpa_update_lock);
580 if (gpa == vpap->next_gpa)
581 break;
582 /* sigh... unpin that one and try again */
583 if (va)
c35635ef 584 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b
PM
585 }
586
587 vpap->update_pending = 0;
588 if (va && nb < vpap->len) {
589 /*
590 * If it's now too short, it must be that userspace
591 * has changed the mappings underlying guest memory,
592 * so unregister the region.
593 */
c35635ef 594 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b 595 va = NULL;
2e25aa5f
PM
596 }
597 if (vpap->pinned_addr)
c35635ef
PM
598 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
599 vpap->dirty);
600 vpap->gpa = gpa;
2e25aa5f 601 vpap->pinned_addr = va;
c35635ef 602 vpap->dirty = false;
2e25aa5f
PM
603 if (va)
604 vpap->pinned_end = va + vpap->len;
605}
606
607static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
608{
2f12f034
PM
609 if (!(vcpu->arch.vpa.update_pending ||
610 vcpu->arch.slb_shadow.update_pending ||
611 vcpu->arch.dtl.update_pending))
612 return;
613
2e25aa5f
PM
614 spin_lock(&vcpu->arch.vpa_update_lock);
615 if (vcpu->arch.vpa.update_pending) {
081f323b 616 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
55b665b0
PM
617 if (vcpu->arch.vpa.pinned_addr)
618 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
2e25aa5f
PM
619 }
620 if (vcpu->arch.dtl.update_pending) {
081f323b 621 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
2e25aa5f
PM
622 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
623 vcpu->arch.dtl_index = 0;
624 }
625 if (vcpu->arch.slb_shadow.update_pending)
081f323b 626 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
2e25aa5f
PM
627 spin_unlock(&vcpu->arch.vpa_update_lock);
628}
629
c7b67670
PM
630/*
631 * Return the accumulated stolen time for the vcore up until `now'.
632 * The caller should hold the vcore lock.
633 */
634static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
635{
636 u64 p;
2711e248 637 unsigned long flags;
c7b67670 638
2711e248
PM
639 spin_lock_irqsave(&vc->stoltb_lock, flags);
640 p = vc->stolen_tb;
c7b67670 641 if (vc->vcore_state != VCORE_INACTIVE &&
2711e248
PM
642 vc->preempt_tb != TB_NIL)
643 p += now - vc->preempt_tb;
644 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
c7b67670
PM
645 return p;
646}
647
0456ec4f
PM
648static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
649 struct kvmppc_vcore *vc)
650{
651 struct dtl_entry *dt;
652 struct lppaca *vpa;
c7b67670
PM
653 unsigned long stolen;
654 unsigned long core_stolen;
655 u64 now;
8b24e69f 656 unsigned long flags;
0456ec4f
PM
657
658 dt = vcpu->arch.dtl_ptr;
659 vpa = vcpu->arch.vpa.pinned_addr;
c7b67670
PM
660 now = mftb();
661 core_stolen = vcore_stolen_time(vc, now);
662 stolen = core_stolen - vcpu->arch.stolen_logged;
663 vcpu->arch.stolen_logged = core_stolen;
8b24e69f 664 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
665 stolen += vcpu->arch.busy_stolen;
666 vcpu->arch.busy_stolen = 0;
8b24e69f 667 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
0456ec4f
PM
668 if (!dt || !vpa)
669 return;
670 memset(dt, 0, sizeof(struct dtl_entry));
671 dt->dispatch_reason = 7;
02407552
AG
672 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
673 dt->timebase = cpu_to_be64(now + vc->tb_offset);
674 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
675 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
676 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
0456ec4f
PM
677 ++dt;
678 if (dt == vcpu->arch.dtl.pinned_end)
679 dt = vcpu->arch.dtl.pinned_addr;
680 vcpu->arch.dtl_ptr = dt;
681 /* order writing *dt vs. writing vpa->dtl_idx */
682 smp_wmb();
02407552 683 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
c35635ef 684 vcpu->arch.dtl.dirty = true;
0456ec4f
PM
685}
686
1da4e2f4
PM
687/* See if there is a doorbell interrupt pending for a vcpu */
688static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
689{
690 int thr;
691 struct kvmppc_vcore *vc;
692
57900694
PM
693 if (vcpu->arch.doorbell_request)
694 return true;
695 /*
696 * Ensure that the read of vcore->dpdes comes after the read
697 * of vcpu->doorbell_request. This barrier matches the
698 * lwsync in book3s_hv_rmhandlers.S just before the
699 * fast_guest_return label.
700 */
701 smp_rmb();
1da4e2f4
PM
702 vc = vcpu->arch.vcore;
703 thr = vcpu->vcpu_id - vc->first_vcpuid;
704 return !!(vc->dpdes & (1 << thr));
705}
706
9642382e
MN
707static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
708{
709 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
710 return true;
711 if ((!vcpu->arch.vcore->arch_compat) &&
712 cpu_has_feature(CPU_FTR_ARCH_207S))
713 return true;
714 return false;
715}
716
717static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
718 unsigned long resource, unsigned long value1,
719 unsigned long value2)
720{
721 switch (resource) {
722 case H_SET_MODE_RESOURCE_SET_CIABR:
723 if (!kvmppc_power8_compatible(vcpu))
724 return H_P2;
725 if (value2)
726 return H_P4;
727 if (mflags)
728 return H_UNSUPPORTED_FLAG_START;
729 /* Guests can't breakpoint the hypervisor */
730 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
731 return H_P3;
732 vcpu->arch.ciabr = value1;
733 return H_SUCCESS;
734 case H_SET_MODE_RESOURCE_SET_DAWR:
735 if (!kvmppc_power8_compatible(vcpu))
736 return H_P2;
737 if (mflags)
738 return H_UNSUPPORTED_FLAG_START;
739 if (value2 & DABRX_HYP)
740 return H_P4;
741 vcpu->arch.dawr = value1;
742 vcpu->arch.dawrx = value2;
743 return H_SUCCESS;
744 default:
745 return H_TOO_HARD;
746 }
747}
748
90fd09f8
SB
749static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
750{
751 struct kvmppc_vcore *vcore = target->arch.vcore;
752
753 /*
754 * We expect to have been called by the real mode handler
755 * (kvmppc_rm_h_confer()) which would have directly returned
756 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
757 * have useful work to do and should not confer) so we don't
758 * recheck that here.
759 */
760
761 spin_lock(&vcore->lock);
762 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
ec257165
PM
763 vcore->vcore_state != VCORE_INACTIVE &&
764 vcore->runner)
90fd09f8
SB
765 target = vcore->runner;
766 spin_unlock(&vcore->lock);
767
768 return kvm_vcpu_yield_to(target);
769}
770
771static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
772{
773 int yield_count = 0;
774 struct lppaca *lppaca;
775
776 spin_lock(&vcpu->arch.vpa_update_lock);
777 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
778 if (lppaca)
ecb6d618 779 yield_count = be32_to_cpu(lppaca->yield_count);
90fd09f8
SB
780 spin_unlock(&vcpu->arch.vpa_update_lock);
781 return yield_count;
782}
783
a8606e20
PM
784int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
785{
786 unsigned long req = kvmppc_get_gpr(vcpu, 3);
787 unsigned long target, ret = H_SUCCESS;
90fd09f8 788 int yield_count;
a8606e20 789 struct kvm_vcpu *tvcpu;
8e591cb7 790 int idx, rc;
a8606e20 791
699a0ea0
PM
792 if (req <= MAX_HCALL_OPCODE &&
793 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
794 return RESUME_HOST;
795
a8606e20
PM
796 switch (req) {
797 case H_CEDE:
a8606e20
PM
798 break;
799 case H_PROD:
800 target = kvmppc_get_gpr(vcpu, 4);
801 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
802 if (!tvcpu) {
803 ret = H_PARAMETER;
804 break;
805 }
806 tvcpu->arch.prodded = 1;
807 smp_mb();
8464c884
PM
808 if (tvcpu->arch.ceded)
809 kvmppc_fast_vcpu_kick_hv(tvcpu);
a8606e20
PM
810 break;
811 case H_CONFER:
42d7604d
PM
812 target = kvmppc_get_gpr(vcpu, 4);
813 if (target == -1)
814 break;
815 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
816 if (!tvcpu) {
817 ret = H_PARAMETER;
818 break;
819 }
90fd09f8
SB
820 yield_count = kvmppc_get_gpr(vcpu, 5);
821 if (kvmppc_get_yield_count(tvcpu) != yield_count)
822 break;
823 kvm_arch_vcpu_yield_to(tvcpu);
a8606e20
PM
824 break;
825 case H_REGISTER_VPA:
826 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
827 kvmppc_get_gpr(vcpu, 5),
828 kvmppc_get_gpr(vcpu, 6));
829 break;
8e591cb7
ME
830 case H_RTAS:
831 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
832 return RESUME_HOST;
833
c9438092 834 idx = srcu_read_lock(&vcpu->kvm->srcu);
8e591cb7 835 rc = kvmppc_rtas_hcall(vcpu);
c9438092 836 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8e591cb7
ME
837
838 if (rc == -ENOENT)
839 return RESUME_HOST;
840 else if (rc == 0)
841 break;
842
843 /* Send the error out to userspace via KVM_RUN */
844 return rc;
99342cf8
DG
845 case H_LOGICAL_CI_LOAD:
846 ret = kvmppc_h_logical_ci_load(vcpu);
847 if (ret == H_TOO_HARD)
848 return RESUME_HOST;
849 break;
850 case H_LOGICAL_CI_STORE:
851 ret = kvmppc_h_logical_ci_store(vcpu);
852 if (ret == H_TOO_HARD)
853 return RESUME_HOST;
854 break;
9642382e
MN
855 case H_SET_MODE:
856 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
857 kvmppc_get_gpr(vcpu, 5),
858 kvmppc_get_gpr(vcpu, 6),
859 kvmppc_get_gpr(vcpu, 7));
860 if (ret == H_TOO_HARD)
861 return RESUME_HOST;
862 break;
bc5ad3f3
BH
863 case H_XIRR:
864 case H_CPPR:
865 case H_EOI:
866 case H_IPI:
8e44ddc3
PM
867 case H_IPOLL:
868 case H_XIRR_X:
bc5ad3f3 869 if (kvmppc_xics_enabled(vcpu)) {
5af50993
BH
870 if (xive_enabled()) {
871 ret = H_NOT_AVAILABLE;
872 return RESUME_GUEST;
873 }
bc5ad3f3
BH
874 ret = kvmppc_xics_hcall(vcpu, req);
875 break;
d3695aa4
AK
876 }
877 return RESUME_HOST;
878 case H_PUT_TCE:
879 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
880 kvmppc_get_gpr(vcpu, 5),
881 kvmppc_get_gpr(vcpu, 6));
882 if (ret == H_TOO_HARD)
883 return RESUME_HOST;
884 break;
885 case H_PUT_TCE_INDIRECT:
886 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
887 kvmppc_get_gpr(vcpu, 5),
888 kvmppc_get_gpr(vcpu, 6),
889 kvmppc_get_gpr(vcpu, 7));
890 if (ret == H_TOO_HARD)
891 return RESUME_HOST;
892 break;
893 case H_STUFF_TCE:
894 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
895 kvmppc_get_gpr(vcpu, 5),
896 kvmppc_get_gpr(vcpu, 6),
897 kvmppc_get_gpr(vcpu, 7));
898 if (ret == H_TOO_HARD)
899 return RESUME_HOST;
900 break;
a8606e20
PM
901 default:
902 return RESUME_HOST;
903 }
904 kvmppc_set_gpr(vcpu, 3, ret);
905 vcpu->arch.hcall_needed = 0;
906 return RESUME_GUEST;
907}
908
ae2113a4
PM
909static int kvmppc_hcall_impl_hv(unsigned long cmd)
910{
911 switch (cmd) {
912 case H_CEDE:
913 case H_PROD:
914 case H_CONFER:
915 case H_REGISTER_VPA:
9642382e 916 case H_SET_MODE:
99342cf8
DG
917 case H_LOGICAL_CI_LOAD:
918 case H_LOGICAL_CI_STORE:
ae2113a4
PM
919#ifdef CONFIG_KVM_XICS
920 case H_XIRR:
921 case H_CPPR:
922 case H_EOI:
923 case H_IPI:
924 case H_IPOLL:
925 case H_XIRR_X:
926#endif
927 return 1;
928 }
929
930 /* See if it's in the real-mode table */
931 return kvmppc_hcall_impl_hv_realmode(cmd);
932}
933
a59c1d9e
MS
934static int kvmppc_emulate_debug_inst(struct kvm_run *run,
935 struct kvm_vcpu *vcpu)
936{
937 u32 last_inst;
938
939 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
940 EMULATE_DONE) {
941 /*
942 * Fetch failed, so return to guest and
943 * try executing it again.
944 */
945 return RESUME_GUEST;
946 }
947
948 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
949 run->exit_reason = KVM_EXIT_DEBUG;
950 run->debug.arch.address = kvmppc_get_pc(vcpu);
951 return RESUME_HOST;
952 } else {
953 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
954 return RESUME_GUEST;
955 }
956}
957
57900694
PM
958static void do_nothing(void *x)
959{
960}
961
962static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
963{
964 int thr, cpu, pcpu, nthreads;
965 struct kvm_vcpu *v;
966 unsigned long dpdes;
967
968 nthreads = vcpu->kvm->arch.emul_smt_mode;
969 dpdes = 0;
970 cpu = vcpu->vcpu_id & ~(nthreads - 1);
971 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
972 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
973 if (!v)
974 continue;
975 /*
976 * If the vcpu is currently running on a physical cpu thread,
977 * interrupt it in order to pull it out of the guest briefly,
978 * which will update its vcore->dpdes value.
979 */
980 pcpu = READ_ONCE(v->cpu);
981 if (pcpu >= 0)
982 smp_call_function_single(pcpu, do_nothing, NULL, 1);
983 if (kvmppc_doorbell_pending(v))
984 dpdes |= 1 << thr;
985 }
986 return dpdes;
987}
988
989/*
990 * On POWER9, emulate doorbell-related instructions in order to
991 * give the guest the illusion of running on a multi-threaded core.
992 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
993 * and mfspr DPDES.
994 */
995static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
996{
997 u32 inst, rb, thr;
998 unsigned long arg;
999 struct kvm *kvm = vcpu->kvm;
1000 struct kvm_vcpu *tvcpu;
1001
1002 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1003 return EMULATE_FAIL;
1004 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1005 return RESUME_GUEST;
1006 if (get_op(inst) != 31)
1007 return EMULATE_FAIL;
1008 rb = get_rb(inst);
1009 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1010 switch (get_xop(inst)) {
1011 case OP_31_XOP_MSGSNDP:
1012 arg = kvmppc_get_gpr(vcpu, rb);
1013 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1014 break;
1015 arg &= 0x3f;
1016 if (arg >= kvm->arch.emul_smt_mode)
1017 break;
1018 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1019 if (!tvcpu)
1020 break;
1021 if (!tvcpu->arch.doorbell_request) {
1022 tvcpu->arch.doorbell_request = 1;
1023 kvmppc_fast_vcpu_kick_hv(tvcpu);
1024 }
1025 break;
1026 case OP_31_XOP_MSGCLRP:
1027 arg = kvmppc_get_gpr(vcpu, rb);
1028 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1029 break;
1030 vcpu->arch.vcore->dpdes = 0;
1031 vcpu->arch.doorbell_request = 0;
1032 break;
1033 case OP_31_XOP_MFSPR:
1034 switch (get_sprn(inst)) {
1035 case SPRN_TIR:
1036 arg = thr;
1037 break;
1038 case SPRN_DPDES:
1039 arg = kvmppc_read_dpdes(vcpu);
1040 break;
1041 default:
1042 return EMULATE_FAIL;
1043 }
1044 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1045 break;
1046 default:
1047 return EMULATE_FAIL;
1048 }
1049 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1050 return RESUME_GUEST;
1051}
1052
3a167bea
AK
1053static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1054 struct task_struct *tsk)
de56a948
PM
1055{
1056 int r = RESUME_HOST;
1057
1058 vcpu->stat.sum_exits++;
1059
1c9e3d51
PM
1060 /*
1061 * This can happen if an interrupt occurs in the last stages
1062 * of guest entry or the first stages of guest exit (i.e. after
1063 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1064 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1065 * That can happen due to a bug, or due to a machine check
1066 * occurring at just the wrong time.
1067 */
1068 if (vcpu->arch.shregs.msr & MSR_HV) {
1069 printk(KERN_EMERG "KVM trap in HV mode!\n");
1070 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1071 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1072 vcpu->arch.shregs.msr);
1073 kvmppc_dump_regs(vcpu);
1074 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1075 run->hw.hardware_exit_reason = vcpu->arch.trap;
1076 return RESUME_HOST;
1077 }
de56a948
PM
1078 run->exit_reason = KVM_EXIT_UNKNOWN;
1079 run->ready_for_interrupt_injection = 1;
1080 switch (vcpu->arch.trap) {
1081 /* We're good on these - the host merely wanted to get our attention */
1082 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1083 vcpu->stat.dec_exits++;
1084 r = RESUME_GUEST;
1085 break;
1086 case BOOK3S_INTERRUPT_EXTERNAL:
5d00f66b 1087 case BOOK3S_INTERRUPT_H_DOORBELL:
84f7139c 1088 case BOOK3S_INTERRUPT_H_VIRT:
de56a948
PM
1089 vcpu->stat.ext_intr_exits++;
1090 r = RESUME_GUEST;
1091 break;
dee6f24c
MS
1092 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1093 case BOOK3S_INTERRUPT_HMI:
de56a948
PM
1094 case BOOK3S_INTERRUPT_PERFMON:
1095 r = RESUME_GUEST;
1096 break;
b4072df4 1097 case BOOK3S_INTERRUPT_MACHINE_CHECK:
e20bbd3d
AP
1098 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1099 run->exit_reason = KVM_EXIT_NMI;
1100 run->hw.hardware_exit_reason = vcpu->arch.trap;
1101 /* Clear out the old NMI status from run->flags */
1102 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1103 /* Now set the NMI status */
1104 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1105 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1106 else
1107 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1108
1109 r = RESUME_HOST;
1110 /* Print the MCE event to host console. */
1111 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
b4072df4 1112 break;
de56a948
PM
1113 case BOOK3S_INTERRUPT_PROGRAM:
1114 {
1115 ulong flags;
1116 /*
1117 * Normally program interrupts are delivered directly
1118 * to the guest by the hardware, but we can get here
1119 * as a result of a hypervisor emulation interrupt
1120 * (e40) getting turned into a 700 by BML RTAS.
1121 */
1122 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1123 kvmppc_core_queue_program(vcpu, flags);
1124 r = RESUME_GUEST;
1125 break;
1126 }
1127 case BOOK3S_INTERRUPT_SYSCALL:
1128 {
1129 /* hcall - punt to userspace */
1130 int i;
1131
27025a60
LPF
1132 /* hypercall with MSR_PR has already been handled in rmode,
1133 * and never reaches here.
1134 */
1135
de56a948
PM
1136 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1137 for (i = 0; i < 9; ++i)
1138 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1139 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1140 vcpu->arch.hcall_needed = 1;
1141 r = RESUME_HOST;
1142 break;
1143 }
1144 /*
342d3db7
PM
1145 * We get these next two if the guest accesses a page which it thinks
1146 * it has mapped but which is not actually present, either because
1147 * it is for an emulated I/O device or because the corresonding
1148 * host page has been paged out. Any other HDSI/HISI interrupts
1149 * have been handled already.
de56a948
PM
1150 */
1151 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
913d3ff9 1152 r = RESUME_PAGE_FAULT;
de56a948
PM
1153 break;
1154 case BOOK3S_INTERRUPT_H_INST_STORAGE:
913d3ff9
PM
1155 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1156 vcpu->arch.fault_dsisr = 0;
1157 r = RESUME_PAGE_FAULT;
de56a948
PM
1158 break;
1159 /*
1160 * This occurs if the guest executes an illegal instruction.
a59c1d9e
MS
1161 * If the guest debug is disabled, generate a program interrupt
1162 * to the guest. If guest debug is enabled, we need to check
1163 * whether the instruction is a software breakpoint instruction.
1164 * Accordingly return to Guest or Host.
de56a948
PM
1165 */
1166 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
4a157d61
PM
1167 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1168 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1169 swab32(vcpu->arch.emul_inst) :
1170 vcpu->arch.emul_inst;
a59c1d9e
MS
1171 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1172 r = kvmppc_emulate_debug_inst(run, vcpu);
1173 } else {
1174 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1175 r = RESUME_GUEST;
1176 }
bd3048b8
ME
1177 break;
1178 /*
1179 * This occurs if the guest (kernel or userspace), does something that
57900694
PM
1180 * is prohibited by HFSCR.
1181 * On POWER9, this could be a doorbell instruction that we need
1182 * to emulate.
1183 * Otherwise, we just generate a program interrupt to the guest.
bd3048b8
ME
1184 */
1185 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
57900694
PM
1186 r = EMULATE_FAIL;
1187 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1188 r = kvmppc_emulate_doorbell_instr(vcpu);
1189 if (r == EMULATE_FAIL) {
1190 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1191 r = RESUME_GUEST;
1192 }
de56a948 1193 break;
f7af5209
SW
1194 case BOOK3S_INTERRUPT_HV_RM_HARD:
1195 r = RESUME_PASSTHROUGH;
1196 break;
de56a948
PM
1197 default:
1198 kvmppc_dump_regs(vcpu);
1199 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1200 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1201 vcpu->arch.shregs.msr);
f3271d4c 1202 run->hw.hardware_exit_reason = vcpu->arch.trap;
de56a948 1203 r = RESUME_HOST;
de56a948
PM
1204 break;
1205 }
1206
de56a948
PM
1207 return r;
1208}
1209
3a167bea
AK
1210static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1211 struct kvm_sregs *sregs)
de56a948
PM
1212{
1213 int i;
1214
de56a948 1215 memset(sregs, 0, sizeof(struct kvm_sregs));
87916442 1216 sregs->pvr = vcpu->arch.pvr;
de56a948
PM
1217 for (i = 0; i < vcpu->arch.slb_max; i++) {
1218 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1219 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1220 }
1221
1222 return 0;
1223}
1224
3a167bea
AK
1225static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1226 struct kvm_sregs *sregs)
de56a948
PM
1227{
1228 int i, j;
1229
9333e6c4
PM
1230 /* Only accept the same PVR as the host's, since we can't spoof it */
1231 if (sregs->pvr != vcpu->arch.pvr)
1232 return -EINVAL;
de56a948
PM
1233
1234 j = 0;
1235 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1236 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1237 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1238 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1239 ++j;
1240 }
1241 }
1242 vcpu->arch.slb_max = j;
1243
1244 return 0;
1245}
1246
a0840240
AK
1247static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1248 bool preserve_top32)
a0144e2a 1249{
8f902b00 1250 struct kvm *kvm = vcpu->kvm;
a0144e2a
PM
1251 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1252 u64 mask;
1253
8f902b00 1254 mutex_lock(&kvm->lock);
a0144e2a 1255 spin_lock(&vc->lock);
d682916a
AB
1256 /*
1257 * If ILE (interrupt little-endian) has changed, update the
1258 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1259 */
1260 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
d682916a
AB
1261 struct kvm_vcpu *vcpu;
1262 int i;
1263
d682916a
AB
1264 kvm_for_each_vcpu(i, vcpu, kvm) {
1265 if (vcpu->arch.vcore != vc)
1266 continue;
1267 if (new_lpcr & LPCR_ILE)
1268 vcpu->arch.intr_msr |= MSR_LE;
1269 else
1270 vcpu->arch.intr_msr &= ~MSR_LE;
1271 }
d682916a
AB
1272 }
1273
a0144e2a
PM
1274 /*
1275 * Userspace can only modify DPFD (default prefetch depth),
1276 * ILE (interrupt little-endian) and TC (translation control).
8cf4ecc0 1277 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
a0144e2a
PM
1278 */
1279 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
e0622bd9
PM
1280 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1281 mask |= LPCR_AIL;
1bc3fe81
PM
1282 /*
1283 * On POWER9, allow userspace to enable large decrementer for the
1284 * guest, whether or not the host has it enabled.
1285 */
1286 if (cpu_has_feature(CPU_FTR_ARCH_300))
1287 mask |= LPCR_LD;
a0840240
AK
1288
1289 /* Broken 32-bit version of LPCR must not clear top bits */
1290 if (preserve_top32)
1291 mask &= 0xFFFFFFFF;
a0144e2a
PM
1292 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1293 spin_unlock(&vc->lock);
8f902b00 1294 mutex_unlock(&kvm->lock);
a0144e2a
PM
1295}
1296
3a167bea
AK
1297static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298 union kvmppc_one_reg *val)
31f3438e 1299{
a136a8bd
PM
1300 int r = 0;
1301 long int i;
31f3438e 1302
a136a8bd 1303 switch (id) {
a59c1d9e
MS
1304 case KVM_REG_PPC_DEBUG_INST:
1305 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1306 break;
31f3438e 1307 case KVM_REG_PPC_HIOR:
a136a8bd
PM
1308 *val = get_reg_val(id, 0);
1309 break;
1310 case KVM_REG_PPC_DABR:
1311 *val = get_reg_val(id, vcpu->arch.dabr);
1312 break;
8563bf52
PM
1313 case KVM_REG_PPC_DABRX:
1314 *val = get_reg_val(id, vcpu->arch.dabrx);
1315 break;
a136a8bd
PM
1316 case KVM_REG_PPC_DSCR:
1317 *val = get_reg_val(id, vcpu->arch.dscr);
1318 break;
1319 case KVM_REG_PPC_PURR:
1320 *val = get_reg_val(id, vcpu->arch.purr);
1321 break;
1322 case KVM_REG_PPC_SPURR:
1323 *val = get_reg_val(id, vcpu->arch.spurr);
1324 break;
1325 case KVM_REG_PPC_AMR:
1326 *val = get_reg_val(id, vcpu->arch.amr);
1327 break;
1328 case KVM_REG_PPC_UAMOR:
1329 *val = get_reg_val(id, vcpu->arch.uamor);
1330 break;
b005255e 1331 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1332 i = id - KVM_REG_PPC_MMCR0;
1333 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1334 break;
1335 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336 i = id - KVM_REG_PPC_PMC1;
1337 *val = get_reg_val(id, vcpu->arch.pmc[i]);
31f3438e 1338 break;
b005255e
MN
1339 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340 i = id - KVM_REG_PPC_SPMC1;
1341 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1342 break;
14941789
PM
1343 case KVM_REG_PPC_SIAR:
1344 *val = get_reg_val(id, vcpu->arch.siar);
1345 break;
1346 case KVM_REG_PPC_SDAR:
1347 *val = get_reg_val(id, vcpu->arch.sdar);
1348 break;
b005255e
MN
1349 case KVM_REG_PPC_SIER:
1350 *val = get_reg_val(id, vcpu->arch.sier);
a8bd19ef 1351 break;
b005255e
MN
1352 case KVM_REG_PPC_IAMR:
1353 *val = get_reg_val(id, vcpu->arch.iamr);
1354 break;
b005255e
MN
1355 case KVM_REG_PPC_PSPB:
1356 *val = get_reg_val(id, vcpu->arch.pspb);
1357 break;
b005255e
MN
1358 case KVM_REG_PPC_DPDES:
1359 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1360 break;
88b02cf9
PM
1361 case KVM_REG_PPC_VTB:
1362 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1363 break;
b005255e
MN
1364 case KVM_REG_PPC_DAWR:
1365 *val = get_reg_val(id, vcpu->arch.dawr);
1366 break;
1367 case KVM_REG_PPC_DAWRX:
1368 *val = get_reg_val(id, vcpu->arch.dawrx);
1369 break;
1370 case KVM_REG_PPC_CIABR:
1371 *val = get_reg_val(id, vcpu->arch.ciabr);
1372 break;
b005255e
MN
1373 case KVM_REG_PPC_CSIGR:
1374 *val = get_reg_val(id, vcpu->arch.csigr);
1375 break;
1376 case KVM_REG_PPC_TACR:
1377 *val = get_reg_val(id, vcpu->arch.tacr);
1378 break;
1379 case KVM_REG_PPC_TCSCR:
1380 *val = get_reg_val(id, vcpu->arch.tcscr);
1381 break;
1382 case KVM_REG_PPC_PID:
1383 *val = get_reg_val(id, vcpu->arch.pid);
1384 break;
1385 case KVM_REG_PPC_ACOP:
1386 *val = get_reg_val(id, vcpu->arch.acop);
1387 break;
1388 case KVM_REG_PPC_WORT:
1389 *val = get_reg_val(id, vcpu->arch.wort);
a8bd19ef 1390 break;
e9cf1e08
PM
1391 case KVM_REG_PPC_TIDR:
1392 *val = get_reg_val(id, vcpu->arch.tid);
1393 break;
1394 case KVM_REG_PPC_PSSCR:
1395 *val = get_reg_val(id, vcpu->arch.psscr);
1396 break;
55b665b0
PM
1397 case KVM_REG_PPC_VPA_ADDR:
1398 spin_lock(&vcpu->arch.vpa_update_lock);
1399 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1400 spin_unlock(&vcpu->arch.vpa_update_lock);
1401 break;
1402 case KVM_REG_PPC_VPA_SLB:
1403 spin_lock(&vcpu->arch.vpa_update_lock);
1404 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1405 val->vpaval.length = vcpu->arch.slb_shadow.len;
1406 spin_unlock(&vcpu->arch.vpa_update_lock);
1407 break;
1408 case KVM_REG_PPC_VPA_DTL:
1409 spin_lock(&vcpu->arch.vpa_update_lock);
1410 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1411 val->vpaval.length = vcpu->arch.dtl.len;
1412 spin_unlock(&vcpu->arch.vpa_update_lock);
1413 break;
93b0f4dc
PM
1414 case KVM_REG_PPC_TB_OFFSET:
1415 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1416 break;
a0144e2a 1417 case KVM_REG_PPC_LPCR:
a0840240 1418 case KVM_REG_PPC_LPCR_64:
a0144e2a
PM
1419 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1420 break;
4b8473c9
PM
1421 case KVM_REG_PPC_PPR:
1422 *val = get_reg_val(id, vcpu->arch.ppr);
1423 break;
a7d80d01
MN
1424#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425 case KVM_REG_PPC_TFHAR:
1426 *val = get_reg_val(id, vcpu->arch.tfhar);
1427 break;
1428 case KVM_REG_PPC_TFIAR:
1429 *val = get_reg_val(id, vcpu->arch.tfiar);
1430 break;
1431 case KVM_REG_PPC_TEXASR:
1432 *val = get_reg_val(id, vcpu->arch.texasr);
1433 break;
1434 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1435 i = id - KVM_REG_PPC_TM_GPR0;
1436 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1437 break;
1438 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1439 {
1440 int j;
1441 i = id - KVM_REG_PPC_TM_VSR0;
1442 if (i < 32)
1443 for (j = 0; j < TS_FPRWIDTH; j++)
1444 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1445 else {
1446 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1447 val->vval = vcpu->arch.vr_tm.vr[i-32];
1448 else
1449 r = -ENXIO;
1450 }
1451 break;
1452 }
1453 case KVM_REG_PPC_TM_CR:
1454 *val = get_reg_val(id, vcpu->arch.cr_tm);
1455 break;
0d808df0
PM
1456 case KVM_REG_PPC_TM_XER:
1457 *val = get_reg_val(id, vcpu->arch.xer_tm);
1458 break;
a7d80d01
MN
1459 case KVM_REG_PPC_TM_LR:
1460 *val = get_reg_val(id, vcpu->arch.lr_tm);
1461 break;
1462 case KVM_REG_PPC_TM_CTR:
1463 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1464 break;
1465 case KVM_REG_PPC_TM_FPSCR:
1466 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1467 break;
1468 case KVM_REG_PPC_TM_AMR:
1469 *val = get_reg_val(id, vcpu->arch.amr_tm);
1470 break;
1471 case KVM_REG_PPC_TM_PPR:
1472 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1473 break;
1474 case KVM_REG_PPC_TM_VRSAVE:
1475 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1476 break;
1477 case KVM_REG_PPC_TM_VSCR:
1478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1479 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1480 else
1481 r = -ENXIO;
1482 break;
1483 case KVM_REG_PPC_TM_DSCR:
1484 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1485 break;
1486 case KVM_REG_PPC_TM_TAR:
1487 *val = get_reg_val(id, vcpu->arch.tar_tm);
1488 break;
1489#endif
388cc6e1
PM
1490 case KVM_REG_PPC_ARCH_COMPAT:
1491 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1492 break;
31f3438e 1493 default:
a136a8bd 1494 r = -EINVAL;
31f3438e
PM
1495 break;
1496 }
1497
1498 return r;
1499}
1500
3a167bea
AK
1501static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1502 union kvmppc_one_reg *val)
31f3438e 1503{
a136a8bd
PM
1504 int r = 0;
1505 long int i;
55b665b0 1506 unsigned long addr, len;
31f3438e 1507
a136a8bd 1508 switch (id) {
31f3438e 1509 case KVM_REG_PPC_HIOR:
31f3438e 1510 /* Only allow this to be set to zero */
a136a8bd 1511 if (set_reg_val(id, *val))
31f3438e
PM
1512 r = -EINVAL;
1513 break;
a136a8bd
PM
1514 case KVM_REG_PPC_DABR:
1515 vcpu->arch.dabr = set_reg_val(id, *val);
1516 break;
8563bf52
PM
1517 case KVM_REG_PPC_DABRX:
1518 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1519 break;
a136a8bd
PM
1520 case KVM_REG_PPC_DSCR:
1521 vcpu->arch.dscr = set_reg_val(id, *val);
1522 break;
1523 case KVM_REG_PPC_PURR:
1524 vcpu->arch.purr = set_reg_val(id, *val);
1525 break;
1526 case KVM_REG_PPC_SPURR:
1527 vcpu->arch.spurr = set_reg_val(id, *val);
1528 break;
1529 case KVM_REG_PPC_AMR:
1530 vcpu->arch.amr = set_reg_val(id, *val);
1531 break;
1532 case KVM_REG_PPC_UAMOR:
1533 vcpu->arch.uamor = set_reg_val(id, *val);
1534 break;
b005255e 1535 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1536 i = id - KVM_REG_PPC_MMCR0;
1537 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1538 break;
1539 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1540 i = id - KVM_REG_PPC_PMC1;
1541 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1542 break;
b005255e
MN
1543 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1544 i = id - KVM_REG_PPC_SPMC1;
1545 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1546 break;
14941789
PM
1547 case KVM_REG_PPC_SIAR:
1548 vcpu->arch.siar = set_reg_val(id, *val);
1549 break;
1550 case KVM_REG_PPC_SDAR:
1551 vcpu->arch.sdar = set_reg_val(id, *val);
1552 break;
b005255e
MN
1553 case KVM_REG_PPC_SIER:
1554 vcpu->arch.sier = set_reg_val(id, *val);
a8bd19ef 1555 break;
b005255e
MN
1556 case KVM_REG_PPC_IAMR:
1557 vcpu->arch.iamr = set_reg_val(id, *val);
1558 break;
b005255e
MN
1559 case KVM_REG_PPC_PSPB:
1560 vcpu->arch.pspb = set_reg_val(id, *val);
1561 break;
b005255e
MN
1562 case KVM_REG_PPC_DPDES:
1563 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1564 break;
88b02cf9
PM
1565 case KVM_REG_PPC_VTB:
1566 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1567 break;
b005255e
MN
1568 case KVM_REG_PPC_DAWR:
1569 vcpu->arch.dawr = set_reg_val(id, *val);
1570 break;
1571 case KVM_REG_PPC_DAWRX:
1572 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1573 break;
1574 case KVM_REG_PPC_CIABR:
1575 vcpu->arch.ciabr = set_reg_val(id, *val);
1576 /* Don't allow setting breakpoints in hypervisor code */
1577 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1578 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1579 break;
b005255e
MN
1580 case KVM_REG_PPC_CSIGR:
1581 vcpu->arch.csigr = set_reg_val(id, *val);
1582 break;
1583 case KVM_REG_PPC_TACR:
1584 vcpu->arch.tacr = set_reg_val(id, *val);
1585 break;
1586 case KVM_REG_PPC_TCSCR:
1587 vcpu->arch.tcscr = set_reg_val(id, *val);
1588 break;
1589 case KVM_REG_PPC_PID:
1590 vcpu->arch.pid = set_reg_val(id, *val);
1591 break;
1592 case KVM_REG_PPC_ACOP:
1593 vcpu->arch.acop = set_reg_val(id, *val);
1594 break;
1595 case KVM_REG_PPC_WORT:
1596 vcpu->arch.wort = set_reg_val(id, *val);
a8bd19ef 1597 break;
e9cf1e08
PM
1598 case KVM_REG_PPC_TIDR:
1599 vcpu->arch.tid = set_reg_val(id, *val);
1600 break;
1601 case KVM_REG_PPC_PSSCR:
1602 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1603 break;
55b665b0
PM
1604 case KVM_REG_PPC_VPA_ADDR:
1605 addr = set_reg_val(id, *val);
1606 r = -EINVAL;
1607 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1608 vcpu->arch.dtl.next_gpa))
1609 break;
1610 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1611 break;
1612 case KVM_REG_PPC_VPA_SLB:
1613 addr = val->vpaval.addr;
1614 len = val->vpaval.length;
1615 r = -EINVAL;
1616 if (addr && !vcpu->arch.vpa.next_gpa)
1617 break;
1618 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1619 break;
1620 case KVM_REG_PPC_VPA_DTL:
1621 addr = val->vpaval.addr;
1622 len = val->vpaval.length;
1623 r = -EINVAL;
9f8c8c78
PM
1624 if (addr && (len < sizeof(struct dtl_entry) ||
1625 !vcpu->arch.vpa.next_gpa))
55b665b0
PM
1626 break;
1627 len -= len % sizeof(struct dtl_entry);
1628 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1629 break;
93b0f4dc 1630 case KVM_REG_PPC_TB_OFFSET:
3d3efb68
PM
1631 /*
1632 * POWER9 DD1 has an erratum where writing TBU40 causes
1633 * the timebase to lose ticks. So we don't let the
1634 * timebase offset be changed on P9 DD1. (It is
1635 * initialized to zero.)
1636 */
1637 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1638 break;
93b0f4dc
PM
1639 /* round up to multiple of 2^24 */
1640 vcpu->arch.vcore->tb_offset =
1641 ALIGN(set_reg_val(id, *val), 1UL << 24);
1642 break;
a0144e2a 1643 case KVM_REG_PPC_LPCR:
a0840240
AK
1644 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1645 break;
1646 case KVM_REG_PPC_LPCR_64:
1647 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
a0144e2a 1648 break;
4b8473c9
PM
1649 case KVM_REG_PPC_PPR:
1650 vcpu->arch.ppr = set_reg_val(id, *val);
1651 break;
a7d80d01
MN
1652#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1653 case KVM_REG_PPC_TFHAR:
1654 vcpu->arch.tfhar = set_reg_val(id, *val);
1655 break;
1656 case KVM_REG_PPC_TFIAR:
1657 vcpu->arch.tfiar = set_reg_val(id, *val);
1658 break;
1659 case KVM_REG_PPC_TEXASR:
1660 vcpu->arch.texasr = set_reg_val(id, *val);
1661 break;
1662 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1663 i = id - KVM_REG_PPC_TM_GPR0;
1664 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1665 break;
1666 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1667 {
1668 int j;
1669 i = id - KVM_REG_PPC_TM_VSR0;
1670 if (i < 32)
1671 for (j = 0; j < TS_FPRWIDTH; j++)
1672 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1673 else
1674 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1675 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1676 else
1677 r = -ENXIO;
1678 break;
1679 }
1680 case KVM_REG_PPC_TM_CR:
1681 vcpu->arch.cr_tm = set_reg_val(id, *val);
1682 break;
0d808df0
PM
1683 case KVM_REG_PPC_TM_XER:
1684 vcpu->arch.xer_tm = set_reg_val(id, *val);
1685 break;
a7d80d01
MN
1686 case KVM_REG_PPC_TM_LR:
1687 vcpu->arch.lr_tm = set_reg_val(id, *val);
1688 break;
1689 case KVM_REG_PPC_TM_CTR:
1690 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1691 break;
1692 case KVM_REG_PPC_TM_FPSCR:
1693 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1694 break;
1695 case KVM_REG_PPC_TM_AMR:
1696 vcpu->arch.amr_tm = set_reg_val(id, *val);
1697 break;
1698 case KVM_REG_PPC_TM_PPR:
1699 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1700 break;
1701 case KVM_REG_PPC_TM_VRSAVE:
1702 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1703 break;
1704 case KVM_REG_PPC_TM_VSCR:
1705 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1706 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1707 else
1708 r = - ENXIO;
1709 break;
1710 case KVM_REG_PPC_TM_DSCR:
1711 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1712 break;
1713 case KVM_REG_PPC_TM_TAR:
1714 vcpu->arch.tar_tm = set_reg_val(id, *val);
1715 break;
1716#endif
388cc6e1
PM
1717 case KVM_REG_PPC_ARCH_COMPAT:
1718 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1719 break;
31f3438e 1720 default:
a136a8bd 1721 r = -EINVAL;
31f3438e
PM
1722 break;
1723 }
1724
1725 return r;
1726}
1727
45c940ba
PM
1728/*
1729 * On POWER9, threads are independent and can be in different partitions.
1730 * Therefore we consider each thread to be a subcore.
1731 * There is a restriction that all threads have to be in the same
1732 * MMU mode (radix or HPT), unfortunately, but since we only support
1733 * HPT guests on a HPT host so far, that isn't an impediment yet.
1734 */
1735static int threads_per_vcore(void)
1736{
1737 if (cpu_has_feature(CPU_FTR_ARCH_300))
1738 return 1;
1739 return threads_per_subcore;
1740}
1741
de9bdd1a
SS
1742static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1743{
1744 struct kvmppc_vcore *vcore;
1745
1746 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1747
1748 if (vcore == NULL)
1749 return NULL;
1750
de9bdd1a 1751 spin_lock_init(&vcore->lock);
2711e248 1752 spin_lock_init(&vcore->stoltb_lock);
8577370f 1753 init_swait_queue_head(&vcore->wq);
de9bdd1a
SS
1754 vcore->preempt_tb = TB_NIL;
1755 vcore->lpcr = kvm->arch.lpcr;
3c313524 1756 vcore->first_vcpuid = core * kvm->arch.smt_mode;
de9bdd1a 1757 vcore->kvm = kvm;
ec257165 1758 INIT_LIST_HEAD(&vcore->preempt_list);
de9bdd1a
SS
1759
1760 return vcore;
1761}
1762
b6c295df
PM
1763#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1764static struct debugfs_timings_element {
1765 const char *name;
1766 size_t offset;
1767} timings[] = {
1768 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1769 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1770 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1771 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1772 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1773};
1774
1775#define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1776
1777struct debugfs_timings_state {
1778 struct kvm_vcpu *vcpu;
1779 unsigned int buflen;
1780 char buf[N_TIMINGS * 100];
1781};
1782
1783static int debugfs_timings_open(struct inode *inode, struct file *file)
1784{
1785 struct kvm_vcpu *vcpu = inode->i_private;
1786 struct debugfs_timings_state *p;
1787
1788 p = kzalloc(sizeof(*p), GFP_KERNEL);
1789 if (!p)
1790 return -ENOMEM;
1791
1792 kvm_get_kvm(vcpu->kvm);
1793 p->vcpu = vcpu;
1794 file->private_data = p;
1795
1796 return nonseekable_open(inode, file);
1797}
1798
1799static int debugfs_timings_release(struct inode *inode, struct file *file)
1800{
1801 struct debugfs_timings_state *p = file->private_data;
1802
1803 kvm_put_kvm(p->vcpu->kvm);
1804 kfree(p);
1805 return 0;
1806}
1807
1808static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1809 size_t len, loff_t *ppos)
1810{
1811 struct debugfs_timings_state *p = file->private_data;
1812 struct kvm_vcpu *vcpu = p->vcpu;
1813 char *s, *buf_end;
1814 struct kvmhv_tb_accumulator tb;
1815 u64 count;
1816 loff_t pos;
1817 ssize_t n;
1818 int i, loops;
1819 bool ok;
1820
1821 if (!p->buflen) {
1822 s = p->buf;
1823 buf_end = s + sizeof(p->buf);
1824 for (i = 0; i < N_TIMINGS; ++i) {
1825 struct kvmhv_tb_accumulator *acc;
1826
1827 acc = (struct kvmhv_tb_accumulator *)
1828 ((unsigned long)vcpu + timings[i].offset);
1829 ok = false;
1830 for (loops = 0; loops < 1000; ++loops) {
1831 count = acc->seqcount;
1832 if (!(count & 1)) {
1833 smp_rmb();
1834 tb = *acc;
1835 smp_rmb();
1836 if (count == acc->seqcount) {
1837 ok = true;
1838 break;
1839 }
1840 }
1841 udelay(1);
1842 }
1843 if (!ok)
1844 snprintf(s, buf_end - s, "%s: stuck\n",
1845 timings[i].name);
1846 else
1847 snprintf(s, buf_end - s,
1848 "%s: %llu %llu %llu %llu\n",
1849 timings[i].name, count / 2,
1850 tb_to_ns(tb.tb_total),
1851 tb_to_ns(tb.tb_min),
1852 tb_to_ns(tb.tb_max));
1853 s += strlen(s);
1854 }
1855 p->buflen = s - p->buf;
1856 }
1857
1858 pos = *ppos;
1859 if (pos >= p->buflen)
1860 return 0;
1861 if (len > p->buflen - pos)
1862 len = p->buflen - pos;
1863 n = copy_to_user(buf, p->buf + pos, len);
1864 if (n) {
1865 if (n == len)
1866 return -EFAULT;
1867 len -= n;
1868 }
1869 *ppos = pos + len;
1870 return len;
1871}
1872
1873static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1874 size_t len, loff_t *ppos)
1875{
1876 return -EACCES;
1877}
1878
1879static const struct file_operations debugfs_timings_ops = {
1880 .owner = THIS_MODULE,
1881 .open = debugfs_timings_open,
1882 .release = debugfs_timings_release,
1883 .read = debugfs_timings_read,
1884 .write = debugfs_timings_write,
1885 .llseek = generic_file_llseek,
1886};
1887
1888/* Create a debugfs directory for the vcpu */
1889static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1890{
1891 char buf[16];
1892 struct kvm *kvm = vcpu->kvm;
1893
1894 snprintf(buf, sizeof(buf), "vcpu%u", id);
1895 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1896 return;
1897 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1898 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1899 return;
1900 vcpu->arch.debugfs_timings =
1901 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1902 vcpu, &debugfs_timings_ops);
1903}
1904
1905#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1906static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1907{
1908}
1909#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1910
3a167bea
AK
1911static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1912 unsigned int id)
de56a948
PM
1913{
1914 struct kvm_vcpu *vcpu;
3c313524 1915 int err;
371fefd6
PM
1916 int core;
1917 struct kvmppc_vcore *vcore;
de56a948 1918
371fefd6 1919 err = -ENOMEM;
6b75e6bf 1920 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
de56a948
PM
1921 if (!vcpu)
1922 goto out;
1923
1924 err = kvm_vcpu_init(vcpu, kvm, id);
1925 if (err)
1926 goto free_vcpu;
1927
1928 vcpu->arch.shared = &vcpu->arch.shregs;
5deb8e7a
AG
1929#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1930 /*
1931 * The shared struct is never shared on HV,
1932 * so we can always use host endianness
1933 */
1934#ifdef __BIG_ENDIAN__
1935 vcpu->arch.shared_big_endian = true;
1936#else
1937 vcpu->arch.shared_big_endian = false;
1938#endif
1939#endif
de56a948
PM
1940 vcpu->arch.mmcr[0] = MMCR0_FC;
1941 vcpu->arch.ctrl = CTRL_RUNLATCH;
1942 /* default to host PVR, since we can't spoof it */
3a167bea 1943 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2e25aa5f 1944 spin_lock_init(&vcpu->arch.vpa_update_lock);
c7b67670
PM
1945 spin_lock_init(&vcpu->arch.tbacct_lock);
1946 vcpu->arch.busy_preempt = TB_NIL;
d682916a 1947 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
de56a948 1948
769377f7
PM
1949 /*
1950 * Set the default HFSCR for the guest from the host value.
1951 * This value is only used on POWER9.
1952 * On POWER9 DD1, TM doesn't work, so we make sure to
1953 * prevent the guest from using it.
57900694
PM
1954 * On POWER9, we want to virtualize the doorbell facility, so we
1955 * turn off the HFSCR bit, which causes those instructions to trap.
769377f7
PM
1956 */
1957 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1958 if (!cpu_has_feature(CPU_FTR_TM))
1959 vcpu->arch.hfscr &= ~HFSCR_TM;
57900694
PM
1960 if (cpu_has_feature(CPU_FTR_ARCH_300))
1961 vcpu->arch.hfscr &= ~HFSCR_MSGP;
769377f7 1962
de56a948
PM
1963 kvmppc_mmu_book3s_hv_init(vcpu);
1964
8455d79e 1965 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
371fefd6
PM
1966
1967 init_waitqueue_head(&vcpu->arch.cpu_run);
1968
1969 mutex_lock(&kvm->lock);
3c313524
PM
1970 vcore = NULL;
1971 err = -EINVAL;
1972 core = id / kvm->arch.smt_mode;
1973 if (core < KVM_MAX_VCORES) {
1974 vcore = kvm->arch.vcores[core];
1975 if (!vcore) {
1976 err = -ENOMEM;
1977 vcore = kvmppc_vcore_create(kvm, core);
1978 kvm->arch.vcores[core] = vcore;
1979 kvm->arch.online_vcores++;
1980 }
371fefd6
PM
1981 }
1982 mutex_unlock(&kvm->lock);
1983
1984 if (!vcore)
1985 goto free_vcpu;
1986
1987 spin_lock(&vcore->lock);
1988 ++vcore->num_threads;
371fefd6
PM
1989 spin_unlock(&vcore->lock);
1990 vcpu->arch.vcore = vcore;
e0b7ec05 1991 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
ec257165 1992 vcpu->arch.thread_cpu = -1;
a29ebeaf 1993 vcpu->arch.prev_cpu = -1;
371fefd6 1994
af8f38b3
AG
1995 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1996 kvmppc_sanity_check(vcpu);
1997
b6c295df
PM
1998 debugfs_vcpu_init(vcpu, id);
1999
de56a948
PM
2000 return vcpu;
2001
2002free_vcpu:
6b75e6bf 2003 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
2004out:
2005 return ERR_PTR(err);
2006}
2007
3c313524
PM
2008static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2009 unsigned long flags)
2010{
2011 int err;
57900694 2012 int esmt = 0;
3c313524
PM
2013
2014 if (flags)
2015 return -EINVAL;
2016 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2017 return -EINVAL;
2018 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2019 /*
2020 * On POWER8 (or POWER7), the threading mode is "strict",
2021 * so we pack smt_mode vcpus per vcore.
2022 */
2023 if (smt_mode > threads_per_subcore)
2024 return -EINVAL;
2025 } else {
2026 /*
2027 * On POWER9, the threading mode is "loose",
2028 * so each vcpu gets its own vcore.
2029 */
57900694 2030 esmt = smt_mode;
3c313524
PM
2031 smt_mode = 1;
2032 }
2033 mutex_lock(&kvm->lock);
2034 err = -EBUSY;
2035 if (!kvm->arch.online_vcores) {
2036 kvm->arch.smt_mode = smt_mode;
57900694 2037 kvm->arch.emul_smt_mode = esmt;
3c313524
PM
2038 err = 0;
2039 }
2040 mutex_unlock(&kvm->lock);
2041
2042 return err;
2043}
2044
c35635ef
PM
2045static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2046{
2047 if (vpa->pinned_addr)
2048 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2049 vpa->dirty);
2050}
2051
3a167bea 2052static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
de56a948 2053{
2e25aa5f 2054 spin_lock(&vcpu->arch.vpa_update_lock);
c35635ef
PM
2055 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2056 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2057 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2e25aa5f 2058 spin_unlock(&vcpu->arch.vpa_update_lock);
de56a948 2059 kvm_vcpu_uninit(vcpu);
6b75e6bf 2060 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
2061}
2062
3a167bea
AK
2063static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2064{
2065 /* Indicate we want to get back into the guest */
2066 return 1;
2067}
2068
19ccb76a 2069static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
371fefd6 2070{
19ccb76a 2071 unsigned long dec_nsec, now;
371fefd6 2072
19ccb76a
PM
2073 now = get_tb();
2074 if (now > vcpu->arch.dec_expires) {
2075 /* decrementer has already gone negative */
2076 kvmppc_core_queue_dec(vcpu);
7e28e60e 2077 kvmppc_core_prepare_to_enter(vcpu);
19ccb76a 2078 return;
371fefd6 2079 }
19ccb76a
PM
2080 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2081 / tb_ticks_per_sec;
8b0e1953 2082 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
19ccb76a 2083 vcpu->arch.timer_running = 1;
371fefd6
PM
2084}
2085
19ccb76a 2086static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
371fefd6 2087{
19ccb76a
PM
2088 vcpu->arch.ceded = 0;
2089 if (vcpu->arch.timer_running) {
2090 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2091 vcpu->arch.timer_running = 0;
2092 }
371fefd6
PM
2093}
2094
8b24e69f 2095extern int __kvmppc_vcore_entry(void);
de56a948 2096
371fefd6
PM
2097static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2098 struct kvm_vcpu *vcpu)
de56a948 2099{
c7b67670
PM
2100 u64 now;
2101
371fefd6
PM
2102 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2103 return;
bf3d32e1 2104 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
2105 now = mftb();
2106 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2107 vcpu->arch.stolen_logged;
2108 vcpu->arch.busy_preempt = now;
2109 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
bf3d32e1 2110 spin_unlock_irq(&vcpu->arch.tbacct_lock);
371fefd6 2111 --vc->n_runnable;
7b5f8272 2112 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
371fefd6
PM
2113}
2114
f0888f70
PM
2115static int kvmppc_grab_hwthread(int cpu)
2116{
2117 struct paca_struct *tpaca;
b754c739 2118 long timeout = 10000;
f0888f70 2119
94a04bc2
NP
2120 /*
2121 * ISA v3.0 idle routines do not set hwthread_state or test
2122 * hwthread_req, so they can not grab idle threads.
2123 */
2124 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2125 WARN(1, "KVM: can not control sibling threads\n");
2126 return -EBUSY;
2127 }
2128
f0888f70
PM
2129 tpaca = &paca[cpu];
2130
2131 /* Ensure the thread won't go into the kernel if it wakes */
7b444c67 2132 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c 2133 tpaca->kvm_hstate.kvm_vcore = NULL;
5d5b99cd
PM
2134 tpaca->kvm_hstate.napping = 0;
2135 smp_wmb();
2136 tpaca->kvm_hstate.hwthread_req = 1;
f0888f70
PM
2137
2138 /*
2139 * If the thread is already executing in the kernel (e.g. handling
2140 * a stray interrupt), wait for it to get back to nap mode.
2141 * The smp_mb() is to ensure that our setting of hwthread_req
2142 * is visible before we look at hwthread_state, so if this
2143 * races with the code at system_reset_pSeries and the thread
2144 * misses our setting of hwthread_req, we are sure to see its
2145 * setting of hwthread_state, and vice versa.
2146 */
2147 smp_mb();
2148 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2149 if (--timeout <= 0) {
2150 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2151 return -EBUSY;
2152 }
2153 udelay(1);
2154 }
2155 return 0;
2156}
2157
2158static void kvmppc_release_hwthread(int cpu)
2159{
2160 struct paca_struct *tpaca;
2161
2162 tpaca = &paca[cpu];
f0888f70 2163 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c
PM
2164 tpaca->kvm_hstate.kvm_vcore = NULL;
2165 tpaca->kvm_hstate.kvm_split_mode = NULL;
94a04bc2
NP
2166 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2167 tpaca->kvm_hstate.hwthread_req = 0;
2168
f0888f70
PM
2169}
2170
a29ebeaf
PM
2171static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2172{
2173 int i;
2174
2175 cpu = cpu_first_thread_sibling(cpu);
2176 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2177 /*
2178 * Make sure setting of bit in need_tlb_flush precedes
2179 * testing of cpu_in_guest bits. The matching barrier on
2180 * the other side is the first smp_mb() in kvmppc_run_core().
2181 */
2182 smp_mb();
2183 for (i = 0; i < threads_per_core; ++i)
2184 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2185 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2186}
2187
8b24e69f
PM
2188static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2189{
2190 struct kvm *kvm = vcpu->kvm;
2191
2192 /*
2193 * With radix, the guest can do TLB invalidations itself,
2194 * and it could choose to use the local form (tlbiel) if
2195 * it is invalidating a translation that has only ever been
2196 * used on one vcpu. However, that doesn't mean it has
2197 * only ever been used on one physical cpu, since vcpus
2198 * can move around between pcpus. To cope with this, when
2199 * a vcpu moves from one pcpu to another, we need to tell
2200 * any vcpus running on the same core as this vcpu previously
2201 * ran to flush the TLB. The TLB is shared between threads,
2202 * so we use a single bit in .need_tlb_flush for all 4 threads.
2203 */
2204 if (vcpu->arch.prev_cpu != pcpu) {
2205 if (vcpu->arch.prev_cpu >= 0 &&
2206 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2207 cpu_first_thread_sibling(pcpu))
2208 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2209 vcpu->arch.prev_cpu = pcpu;
2210 }
2211}
2212
b4deba5c 2213static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
371fefd6
PM
2214{
2215 int cpu;
2216 struct paca_struct *tpaca;
a29ebeaf 2217 struct kvm *kvm = vc->kvm;
371fefd6 2218
b4deba5c
PM
2219 cpu = vc->pcpu;
2220 if (vcpu) {
2221 if (vcpu->arch.timer_running) {
2222 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2223 vcpu->arch.timer_running = 0;
2224 }
2225 cpu += vcpu->arch.ptid;
898b25b2 2226 vcpu->cpu = vc->pcpu;
b4deba5c 2227 vcpu->arch.thread_cpu = cpu;
a29ebeaf 2228 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
19ccb76a 2229 }
371fefd6 2230 tpaca = &paca[cpu];
5d5b99cd 2231 tpaca->kvm_hstate.kvm_vcpu = vcpu;
898b25b2 2232 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
ec257165 2233 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
371fefd6 2234 smp_wmb();
898b25b2 2235 tpaca->kvm_hstate.kvm_vcore = vc;
5d5b99cd 2236 if (cpu != smp_processor_id())
66feed61 2237 kvmppc_ipi_thread(cpu);
371fefd6 2238}
de56a948 2239
5d5b99cd 2240static void kvmppc_wait_for_nap(void)
371fefd6 2241{
5d5b99cd
PM
2242 int cpu = smp_processor_id();
2243 int i, loops;
45c940ba 2244 int n_threads = threads_per_vcore();
371fefd6 2245
45c940ba
PM
2246 if (n_threads <= 1)
2247 return;
5d5b99cd
PM
2248 for (loops = 0; loops < 1000000; ++loops) {
2249 /*
2250 * Check if all threads are finished.
b4deba5c 2251 * We set the vcore pointer when starting a thread
5d5b99cd 2252 * and the thread clears it when finished, so we look
b4deba5c 2253 * for any threads that still have a non-NULL vcore ptr.
5d5b99cd 2254 */
45c940ba 2255 for (i = 1; i < n_threads; ++i)
b4deba5c 2256 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd 2257 break;
45c940ba 2258 if (i == n_threads) {
5d5b99cd
PM
2259 HMT_medium();
2260 return;
371fefd6 2261 }
5d5b99cd 2262 HMT_low();
371fefd6
PM
2263 }
2264 HMT_medium();
45c940ba 2265 for (i = 1; i < n_threads; ++i)
b4deba5c 2266 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd 2267 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
371fefd6
PM
2268}
2269
2270/*
2271 * Check that we are on thread 0 and that any other threads in
7b444c67
PM
2272 * this core are off-line. Then grab the threads so they can't
2273 * enter the kernel.
371fefd6
PM
2274 */
2275static int on_primary_thread(void)
2276{
2277 int cpu = smp_processor_id();
3102f784 2278 int thr;
371fefd6 2279
3102f784
ME
2280 /* Are we on a primary subcore? */
2281 if (cpu_thread_in_subcore(cpu))
371fefd6 2282 return 0;
3102f784
ME
2283
2284 thr = 0;
2285 while (++thr < threads_per_subcore)
371fefd6
PM
2286 if (cpu_online(cpu + thr))
2287 return 0;
7b444c67
PM
2288
2289 /* Grab all hw threads so they can't go into the kernel */
3102f784 2290 for (thr = 1; thr < threads_per_subcore; ++thr) {
7b444c67
PM
2291 if (kvmppc_grab_hwthread(cpu + thr)) {
2292 /* Couldn't grab one; let the others go */
2293 do {
2294 kvmppc_release_hwthread(cpu + thr);
2295 } while (--thr > 0);
2296 return 0;
2297 }
2298 }
371fefd6
PM
2299 return 1;
2300}
2301
ec257165
PM
2302/*
2303 * A list of virtual cores for each physical CPU.
2304 * These are vcores that could run but their runner VCPU tasks are
2305 * (or may be) preempted.
2306 */
2307struct preempted_vcore_list {
2308 struct list_head list;
2309 spinlock_t lock;
2310};
2311
2312static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2313
2314static void init_vcore_lists(void)
2315{
2316 int cpu;
2317
2318 for_each_possible_cpu(cpu) {
2319 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2320 spin_lock_init(&lp->lock);
2321 INIT_LIST_HEAD(&lp->list);
2322 }
2323}
2324
2325static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2326{
2327 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2328
2329 vc->vcore_state = VCORE_PREEMPT;
2330 vc->pcpu = smp_processor_id();
45c940ba 2331 if (vc->num_threads < threads_per_vcore()) {
ec257165
PM
2332 spin_lock(&lp->lock);
2333 list_add_tail(&vc->preempt_list, &lp->list);
2334 spin_unlock(&lp->lock);
2335 }
2336
2337 /* Start accumulating stolen time */
2338 kvmppc_core_start_stolen(vc);
2339}
2340
2341static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2342{
402813fe 2343 struct preempted_vcore_list *lp;
ec257165
PM
2344
2345 kvmppc_core_end_stolen(vc);
2346 if (!list_empty(&vc->preempt_list)) {
402813fe 2347 lp = &per_cpu(preempted_vcores, vc->pcpu);
ec257165
PM
2348 spin_lock(&lp->lock);
2349 list_del_init(&vc->preempt_list);
2350 spin_unlock(&lp->lock);
2351 }
2352 vc->vcore_state = VCORE_INACTIVE;
2353}
2354
b4deba5c
PM
2355/*
2356 * This stores information about the virtual cores currently
2357 * assigned to a physical core.
2358 */
ec257165 2359struct core_info {
b4deba5c
PM
2360 int n_subcores;
2361 int max_subcore_threads;
ec257165 2362 int total_threads;
b4deba5c 2363 int subcore_threads[MAX_SUBCORES];
898b25b2 2364 struct kvmppc_vcore *vc[MAX_SUBCORES];
ec257165
PM
2365};
2366
b4deba5c
PM
2367/*
2368 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2369 * respectively in 2-way micro-threading (split-core) mode.
2370 */
2371static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2372
ec257165
PM
2373static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2374{
2375 memset(cip, 0, sizeof(*cip));
b4deba5c
PM
2376 cip->n_subcores = 1;
2377 cip->max_subcore_threads = vc->num_threads;
ec257165 2378 cip->total_threads = vc->num_threads;
b4deba5c 2379 cip->subcore_threads[0] = vc->num_threads;
898b25b2 2380 cip->vc[0] = vc;
b4deba5c
PM
2381}
2382
2383static bool subcore_config_ok(int n_subcores, int n_threads)
2384{
2385 /* Can only dynamically split if unsplit to begin with */
2386 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2387 return false;
2388 if (n_subcores > MAX_SUBCORES)
2389 return false;
2390 if (n_subcores > 1) {
2391 if (!(dynamic_mt_modes & 2))
2392 n_subcores = 4;
2393 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2394 return false;
2395 }
2396
2397 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
ec257165
PM
2398}
2399
898b25b2 2400static void init_vcore_to_run(struct kvmppc_vcore *vc)
ec257165 2401{
ec257165
PM
2402 vc->entry_exit_map = 0;
2403 vc->in_guest = 0;
2404 vc->napping_threads = 0;
2405 vc->conferring_threads = 0;
2406}
2407
b4deba5c
PM
2408static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2409{
2410 int n_threads = vc->num_threads;
2411 int sub;
2412
2413 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2414 return false;
2415
2416 if (n_threads < cip->max_subcore_threads)
2417 n_threads = cip->max_subcore_threads;
b009031f 2418 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
b4deba5c 2419 return false;
b009031f 2420 cip->max_subcore_threads = n_threads;
b4deba5c
PM
2421
2422 sub = cip->n_subcores;
2423 ++cip->n_subcores;
2424 cip->total_threads += vc->num_threads;
2425 cip->subcore_threads[sub] = vc->num_threads;
898b25b2
PM
2426 cip->vc[sub] = vc;
2427 init_vcore_to_run(vc);
2428 list_del_init(&vc->preempt_list);
b4deba5c
PM
2429
2430 return true;
2431}
2432
b4deba5c
PM
2433/*
2434 * Work out whether it is possible to piggyback the execution of
2435 * vcore *pvc onto the execution of the other vcores described in *cip.
2436 */
2437static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2438 int target_threads)
2439{
b4deba5c
PM
2440 if (cip->total_threads + pvc->num_threads > target_threads)
2441 return false;
b4deba5c 2442
b009031f 2443 return can_dynamic_split(pvc, cip);
b4deba5c
PM
2444}
2445
d911f0be
PM
2446static void prepare_threads(struct kvmppc_vcore *vc)
2447{
7b5f8272
SJS
2448 int i;
2449 struct kvm_vcpu *vcpu;
d911f0be 2450
7b5f8272 2451 for_each_runnable_thread(i, vcpu, vc) {
d911f0be
PM
2452 if (signal_pending(vcpu->arch.run_task))
2453 vcpu->arch.ret = -EINTR;
2454 else if (vcpu->arch.vpa.update_pending ||
2455 vcpu->arch.slb_shadow.update_pending ||
2456 vcpu->arch.dtl.update_pending)
2457 vcpu->arch.ret = RESUME_GUEST;
2458 else
2459 continue;
2460 kvmppc_remove_runnable(vc, vcpu);
2461 wake_up(&vcpu->arch.cpu_run);
2462 }
2463}
2464
ec257165
PM
2465static void collect_piggybacks(struct core_info *cip, int target_threads)
2466{
2467 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2468 struct kvmppc_vcore *pvc, *vcnext;
2469
2470 spin_lock(&lp->lock);
2471 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2472 if (!spin_trylock(&pvc->lock))
2473 continue;
2474 prepare_threads(pvc);
2475 if (!pvc->n_runnable) {
2476 list_del_init(&pvc->preempt_list);
2477 if (pvc->runner == NULL) {
2478 pvc->vcore_state = VCORE_INACTIVE;
2479 kvmppc_core_end_stolen(pvc);
2480 }
2481 spin_unlock(&pvc->lock);
2482 continue;
2483 }
2484 if (!can_piggyback(pvc, cip, target_threads)) {
2485 spin_unlock(&pvc->lock);
2486 continue;
2487 }
2488 kvmppc_core_end_stolen(pvc);
2489 pvc->vcore_state = VCORE_PIGGYBACK;
2490 if (cip->total_threads >= target_threads)
2491 break;
2492 }
2493 spin_unlock(&lp->lock);
2494}
2495
8b24e69f
PM
2496static bool recheck_signals(struct core_info *cip)
2497{
2498 int sub, i;
2499 struct kvm_vcpu *vcpu;
2500
2501 for (sub = 0; sub < cip->n_subcores; ++sub)
2502 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2503 if (signal_pending(vcpu->arch.run_task))
2504 return true;
2505 return false;
2506}
2507
ec257165 2508static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
25fedfca 2509{
7b5f8272 2510 int still_running = 0, i;
25fedfca
PM
2511 u64 now;
2512 long ret;
7b5f8272 2513 struct kvm_vcpu *vcpu;
25fedfca 2514
ec257165 2515 spin_lock(&vc->lock);
25fedfca 2516 now = get_tb();
7b5f8272 2517 for_each_runnable_thread(i, vcpu, vc) {
25fedfca
PM
2518 /* cancel pending dec exception if dec is positive */
2519 if (now < vcpu->arch.dec_expires &&
2520 kvmppc_core_pending_dec(vcpu))
2521 kvmppc_core_dequeue_dec(vcpu);
2522
2523 trace_kvm_guest_exit(vcpu);
2524
2525 ret = RESUME_GUEST;
2526 if (vcpu->arch.trap)
2527 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2528 vcpu->arch.run_task);
2529
2530 vcpu->arch.ret = ret;
2531 vcpu->arch.trap = 0;
2532
ec257165
PM
2533 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2534 if (vcpu->arch.pending_exceptions)
2535 kvmppc_core_prepare_to_enter(vcpu);
2536 if (vcpu->arch.ceded)
25fedfca 2537 kvmppc_set_timer(vcpu);
ec257165
PM
2538 else
2539 ++still_running;
2540 } else {
25fedfca
PM
2541 kvmppc_remove_runnable(vc, vcpu);
2542 wake_up(&vcpu->arch.cpu_run);
2543 }
2544 }
ec257165 2545 if (!is_master) {
563a1e93 2546 if (still_running > 0) {
ec257165 2547 kvmppc_vcore_preempt(vc);
563a1e93
PM
2548 } else if (vc->runner) {
2549 vc->vcore_state = VCORE_PREEMPT;
2550 kvmppc_core_start_stolen(vc);
2551 } else {
2552 vc->vcore_state = VCORE_INACTIVE;
2553 }
ec257165
PM
2554 if (vc->n_runnable > 0 && vc->runner == NULL) {
2555 /* make sure there's a candidate runner awake */
7b5f8272
SJS
2556 i = -1;
2557 vcpu = next_runnable_thread(vc, &i);
ec257165
PM
2558 wake_up(&vcpu->arch.cpu_run);
2559 }
2560 }
2561 spin_unlock(&vc->lock);
25fedfca
PM
2562}
2563
b8e6a87c
SW
2564/*
2565 * Clear core from the list of active host cores as we are about to
2566 * enter the guest. Only do this if it is the primary thread of the
2567 * core (not if a subcore) that is entering the guest.
2568 */
3f7cd919 2569static inline int kvmppc_clear_host_core(unsigned int cpu)
b8e6a87c
SW
2570{
2571 int core;
2572
2573 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 2574 return 0;
b8e6a87c
SW
2575 /*
2576 * Memory barrier can be omitted here as we will do a smp_wmb()
2577 * later in kvmppc_start_thread and we need ensure that state is
2578 * visible to other CPUs only after we enter guest.
2579 */
2580 core = cpu >> threads_shift;
2581 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3f7cd919 2582 return 0;
b8e6a87c
SW
2583}
2584
2585/*
2586 * Advertise this core as an active host core since we exited the guest
2587 * Only need to do this if it is the primary thread of the core that is
2588 * exiting.
2589 */
3f7cd919 2590static inline int kvmppc_set_host_core(unsigned int cpu)
b8e6a87c
SW
2591{
2592 int core;
2593
2594 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3f7cd919 2595 return 0;
b8e6a87c
SW
2596
2597 /*
2598 * Memory barrier can be omitted here because we do a spin_unlock
2599 * immediately after this which provides the memory barrier.
2600 */
2601 core = cpu >> threads_shift;
2602 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3f7cd919 2603 return 0;
b8e6a87c
SW
2604}
2605
8b24e69f
PM
2606static void set_irq_happened(int trap)
2607{
2608 switch (trap) {
2609 case BOOK3S_INTERRUPT_EXTERNAL:
2610 local_paca->irq_happened |= PACA_IRQ_EE;
2611 break;
2612 case BOOK3S_INTERRUPT_H_DOORBELL:
2613 local_paca->irq_happened |= PACA_IRQ_DBELL;
2614 break;
2615 case BOOK3S_INTERRUPT_HMI:
2616 local_paca->irq_happened |= PACA_IRQ_HMI;
2617 break;
2618 }
2619}
2620
371fefd6
PM
2621/*
2622 * Run a set of guest threads on a physical core.
2623 * Called with vc->lock held.
2624 */
66feed61 2625static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
371fefd6 2626{
7b5f8272 2627 struct kvm_vcpu *vcpu;
d911f0be 2628 int i;
2c9097e4 2629 int srcu_idx;
ec257165 2630 struct core_info core_info;
898b25b2 2631 struct kvmppc_vcore *pvc;
b4deba5c
PM
2632 struct kvm_split_mode split_info, *sip;
2633 int split, subcore_size, active;
2634 int sub;
2635 bool thr0_done;
2636 unsigned long cmd_bit, stat_bit;
ec257165
PM
2637 int pcpu, thr;
2638 int target_threads;
45c940ba 2639 int controlled_threads;
8b24e69f 2640 int trap;
371fefd6 2641
d911f0be
PM
2642 /*
2643 * Remove from the list any threads that have a signal pending
2644 * or need a VPA update done
2645 */
2646 prepare_threads(vc);
2647
2648 /* if the runner is no longer runnable, let the caller pick a new one */
2649 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2650 return;
081f323b
PM
2651
2652 /*
d911f0be 2653 * Initialize *vc.
081f323b 2654 */
898b25b2 2655 init_vcore_to_run(vc);
2711e248 2656 vc->preempt_tb = TB_NIL;
081f323b 2657
45c940ba
PM
2658 /*
2659 * Number of threads that we will be controlling: the same as
2660 * the number of threads per subcore, except on POWER9,
2661 * where it's 1 because the threads are (mostly) independent.
2662 */
2663 controlled_threads = threads_per_vcore();
2664
7b444c67 2665 /*
3102f784
ME
2666 * Make sure we are running on primary threads, and that secondary
2667 * threads are offline. Also check if the number of threads in this
2668 * guest are greater than the current system threads per guest.
7b444c67 2669 */
45c940ba 2670 if ((controlled_threads > 1) &&
3102f784 2671 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
7b5f8272 2672 for_each_runnable_thread(i, vcpu, vc) {
7b444c67 2673 vcpu->arch.ret = -EBUSY;
25fedfca
PM
2674 kvmppc_remove_runnable(vc, vcpu);
2675 wake_up(&vcpu->arch.cpu_run);
2676 }
7b444c67
PM
2677 goto out;
2678 }
2679
ec257165
PM
2680 /*
2681 * See if we could run any other vcores on the physical core
2682 * along with this one.
2683 */
2684 init_core_info(&core_info, vc);
2685 pcpu = smp_processor_id();
45c940ba 2686 target_threads = controlled_threads;
ec257165
PM
2687 if (target_smt_mode && target_smt_mode < target_threads)
2688 target_threads = target_smt_mode;
2689 if (vc->num_threads < target_threads)
2690 collect_piggybacks(&core_info, target_threads);
3102f784 2691
8b24e69f
PM
2692 /*
2693 * On radix, arrange for TLB flushing if necessary.
2694 * This has to be done before disabling interrupts since
2695 * it uses smp_call_function().
2696 */
2697 pcpu = smp_processor_id();
2698 if (kvm_is_radix(vc->kvm)) {
2699 for (sub = 0; sub < core_info.n_subcores; ++sub)
2700 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2701 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2702 }
2703
2704 /*
2705 * Hard-disable interrupts, and check resched flag and signals.
2706 * If we need to reschedule or deliver a signal, clean up
2707 * and return without going into the guest(s).
2708 */
2709 local_irq_disable();
2710 hard_irq_disable();
2711 if (lazy_irq_pending() || need_resched() ||
2712 recheck_signals(&core_info)) {
2713 local_irq_enable();
2714 vc->vcore_state = VCORE_INACTIVE;
2715 /* Unlock all except the primary vcore */
2716 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2717 pvc = core_info.vc[sub];
2718 /* Put back on to the preempted vcores list */
2719 kvmppc_vcore_preempt(pvc);
2720 spin_unlock(&pvc->lock);
2721 }
2722 for (i = 0; i < controlled_threads; ++i)
2723 kvmppc_release_hwthread(pcpu + i);
2724 return;
2725 }
2726
2727 kvmppc_clear_host_core(pcpu);
2728
b4deba5c
PM
2729 /* Decide on micro-threading (split-core) mode */
2730 subcore_size = threads_per_subcore;
2731 cmd_bit = stat_bit = 0;
2732 split = core_info.n_subcores;
2733 sip = NULL;
2734 if (split > 1) {
2735 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2736 if (split == 2 && (dynamic_mt_modes & 2)) {
2737 cmd_bit = HID0_POWER8_1TO2LPAR;
2738 stat_bit = HID0_POWER8_2LPARMODE;
2739 } else {
2740 split = 4;
2741 cmd_bit = HID0_POWER8_1TO4LPAR;
2742 stat_bit = HID0_POWER8_4LPARMODE;
2743 }
2744 subcore_size = MAX_SMT_THREADS / split;
2745 sip = &split_info;
2746 memset(&split_info, 0, sizeof(split_info));
2747 split_info.rpr = mfspr(SPRN_RPR);
2748 split_info.pmmar = mfspr(SPRN_PMMAR);
2749 split_info.ldbar = mfspr(SPRN_LDBAR);
2750 split_info.subcore_size = subcore_size;
2751 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 2752 split_info.vc[sub] = core_info.vc[sub];
b4deba5c
PM
2753 /* order writes to split_info before kvm_split_mode pointer */
2754 smp_wmb();
2755 }
45c940ba 2756 for (thr = 0; thr < controlled_threads; ++thr)
b4deba5c
PM
2757 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2758
2759 /* Initiate micro-threading (split-core) if required */
2760 if (cmd_bit) {
2761 unsigned long hid0 = mfspr(SPRN_HID0);
2762
2763 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2764 mb();
2765 mtspr(SPRN_HID0, hid0);
2766 isync();
2767 for (;;) {
2768 hid0 = mfspr(SPRN_HID0);
2769 if (hid0 & stat_bit)
2770 break;
2771 cpu_relax();
ec257165 2772 }
2e25aa5f 2773 }
3102f784 2774
b4deba5c
PM
2775 /* Start all the threads */
2776 active = 0;
2777 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2778 thr = subcore_thread_map[sub];
2779 thr0_done = false;
2780 active |= 1 << thr;
898b25b2
PM
2781 pvc = core_info.vc[sub];
2782 pvc->pcpu = pcpu + thr;
2783 for_each_runnable_thread(i, vcpu, pvc) {
2784 kvmppc_start_thread(vcpu, pvc);
2785 kvmppc_create_dtl_entry(vcpu, pvc);
2786 trace_kvm_guest_enter(vcpu);
2787 if (!vcpu->arch.ptid)
2788 thr0_done = true;
2789 active |= 1 << (thr + vcpu->arch.ptid);
b4deba5c 2790 }
898b25b2
PM
2791 /*
2792 * We need to start the first thread of each subcore
2793 * even if it doesn't have a vcpu.
2794 */
2795 if (!thr0_done)
2796 kvmppc_start_thread(NULL, pvc);
2797 thr += pvc->num_threads;
2e25aa5f 2798 }
371fefd6 2799
7f235328
GS
2800 /*
2801 * Ensure that split_info.do_nap is set after setting
2802 * the vcore pointer in the PACA of the secondaries.
2803 */
2804 smp_mb();
2805 if (cmd_bit)
2806 split_info.do_nap = 1; /* ask secondaries to nap when done */
2807
b4deba5c
PM
2808 /*
2809 * When doing micro-threading, poke the inactive threads as well.
2810 * This gets them to the nap instruction after kvm_do_nap,
2811 * which reduces the time taken to unsplit later.
2812 */
2813 if (split > 1)
2814 for (thr = 1; thr < threads_per_subcore; ++thr)
2815 if (!(active & (1 << thr)))
2816 kvmppc_ipi_thread(pcpu + thr);
e0b7ec05 2817
2f12f034 2818 vc->vcore_state = VCORE_RUNNING;
19ccb76a 2819 preempt_disable();
3c78f78a
SW
2820
2821 trace_kvmppc_run_core(vc, 0);
2822
b4deba5c 2823 for (sub = 0; sub < core_info.n_subcores; ++sub)
898b25b2 2824 spin_unlock(&core_info.vc[sub]->lock);
de56a948 2825
8b24e69f
PM
2826 /*
2827 * Interrupts will be enabled once we get into the guest,
2828 * so tell lockdep that we're about to enable interrupts.
2829 */
2830 trace_hardirqs_on();
de56a948 2831
6edaa530 2832 guest_enter();
2c9097e4 2833
e0b7ec05 2834 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2c9097e4 2835
8b24e69f 2836 trap = __kvmppc_vcore_entry();
de56a948 2837
ec257165
PM
2838 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2839
8b24e69f
PM
2840 guest_exit();
2841
2842 trace_hardirqs_off();
2843 set_irq_happened(trap);
2844
ec257165 2845 spin_lock(&vc->lock);
371fefd6 2846 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
19ccb76a 2847 vc->vcore_state = VCORE_EXITING;
371fefd6 2848
19ccb76a 2849 /* wait for secondary threads to finish writing their state to memory */
5d5b99cd 2850 kvmppc_wait_for_nap();
b4deba5c
PM
2851
2852 /* Return to whole-core mode if we split the core earlier */
2853 if (split > 1) {
2854 unsigned long hid0 = mfspr(SPRN_HID0);
2855 unsigned long loops = 0;
2856
2857 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2858 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2859 mb();
2860 mtspr(SPRN_HID0, hid0);
2861 isync();
2862 for (;;) {
2863 hid0 = mfspr(SPRN_HID0);
2864 if (!(hid0 & stat_bit))
2865 break;
2866 cpu_relax();
2867 ++loops;
2868 }
2869 split_info.do_nap = 0;
2870 }
2871
8b24e69f
PM
2872 kvmppc_set_host_core(pcpu);
2873
2874 local_irq_enable();
2875
b4deba5c 2876 /* Let secondaries go back to the offline loop */
45c940ba 2877 for (i = 0; i < controlled_threads; ++i) {
b4deba5c
PM
2878 kvmppc_release_hwthread(pcpu + i);
2879 if (sip && sip->napped[i])
2880 kvmppc_ipi_thread(pcpu + i);
a29ebeaf 2881 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
b4deba5c
PM
2882 }
2883
371fefd6 2884 spin_unlock(&vc->lock);
2c9097e4 2885
371fefd6
PM
2886 /* make sure updates to secondary vcpu structs are visible now */
2887 smp_mb();
de56a948 2888
898b25b2
PM
2889 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2890 pvc = core_info.vc[sub];
2891 post_guest_process(pvc, pvc == vc);
2892 }
de56a948 2893
913d3ff9 2894 spin_lock(&vc->lock);
ec257165 2895 preempt_enable();
de56a948
PM
2896
2897 out:
19ccb76a 2898 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 2899 trace_kvmppc_run_core(vc, 1);
371fefd6
PM
2900}
2901
19ccb76a
PM
2902/*
2903 * Wait for some other vcpu thread to execute us, and
2904 * wake us up when we need to handle something in the host.
2905 */
ec257165
PM
2906static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2907 struct kvm_vcpu *vcpu, int wait_state)
371fefd6 2908{
371fefd6
PM
2909 DEFINE_WAIT(wait);
2910
19ccb76a 2911 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
ec257165
PM
2912 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2913 spin_unlock(&vc->lock);
19ccb76a 2914 schedule();
ec257165
PM
2915 spin_lock(&vc->lock);
2916 }
19ccb76a
PM
2917 finish_wait(&vcpu->arch.cpu_run, &wait);
2918}
2919
0cda69dd
SJS
2920static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2921{
2922 /* 10us base */
2923 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2924 vc->halt_poll_ns = 10000;
2925 else
2926 vc->halt_poll_ns *= halt_poll_ns_grow;
0cda69dd
SJS
2927}
2928
2929static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2930{
2931 if (halt_poll_ns_shrink == 0)
2932 vc->halt_poll_ns = 0;
2933 else
2934 vc->halt_poll_ns /= halt_poll_ns_shrink;
2935}
2936
ee3308a2
PM
2937#ifdef CONFIG_KVM_XICS
2938static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2939{
2940 if (!xive_enabled())
2941 return false;
2942 return vcpu->arch.xive_saved_state.pipr <
2943 vcpu->arch.xive_saved_state.cppr;
2944}
2945#else
2946static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2947{
2948 return false;
2949}
2950#endif /* CONFIG_KVM_XICS */
2951
1da4e2f4
PM
2952static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2953{
2954 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
ee3308a2 2955 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
1da4e2f4
PM
2956 return true;
2957
2958 return false;
2959}
2960
908a0935
SJS
2961/*
2962 * Check to see if any of the runnable vcpus on the vcore have pending
0cda69dd
SJS
2963 * exceptions or are no longer ceded
2964 */
2965static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2966{
2967 struct kvm_vcpu *vcpu;
2968 int i;
2969
2970 for_each_runnable_thread(i, vcpu, vc) {
1da4e2f4 2971 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
0cda69dd
SJS
2972 return 1;
2973 }
2974
2975 return 0;
2976}
2977
19ccb76a
PM
2978/*
2979 * All the vcpus in this vcore are idle, so wait for a decrementer
2980 * or external interrupt to one of the vcpus. vc->lock is held.
2981 */
2982static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2983{
2a27f514 2984 ktime_t cur, start_poll, start_wait;
0cda69dd 2985 int do_sleep = 1;
0cda69dd 2986 u64 block_ns;
8577370f 2987 DECLARE_SWAITQUEUE(wait);
1bc5d59c 2988
0cda69dd 2989 /* Poll for pending exceptions and ceded state */
2a27f514 2990 cur = start_poll = ktime_get();
0cda69dd 2991 if (vc->halt_poll_ns) {
2a27f514
SJS
2992 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2993 ++vc->runner->stat.halt_attempted_poll;
1bc5d59c 2994
0cda69dd
SJS
2995 vc->vcore_state = VCORE_POLLING;
2996 spin_unlock(&vc->lock);
2997
2998 do {
2999 if (kvmppc_vcore_check_block(vc)) {
3000 do_sleep = 0;
3001 break;
3002 }
3003 cur = ktime_get();
3004 } while (single_task_running() && ktime_before(cur, stop));
3005
3006 spin_lock(&vc->lock);
3007 vc->vcore_state = VCORE_INACTIVE;
3008
2a27f514
SJS
3009 if (!do_sleep) {
3010 ++vc->runner->stat.halt_successful_poll;
0cda69dd 3011 goto out;
2a27f514 3012 }
1bc5d59c
SW
3013 }
3014
0cda69dd
SJS
3015 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3016
3017 if (kvmppc_vcore_check_block(vc)) {
8577370f 3018 finish_swait(&vc->wq, &wait);
0cda69dd 3019 do_sleep = 0;
2a27f514
SJS
3020 /* If we polled, count this as a successful poll */
3021 if (vc->halt_poll_ns)
3022 ++vc->runner->stat.halt_successful_poll;
0cda69dd 3023 goto out;
1bc5d59c
SW
3024 }
3025
2a27f514
SJS
3026 start_wait = ktime_get();
3027
19ccb76a 3028 vc->vcore_state = VCORE_SLEEPING;
3c78f78a 3029 trace_kvmppc_vcore_blocked(vc, 0);
19ccb76a 3030 spin_unlock(&vc->lock);
913d3ff9 3031 schedule();
8577370f 3032 finish_swait(&vc->wq, &wait);
19ccb76a
PM
3033 spin_lock(&vc->lock);
3034 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 3035 trace_kvmppc_vcore_blocked(vc, 1);
2a27f514 3036 ++vc->runner->stat.halt_successful_wait;
0cda69dd
SJS
3037
3038 cur = ktime_get();
3039
3040out:
2a27f514
SJS
3041 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3042
3043 /* Attribute wait time */
3044 if (do_sleep) {
3045 vc->runner->stat.halt_wait_ns +=
3046 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3047 /* Attribute failed poll time */
3048 if (vc->halt_poll_ns)
3049 vc->runner->stat.halt_poll_fail_ns +=
3050 ktime_to_ns(start_wait) -
3051 ktime_to_ns(start_poll);
3052 } else {
3053 /* Attribute successful poll time */
3054 if (vc->halt_poll_ns)
3055 vc->runner->stat.halt_poll_success_ns +=
3056 ktime_to_ns(cur) -
3057 ktime_to_ns(start_poll);
3058 }
0cda69dd
SJS
3059
3060 /* Adjust poll time */
307d93e4 3061 if (halt_poll_ns) {
0cda69dd
SJS
3062 if (block_ns <= vc->halt_poll_ns)
3063 ;
3064 /* We slept and blocked for longer than the max halt time */
307d93e4 3065 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
0cda69dd
SJS
3066 shrink_halt_poll_ns(vc);
3067 /* We slept and our poll time is too small */
307d93e4
SJS
3068 else if (vc->halt_poll_ns < halt_poll_ns &&
3069 block_ns < halt_poll_ns)
0cda69dd 3070 grow_halt_poll_ns(vc);
e03f3921
SJS
3071 if (vc->halt_poll_ns > halt_poll_ns)
3072 vc->halt_poll_ns = halt_poll_ns;
0cda69dd
SJS
3073 } else
3074 vc->halt_poll_ns = 0;
3075
3076 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
19ccb76a 3077}
371fefd6 3078
19ccb76a
PM
3079static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3080{
7b5f8272 3081 int n_ceded, i;
19ccb76a 3082 struct kvmppc_vcore *vc;
7b5f8272 3083 struct kvm_vcpu *v;
9e368f29 3084
3c78f78a
SW
3085 trace_kvmppc_run_vcpu_enter(vcpu);
3086
371fefd6
PM
3087 kvm_run->exit_reason = 0;
3088 vcpu->arch.ret = RESUME_GUEST;
3089 vcpu->arch.trap = 0;
2f12f034 3090 kvmppc_update_vpas(vcpu);
371fefd6 3091
371fefd6
PM
3092 /*
3093 * Synchronize with other threads in this virtual core
3094 */
3095 vc = vcpu->arch.vcore;
3096 spin_lock(&vc->lock);
19ccb76a 3097 vcpu->arch.ceded = 0;
371fefd6
PM
3098 vcpu->arch.run_task = current;
3099 vcpu->arch.kvm_run = kvm_run;
c7b67670 3100 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
19ccb76a 3101 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
c7b67670 3102 vcpu->arch.busy_preempt = TB_NIL;
7b5f8272 3103 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
371fefd6
PM
3104 ++vc->n_runnable;
3105
19ccb76a
PM
3106 /*
3107 * This happens the first time this is called for a vcpu.
3108 * If the vcore is already running, we may be able to start
3109 * this thread straight away and have it join in.
3110 */
8455d79e 3111 if (!signal_pending(current)) {
ec257165 3112 if (vc->vcore_state == VCORE_PIGGYBACK) {
898b25b2
PM
3113 if (spin_trylock(&vc->lock)) {
3114 if (vc->vcore_state == VCORE_RUNNING &&
3115 !VCORE_IS_EXITING(vc)) {
ec257165 3116 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 3117 kvmppc_start_thread(vcpu, vc);
ec257165
PM
3118 trace_kvm_guest_enter(vcpu);
3119 }
898b25b2 3120 spin_unlock(&vc->lock);
ec257165
PM
3121 }
3122 } else if (vc->vcore_state == VCORE_RUNNING &&
3123 !VCORE_IS_EXITING(vc)) {
2f12f034 3124 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 3125 kvmppc_start_thread(vcpu, vc);
3c78f78a 3126 trace_kvm_guest_enter(vcpu);
8455d79e 3127 } else if (vc->vcore_state == VCORE_SLEEPING) {
8577370f 3128 swake_up(&vc->wq);
371fefd6
PM
3129 }
3130
8455d79e 3131 }
371fefd6 3132
19ccb76a
PM
3133 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3134 !signal_pending(current)) {
ec257165
PM
3135 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3136 kvmppc_vcore_end_preempt(vc);
3137
8455d79e 3138 if (vc->vcore_state != VCORE_INACTIVE) {
ec257165 3139 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
19ccb76a
PM
3140 continue;
3141 }
7b5f8272 3142 for_each_runnable_thread(i, v, vc) {
7e28e60e 3143 kvmppc_core_prepare_to_enter(v);
19ccb76a
PM
3144 if (signal_pending(v->arch.run_task)) {
3145 kvmppc_remove_runnable(vc, v);
3146 v->stat.signal_exits++;
3147 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3148 v->arch.ret = -EINTR;
3149 wake_up(&v->arch.cpu_run);
3150 }
3151 }
8455d79e
PM
3152 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3153 break;
8455d79e 3154 n_ceded = 0;
7b5f8272 3155 for_each_runnable_thread(i, v, vc) {
1da4e2f4 3156 if (!kvmppc_vcpu_woken(v))
8455d79e 3157 n_ceded += v->arch.ceded;
4619ac88
PM
3158 else
3159 v->arch.ceded = 0;
3160 }
25fedfca
PM
3161 vc->runner = vcpu;
3162 if (n_ceded == vc->n_runnable) {
8455d79e 3163 kvmppc_vcore_blocked(vc);
c56dadf3 3164 } else if (need_resched()) {
ec257165 3165 kvmppc_vcore_preempt(vc);
25fedfca
PM
3166 /* Let something else run */
3167 cond_resched_lock(&vc->lock);
ec257165
PM
3168 if (vc->vcore_state == VCORE_PREEMPT)
3169 kvmppc_vcore_end_preempt(vc);
25fedfca 3170 } else {
8455d79e 3171 kvmppc_run_core(vc);
25fedfca 3172 }
0456ec4f 3173 vc->runner = NULL;
19ccb76a 3174 }
371fefd6 3175
8455d79e
PM
3176 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3177 (vc->vcore_state == VCORE_RUNNING ||
5fc3e64f
PM
3178 vc->vcore_state == VCORE_EXITING ||
3179 vc->vcore_state == VCORE_PIGGYBACK))
ec257165 3180 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
8455d79e 3181
5fc3e64f
PM
3182 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3183 kvmppc_vcore_end_preempt(vc);
3184
8455d79e
PM
3185 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3186 kvmppc_remove_runnable(vc, vcpu);
3187 vcpu->stat.signal_exits++;
3188 kvm_run->exit_reason = KVM_EXIT_INTR;
3189 vcpu->arch.ret = -EINTR;
3190 }
3191
3192 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3193 /* Wake up some vcpu to run the core */
7b5f8272
SJS
3194 i = -1;
3195 v = next_runnable_thread(vc, &i);
8455d79e 3196 wake_up(&v->arch.cpu_run);
371fefd6
PM
3197 }
3198
3c78f78a 3199 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
371fefd6 3200 spin_unlock(&vc->lock);
371fefd6 3201 return vcpu->arch.ret;
de56a948
PM
3202}
3203
3a167bea 3204static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
a8606e20
PM
3205{
3206 int r;
913d3ff9 3207 int srcu_idx;
ca8efa1d 3208 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4c3bb4cc
PM
3209 unsigned long user_tar = 0;
3210 unsigned int user_vrsave;
a8606e20 3211
af8f38b3
AG
3212 if (!vcpu->arch.sane) {
3213 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3214 return -EINVAL;
3215 }
3216
46a704f8
PM
3217 /*
3218 * Don't allow entry with a suspended transaction, because
3219 * the guest entry/exit code will lose it.
3220 * If the guest has TM enabled, save away their TM-related SPRs
3221 * (they will get restored by the TM unavailable interrupt).
3222 */
3223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3224 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3225 (current->thread.regs->msr & MSR_TM)) {
3226 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3227 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3228 run->fail_entry.hardware_entry_failure_reason = 0;
3229 return -EINVAL;
3230 }
e4705715
PM
3231 /* Enable TM so we can read the TM SPRs */
3232 mtmsr(mfmsr() | MSR_TM);
46a704f8
PM
3233 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3234 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3235 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3236 current->thread.regs->msr &= ~MSR_TM;
3237 }
3238#endif
3239
25051b5a
SW
3240 kvmppc_core_prepare_to_enter(vcpu);
3241
19ccb76a
PM
3242 /* No need to go into the guest when all we'll do is come back out */
3243 if (signal_pending(current)) {
3244 run->exit_reason = KVM_EXIT_INTR;
3245 return -EINTR;
3246 }
3247
32fad281 3248 atomic_inc(&vcpu->kvm->arch.vcpus_running);
31037eca 3249 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
32fad281
PM
3250 smp_mb();
3251
c17b98cf 3252 /* On the first time here, set up HTAB and VRMA */
8cf4ecc0 3253 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
32fad281 3254 r = kvmppc_hv_setup_htab_rma(vcpu);
c77162de 3255 if (r)
32fad281 3256 goto out;
c77162de 3257 }
19ccb76a 3258
579e633e
AB
3259 flush_all_to_thread(current);
3260
4c3bb4cc 3261 /* Save userspace EBB and other register values */
ca8efa1d
PM
3262 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3263 ebb_regs[0] = mfspr(SPRN_EBBHR);
3264 ebb_regs[1] = mfspr(SPRN_EBBRR);
3265 ebb_regs[2] = mfspr(SPRN_BESCR);
4c3bb4cc 3266 user_tar = mfspr(SPRN_TAR);
ca8efa1d 3267 }
4c3bb4cc 3268 user_vrsave = mfspr(SPRN_VRSAVE);
ca8efa1d 3269
19ccb76a 3270 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
342d3db7 3271 vcpu->arch.pgdir = current->mm->pgd;
c7b67670 3272 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
19ccb76a 3273
a8606e20
PM
3274 do {
3275 r = kvmppc_run_vcpu(run, vcpu);
3276
3277 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3278 !(vcpu->arch.shregs.msr & MSR_PR)) {
3c78f78a 3279 trace_kvm_hcall_enter(vcpu);
a8606e20 3280 r = kvmppc_pseries_do_hcall(vcpu);
3c78f78a 3281 trace_kvm_hcall_exit(vcpu, r);
7e28e60e 3282 kvmppc_core_prepare_to_enter(vcpu);
913d3ff9
PM
3283 } else if (r == RESUME_PAGE_FAULT) {
3284 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3285 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3286 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3287 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5af50993
BH
3288 } else if (r == RESUME_PASSTHROUGH) {
3289 if (WARN_ON(xive_enabled()))
3290 r = H_SUCCESS;
3291 else
3292 r = kvmppc_xics_rm_complete(vcpu, 0);
3293 }
e59d24e6 3294 } while (is_kvmppc_resume_guest(r));
32fad281 3295
4c3bb4cc 3296 /* Restore userspace EBB and other register values */
ca8efa1d
PM
3297 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3298 mtspr(SPRN_EBBHR, ebb_regs[0]);
3299 mtspr(SPRN_EBBRR, ebb_regs[1]);
3300 mtspr(SPRN_BESCR, ebb_regs[2]);
4c3bb4cc
PM
3301 mtspr(SPRN_TAR, user_tar);
3302 mtspr(SPRN_FSCR, current->thread.fscr);
ca8efa1d 3303 }
4c3bb4cc 3304 mtspr(SPRN_VRSAVE, user_vrsave);
ca8efa1d 3305
32fad281 3306 out:
c7b67670 3307 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
32fad281 3308 atomic_dec(&vcpu->kvm->arch.vcpus_running);
a8606e20
PM
3309 return r;
3310}
3311
5b74716e
BH
3312static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3313 int linux_psize)
3314{
3315 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3316
3317 if (!def->shift)
3318 return;
3319 (*sps)->page_shift = def->shift;
3320 (*sps)->slb_enc = def->sllp;
3321 (*sps)->enc[0].page_shift = def->shift;
b1022fbd 3322 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1f365bb0
AK
3323 /*
3324 * Add 16MB MPSS support if host supports it
3325 */
3326 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3327 (*sps)->enc[1].page_shift = 24;
3328 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3329 }
5b74716e
BH
3330 (*sps)++;
3331}
3332
3a167bea
AK
3333static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3334 struct kvm_ppc_smmu_info *info)
5b74716e
BH
3335{
3336 struct kvm_ppc_one_seg_page_size *sps;
3337
8cf4ecc0
PM
3338 /*
3339 * Since we don't yet support HPT guests on a radix host,
3340 * return an error if the host uses radix.
3341 */
3342 if (radix_enabled())
3343 return -EINVAL;
3344
e3bfed1d
PM
3345 /*
3346 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3347 * POWER7 doesn't support keys for instruction accesses,
3348 * POWER8 and POWER9 do.
3349 */
3350 info->data_keys = 32;
3351 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3352
5b74716e
BH
3353 info->flags = KVM_PPC_PAGE_SIZES_REAL;
3354 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3355 info->flags |= KVM_PPC_1T_SEGMENTS;
3356 info->slb_size = mmu_slb_size;
3357
3358 /* We only support these sizes for now, and no muti-size segments */
3359 sps = &info->sps[0];
3360 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3361 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3362 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3363
3364 return 0;
3365}
3366
82ed3616
PM
3367/*
3368 * Get (and clear) the dirty memory log for a memory slot.
3369 */
3a167bea
AK
3370static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3371 struct kvm_dirty_log *log)
82ed3616 3372{
9f6b8029 3373 struct kvm_memslots *slots;
82ed3616 3374 struct kvm_memory_slot *memslot;
8f7b79b8 3375 int i, r;
82ed3616 3376 unsigned long n;
8f7b79b8
PM
3377 unsigned long *buf;
3378 struct kvm_vcpu *vcpu;
82ed3616
PM
3379
3380 mutex_lock(&kvm->slots_lock);
3381
3382 r = -EINVAL;
bbacc0c1 3383 if (log->slot >= KVM_USER_MEM_SLOTS)
82ed3616
PM
3384 goto out;
3385
9f6b8029
PB
3386 slots = kvm_memslots(kvm);
3387 memslot = id_to_memslot(slots, log->slot);
82ed3616
PM
3388 r = -ENOENT;
3389 if (!memslot->dirty_bitmap)
3390 goto out;
3391
8f7b79b8
PM
3392 /*
3393 * Use second half of bitmap area because radix accumulates
3394 * bits in the first half.
3395 */
82ed3616 3396 n = kvm_dirty_bitmap_bytes(memslot);
8f7b79b8
PM
3397 buf = memslot->dirty_bitmap + n / sizeof(long);
3398 memset(buf, 0, n);
82ed3616 3399
8f7b79b8
PM
3400 if (kvm_is_radix(kvm))
3401 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3402 else
3403 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
82ed3616
PM
3404 if (r)
3405 goto out;
3406
8f7b79b8
PM
3407 /* Harvest dirty bits from VPA and DTL updates */
3408 /* Note: we never modify the SLB shadow buffer areas */
3409 kvm_for_each_vcpu(i, vcpu, kvm) {
3410 spin_lock(&vcpu->arch.vpa_update_lock);
3411 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3412 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3413 spin_unlock(&vcpu->arch.vpa_update_lock);
3414 }
3415
82ed3616 3416 r = -EFAULT;
8f7b79b8 3417 if (copy_to_user(log->dirty_bitmap, buf, n))
82ed3616
PM
3418 goto out;
3419
3420 r = 0;
3421out:
3422 mutex_unlock(&kvm->slots_lock);
3423 return r;
3424}
3425
3a167bea
AK
3426static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3427 struct kvm_memory_slot *dont)
a66b48c3
PM
3428{
3429 if (!dont || free->arch.rmap != dont->arch.rmap) {
3430 vfree(free->arch.rmap);
3431 free->arch.rmap = NULL;
b2b2f165 3432 }
a66b48c3
PM
3433}
3434
3a167bea
AK
3435static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3436 unsigned long npages)
a66b48c3 3437{
8cf4ecc0
PM
3438 /*
3439 * For now, if radix_enabled() then we only support radix guests,
3440 * and in that case we don't need the rmap array.
3441 */
3442 if (radix_enabled()) {
3443 slot->arch.rmap = NULL;
3444 return 0;
3445 }
3446
a66b48c3
PM
3447 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3448 if (!slot->arch.rmap)
3449 return -ENOMEM;
aa04b4cc 3450
c77162de
PM
3451 return 0;
3452}
aa04b4cc 3453
3a167bea
AK
3454static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3455 struct kvm_memory_slot *memslot,
09170a49 3456 const struct kvm_userspace_memory_region *mem)
c77162de 3457{
a66b48c3 3458 return 0;
c77162de
PM
3459}
3460
3a167bea 3461static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
09170a49 3462 const struct kvm_userspace_memory_region *mem,
f36f3f28
PB
3463 const struct kvm_memory_slot *old,
3464 const struct kvm_memory_slot *new)
c77162de 3465{
dfe49dbd 3466 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
9f6b8029 3467 struct kvm_memslots *slots;
dfe49dbd
PM
3468 struct kvm_memory_slot *memslot;
3469
a56ee9f8
YX
3470 /*
3471 * If we are making a new memslot, it might make
3472 * some address that was previously cached as emulated
3473 * MMIO be no longer emulated MMIO, so invalidate
3474 * all the caches of emulated MMIO translations.
3475 */
3476 if (npages)
3477 atomic64_inc(&kvm->arch.mmio_update);
3478
8f7b79b8 3479 if (npages && old->npages && !kvm_is_radix(kvm)) {
dfe49dbd
PM
3480 /*
3481 * If modifying a memslot, reset all the rmap dirty bits.
3482 * If this is a new memslot, we don't need to do anything
3483 * since the rmap array starts out as all zeroes,
3484 * i.e. no pages are dirty.
3485 */
9f6b8029
PB
3486 slots = kvm_memslots(kvm);
3487 memslot = id_to_memslot(slots, mem->slot);
8f7b79b8 3488 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
dfe49dbd 3489 }
c77162de
PM
3490}
3491
a0144e2a
PM
3492/*
3493 * Update LPCR values in kvm->arch and in vcores.
3494 * Caller must hold kvm->lock.
3495 */
3496void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3497{
3498 long int i;
3499 u32 cores_done = 0;
3500
3501 if ((kvm->arch.lpcr & mask) == lpcr)
3502 return;
3503
3504 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3505
3506 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3507 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3508 if (!vc)
3509 continue;
3510 spin_lock(&vc->lock);
3511 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3512 spin_unlock(&vc->lock);
3513 if (++cores_done >= kvm->arch.online_vcores)
3514 break;
3515 }
3516}
3517
3a167bea
AK
3518static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3519{
3520 return;
3521}
3522
7a84084c
PM
3523static void kvmppc_setup_partition_table(struct kvm *kvm)
3524{
3525 unsigned long dw0, dw1;
3526
8cf4ecc0
PM
3527 if (!kvm_is_radix(kvm)) {
3528 /* PS field - page size for VRMA */
3529 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3530 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3531 /* HTABSIZE and HTABORG fields */
3532 dw0 |= kvm->arch.sdr1;
7a84084c 3533
8cf4ecc0
PM
3534 /* Second dword as set by userspace */
3535 dw1 = kvm->arch.process_table;
3536 } else {
3537 dw0 = PATB_HR | radix__get_tree_size() |
3538 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3539 dw1 = PATB_GR | kvm->arch.process_table;
3540 }
7a84084c
PM
3541
3542 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3543}
3544
32fad281 3545static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
c77162de
PM
3546{
3547 int err = 0;
3548 struct kvm *kvm = vcpu->kvm;
c77162de
PM
3549 unsigned long hva;
3550 struct kvm_memory_slot *memslot;
3551 struct vm_area_struct *vma;
a0144e2a 3552 unsigned long lpcr = 0, senc;
c77162de 3553 unsigned long psize, porder;
2c9097e4 3554 int srcu_idx;
c77162de
PM
3555
3556 mutex_lock(&kvm->lock);
31037eca 3557 if (kvm->arch.hpte_setup_done)
c77162de 3558 goto out; /* another vcpu beat us to it */
aa04b4cc 3559
32fad281 3560 /* Allocate hashed page table (if not done already) and reset it */
3f9d4f5a 3561 if (!kvm->arch.hpt.virt) {
aae0777f
DG
3562 int order = KVM_DEFAULT_HPT_ORDER;
3563 struct kvm_hpt_info info;
3564
3565 err = kvmppc_allocate_hpt(&info, order);
3566 /* If we get here, it means userspace didn't specify a
3567 * size explicitly. So, try successively smaller
3568 * sizes if the default failed. */
3569 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3570 err = kvmppc_allocate_hpt(&info, order);
3571
3572 if (err < 0) {
32fad281
PM
3573 pr_err("KVM: Couldn't alloc HPT\n");
3574 goto out;
3575 }
aae0777f
DG
3576
3577 kvmppc_set_hpt(kvm, &info);
32fad281
PM
3578 }
3579
c77162de 3580 /* Look up the memslot for guest physical address 0 */
2c9097e4 3581 srcu_idx = srcu_read_lock(&kvm->srcu);
c77162de 3582 memslot = gfn_to_memslot(kvm, 0);
aa04b4cc 3583
c77162de
PM
3584 /* We must have some memory at 0 by now */
3585 err = -EINVAL;
3586 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 3587 goto out_srcu;
c77162de
PM
3588
3589 /* Look up the VMA for the start of this memory slot */
3590 hva = memslot->userspace_addr;
3591 down_read(&current->mm->mmap_sem);
3592 vma = find_vma(current->mm, hva);
3593 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3594 goto up_out;
3595
3596 psize = vma_kernel_pagesize(vma);
da9d1d7f 3597 porder = __ilog2(psize);
c77162de 3598
c77162de
PM
3599 up_read(&current->mm->mmap_sem);
3600
c17b98cf
PM
3601 /* We can handle 4k, 64k or 16M pages in the VRMA */
3602 err = -EINVAL;
3603 if (!(psize == 0x1000 || psize == 0x10000 ||
3604 psize == 0x1000000))
3605 goto out_srcu;
c77162de 3606
c17b98cf
PM
3607 senc = slb_pgsize_encoding(psize);
3608 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3609 (VRMA_VSID << SLB_VSID_SHIFT_1T);
c17b98cf
PM
3610 /* Create HPTEs in the hash page table for the VRMA */
3611 kvmppc_map_vrma(vcpu, memslot, porder);
aa04b4cc 3612
7a84084c
PM
3613 /* Update VRMASD field in the LPCR */
3614 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3615 /* the -4 is to account for senc values starting at 0x10 */
3616 lpcr = senc << (LPCR_VRMASD_SH - 4);
3617 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3618 } else {
3619 kvmppc_setup_partition_table(kvm);
3620 }
a0144e2a 3621
31037eca 3622 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
c77162de 3623 smp_wmb();
31037eca 3624 kvm->arch.hpte_setup_done = 1;
c77162de 3625 err = 0;
2c9097e4
PM
3626 out_srcu:
3627 srcu_read_unlock(&kvm->srcu, srcu_idx);
c77162de
PM
3628 out:
3629 mutex_unlock(&kvm->lock);
3630 return err;
b2b2f165 3631
c77162de
PM
3632 up_out:
3633 up_read(&current->mm->mmap_sem);
505d6421 3634 goto out_srcu;
de56a948
PM
3635}
3636
79b6c247
SW
3637#ifdef CONFIG_KVM_XICS
3638/*
3639 * Allocate a per-core structure for managing state about which cores are
3640 * running in the host versus the guest and for exchanging data between
3641 * real mode KVM and CPU running in the host.
3642 * This is only done for the first VM.
3643 * The allocated structure stays even if all VMs have stopped.
3644 * It is only freed when the kvm-hv module is unloaded.
3645 * It's OK for this routine to fail, we just don't support host
3646 * core operations like redirecting H_IPI wakeups.
3647 */
3648void kvmppc_alloc_host_rm_ops(void)
3649{
3650 struct kvmppc_host_rm_ops *ops;
3651 unsigned long l_ops;
3652 int cpu, core;
3653 int size;
3654
3655 /* Not the first time here ? */
3656 if (kvmppc_host_rm_ops_hv != NULL)
3657 return;
3658
3659 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3660 if (!ops)
3661 return;
3662
3663 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3664 ops->rm_core = kzalloc(size, GFP_KERNEL);
3665
3666 if (!ops->rm_core) {
3667 kfree(ops);
3668 return;
3669 }
3670
419af25f 3671 cpus_read_lock();
6f3bb809 3672
79b6c247
SW
3673 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3674 if (!cpu_online(cpu))
3675 continue;
3676
3677 core = cpu >> threads_shift;
3678 ops->rm_core[core].rm_state.in_host = 1;
3679 }
3680
0c2a6606
SW
3681 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3682
79b6c247
SW
3683 /*
3684 * Make the contents of the kvmppc_host_rm_ops structure visible
3685 * to other CPUs before we assign it to the global variable.
3686 * Do an atomic assignment (no locks used here), but if someone
3687 * beats us to it, just free our copy and return.
3688 */
3689 smp_wmb();
3690 l_ops = (unsigned long) ops;
3691
3692 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
419af25f 3693 cpus_read_unlock();
79b6c247
SW
3694 kfree(ops->rm_core);
3695 kfree(ops);
6f3bb809 3696 return;
79b6c247 3697 }
6f3bb809 3698
419af25f
SAS
3699 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3700 "ppc/kvm_book3s:prepare",
3701 kvmppc_set_host_core,
3702 kvmppc_clear_host_core);
3703 cpus_read_unlock();
79b6c247
SW
3704}
3705
3706void kvmppc_free_host_rm_ops(void)
3707{
3708 if (kvmppc_host_rm_ops_hv) {
3f7cd919 3709 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
79b6c247
SW
3710 kfree(kvmppc_host_rm_ops_hv->rm_core);
3711 kfree(kvmppc_host_rm_ops_hv);
3712 kvmppc_host_rm_ops_hv = NULL;
3713 }
3714}
3715#endif
3716
3a167bea 3717static int kvmppc_core_init_vm_hv(struct kvm *kvm)
de56a948 3718{
32fad281 3719 unsigned long lpcr, lpid;
e23a808b 3720 char buf[32];
8cf4ecc0 3721 int ret;
de56a948 3722
32fad281
PM
3723 /* Allocate the guest's logical partition ID */
3724
3725 lpid = kvmppc_alloc_lpid();
5d226ae5 3726 if ((long)lpid < 0)
32fad281
PM
3727 return -ENOMEM;
3728 kvm->arch.lpid = lpid;
de56a948 3729
79b6c247
SW
3730 kvmppc_alloc_host_rm_ops();
3731
1b400ba0
PM
3732 /*
3733 * Since we don't flush the TLB when tearing down a VM,
3734 * and this lpid might have previously been used,
3735 * make sure we flush on each core before running the new VM.
7c5b06ca
PM
3736 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3737 * does this flush for us.
1b400ba0 3738 */
7c5b06ca
PM
3739 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3740 cpumask_setall(&kvm->arch.need_tlb_flush);
1b400ba0 3741
699a0ea0
PM
3742 /* Start out with the default set of hcalls enabled */
3743 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3744 sizeof(kvm->arch.enabled_hcalls));
3745
7a84084c
PM
3746 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3747 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
aa04b4cc 3748
c17b98cf
PM
3749 /* Init LPCR for virtual RMA mode */
3750 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3751 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3752 lpcr &= LPCR_PECE | LPCR_LPES;
3753 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3754 LPCR_VPM0 | LPCR_VPM1;
3755 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3756 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3757 /* On POWER8 turn on online bit to enable PURR/SPURR */
3758 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3759 lpcr |= LPCR_ONL;
84f7139c
PM
3760 /*
3761 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3762 * Set HVICE bit to enable hypervisor virtualization interrupts.
5af50993
BH
3763 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3764 * be unnecessary but better safe than sorry in case we re-enable
3765 * EE in HV mode with this LPCR still set)
84f7139c
PM
3766 */
3767 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
7a84084c 3768 lpcr &= ~LPCR_VPM0;
5af50993
BH
3769 lpcr |= LPCR_HVICE | LPCR_HEIC;
3770
3771 /*
3772 * If xive is enabled, we route 0x500 interrupts directly
3773 * to the guest.
3774 */
3775 if (xive_enabled())
3776 lpcr |= LPCR_LPES;
84f7139c
PM
3777 }
3778
8cf4ecc0
PM
3779 /*
3780 * For now, if the host uses radix, the guest must be radix.
3781 */
3782 if (radix_enabled()) {
3783 kvm->arch.radix = 1;
3784 lpcr &= ~LPCR_VPM1;
3785 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3786 ret = kvmppc_init_vm_radix(kvm);
3787 if (ret) {
3788 kvmppc_free_lpid(kvm->arch.lpid);
3789 return ret;
3790 }
3791 kvmppc_setup_partition_table(kvm);
3792 }
3793
9e368f29 3794 kvm->arch.lpcr = lpcr;
aa04b4cc 3795
5e985969
DG
3796 /* Initialization for future HPT resizes */
3797 kvm->arch.resize_hpt = NULL;
3798
7c5b06ca
PM
3799 /*
3800 * Work out how many sets the TLB has, for the use of
3801 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3802 */
8cf4ecc0
PM
3803 if (kvm_is_radix(kvm))
3804 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3805 else if (cpu_has_feature(CPU_FTR_ARCH_300))
7c5b06ca
PM
3806 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3807 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3808 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3809 else
3810 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3811
512691d4 3812 /*
441c19c8
ME
3813 * Track that we now have a HV mode VM active. This blocks secondary
3814 * CPU threads from coming online.
8cf4ecc0
PM
3815 * On POWER9, we only need to do this for HPT guests on a radix
3816 * host, which is not yet supported.
512691d4 3817 */
8cf4ecc0
PM
3818 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3819 kvm_hv_vm_activated();
512691d4 3820
3c313524
PM
3821 /*
3822 * Initialize smt_mode depending on processor.
3823 * POWER8 and earlier have to use "strict" threading, where
3824 * all vCPUs in a vcore have to run on the same (sub)core,
3825 * whereas on POWER9 the threads can each run a different
3826 * guest.
3827 */
3828 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3829 kvm->arch.smt_mode = threads_per_subcore;
3830 else
3831 kvm->arch.smt_mode = 1;
57900694 3832 kvm->arch.emul_smt_mode = 1;
3c313524 3833
e23a808b
PM
3834 /*
3835 * Create a debugfs directory for the VM
3836 */
3837 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3838 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3839 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3840 kvmppc_mmu_debugfs_init(kvm);
3841
54738c09 3842 return 0;
de56a948
PM
3843}
3844
f1378b1c
PM
3845static void kvmppc_free_vcores(struct kvm *kvm)
3846{
3847 long int i;
3848
23316316 3849 for (i = 0; i < KVM_MAX_VCORES; ++i)
f1378b1c
PM
3850 kfree(kvm->arch.vcores[i]);
3851 kvm->arch.online_vcores = 0;
3852}
3853
3a167bea 3854static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
de56a948 3855{
e23a808b
PM
3856 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3857
8cf4ecc0
PM
3858 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3859 kvm_hv_vm_deactivated();
512691d4 3860
f1378b1c 3861 kvmppc_free_vcores(kvm);
aa04b4cc 3862
8cf4ecc0
PM
3863 kvmppc_free_lpid(kvm->arch.lpid);
3864
5a319350
PM
3865 if (kvm_is_radix(kvm))
3866 kvmppc_free_radix(kvm);
3867 else
aae0777f 3868 kvmppc_free_hpt(&kvm->arch.hpt);
c57875f5
SW
3869
3870 kvmppc_free_pimap(kvm);
de56a948
PM
3871}
3872
3a167bea
AK
3873/* We don't need to emulate any privileged instructions or dcbz */
3874static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3875 unsigned int inst, int *advance)
de56a948 3876{
3a167bea 3877 return EMULATE_FAIL;
de56a948
PM
3878}
3879
3a167bea
AK
3880static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3881 ulong spr_val)
de56a948
PM
3882{
3883 return EMULATE_FAIL;
3884}
3885
3a167bea
AK
3886static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3887 ulong *spr_val)
de56a948
PM
3888{
3889 return EMULATE_FAIL;
3890}
3891
3a167bea 3892static int kvmppc_core_check_processor_compat_hv(void)
de56a948 3893{
c17b98cf
PM
3894 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3895 !cpu_has_feature(CPU_FTR_ARCH_206))
3a167bea 3896 return -EIO;
50de596d 3897
3a167bea 3898 return 0;
de56a948
PM
3899}
3900
8daaafc8
SW
3901#ifdef CONFIG_KVM_XICS
3902
3903void kvmppc_free_pimap(struct kvm *kvm)
3904{
3905 kfree(kvm->arch.pimap);
3906}
3907
c57875f5 3908static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
8daaafc8
SW
3909{
3910 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3911}
c57875f5
SW
3912
3913static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3914{
3915 struct irq_desc *desc;
3916 struct kvmppc_irq_map *irq_map;
3917 struct kvmppc_passthru_irqmap *pimap;
3918 struct irq_chip *chip;
5af50993 3919 int i, rc = 0;
c57875f5 3920
644abbb2
SW
3921 if (!kvm_irq_bypass)
3922 return 1;
3923
c57875f5
SW
3924 desc = irq_to_desc(host_irq);
3925 if (!desc)
3926 return -EIO;
3927
3928 mutex_lock(&kvm->lock);
3929
3930 pimap = kvm->arch.pimap;
3931 if (pimap == NULL) {
3932 /* First call, allocate structure to hold IRQ map */
3933 pimap = kvmppc_alloc_pimap();
3934 if (pimap == NULL) {
3935 mutex_unlock(&kvm->lock);
3936 return -ENOMEM;
3937 }
3938 kvm->arch.pimap = pimap;
3939 }
3940
3941 /*
3942 * For now, we only support interrupts for which the EOI operation
3943 * is an OPAL call followed by a write to XIRR, since that's
5af50993 3944 * what our real-mode EOI code does, or a XIVE interrupt
c57875f5
SW
3945 */
3946 chip = irq_data_get_irq_chip(&desc->irq_data);
5af50993 3947 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
c57875f5
SW
3948 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3949 host_irq, guest_gsi);
3950 mutex_unlock(&kvm->lock);
3951 return -ENOENT;
3952 }
3953
3954 /*
3955 * See if we already have an entry for this guest IRQ number.
3956 * If it's mapped to a hardware IRQ number, that's an error,
3957 * otherwise re-use this entry.
3958 */
3959 for (i = 0; i < pimap->n_mapped; i++) {
3960 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3961 if (pimap->mapped[i].r_hwirq) {
3962 mutex_unlock(&kvm->lock);
3963 return -EINVAL;
3964 }
3965 break;
3966 }
3967 }
3968
3969 if (i == KVMPPC_PIRQ_MAPPED) {
3970 mutex_unlock(&kvm->lock);
3971 return -EAGAIN; /* table is full */
3972 }
3973
3974 irq_map = &pimap->mapped[i];
3975
3976 irq_map->v_hwirq = guest_gsi;
c57875f5
SW
3977 irq_map->desc = desc;
3978
e3c13e56
SW
3979 /*
3980 * Order the above two stores before the next to serialize with
3981 * the KVM real mode handler.
3982 */
3983 smp_wmb();
3984 irq_map->r_hwirq = desc->irq_data.hwirq;
3985
c57875f5
SW
3986 if (i == pimap->n_mapped)
3987 pimap->n_mapped++;
3988
5af50993
BH
3989 if (xive_enabled())
3990 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3991 else
3992 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3993 if (rc)
3994 irq_map->r_hwirq = 0;
5d375199 3995
c57875f5
SW
3996 mutex_unlock(&kvm->lock);
3997
3998 return 0;
3999}
4000
4001static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4002{
4003 struct irq_desc *desc;
4004 struct kvmppc_passthru_irqmap *pimap;
5af50993 4005 int i, rc = 0;
c57875f5 4006
644abbb2
SW
4007 if (!kvm_irq_bypass)
4008 return 0;
4009
c57875f5
SW
4010 desc = irq_to_desc(host_irq);
4011 if (!desc)
4012 return -EIO;
4013
4014 mutex_lock(&kvm->lock);
a1c52e1c
ME
4015 if (!kvm->arch.pimap)
4016 goto unlock;
c57875f5 4017
c57875f5
SW
4018 pimap = kvm->arch.pimap;
4019
4020 for (i = 0; i < pimap->n_mapped; i++) {
4021 if (guest_gsi == pimap->mapped[i].v_hwirq)
4022 break;
4023 }
4024
4025 if (i == pimap->n_mapped) {
4026 mutex_unlock(&kvm->lock);
4027 return -ENODEV;
4028 }
4029
5af50993
BH
4030 if (xive_enabled())
4031 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4032 else
4033 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5d375199 4034
5af50993 4035 /* invalidate the entry (what do do on error from the above ?) */
c57875f5
SW
4036 pimap->mapped[i].r_hwirq = 0;
4037
4038 /*
4039 * We don't free this structure even when the count goes to
4040 * zero. The structure is freed when we destroy the VM.
4041 */
a1c52e1c 4042 unlock:
c57875f5 4043 mutex_unlock(&kvm->lock);
5af50993 4044 return rc;
c57875f5
SW
4045}
4046
4047static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4048 struct irq_bypass_producer *prod)
4049{
4050 int ret = 0;
4051 struct kvm_kernel_irqfd *irqfd =
4052 container_of(cons, struct kvm_kernel_irqfd, consumer);
4053
4054 irqfd->producer = prod;
4055
4056 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4057 if (ret)
4058 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4059 prod->irq, irqfd->gsi, ret);
4060
4061 return ret;
4062}
4063
4064static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4065 struct irq_bypass_producer *prod)
4066{
4067 int ret;
4068 struct kvm_kernel_irqfd *irqfd =
4069 container_of(cons, struct kvm_kernel_irqfd, consumer);
4070
4071 irqfd->producer = NULL;
4072
4073 /*
4074 * When producer of consumer is unregistered, we change back to
4075 * default external interrupt handling mode - KVM real mode
4076 * will switch back to host.
4077 */
4078 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4079 if (ret)
4080 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4081 prod->irq, irqfd->gsi, ret);
4082}
8daaafc8
SW
4083#endif
4084
3a167bea
AK
4085static long kvm_arch_vm_ioctl_hv(struct file *filp,
4086 unsigned int ioctl, unsigned long arg)
4087{
4088 struct kvm *kvm __maybe_unused = filp->private_data;
4089 void __user *argp = (void __user *)arg;
4090 long r;
4091
4092 switch (ioctl) {
4093
3a167bea
AK
4094 case KVM_PPC_ALLOCATE_HTAB: {
4095 u32 htab_order;
4096
4097 r = -EFAULT;
4098 if (get_user(htab_order, (u32 __user *)argp))
4099 break;
f98a8bf9 4100 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3a167bea
AK
4101 if (r)
4102 break;
3a167bea
AK
4103 r = 0;
4104 break;
4105 }
4106
4107 case KVM_PPC_GET_HTAB_FD: {
4108 struct kvm_get_htab_fd ghf;
4109
4110 r = -EFAULT;
4111 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4112 break;
4113 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4114 break;
4115 }
4116
5e985969
DG
4117 case KVM_PPC_RESIZE_HPT_PREPARE: {
4118 struct kvm_ppc_resize_hpt rhpt;
4119
4120 r = -EFAULT;
4121 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4122 break;
4123
4124 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4125 break;
4126 }
4127
4128 case KVM_PPC_RESIZE_HPT_COMMIT: {
4129 struct kvm_ppc_resize_hpt rhpt;
4130
4131 r = -EFAULT;
4132 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4133 break;
4134
4135 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4136 break;
4137 }
4138
3a167bea
AK
4139 default:
4140 r = -ENOTTY;
4141 }
4142
4143 return r;
4144}
4145
699a0ea0
PM
4146/*
4147 * List of hcall numbers to enable by default.
4148 * For compatibility with old userspace, we enable by default
4149 * all hcalls that were implemented before the hcall-enabling
4150 * facility was added. Note this list should not include H_RTAS.
4151 */
4152static unsigned int default_hcall_list[] = {
4153 H_REMOVE,
4154 H_ENTER,
4155 H_READ,
4156 H_PROTECT,
4157 H_BULK_REMOVE,
4158 H_GET_TCE,
4159 H_PUT_TCE,
4160 H_SET_DABR,
4161 H_SET_XDABR,
4162 H_CEDE,
4163 H_PROD,
4164 H_CONFER,
4165 H_REGISTER_VPA,
4166#ifdef CONFIG_KVM_XICS
4167 H_EOI,
4168 H_CPPR,
4169 H_IPI,
4170 H_IPOLL,
4171 H_XIRR,
4172 H_XIRR_X,
4173#endif
4174 0
4175};
4176
4177static void init_default_hcalls(void)
4178{
4179 int i;
ae2113a4 4180 unsigned int hcall;
699a0ea0 4181
ae2113a4
PM
4182 for (i = 0; default_hcall_list[i]; ++i) {
4183 hcall = default_hcall_list[i];
4184 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4185 __set_bit(hcall / 4, default_enabled_hcalls);
4186 }
699a0ea0
PM
4187}
4188
c9270132
PM
4189static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4190{
468808bd 4191 unsigned long lpcr;
8cf4ecc0 4192 int radix;
468808bd
PM
4193
4194 /* If not on a POWER9, reject it */
4195 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4196 return -ENODEV;
4197
4198 /* If any unknown flags set, reject it */
4199 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4200 return -EINVAL;
4201
8cf4ecc0
PM
4202 /* We can't change a guest to/from radix yet */
4203 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4204 if (radix != kvm_is_radix(kvm))
468808bd
PM
4205 return -EINVAL;
4206
4207 /* GR (guest radix) bit in process_table field must match */
8cf4ecc0 4208 if (!!(cfg->process_table & PATB_GR) != radix)
468808bd
PM
4209 return -EINVAL;
4210
4211 /* Process table size field must be reasonable, i.e. <= 24 */
4212 if ((cfg->process_table & PRTS_MASK) > 24)
4213 return -EINVAL;
4214
4215 kvm->arch.process_table = cfg->process_table;
4216 kvmppc_setup_partition_table(kvm);
4217
4218 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4219 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4220
4221 return 0;
c9270132
PM
4222}
4223
cbbc58d4 4224static struct kvmppc_ops kvm_ops_hv = {
3a167bea
AK
4225 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4226 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4227 .get_one_reg = kvmppc_get_one_reg_hv,
4228 .set_one_reg = kvmppc_set_one_reg_hv,
4229 .vcpu_load = kvmppc_core_vcpu_load_hv,
4230 .vcpu_put = kvmppc_core_vcpu_put_hv,
4231 .set_msr = kvmppc_set_msr_hv,
4232 .vcpu_run = kvmppc_vcpu_run_hv,
4233 .vcpu_create = kvmppc_core_vcpu_create_hv,
4234 .vcpu_free = kvmppc_core_vcpu_free_hv,
4235 .check_requests = kvmppc_core_check_requests_hv,
4236 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4237 .flush_memslot = kvmppc_core_flush_memslot_hv,
4238 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4239 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4240 .unmap_hva = kvm_unmap_hva_hv,
4241 .unmap_hva_range = kvm_unmap_hva_range_hv,
4242 .age_hva = kvm_age_hva_hv,
4243 .test_age_hva = kvm_test_age_hva_hv,
4244 .set_spte_hva = kvm_set_spte_hva_hv,
4245 .mmu_destroy = kvmppc_mmu_destroy_hv,
4246 .free_memslot = kvmppc_core_free_memslot_hv,
4247 .create_memslot = kvmppc_core_create_memslot_hv,
4248 .init_vm = kvmppc_core_init_vm_hv,
4249 .destroy_vm = kvmppc_core_destroy_vm_hv,
3a167bea
AK
4250 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4251 .emulate_op = kvmppc_core_emulate_op_hv,
4252 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4253 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4254 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4255 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
ae2113a4 4256 .hcall_implemented = kvmppc_hcall_impl_hv,
c57875f5
SW
4257#ifdef CONFIG_KVM_XICS
4258 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4259 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4260#endif
c9270132
PM
4261 .configure_mmu = kvmhv_configure_mmu,
4262 .get_rmmu_info = kvmhv_get_rmmu_info,
3c313524 4263 .set_smt_mode = kvmhv_set_smt_mode,
3a167bea
AK
4264};
4265
fd7bacbc
MS
4266static int kvm_init_subcore_bitmap(void)
4267{
4268 int i, j;
4269 int nr_cores = cpu_nr_cores();
4270 struct sibling_subcore_state *sibling_subcore_state;
4271
4272 for (i = 0; i < nr_cores; i++) {
4273 int first_cpu = i * threads_per_core;
4274 int node = cpu_to_node(first_cpu);
4275
4276 /* Ignore if it is already allocated. */
4277 if (paca[first_cpu].sibling_subcore_state)
4278 continue;
4279
4280 sibling_subcore_state =
4281 kmalloc_node(sizeof(struct sibling_subcore_state),
4282 GFP_KERNEL, node);
4283 if (!sibling_subcore_state)
4284 return -ENOMEM;
4285
4286 memset(sibling_subcore_state, 0,
4287 sizeof(struct sibling_subcore_state));
4288
4289 for (j = 0; j < threads_per_core; j++) {
4290 int cpu = first_cpu + j;
4291
4292 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4293 }
4294 }
4295 return 0;
4296}
4297
5a319350
PM
4298static int kvmppc_radix_possible(void)
4299{
4300 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4301}
4302
3a167bea 4303static int kvmppc_book3s_init_hv(void)
de56a948
PM
4304{
4305 int r;
cbbc58d4
AK
4306 /*
4307 * FIXME!! Do we need to check on all cpus ?
4308 */
4309 r = kvmppc_core_check_processor_compat_hv();
4310 if (r < 0)
739e2425 4311 return -ENODEV;
de56a948 4312
fd7bacbc
MS
4313 r = kvm_init_subcore_bitmap();
4314 if (r)
4315 return r;
4316
f725758b
PM
4317 /*
4318 * We need a way of accessing the XICS interrupt controller,
4319 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4320 * indirectly, via OPAL.
4321 */
4322#ifdef CONFIG_SMP
fb7dcf72 4323 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
f725758b
PM
4324 struct device_node *np;
4325
4326 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4327 if (!np) {
4328 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4329 return -ENODEV;
4330 }
4331 }
4332#endif
4333
cbbc58d4
AK
4334 kvm_ops_hv.owner = THIS_MODULE;
4335 kvmppc_hv_ops = &kvm_ops_hv;
de56a948 4336
699a0ea0
PM
4337 init_default_hcalls();
4338
ec257165
PM
4339 init_vcore_lists();
4340
cbbc58d4 4341 r = kvmppc_mmu_hv_init();
5a319350
PM
4342 if (r)
4343 return r;
4344
4345 if (kvmppc_radix_possible())
4346 r = kvmppc_radix_init();
de56a948
PM
4347 return r;
4348}
4349
3a167bea 4350static void kvmppc_book3s_exit_hv(void)
de56a948 4351{
79b6c247 4352 kvmppc_free_host_rm_ops();
5a319350
PM
4353 if (kvmppc_radix_possible())
4354 kvmppc_radix_exit();
cbbc58d4 4355 kvmppc_hv_ops = NULL;
de56a948
PM
4356}
4357
3a167bea
AK
4358module_init(kvmppc_book3s_init_hv);
4359module_exit(kvmppc_book3s_exit_hv);
2ba9f0d8 4360MODULE_LICENSE("GPL");
398a76c6
AG
4361MODULE_ALIAS_MISCDEV(KVM_MINOR);
4362MODULE_ALIAS("devname:kvm");
7c5b06ca 4363