]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Book3S HV: sparse: prototypes for functions called from assembler
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_hv.c
CommitLineData
de56a948
PM
1/*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21#include <linux/kvm_host.h>
22#include <linux/err.h>
23#include <linux/slab.h>
24#include <linux/preempt.h>
25#include <linux/sched.h>
26#include <linux/delay.h>
66b15db6 27#include <linux/export.h>
de56a948
PM
28#include <linux/fs.h>
29#include <linux/anon_inodes.h>
07f8ab25 30#include <linux/cpu.h>
de56a948 31#include <linux/cpumask.h>
aa04b4cc
PM
32#include <linux/spinlock.h>
33#include <linux/page-flags.h>
2c9097e4 34#include <linux/srcu.h>
398a76c6 35#include <linux/miscdevice.h>
e23a808b 36#include <linux/debugfs.h>
de56a948
PM
37
38#include <asm/reg.h>
39#include <asm/cputable.h>
40#include <asm/cacheflush.h>
41#include <asm/tlbflush.h>
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/kvm_ppc.h>
45#include <asm/kvm_book3s.h>
46#include <asm/mmu_context.h>
47#include <asm/lppaca.h>
48#include <asm/processor.h>
371fefd6 49#include <asm/cputhreads.h>
aa04b4cc 50#include <asm/page.h>
de1d9248 51#include <asm/hvcall.h>
ae3a197e 52#include <asm/switch_to.h>
512691d4 53#include <asm/smp.h>
66feed61 54#include <asm/dbell.h>
fd7bacbc 55#include <asm/hmi.h>
c57875f5 56#include <asm/pnv-pci.h>
de56a948 57#include <linux/gfp.h>
de56a948
PM
58#include <linux/vmalloc.h>
59#include <linux/highmem.h>
c77162de 60#include <linux/hugetlb.h>
c57875f5
SW
61#include <linux/kvm_irqfd.h>
62#include <linux/irqbypass.h>
2ba9f0d8 63#include <linux/module.h>
7b5f8272 64#include <linux/compiler.h>
de56a948 65
3a167bea
AK
66#include "book3s.h"
67
3c78f78a
SW
68#define CREATE_TRACE_POINTS
69#include "trace_hv.h"
70
de56a948
PM
71/* #define EXIT_DEBUG */
72/* #define EXIT_DEBUG_SIMPLE */
73/* #define EXIT_DEBUG_INT */
74
913d3ff9
PM
75/* Used to indicate that a guest page fault needs to be handled */
76#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
f7af5209
SW
77/* Used to indicate that a guest passthrough interrupt needs to be handled */
78#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
913d3ff9 79
c7b67670
PM
80/* Used as a "null" value for timebase values */
81#define TB_NIL (~(u64)0)
82
699a0ea0
PM
83static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
84
b4deba5c
PM
85static int dynamic_mt_modes = 6;
86module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
87MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
ec257165
PM
88static int target_smt_mode;
89module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
9678cdaa 91
520fe9c6
SW
92#ifdef CONFIG_KVM_XICS
93static struct kernel_param_ops module_param_ops = {
94 .set = param_set_int,
95 .get = param_get_int,
96};
97
644abbb2
SW
98module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
99 S_IRUGO | S_IWUSR);
100MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
101
520fe9c6
SW
102module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
103 S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
105#endif
106
0cda69dd
SJS
107/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
108static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
109module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
110MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");
111
112/* Factor by which the vcore halt poll interval is grown, default is to double
113 */
114static unsigned int halt_poll_ns_grow = 2;
115module_param(halt_poll_ns_grow, int, S_IRUGO);
116MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");
117
118/* Factor by which the vcore halt poll interval is shrunk, default is to reset
119 */
120static unsigned int halt_poll_ns_shrink;
121module_param(halt_poll_ns_shrink, int, S_IRUGO);
122MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");
123
19ccb76a 124static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
32fad281 125static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
19ccb76a 126
7b5f8272
SJS
127static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
128 int *ip)
129{
130 int i = *ip;
131 struct kvm_vcpu *vcpu;
132
133 while (++i < MAX_SMT_THREADS) {
134 vcpu = READ_ONCE(vc->runnable_threads[i]);
135 if (vcpu) {
136 *ip = i;
137 return vcpu;
138 }
139 }
140 return NULL;
141}
142
143/* Used to traverse the list of runnable threads for a given vcore */
144#define for_each_runnable_thread(i, vcpu, vc) \
145 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
146
66feed61
PM
147static bool kvmppc_ipi_thread(int cpu)
148{
149 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
150 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
151 preempt_disable();
152 if (cpu_first_thread_sibling(cpu) ==
153 cpu_first_thread_sibling(smp_processor_id())) {
154 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
155 msg |= cpu_thread_in_core(cpu);
156 smp_mb();
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 preempt_enable();
159 return true;
160 }
161 preempt_enable();
162 }
163
164#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
166 xics_wake_cpu(cpu);
167 return true;
168 }
169#endif
170
171 return false;
172}
173
3a167bea 174static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
54695c30 175{
ec257165 176 int cpu;
8577370f 177 struct swait_queue_head *wqp;
54695c30
BH
178
179 wqp = kvm_arch_vcpu_wq(vcpu);
8577370f
MT
180 if (swait_active(wqp)) {
181 swake_up(wqp);
54695c30
BH
182 ++vcpu->stat.halt_wakeup;
183 }
184
ec257165 185 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
66feed61 186 return;
54695c30
BH
187
188 /* CPU points to the first thread of the core */
ec257165 189 cpu = vcpu->cpu;
66feed61
PM
190 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
191 smp_send_reschedule(cpu);
54695c30
BH
192}
193
c7b67670
PM
194/*
195 * We use the vcpu_load/put functions to measure stolen time.
196 * Stolen time is counted as time when either the vcpu is able to
197 * run as part of a virtual core, but the task running the vcore
198 * is preempted or sleeping, or when the vcpu needs something done
199 * in the kernel by the task running the vcpu, but that task is
200 * preempted or sleeping. Those two things have to be counted
201 * separately, since one of the vcpu tasks will take on the job
202 * of running the core, and the other vcpu tasks in the vcore will
203 * sleep waiting for it to do that, but that sleep shouldn't count
204 * as stolen time.
205 *
206 * Hence we accumulate stolen time when the vcpu can run as part of
207 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
208 * needs its task to do other things in the kernel (for example,
209 * service a page fault) in busy_stolen. We don't accumulate
210 * stolen time for a vcore when it is inactive, or for a vcpu
211 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
212 * a misnomer; it means that the vcpu task is not executing in
213 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
214 * the kernel. We don't have any way of dividing up that time
215 * between time that the vcpu is genuinely stopped, time that
216 * the task is actively working on behalf of the vcpu, and time
217 * that the task is preempted, so we don't count any of it as
218 * stolen.
219 *
220 * Updates to busy_stolen are protected by arch.tbacct_lock;
2711e248
PM
221 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
222 * lock. The stolen times are measured in units of timebase ticks.
223 * (Note that the != TB_NIL checks below are purely defensive;
224 * they should never fail.)
c7b67670
PM
225 */
226
ec257165
PM
227static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
228{
229 unsigned long flags;
230
231 spin_lock_irqsave(&vc->stoltb_lock, flags);
232 vc->preempt_tb = mftb();
233 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
234}
235
236static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
237{
238 unsigned long flags;
239
240 spin_lock_irqsave(&vc->stoltb_lock, flags);
241 if (vc->preempt_tb != TB_NIL) {
242 vc->stolen_tb += mftb() - vc->preempt_tb;
243 vc->preempt_tb = TB_NIL;
244 }
245 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246}
247
3a167bea 248static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
de56a948 249{
0456ec4f 250 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 251 unsigned long flags;
0456ec4f 252
2711e248
PM
253 /*
254 * We can test vc->runner without taking the vcore lock,
255 * because only this task ever sets vc->runner to this
256 * vcpu, and once it is set to this vcpu, only this task
257 * ever sets it to NULL.
258 */
ec257165
PM
259 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
260 kvmppc_core_end_stolen(vc);
261
2711e248 262 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
263 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
264 vcpu->arch.busy_preempt != TB_NIL) {
265 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
266 vcpu->arch.busy_preempt = TB_NIL;
267 }
bf3d32e1 268 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
269}
270
3a167bea 271static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
de56a948 272{
0456ec4f 273 struct kvmppc_vcore *vc = vcpu->arch.vcore;
bf3d32e1 274 unsigned long flags;
0456ec4f 275
ec257165
PM
276 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
277 kvmppc_core_start_stolen(vc);
278
2711e248 279 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
c7b67670
PM
280 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
281 vcpu->arch.busy_preempt = mftb();
bf3d32e1 282 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
de56a948
PM
283}
284
3a167bea 285static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
de56a948 286{
c20875a3
PM
287 /*
288 * Check for illegal transactional state bit combination
289 * and if we find it, force the TS field to a safe state.
290 */
291 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
292 msr &= ~MSR_TS_MASK;
de56a948 293 vcpu->arch.shregs.msr = msr;
19ccb76a 294 kvmppc_end_cede(vcpu);
de56a948
PM
295}
296
5358a963 297static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
de56a948
PM
298{
299 vcpu->arch.pvr = pvr;
300}
301
5358a963 302static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
388cc6e1
PM
303{
304 unsigned long pcr = 0;
305 struct kvmppc_vcore *vc = vcpu->arch.vcore;
306
307 if (arch_compat) {
388cc6e1
PM
308 switch (arch_compat) {
309 case PVR_ARCH_205:
5557ae0e
PM
310 /*
311 * If an arch bit is set in PCR, all the defined
312 * higher-order arch bits also have to be set.
313 */
314 pcr = PCR_ARCH_206 | PCR_ARCH_205;
388cc6e1
PM
315 break;
316 case PVR_ARCH_206:
317 case PVR_ARCH_206p:
5557ae0e
PM
318 pcr = PCR_ARCH_206;
319 break;
320 case PVR_ARCH_207:
388cc6e1
PM
321 break;
322 default:
323 return -EINVAL;
324 }
5557ae0e
PM
325
326 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
327 /* POWER7 can't emulate POWER8 */
328 if (!(pcr & PCR_ARCH_206))
329 return -EINVAL;
330 pcr &= ~PCR_ARCH_206;
331 }
388cc6e1
PM
332 }
333
334 spin_lock(&vc->lock);
335 vc->arch_compat = arch_compat;
336 vc->pcr = pcr;
337 spin_unlock(&vc->lock);
338
339 return 0;
340}
341
5358a963 342static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
de56a948
PM
343{
344 int r;
345
346 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
347 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
348 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
349 for (r = 0; r < 16; ++r)
350 pr_err("r%2d = %.16lx r%d = %.16lx\n",
351 r, kvmppc_get_gpr(vcpu, r),
352 r+16, kvmppc_get_gpr(vcpu, r+16));
353 pr_err("ctr = %.16lx lr = %.16lx\n",
354 vcpu->arch.ctr, vcpu->arch.lr);
355 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
356 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
357 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
358 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
359 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
360 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
361 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
362 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
363 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
364 pr_err("fault dar = %.16lx dsisr = %.8x\n",
365 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
366 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
367 for (r = 0; r < vcpu->arch.slb_max; ++r)
368 pr_err(" ESID = %.16llx VSID = %.16llx\n",
369 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
370 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
a0144e2a 371 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
de56a948
PM
372 vcpu->arch.last_inst);
373}
374
5358a963 375static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
a8606e20 376{
e09fefde 377 struct kvm_vcpu *ret;
a8606e20
PM
378
379 mutex_lock(&kvm->lock);
e09fefde 380 ret = kvm_get_vcpu_by_id(kvm, id);
a8606e20
PM
381 mutex_unlock(&kvm->lock);
382 return ret;
383}
384
385static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
386{
f13c13a0 387 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
02407552 388 vpa->yield_count = cpu_to_be32(1);
a8606e20
PM
389}
390
55b665b0
PM
391static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
392 unsigned long addr, unsigned long len)
393{
394 /* check address is cacheline aligned */
395 if (addr & (L1_CACHE_BYTES - 1))
396 return -EINVAL;
397 spin_lock(&vcpu->arch.vpa_update_lock);
398 if (v->next_gpa != addr || v->len != len) {
399 v->next_gpa = addr;
400 v->len = addr ? len : 0;
401 v->update_pending = 1;
402 }
403 spin_unlock(&vcpu->arch.vpa_update_lock);
404 return 0;
405}
406
2e25aa5f
PM
407/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
408struct reg_vpa {
409 u32 dummy;
410 union {
02407552
AG
411 __be16 hword;
412 __be32 word;
2e25aa5f
PM
413 } length;
414};
415
416static int vpa_is_registered(struct kvmppc_vpa *vpap)
417{
418 if (vpap->update_pending)
419 return vpap->next_gpa != 0;
420 return vpap->pinned_addr != NULL;
421}
422
a8606e20
PM
423static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
424 unsigned long flags,
425 unsigned long vcpuid, unsigned long vpa)
426{
427 struct kvm *kvm = vcpu->kvm;
93e60249 428 unsigned long len, nb;
a8606e20
PM
429 void *va;
430 struct kvm_vcpu *tvcpu;
2e25aa5f
PM
431 int err;
432 int subfunc;
433 struct kvmppc_vpa *vpap;
a8606e20
PM
434
435 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
436 if (!tvcpu)
437 return H_PARAMETER;
438
2e25aa5f
PM
439 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
440 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
441 subfunc == H_VPA_REG_SLB) {
442 /* Registering new area - address must be cache-line aligned */
443 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
a8606e20 444 return H_PARAMETER;
2e25aa5f
PM
445
446 /* convert logical addr to kernel addr and read length */
93e60249
PM
447 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
448 if (va == NULL)
b2b2f165 449 return H_PARAMETER;
2e25aa5f 450 if (subfunc == H_VPA_REG_VPA)
02407552 451 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
a8606e20 452 else
02407552 453 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
c35635ef 454 kvmppc_unpin_guest_page(kvm, va, vpa, false);
2e25aa5f
PM
455
456 /* Check length */
457 if (len > nb || len < sizeof(struct reg_vpa))
458 return H_PARAMETER;
459 } else {
460 vpa = 0;
461 len = 0;
462 }
463
464 err = H_PARAMETER;
465 vpap = NULL;
466 spin_lock(&tvcpu->arch.vpa_update_lock);
467
468 switch (subfunc) {
469 case H_VPA_REG_VPA: /* register VPA */
470 if (len < sizeof(struct lppaca))
a8606e20 471 break;
2e25aa5f
PM
472 vpap = &tvcpu->arch.vpa;
473 err = 0;
474 break;
475
476 case H_VPA_REG_DTL: /* register DTL */
477 if (len < sizeof(struct dtl_entry))
a8606e20 478 break;
2e25aa5f
PM
479 len -= len % sizeof(struct dtl_entry);
480
481 /* Check that they have previously registered a VPA */
482 err = H_RESOURCE;
483 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 484 break;
2e25aa5f
PM
485
486 vpap = &tvcpu->arch.dtl;
487 err = 0;
488 break;
489
490 case H_VPA_REG_SLB: /* register SLB shadow buffer */
491 /* Check that they have previously registered a VPA */
492 err = H_RESOURCE;
493 if (!vpa_is_registered(&tvcpu->arch.vpa))
a8606e20 494 break;
2e25aa5f
PM
495
496 vpap = &tvcpu->arch.slb_shadow;
497 err = 0;
498 break;
499
500 case H_VPA_DEREG_VPA: /* deregister VPA */
501 /* Check they don't still have a DTL or SLB buf registered */
502 err = H_RESOURCE;
503 if (vpa_is_registered(&tvcpu->arch.dtl) ||
504 vpa_is_registered(&tvcpu->arch.slb_shadow))
a8606e20 505 break;
2e25aa5f
PM
506
507 vpap = &tvcpu->arch.vpa;
508 err = 0;
509 break;
510
511 case H_VPA_DEREG_DTL: /* deregister DTL */
512 vpap = &tvcpu->arch.dtl;
513 err = 0;
514 break;
515
516 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
517 vpap = &tvcpu->arch.slb_shadow;
518 err = 0;
519 break;
520 }
521
522 if (vpap) {
523 vpap->next_gpa = vpa;
524 vpap->len = len;
525 vpap->update_pending = 1;
a8606e20 526 }
93e60249 527
2e25aa5f
PM
528 spin_unlock(&tvcpu->arch.vpa_update_lock);
529
93e60249 530 return err;
a8606e20
PM
531}
532
081f323b 533static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
2e25aa5f 534{
081f323b 535 struct kvm *kvm = vcpu->kvm;
2e25aa5f
PM
536 void *va;
537 unsigned long nb;
081f323b 538 unsigned long gpa;
2e25aa5f 539
081f323b
PM
540 /*
541 * We need to pin the page pointed to by vpap->next_gpa,
542 * but we can't call kvmppc_pin_guest_page under the lock
543 * as it does get_user_pages() and down_read(). So we
544 * have to drop the lock, pin the page, then get the lock
545 * again and check that a new area didn't get registered
546 * in the meantime.
547 */
548 for (;;) {
549 gpa = vpap->next_gpa;
550 spin_unlock(&vcpu->arch.vpa_update_lock);
551 va = NULL;
552 nb = 0;
553 if (gpa)
c35635ef 554 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
081f323b
PM
555 spin_lock(&vcpu->arch.vpa_update_lock);
556 if (gpa == vpap->next_gpa)
557 break;
558 /* sigh... unpin that one and try again */
559 if (va)
c35635ef 560 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b
PM
561 }
562
563 vpap->update_pending = 0;
564 if (va && nb < vpap->len) {
565 /*
566 * If it's now too short, it must be that userspace
567 * has changed the mappings underlying guest memory,
568 * so unregister the region.
569 */
c35635ef 570 kvmppc_unpin_guest_page(kvm, va, gpa, false);
081f323b 571 va = NULL;
2e25aa5f
PM
572 }
573 if (vpap->pinned_addr)
c35635ef
PM
574 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
575 vpap->dirty);
576 vpap->gpa = gpa;
2e25aa5f 577 vpap->pinned_addr = va;
c35635ef 578 vpap->dirty = false;
2e25aa5f
PM
579 if (va)
580 vpap->pinned_end = va + vpap->len;
581}
582
583static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
584{
2f12f034
PM
585 if (!(vcpu->arch.vpa.update_pending ||
586 vcpu->arch.slb_shadow.update_pending ||
587 vcpu->arch.dtl.update_pending))
588 return;
589
2e25aa5f
PM
590 spin_lock(&vcpu->arch.vpa_update_lock);
591 if (vcpu->arch.vpa.update_pending) {
081f323b 592 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
55b665b0
PM
593 if (vcpu->arch.vpa.pinned_addr)
594 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
2e25aa5f
PM
595 }
596 if (vcpu->arch.dtl.update_pending) {
081f323b 597 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
2e25aa5f
PM
598 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
599 vcpu->arch.dtl_index = 0;
600 }
601 if (vcpu->arch.slb_shadow.update_pending)
081f323b 602 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
2e25aa5f
PM
603 spin_unlock(&vcpu->arch.vpa_update_lock);
604}
605
c7b67670
PM
606/*
607 * Return the accumulated stolen time for the vcore up until `now'.
608 * The caller should hold the vcore lock.
609 */
610static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
611{
612 u64 p;
2711e248 613 unsigned long flags;
c7b67670 614
2711e248
PM
615 spin_lock_irqsave(&vc->stoltb_lock, flags);
616 p = vc->stolen_tb;
c7b67670 617 if (vc->vcore_state != VCORE_INACTIVE &&
2711e248
PM
618 vc->preempt_tb != TB_NIL)
619 p += now - vc->preempt_tb;
620 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
c7b67670
PM
621 return p;
622}
623
0456ec4f
PM
624static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
625 struct kvmppc_vcore *vc)
626{
627 struct dtl_entry *dt;
628 struct lppaca *vpa;
c7b67670
PM
629 unsigned long stolen;
630 unsigned long core_stolen;
631 u64 now;
0456ec4f
PM
632
633 dt = vcpu->arch.dtl_ptr;
634 vpa = vcpu->arch.vpa.pinned_addr;
c7b67670
PM
635 now = mftb();
636 core_stolen = vcore_stolen_time(vc, now);
637 stolen = core_stolen - vcpu->arch.stolen_logged;
638 vcpu->arch.stolen_logged = core_stolen;
bf3d32e1 639 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
640 stolen += vcpu->arch.busy_stolen;
641 vcpu->arch.busy_stolen = 0;
bf3d32e1 642 spin_unlock_irq(&vcpu->arch.tbacct_lock);
0456ec4f
PM
643 if (!dt || !vpa)
644 return;
645 memset(dt, 0, sizeof(struct dtl_entry));
646 dt->dispatch_reason = 7;
02407552
AG
647 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
648 dt->timebase = cpu_to_be64(now + vc->tb_offset);
649 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
650 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
651 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
0456ec4f
PM
652 ++dt;
653 if (dt == vcpu->arch.dtl.pinned_end)
654 dt = vcpu->arch.dtl.pinned_addr;
655 vcpu->arch.dtl_ptr = dt;
656 /* order writing *dt vs. writing vpa->dtl_idx */
657 smp_wmb();
02407552 658 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
c35635ef 659 vcpu->arch.dtl.dirty = true;
0456ec4f
PM
660}
661
9642382e
MN
662static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
663{
664 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
665 return true;
666 if ((!vcpu->arch.vcore->arch_compat) &&
667 cpu_has_feature(CPU_FTR_ARCH_207S))
668 return true;
669 return false;
670}
671
672static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
673 unsigned long resource, unsigned long value1,
674 unsigned long value2)
675{
676 switch (resource) {
677 case H_SET_MODE_RESOURCE_SET_CIABR:
678 if (!kvmppc_power8_compatible(vcpu))
679 return H_P2;
680 if (value2)
681 return H_P4;
682 if (mflags)
683 return H_UNSUPPORTED_FLAG_START;
684 /* Guests can't breakpoint the hypervisor */
685 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
686 return H_P3;
687 vcpu->arch.ciabr = value1;
688 return H_SUCCESS;
689 case H_SET_MODE_RESOURCE_SET_DAWR:
690 if (!kvmppc_power8_compatible(vcpu))
691 return H_P2;
692 if (mflags)
693 return H_UNSUPPORTED_FLAG_START;
694 if (value2 & DABRX_HYP)
695 return H_P4;
696 vcpu->arch.dawr = value1;
697 vcpu->arch.dawrx = value2;
698 return H_SUCCESS;
699 default:
700 return H_TOO_HARD;
701 }
702}
703
90fd09f8
SB
704static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
705{
706 struct kvmppc_vcore *vcore = target->arch.vcore;
707
708 /*
709 * We expect to have been called by the real mode handler
710 * (kvmppc_rm_h_confer()) which would have directly returned
711 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
712 * have useful work to do and should not confer) so we don't
713 * recheck that here.
714 */
715
716 spin_lock(&vcore->lock);
717 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
ec257165
PM
718 vcore->vcore_state != VCORE_INACTIVE &&
719 vcore->runner)
90fd09f8
SB
720 target = vcore->runner;
721 spin_unlock(&vcore->lock);
722
723 return kvm_vcpu_yield_to(target);
724}
725
726static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
727{
728 int yield_count = 0;
729 struct lppaca *lppaca;
730
731 spin_lock(&vcpu->arch.vpa_update_lock);
732 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
733 if (lppaca)
ecb6d618 734 yield_count = be32_to_cpu(lppaca->yield_count);
90fd09f8
SB
735 spin_unlock(&vcpu->arch.vpa_update_lock);
736 return yield_count;
737}
738
a8606e20
PM
739int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
740{
741 unsigned long req = kvmppc_get_gpr(vcpu, 3);
742 unsigned long target, ret = H_SUCCESS;
90fd09f8 743 int yield_count;
a8606e20 744 struct kvm_vcpu *tvcpu;
8e591cb7 745 int idx, rc;
a8606e20 746
699a0ea0
PM
747 if (req <= MAX_HCALL_OPCODE &&
748 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
749 return RESUME_HOST;
750
a8606e20
PM
751 switch (req) {
752 case H_CEDE:
a8606e20
PM
753 break;
754 case H_PROD:
755 target = kvmppc_get_gpr(vcpu, 4);
756 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
757 if (!tvcpu) {
758 ret = H_PARAMETER;
759 break;
760 }
761 tvcpu->arch.prodded = 1;
762 smp_mb();
763 if (vcpu->arch.ceded) {
8577370f
MT
764 if (swait_active(&vcpu->wq)) {
765 swake_up(&vcpu->wq);
a8606e20
PM
766 vcpu->stat.halt_wakeup++;
767 }
768 }
769 break;
770 case H_CONFER:
42d7604d
PM
771 target = kvmppc_get_gpr(vcpu, 4);
772 if (target == -1)
773 break;
774 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
775 if (!tvcpu) {
776 ret = H_PARAMETER;
777 break;
778 }
90fd09f8
SB
779 yield_count = kvmppc_get_gpr(vcpu, 5);
780 if (kvmppc_get_yield_count(tvcpu) != yield_count)
781 break;
782 kvm_arch_vcpu_yield_to(tvcpu);
a8606e20
PM
783 break;
784 case H_REGISTER_VPA:
785 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
786 kvmppc_get_gpr(vcpu, 5),
787 kvmppc_get_gpr(vcpu, 6));
788 break;
8e591cb7
ME
789 case H_RTAS:
790 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
791 return RESUME_HOST;
792
c9438092 793 idx = srcu_read_lock(&vcpu->kvm->srcu);
8e591cb7 794 rc = kvmppc_rtas_hcall(vcpu);
c9438092 795 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8e591cb7
ME
796
797 if (rc == -ENOENT)
798 return RESUME_HOST;
799 else if (rc == 0)
800 break;
801
802 /* Send the error out to userspace via KVM_RUN */
803 return rc;
99342cf8
DG
804 case H_LOGICAL_CI_LOAD:
805 ret = kvmppc_h_logical_ci_load(vcpu);
806 if (ret == H_TOO_HARD)
807 return RESUME_HOST;
808 break;
809 case H_LOGICAL_CI_STORE:
810 ret = kvmppc_h_logical_ci_store(vcpu);
811 if (ret == H_TOO_HARD)
812 return RESUME_HOST;
813 break;
9642382e
MN
814 case H_SET_MODE:
815 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
816 kvmppc_get_gpr(vcpu, 5),
817 kvmppc_get_gpr(vcpu, 6),
818 kvmppc_get_gpr(vcpu, 7));
819 if (ret == H_TOO_HARD)
820 return RESUME_HOST;
821 break;
bc5ad3f3
BH
822 case H_XIRR:
823 case H_CPPR:
824 case H_EOI:
825 case H_IPI:
8e44ddc3
PM
826 case H_IPOLL:
827 case H_XIRR_X:
bc5ad3f3
BH
828 if (kvmppc_xics_enabled(vcpu)) {
829 ret = kvmppc_xics_hcall(vcpu, req);
830 break;
d3695aa4
AK
831 }
832 return RESUME_HOST;
833 case H_PUT_TCE:
834 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
835 kvmppc_get_gpr(vcpu, 5),
836 kvmppc_get_gpr(vcpu, 6));
837 if (ret == H_TOO_HARD)
838 return RESUME_HOST;
839 break;
840 case H_PUT_TCE_INDIRECT:
841 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
842 kvmppc_get_gpr(vcpu, 5),
843 kvmppc_get_gpr(vcpu, 6),
844 kvmppc_get_gpr(vcpu, 7));
845 if (ret == H_TOO_HARD)
846 return RESUME_HOST;
847 break;
848 case H_STUFF_TCE:
849 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
850 kvmppc_get_gpr(vcpu, 5),
851 kvmppc_get_gpr(vcpu, 6),
852 kvmppc_get_gpr(vcpu, 7));
853 if (ret == H_TOO_HARD)
854 return RESUME_HOST;
855 break;
a8606e20
PM
856 default:
857 return RESUME_HOST;
858 }
859 kvmppc_set_gpr(vcpu, 3, ret);
860 vcpu->arch.hcall_needed = 0;
861 return RESUME_GUEST;
862}
863
ae2113a4
PM
864static int kvmppc_hcall_impl_hv(unsigned long cmd)
865{
866 switch (cmd) {
867 case H_CEDE:
868 case H_PROD:
869 case H_CONFER:
870 case H_REGISTER_VPA:
9642382e 871 case H_SET_MODE:
99342cf8
DG
872 case H_LOGICAL_CI_LOAD:
873 case H_LOGICAL_CI_STORE:
ae2113a4
PM
874#ifdef CONFIG_KVM_XICS
875 case H_XIRR:
876 case H_CPPR:
877 case H_EOI:
878 case H_IPI:
879 case H_IPOLL:
880 case H_XIRR_X:
881#endif
882 return 1;
883 }
884
885 /* See if it's in the real-mode table */
886 return kvmppc_hcall_impl_hv_realmode(cmd);
887}
888
a59c1d9e
MS
889static int kvmppc_emulate_debug_inst(struct kvm_run *run,
890 struct kvm_vcpu *vcpu)
891{
892 u32 last_inst;
893
894 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
895 EMULATE_DONE) {
896 /*
897 * Fetch failed, so return to guest and
898 * try executing it again.
899 */
900 return RESUME_GUEST;
901 }
902
903 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
904 run->exit_reason = KVM_EXIT_DEBUG;
905 run->debug.arch.address = kvmppc_get_pc(vcpu);
906 return RESUME_HOST;
907 } else {
908 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
909 return RESUME_GUEST;
910 }
911}
912
3a167bea
AK
913static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
914 struct task_struct *tsk)
de56a948
PM
915{
916 int r = RESUME_HOST;
917
918 vcpu->stat.sum_exits++;
919
1c9e3d51
PM
920 /*
921 * This can happen if an interrupt occurs in the last stages
922 * of guest entry or the first stages of guest exit (i.e. after
923 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
924 * and before setting it to KVM_GUEST_MODE_HOST_HV).
925 * That can happen due to a bug, or due to a machine check
926 * occurring at just the wrong time.
927 */
928 if (vcpu->arch.shregs.msr & MSR_HV) {
929 printk(KERN_EMERG "KVM trap in HV mode!\n");
930 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
931 vcpu->arch.trap, kvmppc_get_pc(vcpu),
932 vcpu->arch.shregs.msr);
933 kvmppc_dump_regs(vcpu);
934 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
935 run->hw.hardware_exit_reason = vcpu->arch.trap;
936 return RESUME_HOST;
937 }
de56a948
PM
938 run->exit_reason = KVM_EXIT_UNKNOWN;
939 run->ready_for_interrupt_injection = 1;
940 switch (vcpu->arch.trap) {
941 /* We're good on these - the host merely wanted to get our attention */
942 case BOOK3S_INTERRUPT_HV_DECREMENTER:
943 vcpu->stat.dec_exits++;
944 r = RESUME_GUEST;
945 break;
946 case BOOK3S_INTERRUPT_EXTERNAL:
5d00f66b 947 case BOOK3S_INTERRUPT_H_DOORBELL:
de56a948
PM
948 vcpu->stat.ext_intr_exits++;
949 r = RESUME_GUEST;
950 break;
dee6f24c
MS
951 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
952 case BOOK3S_INTERRUPT_HMI:
de56a948
PM
953 case BOOK3S_INTERRUPT_PERFMON:
954 r = RESUME_GUEST;
955 break;
b4072df4
PM
956 case BOOK3S_INTERRUPT_MACHINE_CHECK:
957 /*
958 * Deliver a machine check interrupt to the guest.
959 * We have to do this, even if the host has handled the
960 * machine check, because machine checks use SRR0/1 and
961 * the interrupt might have trashed guest state in them.
962 */
963 kvmppc_book3s_queue_irqprio(vcpu,
964 BOOK3S_INTERRUPT_MACHINE_CHECK);
965 r = RESUME_GUEST;
966 break;
de56a948
PM
967 case BOOK3S_INTERRUPT_PROGRAM:
968 {
969 ulong flags;
970 /*
971 * Normally program interrupts are delivered directly
972 * to the guest by the hardware, but we can get here
973 * as a result of a hypervisor emulation interrupt
974 * (e40) getting turned into a 700 by BML RTAS.
975 */
976 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
977 kvmppc_core_queue_program(vcpu, flags);
978 r = RESUME_GUEST;
979 break;
980 }
981 case BOOK3S_INTERRUPT_SYSCALL:
982 {
983 /* hcall - punt to userspace */
984 int i;
985
27025a60
LPF
986 /* hypercall with MSR_PR has already been handled in rmode,
987 * and never reaches here.
988 */
989
de56a948
PM
990 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
991 for (i = 0; i < 9; ++i)
992 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
993 run->exit_reason = KVM_EXIT_PAPR_HCALL;
994 vcpu->arch.hcall_needed = 1;
995 r = RESUME_HOST;
996 break;
997 }
998 /*
342d3db7
PM
999 * We get these next two if the guest accesses a page which it thinks
1000 * it has mapped but which is not actually present, either because
1001 * it is for an emulated I/O device or because the corresonding
1002 * host page has been paged out. Any other HDSI/HISI interrupts
1003 * have been handled already.
de56a948
PM
1004 */
1005 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
913d3ff9 1006 r = RESUME_PAGE_FAULT;
de56a948
PM
1007 break;
1008 case BOOK3S_INTERRUPT_H_INST_STORAGE:
913d3ff9
PM
1009 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1010 vcpu->arch.fault_dsisr = 0;
1011 r = RESUME_PAGE_FAULT;
de56a948
PM
1012 break;
1013 /*
1014 * This occurs if the guest executes an illegal instruction.
a59c1d9e
MS
1015 * If the guest debug is disabled, generate a program interrupt
1016 * to the guest. If guest debug is enabled, we need to check
1017 * whether the instruction is a software breakpoint instruction.
1018 * Accordingly return to Guest or Host.
de56a948
PM
1019 */
1020 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
4a157d61
PM
1021 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1022 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1023 swab32(vcpu->arch.emul_inst) :
1024 vcpu->arch.emul_inst;
a59c1d9e
MS
1025 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1026 r = kvmppc_emulate_debug_inst(run, vcpu);
1027 } else {
1028 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1029 r = RESUME_GUEST;
1030 }
bd3048b8
ME
1031 break;
1032 /*
1033 * This occurs if the guest (kernel or userspace), does something that
1034 * is prohibited by HFSCR. We just generate a program interrupt to
1035 * the guest.
1036 */
1037 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1038 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
de56a948
PM
1039 r = RESUME_GUEST;
1040 break;
f7af5209
SW
1041 case BOOK3S_INTERRUPT_HV_RM_HARD:
1042 r = RESUME_PASSTHROUGH;
1043 break;
de56a948
PM
1044 default:
1045 kvmppc_dump_regs(vcpu);
1046 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1047 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1048 vcpu->arch.shregs.msr);
f3271d4c 1049 run->hw.hardware_exit_reason = vcpu->arch.trap;
de56a948 1050 r = RESUME_HOST;
de56a948
PM
1051 break;
1052 }
1053
de56a948
PM
1054 return r;
1055}
1056
3a167bea
AK
1057static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1058 struct kvm_sregs *sregs)
de56a948
PM
1059{
1060 int i;
1061
de56a948 1062 memset(sregs, 0, sizeof(struct kvm_sregs));
87916442 1063 sregs->pvr = vcpu->arch.pvr;
de56a948
PM
1064 for (i = 0; i < vcpu->arch.slb_max; i++) {
1065 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1066 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1067 }
1068
1069 return 0;
1070}
1071
3a167bea
AK
1072static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1073 struct kvm_sregs *sregs)
de56a948
PM
1074{
1075 int i, j;
1076
9333e6c4
PM
1077 /* Only accept the same PVR as the host's, since we can't spoof it */
1078 if (sregs->pvr != vcpu->arch.pvr)
1079 return -EINVAL;
de56a948
PM
1080
1081 j = 0;
1082 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1083 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1084 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1085 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1086 ++j;
1087 }
1088 }
1089 vcpu->arch.slb_max = j;
1090
1091 return 0;
1092}
1093
a0840240
AK
1094static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1095 bool preserve_top32)
a0144e2a 1096{
8f902b00 1097 struct kvm *kvm = vcpu->kvm;
a0144e2a
PM
1098 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1099 u64 mask;
1100
8f902b00 1101 mutex_lock(&kvm->lock);
a0144e2a 1102 spin_lock(&vc->lock);
d682916a
AB
1103 /*
1104 * If ILE (interrupt little-endian) has changed, update the
1105 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1106 */
1107 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
d682916a
AB
1108 struct kvm_vcpu *vcpu;
1109 int i;
1110
d682916a
AB
1111 kvm_for_each_vcpu(i, vcpu, kvm) {
1112 if (vcpu->arch.vcore != vc)
1113 continue;
1114 if (new_lpcr & LPCR_ILE)
1115 vcpu->arch.intr_msr |= MSR_LE;
1116 else
1117 vcpu->arch.intr_msr &= ~MSR_LE;
1118 }
d682916a
AB
1119 }
1120
a0144e2a
PM
1121 /*
1122 * Userspace can only modify DPFD (default prefetch depth),
1123 * ILE (interrupt little-endian) and TC (translation control).
e0622bd9 1124 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
a0144e2a
PM
1125 */
1126 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
e0622bd9
PM
1127 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1128 mask |= LPCR_AIL;
a0840240
AK
1129
1130 /* Broken 32-bit version of LPCR must not clear top bits */
1131 if (preserve_top32)
1132 mask &= 0xFFFFFFFF;
a0144e2a
PM
1133 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1134 spin_unlock(&vc->lock);
8f902b00 1135 mutex_unlock(&kvm->lock);
a0144e2a
PM
1136}
1137
3a167bea
AK
1138static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1139 union kvmppc_one_reg *val)
31f3438e 1140{
a136a8bd
PM
1141 int r = 0;
1142 long int i;
31f3438e 1143
a136a8bd 1144 switch (id) {
a59c1d9e
MS
1145 case KVM_REG_PPC_DEBUG_INST:
1146 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1147 break;
31f3438e 1148 case KVM_REG_PPC_HIOR:
a136a8bd
PM
1149 *val = get_reg_val(id, 0);
1150 break;
1151 case KVM_REG_PPC_DABR:
1152 *val = get_reg_val(id, vcpu->arch.dabr);
1153 break;
8563bf52
PM
1154 case KVM_REG_PPC_DABRX:
1155 *val = get_reg_val(id, vcpu->arch.dabrx);
1156 break;
a136a8bd
PM
1157 case KVM_REG_PPC_DSCR:
1158 *val = get_reg_val(id, vcpu->arch.dscr);
1159 break;
1160 case KVM_REG_PPC_PURR:
1161 *val = get_reg_val(id, vcpu->arch.purr);
1162 break;
1163 case KVM_REG_PPC_SPURR:
1164 *val = get_reg_val(id, vcpu->arch.spurr);
1165 break;
1166 case KVM_REG_PPC_AMR:
1167 *val = get_reg_val(id, vcpu->arch.amr);
1168 break;
1169 case KVM_REG_PPC_UAMOR:
1170 *val = get_reg_val(id, vcpu->arch.uamor);
1171 break;
b005255e 1172 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1173 i = id - KVM_REG_PPC_MMCR0;
1174 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1175 break;
1176 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1177 i = id - KVM_REG_PPC_PMC1;
1178 *val = get_reg_val(id, vcpu->arch.pmc[i]);
31f3438e 1179 break;
b005255e
MN
1180 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1181 i = id - KVM_REG_PPC_SPMC1;
1182 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1183 break;
14941789
PM
1184 case KVM_REG_PPC_SIAR:
1185 *val = get_reg_val(id, vcpu->arch.siar);
1186 break;
1187 case KVM_REG_PPC_SDAR:
1188 *val = get_reg_val(id, vcpu->arch.sdar);
1189 break;
b005255e
MN
1190 case KVM_REG_PPC_SIER:
1191 *val = get_reg_val(id, vcpu->arch.sier);
a8bd19ef 1192 break;
b005255e
MN
1193 case KVM_REG_PPC_IAMR:
1194 *val = get_reg_val(id, vcpu->arch.iamr);
1195 break;
b005255e
MN
1196 case KVM_REG_PPC_PSPB:
1197 *val = get_reg_val(id, vcpu->arch.pspb);
1198 break;
b005255e
MN
1199 case KVM_REG_PPC_DPDES:
1200 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1201 break;
88b02cf9
PM
1202 case KVM_REG_PPC_VTB:
1203 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1204 break;
b005255e
MN
1205 case KVM_REG_PPC_DAWR:
1206 *val = get_reg_val(id, vcpu->arch.dawr);
1207 break;
1208 case KVM_REG_PPC_DAWRX:
1209 *val = get_reg_val(id, vcpu->arch.dawrx);
1210 break;
1211 case KVM_REG_PPC_CIABR:
1212 *val = get_reg_val(id, vcpu->arch.ciabr);
1213 break;
b005255e
MN
1214 case KVM_REG_PPC_CSIGR:
1215 *val = get_reg_val(id, vcpu->arch.csigr);
1216 break;
1217 case KVM_REG_PPC_TACR:
1218 *val = get_reg_val(id, vcpu->arch.tacr);
1219 break;
1220 case KVM_REG_PPC_TCSCR:
1221 *val = get_reg_val(id, vcpu->arch.tcscr);
1222 break;
1223 case KVM_REG_PPC_PID:
1224 *val = get_reg_val(id, vcpu->arch.pid);
1225 break;
1226 case KVM_REG_PPC_ACOP:
1227 *val = get_reg_val(id, vcpu->arch.acop);
1228 break;
1229 case KVM_REG_PPC_WORT:
1230 *val = get_reg_val(id, vcpu->arch.wort);
a8bd19ef 1231 break;
55b665b0
PM
1232 case KVM_REG_PPC_VPA_ADDR:
1233 spin_lock(&vcpu->arch.vpa_update_lock);
1234 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1235 spin_unlock(&vcpu->arch.vpa_update_lock);
1236 break;
1237 case KVM_REG_PPC_VPA_SLB:
1238 spin_lock(&vcpu->arch.vpa_update_lock);
1239 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1240 val->vpaval.length = vcpu->arch.slb_shadow.len;
1241 spin_unlock(&vcpu->arch.vpa_update_lock);
1242 break;
1243 case KVM_REG_PPC_VPA_DTL:
1244 spin_lock(&vcpu->arch.vpa_update_lock);
1245 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1246 val->vpaval.length = vcpu->arch.dtl.len;
1247 spin_unlock(&vcpu->arch.vpa_update_lock);
1248 break;
93b0f4dc
PM
1249 case KVM_REG_PPC_TB_OFFSET:
1250 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1251 break;
a0144e2a 1252 case KVM_REG_PPC_LPCR:
a0840240 1253 case KVM_REG_PPC_LPCR_64:
a0144e2a
PM
1254 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1255 break;
4b8473c9
PM
1256 case KVM_REG_PPC_PPR:
1257 *val = get_reg_val(id, vcpu->arch.ppr);
1258 break;
a7d80d01
MN
1259#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1260 case KVM_REG_PPC_TFHAR:
1261 *val = get_reg_val(id, vcpu->arch.tfhar);
1262 break;
1263 case KVM_REG_PPC_TFIAR:
1264 *val = get_reg_val(id, vcpu->arch.tfiar);
1265 break;
1266 case KVM_REG_PPC_TEXASR:
1267 *val = get_reg_val(id, vcpu->arch.texasr);
1268 break;
1269 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1270 i = id - KVM_REG_PPC_TM_GPR0;
1271 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1272 break;
1273 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1274 {
1275 int j;
1276 i = id - KVM_REG_PPC_TM_VSR0;
1277 if (i < 32)
1278 for (j = 0; j < TS_FPRWIDTH; j++)
1279 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1280 else {
1281 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1282 val->vval = vcpu->arch.vr_tm.vr[i-32];
1283 else
1284 r = -ENXIO;
1285 }
1286 break;
1287 }
1288 case KVM_REG_PPC_TM_CR:
1289 *val = get_reg_val(id, vcpu->arch.cr_tm);
1290 break;
1291 case KVM_REG_PPC_TM_LR:
1292 *val = get_reg_val(id, vcpu->arch.lr_tm);
1293 break;
1294 case KVM_REG_PPC_TM_CTR:
1295 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1296 break;
1297 case KVM_REG_PPC_TM_FPSCR:
1298 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1299 break;
1300 case KVM_REG_PPC_TM_AMR:
1301 *val = get_reg_val(id, vcpu->arch.amr_tm);
1302 break;
1303 case KVM_REG_PPC_TM_PPR:
1304 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1305 break;
1306 case KVM_REG_PPC_TM_VRSAVE:
1307 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1308 break;
1309 case KVM_REG_PPC_TM_VSCR:
1310 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1311 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1312 else
1313 r = -ENXIO;
1314 break;
1315 case KVM_REG_PPC_TM_DSCR:
1316 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1317 break;
1318 case KVM_REG_PPC_TM_TAR:
1319 *val = get_reg_val(id, vcpu->arch.tar_tm);
1320 break;
1321#endif
388cc6e1
PM
1322 case KVM_REG_PPC_ARCH_COMPAT:
1323 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1324 break;
31f3438e 1325 default:
a136a8bd 1326 r = -EINVAL;
31f3438e
PM
1327 break;
1328 }
1329
1330 return r;
1331}
1332
3a167bea
AK
1333static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1334 union kvmppc_one_reg *val)
31f3438e 1335{
a136a8bd
PM
1336 int r = 0;
1337 long int i;
55b665b0 1338 unsigned long addr, len;
31f3438e 1339
a136a8bd 1340 switch (id) {
31f3438e 1341 case KVM_REG_PPC_HIOR:
31f3438e 1342 /* Only allow this to be set to zero */
a136a8bd 1343 if (set_reg_val(id, *val))
31f3438e
PM
1344 r = -EINVAL;
1345 break;
a136a8bd
PM
1346 case KVM_REG_PPC_DABR:
1347 vcpu->arch.dabr = set_reg_val(id, *val);
1348 break;
8563bf52
PM
1349 case KVM_REG_PPC_DABRX:
1350 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1351 break;
a136a8bd
PM
1352 case KVM_REG_PPC_DSCR:
1353 vcpu->arch.dscr = set_reg_val(id, *val);
1354 break;
1355 case KVM_REG_PPC_PURR:
1356 vcpu->arch.purr = set_reg_val(id, *val);
1357 break;
1358 case KVM_REG_PPC_SPURR:
1359 vcpu->arch.spurr = set_reg_val(id, *val);
1360 break;
1361 case KVM_REG_PPC_AMR:
1362 vcpu->arch.amr = set_reg_val(id, *val);
1363 break;
1364 case KVM_REG_PPC_UAMOR:
1365 vcpu->arch.uamor = set_reg_val(id, *val);
1366 break;
b005255e 1367 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
a136a8bd
PM
1368 i = id - KVM_REG_PPC_MMCR0;
1369 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1370 break;
1371 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1372 i = id - KVM_REG_PPC_PMC1;
1373 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1374 break;
b005255e
MN
1375 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1376 i = id - KVM_REG_PPC_SPMC1;
1377 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1378 break;
14941789
PM
1379 case KVM_REG_PPC_SIAR:
1380 vcpu->arch.siar = set_reg_val(id, *val);
1381 break;
1382 case KVM_REG_PPC_SDAR:
1383 vcpu->arch.sdar = set_reg_val(id, *val);
1384 break;
b005255e
MN
1385 case KVM_REG_PPC_SIER:
1386 vcpu->arch.sier = set_reg_val(id, *val);
a8bd19ef 1387 break;
b005255e
MN
1388 case KVM_REG_PPC_IAMR:
1389 vcpu->arch.iamr = set_reg_val(id, *val);
1390 break;
b005255e
MN
1391 case KVM_REG_PPC_PSPB:
1392 vcpu->arch.pspb = set_reg_val(id, *val);
1393 break;
b005255e
MN
1394 case KVM_REG_PPC_DPDES:
1395 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1396 break;
88b02cf9
PM
1397 case KVM_REG_PPC_VTB:
1398 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1399 break;
b005255e
MN
1400 case KVM_REG_PPC_DAWR:
1401 vcpu->arch.dawr = set_reg_val(id, *val);
1402 break;
1403 case KVM_REG_PPC_DAWRX:
1404 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1405 break;
1406 case KVM_REG_PPC_CIABR:
1407 vcpu->arch.ciabr = set_reg_val(id, *val);
1408 /* Don't allow setting breakpoints in hypervisor code */
1409 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1410 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1411 break;
b005255e
MN
1412 case KVM_REG_PPC_CSIGR:
1413 vcpu->arch.csigr = set_reg_val(id, *val);
1414 break;
1415 case KVM_REG_PPC_TACR:
1416 vcpu->arch.tacr = set_reg_val(id, *val);
1417 break;
1418 case KVM_REG_PPC_TCSCR:
1419 vcpu->arch.tcscr = set_reg_val(id, *val);
1420 break;
1421 case KVM_REG_PPC_PID:
1422 vcpu->arch.pid = set_reg_val(id, *val);
1423 break;
1424 case KVM_REG_PPC_ACOP:
1425 vcpu->arch.acop = set_reg_val(id, *val);
1426 break;
1427 case KVM_REG_PPC_WORT:
1428 vcpu->arch.wort = set_reg_val(id, *val);
a8bd19ef 1429 break;
55b665b0
PM
1430 case KVM_REG_PPC_VPA_ADDR:
1431 addr = set_reg_val(id, *val);
1432 r = -EINVAL;
1433 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1434 vcpu->arch.dtl.next_gpa))
1435 break;
1436 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1437 break;
1438 case KVM_REG_PPC_VPA_SLB:
1439 addr = val->vpaval.addr;
1440 len = val->vpaval.length;
1441 r = -EINVAL;
1442 if (addr && !vcpu->arch.vpa.next_gpa)
1443 break;
1444 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1445 break;
1446 case KVM_REG_PPC_VPA_DTL:
1447 addr = val->vpaval.addr;
1448 len = val->vpaval.length;
1449 r = -EINVAL;
9f8c8c78
PM
1450 if (addr && (len < sizeof(struct dtl_entry) ||
1451 !vcpu->arch.vpa.next_gpa))
55b665b0
PM
1452 break;
1453 len -= len % sizeof(struct dtl_entry);
1454 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1455 break;
93b0f4dc
PM
1456 case KVM_REG_PPC_TB_OFFSET:
1457 /* round up to multiple of 2^24 */
1458 vcpu->arch.vcore->tb_offset =
1459 ALIGN(set_reg_val(id, *val), 1UL << 24);
1460 break;
a0144e2a 1461 case KVM_REG_PPC_LPCR:
a0840240
AK
1462 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1463 break;
1464 case KVM_REG_PPC_LPCR_64:
1465 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
a0144e2a 1466 break;
4b8473c9
PM
1467 case KVM_REG_PPC_PPR:
1468 vcpu->arch.ppr = set_reg_val(id, *val);
1469 break;
a7d80d01
MN
1470#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1471 case KVM_REG_PPC_TFHAR:
1472 vcpu->arch.tfhar = set_reg_val(id, *val);
1473 break;
1474 case KVM_REG_PPC_TFIAR:
1475 vcpu->arch.tfiar = set_reg_val(id, *val);
1476 break;
1477 case KVM_REG_PPC_TEXASR:
1478 vcpu->arch.texasr = set_reg_val(id, *val);
1479 break;
1480 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1481 i = id - KVM_REG_PPC_TM_GPR0;
1482 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1483 break;
1484 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1485 {
1486 int j;
1487 i = id - KVM_REG_PPC_TM_VSR0;
1488 if (i < 32)
1489 for (j = 0; j < TS_FPRWIDTH; j++)
1490 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1491 else
1492 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1493 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1494 else
1495 r = -ENXIO;
1496 break;
1497 }
1498 case KVM_REG_PPC_TM_CR:
1499 vcpu->arch.cr_tm = set_reg_val(id, *val);
1500 break;
1501 case KVM_REG_PPC_TM_LR:
1502 vcpu->arch.lr_tm = set_reg_val(id, *val);
1503 break;
1504 case KVM_REG_PPC_TM_CTR:
1505 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1506 break;
1507 case KVM_REG_PPC_TM_FPSCR:
1508 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1509 break;
1510 case KVM_REG_PPC_TM_AMR:
1511 vcpu->arch.amr_tm = set_reg_val(id, *val);
1512 break;
1513 case KVM_REG_PPC_TM_PPR:
1514 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1515 break;
1516 case KVM_REG_PPC_TM_VRSAVE:
1517 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1518 break;
1519 case KVM_REG_PPC_TM_VSCR:
1520 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1521 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1522 else
1523 r = - ENXIO;
1524 break;
1525 case KVM_REG_PPC_TM_DSCR:
1526 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1527 break;
1528 case KVM_REG_PPC_TM_TAR:
1529 vcpu->arch.tar_tm = set_reg_val(id, *val);
1530 break;
1531#endif
388cc6e1
PM
1532 case KVM_REG_PPC_ARCH_COMPAT:
1533 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1534 break;
31f3438e 1535 default:
a136a8bd 1536 r = -EINVAL;
31f3438e
PM
1537 break;
1538 }
1539
1540 return r;
1541}
1542
de9bdd1a
SS
1543static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1544{
1545 struct kvmppc_vcore *vcore;
1546
1547 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1548
1549 if (vcore == NULL)
1550 return NULL;
1551
de9bdd1a 1552 spin_lock_init(&vcore->lock);
2711e248 1553 spin_lock_init(&vcore->stoltb_lock);
8577370f 1554 init_swait_queue_head(&vcore->wq);
de9bdd1a
SS
1555 vcore->preempt_tb = TB_NIL;
1556 vcore->lpcr = kvm->arch.lpcr;
1557 vcore->first_vcpuid = core * threads_per_subcore;
1558 vcore->kvm = kvm;
ec257165 1559 INIT_LIST_HEAD(&vcore->preempt_list);
de9bdd1a
SS
1560
1561 return vcore;
1562}
1563
b6c295df
PM
1564#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1565static struct debugfs_timings_element {
1566 const char *name;
1567 size_t offset;
1568} timings[] = {
1569 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1570 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1571 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1572 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1573 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1574};
1575
1576#define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1577
1578struct debugfs_timings_state {
1579 struct kvm_vcpu *vcpu;
1580 unsigned int buflen;
1581 char buf[N_TIMINGS * 100];
1582};
1583
1584static int debugfs_timings_open(struct inode *inode, struct file *file)
1585{
1586 struct kvm_vcpu *vcpu = inode->i_private;
1587 struct debugfs_timings_state *p;
1588
1589 p = kzalloc(sizeof(*p), GFP_KERNEL);
1590 if (!p)
1591 return -ENOMEM;
1592
1593 kvm_get_kvm(vcpu->kvm);
1594 p->vcpu = vcpu;
1595 file->private_data = p;
1596
1597 return nonseekable_open(inode, file);
1598}
1599
1600static int debugfs_timings_release(struct inode *inode, struct file *file)
1601{
1602 struct debugfs_timings_state *p = file->private_data;
1603
1604 kvm_put_kvm(p->vcpu->kvm);
1605 kfree(p);
1606 return 0;
1607}
1608
1609static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1610 size_t len, loff_t *ppos)
1611{
1612 struct debugfs_timings_state *p = file->private_data;
1613 struct kvm_vcpu *vcpu = p->vcpu;
1614 char *s, *buf_end;
1615 struct kvmhv_tb_accumulator tb;
1616 u64 count;
1617 loff_t pos;
1618 ssize_t n;
1619 int i, loops;
1620 bool ok;
1621
1622 if (!p->buflen) {
1623 s = p->buf;
1624 buf_end = s + sizeof(p->buf);
1625 for (i = 0; i < N_TIMINGS; ++i) {
1626 struct kvmhv_tb_accumulator *acc;
1627
1628 acc = (struct kvmhv_tb_accumulator *)
1629 ((unsigned long)vcpu + timings[i].offset);
1630 ok = false;
1631 for (loops = 0; loops < 1000; ++loops) {
1632 count = acc->seqcount;
1633 if (!(count & 1)) {
1634 smp_rmb();
1635 tb = *acc;
1636 smp_rmb();
1637 if (count == acc->seqcount) {
1638 ok = true;
1639 break;
1640 }
1641 }
1642 udelay(1);
1643 }
1644 if (!ok)
1645 snprintf(s, buf_end - s, "%s: stuck\n",
1646 timings[i].name);
1647 else
1648 snprintf(s, buf_end - s,
1649 "%s: %llu %llu %llu %llu\n",
1650 timings[i].name, count / 2,
1651 tb_to_ns(tb.tb_total),
1652 tb_to_ns(tb.tb_min),
1653 tb_to_ns(tb.tb_max));
1654 s += strlen(s);
1655 }
1656 p->buflen = s - p->buf;
1657 }
1658
1659 pos = *ppos;
1660 if (pos >= p->buflen)
1661 return 0;
1662 if (len > p->buflen - pos)
1663 len = p->buflen - pos;
1664 n = copy_to_user(buf, p->buf + pos, len);
1665 if (n) {
1666 if (n == len)
1667 return -EFAULT;
1668 len -= n;
1669 }
1670 *ppos = pos + len;
1671 return len;
1672}
1673
1674static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1675 size_t len, loff_t *ppos)
1676{
1677 return -EACCES;
1678}
1679
1680static const struct file_operations debugfs_timings_ops = {
1681 .owner = THIS_MODULE,
1682 .open = debugfs_timings_open,
1683 .release = debugfs_timings_release,
1684 .read = debugfs_timings_read,
1685 .write = debugfs_timings_write,
1686 .llseek = generic_file_llseek,
1687};
1688
1689/* Create a debugfs directory for the vcpu */
1690static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1691{
1692 char buf[16];
1693 struct kvm *kvm = vcpu->kvm;
1694
1695 snprintf(buf, sizeof(buf), "vcpu%u", id);
1696 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1697 return;
1698 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1699 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1700 return;
1701 vcpu->arch.debugfs_timings =
1702 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1703 vcpu, &debugfs_timings_ops);
1704}
1705
1706#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1707static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1708{
1709}
1710#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1711
3a167bea
AK
1712static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1713 unsigned int id)
de56a948
PM
1714{
1715 struct kvm_vcpu *vcpu;
371fefd6
PM
1716 int err = -EINVAL;
1717 int core;
1718 struct kvmppc_vcore *vcore;
de56a948 1719
3102f784 1720 core = id / threads_per_subcore;
371fefd6
PM
1721 if (core >= KVM_MAX_VCORES)
1722 goto out;
1723
1724 err = -ENOMEM;
6b75e6bf 1725 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
de56a948
PM
1726 if (!vcpu)
1727 goto out;
1728
1729 err = kvm_vcpu_init(vcpu, kvm, id);
1730 if (err)
1731 goto free_vcpu;
1732
1733 vcpu->arch.shared = &vcpu->arch.shregs;
5deb8e7a
AG
1734#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1735 /*
1736 * The shared struct is never shared on HV,
1737 * so we can always use host endianness
1738 */
1739#ifdef __BIG_ENDIAN__
1740 vcpu->arch.shared_big_endian = true;
1741#else
1742 vcpu->arch.shared_big_endian = false;
1743#endif
1744#endif
de56a948
PM
1745 vcpu->arch.mmcr[0] = MMCR0_FC;
1746 vcpu->arch.ctrl = CTRL_RUNLATCH;
1747 /* default to host PVR, since we can't spoof it */
3a167bea 1748 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2e25aa5f 1749 spin_lock_init(&vcpu->arch.vpa_update_lock);
c7b67670
PM
1750 spin_lock_init(&vcpu->arch.tbacct_lock);
1751 vcpu->arch.busy_preempt = TB_NIL;
d682916a 1752 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
de56a948 1753
de56a948
PM
1754 kvmppc_mmu_book3s_hv_init(vcpu);
1755
8455d79e 1756 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
371fefd6
PM
1757
1758 init_waitqueue_head(&vcpu->arch.cpu_run);
1759
1760 mutex_lock(&kvm->lock);
1761 vcore = kvm->arch.vcores[core];
1762 if (!vcore) {
de9bdd1a 1763 vcore = kvmppc_vcore_create(kvm, core);
371fefd6 1764 kvm->arch.vcores[core] = vcore;
1b400ba0 1765 kvm->arch.online_vcores++;
371fefd6
PM
1766 }
1767 mutex_unlock(&kvm->lock);
1768
1769 if (!vcore)
1770 goto free_vcpu;
1771
1772 spin_lock(&vcore->lock);
1773 ++vcore->num_threads;
371fefd6
PM
1774 spin_unlock(&vcore->lock);
1775 vcpu->arch.vcore = vcore;
e0b7ec05 1776 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
ec257165 1777 vcpu->arch.thread_cpu = -1;
371fefd6 1778
af8f38b3
AG
1779 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1780 kvmppc_sanity_check(vcpu);
1781
b6c295df
PM
1782 debugfs_vcpu_init(vcpu, id);
1783
de56a948
PM
1784 return vcpu;
1785
1786free_vcpu:
6b75e6bf 1787 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
1788out:
1789 return ERR_PTR(err);
1790}
1791
c35635ef
PM
1792static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1793{
1794 if (vpa->pinned_addr)
1795 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1796 vpa->dirty);
1797}
1798
3a167bea 1799static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
de56a948 1800{
2e25aa5f 1801 spin_lock(&vcpu->arch.vpa_update_lock);
c35635ef
PM
1802 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1803 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1804 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2e25aa5f 1805 spin_unlock(&vcpu->arch.vpa_update_lock);
de56a948 1806 kvm_vcpu_uninit(vcpu);
6b75e6bf 1807 kmem_cache_free(kvm_vcpu_cache, vcpu);
de56a948
PM
1808}
1809
3a167bea
AK
1810static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1811{
1812 /* Indicate we want to get back into the guest */
1813 return 1;
1814}
1815
19ccb76a 1816static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
371fefd6 1817{
19ccb76a 1818 unsigned long dec_nsec, now;
371fefd6 1819
19ccb76a
PM
1820 now = get_tb();
1821 if (now > vcpu->arch.dec_expires) {
1822 /* decrementer has already gone negative */
1823 kvmppc_core_queue_dec(vcpu);
7e28e60e 1824 kvmppc_core_prepare_to_enter(vcpu);
19ccb76a 1825 return;
371fefd6 1826 }
19ccb76a
PM
1827 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1828 / tb_ticks_per_sec;
1829 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1830 HRTIMER_MODE_REL);
1831 vcpu->arch.timer_running = 1;
371fefd6
PM
1832}
1833
19ccb76a 1834static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
371fefd6 1835{
19ccb76a
PM
1836 vcpu->arch.ceded = 0;
1837 if (vcpu->arch.timer_running) {
1838 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1839 vcpu->arch.timer_running = 0;
1840 }
371fefd6
PM
1841}
1842
e0b7ec05 1843extern void __kvmppc_vcore_entry(void);
de56a948 1844
371fefd6
PM
1845static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1846 struct kvm_vcpu *vcpu)
de56a948 1847{
c7b67670
PM
1848 u64 now;
1849
371fefd6
PM
1850 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1851 return;
bf3d32e1 1852 spin_lock_irq(&vcpu->arch.tbacct_lock);
c7b67670
PM
1853 now = mftb();
1854 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1855 vcpu->arch.stolen_logged;
1856 vcpu->arch.busy_preempt = now;
1857 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
bf3d32e1 1858 spin_unlock_irq(&vcpu->arch.tbacct_lock);
371fefd6 1859 --vc->n_runnable;
7b5f8272 1860 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
371fefd6
PM
1861}
1862
f0888f70
PM
1863static int kvmppc_grab_hwthread(int cpu)
1864{
1865 struct paca_struct *tpaca;
b754c739 1866 long timeout = 10000;
f0888f70
PM
1867
1868 tpaca = &paca[cpu];
1869
1870 /* Ensure the thread won't go into the kernel if it wakes */
7b444c67 1871 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c 1872 tpaca->kvm_hstate.kvm_vcore = NULL;
5d5b99cd
PM
1873 tpaca->kvm_hstate.napping = 0;
1874 smp_wmb();
1875 tpaca->kvm_hstate.hwthread_req = 1;
f0888f70
PM
1876
1877 /*
1878 * If the thread is already executing in the kernel (e.g. handling
1879 * a stray interrupt), wait for it to get back to nap mode.
1880 * The smp_mb() is to ensure that our setting of hwthread_req
1881 * is visible before we look at hwthread_state, so if this
1882 * races with the code at system_reset_pSeries and the thread
1883 * misses our setting of hwthread_req, we are sure to see its
1884 * setting of hwthread_state, and vice versa.
1885 */
1886 smp_mb();
1887 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1888 if (--timeout <= 0) {
1889 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1890 return -EBUSY;
1891 }
1892 udelay(1);
1893 }
1894 return 0;
1895}
1896
1897static void kvmppc_release_hwthread(int cpu)
1898{
1899 struct paca_struct *tpaca;
1900
1901 tpaca = &paca[cpu];
1902 tpaca->kvm_hstate.hwthread_req = 0;
1903 tpaca->kvm_hstate.kvm_vcpu = NULL;
b4deba5c
PM
1904 tpaca->kvm_hstate.kvm_vcore = NULL;
1905 tpaca->kvm_hstate.kvm_split_mode = NULL;
f0888f70
PM
1906}
1907
b4deba5c 1908static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
371fefd6
PM
1909{
1910 int cpu;
1911 struct paca_struct *tpaca;
ec257165 1912 struct kvmppc_vcore *mvc = vc->master_vcore;
371fefd6 1913
b4deba5c
PM
1914 cpu = vc->pcpu;
1915 if (vcpu) {
1916 if (vcpu->arch.timer_running) {
1917 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1918 vcpu->arch.timer_running = 0;
1919 }
1920 cpu += vcpu->arch.ptid;
1921 vcpu->cpu = mvc->pcpu;
1922 vcpu->arch.thread_cpu = cpu;
19ccb76a 1923 }
371fefd6 1924 tpaca = &paca[cpu];
5d5b99cd 1925 tpaca->kvm_hstate.kvm_vcpu = vcpu;
ec257165 1926 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
ec257165 1927 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
371fefd6 1928 smp_wmb();
b4deba5c 1929 tpaca->kvm_hstate.kvm_vcore = mvc;
5d5b99cd 1930 if (cpu != smp_processor_id())
66feed61 1931 kvmppc_ipi_thread(cpu);
371fefd6 1932}
de56a948 1933
5d5b99cd 1934static void kvmppc_wait_for_nap(void)
371fefd6 1935{
5d5b99cd
PM
1936 int cpu = smp_processor_id();
1937 int i, loops;
371fefd6 1938
5d5b99cd
PM
1939 for (loops = 0; loops < 1000000; ++loops) {
1940 /*
1941 * Check if all threads are finished.
b4deba5c 1942 * We set the vcore pointer when starting a thread
5d5b99cd 1943 * and the thread clears it when finished, so we look
b4deba5c 1944 * for any threads that still have a non-NULL vcore ptr.
5d5b99cd
PM
1945 */
1946 for (i = 1; i < threads_per_subcore; ++i)
b4deba5c 1947 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd
PM
1948 break;
1949 if (i == threads_per_subcore) {
1950 HMT_medium();
1951 return;
371fefd6 1952 }
5d5b99cd 1953 HMT_low();
371fefd6
PM
1954 }
1955 HMT_medium();
5d5b99cd 1956 for (i = 1; i < threads_per_subcore; ++i)
b4deba5c 1957 if (paca[cpu + i].kvm_hstate.kvm_vcore)
5d5b99cd 1958 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
371fefd6
PM
1959}
1960
1961/*
1962 * Check that we are on thread 0 and that any other threads in
7b444c67
PM
1963 * this core are off-line. Then grab the threads so they can't
1964 * enter the kernel.
371fefd6
PM
1965 */
1966static int on_primary_thread(void)
1967{
1968 int cpu = smp_processor_id();
3102f784 1969 int thr;
371fefd6 1970
3102f784
ME
1971 /* Are we on a primary subcore? */
1972 if (cpu_thread_in_subcore(cpu))
371fefd6 1973 return 0;
3102f784
ME
1974
1975 thr = 0;
1976 while (++thr < threads_per_subcore)
371fefd6
PM
1977 if (cpu_online(cpu + thr))
1978 return 0;
7b444c67
PM
1979
1980 /* Grab all hw threads so they can't go into the kernel */
3102f784 1981 for (thr = 1; thr < threads_per_subcore; ++thr) {
7b444c67
PM
1982 if (kvmppc_grab_hwthread(cpu + thr)) {
1983 /* Couldn't grab one; let the others go */
1984 do {
1985 kvmppc_release_hwthread(cpu + thr);
1986 } while (--thr > 0);
1987 return 0;
1988 }
1989 }
371fefd6
PM
1990 return 1;
1991}
1992
ec257165
PM
1993/*
1994 * A list of virtual cores for each physical CPU.
1995 * These are vcores that could run but their runner VCPU tasks are
1996 * (or may be) preempted.
1997 */
1998struct preempted_vcore_list {
1999 struct list_head list;
2000 spinlock_t lock;
2001};
2002
2003static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2004
2005static void init_vcore_lists(void)
2006{
2007 int cpu;
2008
2009 for_each_possible_cpu(cpu) {
2010 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2011 spin_lock_init(&lp->lock);
2012 INIT_LIST_HEAD(&lp->list);
2013 }
2014}
2015
2016static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2017{
2018 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2019
2020 vc->vcore_state = VCORE_PREEMPT;
2021 vc->pcpu = smp_processor_id();
2022 if (vc->num_threads < threads_per_subcore) {
2023 spin_lock(&lp->lock);
2024 list_add_tail(&vc->preempt_list, &lp->list);
2025 spin_unlock(&lp->lock);
2026 }
2027
2028 /* Start accumulating stolen time */
2029 kvmppc_core_start_stolen(vc);
2030}
2031
2032static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2033{
402813fe 2034 struct preempted_vcore_list *lp;
ec257165
PM
2035
2036 kvmppc_core_end_stolen(vc);
2037 if (!list_empty(&vc->preempt_list)) {
402813fe 2038 lp = &per_cpu(preempted_vcores, vc->pcpu);
ec257165
PM
2039 spin_lock(&lp->lock);
2040 list_del_init(&vc->preempt_list);
2041 spin_unlock(&lp->lock);
2042 }
2043 vc->vcore_state = VCORE_INACTIVE;
2044}
2045
b4deba5c
PM
2046/*
2047 * This stores information about the virtual cores currently
2048 * assigned to a physical core.
2049 */
ec257165 2050struct core_info {
b4deba5c
PM
2051 int n_subcores;
2052 int max_subcore_threads;
ec257165 2053 int total_threads;
b4deba5c
PM
2054 int subcore_threads[MAX_SUBCORES];
2055 struct kvm *subcore_vm[MAX_SUBCORES];
2056 struct list_head vcs[MAX_SUBCORES];
ec257165
PM
2057};
2058
b4deba5c
PM
2059/*
2060 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2061 * respectively in 2-way micro-threading (split-core) mode.
2062 */
2063static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2064
ec257165
PM
2065static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2066{
b4deba5c
PM
2067 int sub;
2068
ec257165 2069 memset(cip, 0, sizeof(*cip));
b4deba5c
PM
2070 cip->n_subcores = 1;
2071 cip->max_subcore_threads = vc->num_threads;
ec257165 2072 cip->total_threads = vc->num_threads;
b4deba5c
PM
2073 cip->subcore_threads[0] = vc->num_threads;
2074 cip->subcore_vm[0] = vc->kvm;
2075 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2076 INIT_LIST_HEAD(&cip->vcs[sub]);
2077 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2078}
2079
2080static bool subcore_config_ok(int n_subcores, int n_threads)
2081{
2082 /* Can only dynamically split if unsplit to begin with */
2083 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2084 return false;
2085 if (n_subcores > MAX_SUBCORES)
2086 return false;
2087 if (n_subcores > 1) {
2088 if (!(dynamic_mt_modes & 2))
2089 n_subcores = 4;
2090 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2091 return false;
2092 }
2093
2094 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
ec257165
PM
2095}
2096
2097static void init_master_vcore(struct kvmppc_vcore *vc)
2098{
2099 vc->master_vcore = vc;
2100 vc->entry_exit_map = 0;
2101 vc->in_guest = 0;
2102 vc->napping_threads = 0;
2103 vc->conferring_threads = 0;
2104}
2105
b4deba5c
PM
2106static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2107{
2108 int n_threads = vc->num_threads;
2109 int sub;
2110
2111 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2112 return false;
2113
2114 if (n_threads < cip->max_subcore_threads)
2115 n_threads = cip->max_subcore_threads;
b009031f 2116 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
b4deba5c 2117 return false;
b009031f 2118 cip->max_subcore_threads = n_threads;
b4deba5c
PM
2119
2120 sub = cip->n_subcores;
2121 ++cip->n_subcores;
2122 cip->total_threads += vc->num_threads;
2123 cip->subcore_threads[sub] = vc->num_threads;
2124 cip->subcore_vm[sub] = vc->kvm;
2125 init_master_vcore(vc);
2126 list_del(&vc->preempt_list);
2127 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2128
2129 return true;
2130}
2131
b4deba5c
PM
2132/*
2133 * Work out whether it is possible to piggyback the execution of
2134 * vcore *pvc onto the execution of the other vcores described in *cip.
2135 */
2136static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2137 int target_threads)
2138{
b4deba5c
PM
2139 if (cip->total_threads + pvc->num_threads > target_threads)
2140 return false;
b4deba5c 2141
b009031f 2142 return can_dynamic_split(pvc, cip);
b4deba5c
PM
2143}
2144
d911f0be
PM
2145static void prepare_threads(struct kvmppc_vcore *vc)
2146{
7b5f8272
SJS
2147 int i;
2148 struct kvm_vcpu *vcpu;
d911f0be 2149
7b5f8272 2150 for_each_runnable_thread(i, vcpu, vc) {
d911f0be
PM
2151 if (signal_pending(vcpu->arch.run_task))
2152 vcpu->arch.ret = -EINTR;
2153 else if (vcpu->arch.vpa.update_pending ||
2154 vcpu->arch.slb_shadow.update_pending ||
2155 vcpu->arch.dtl.update_pending)
2156 vcpu->arch.ret = RESUME_GUEST;
2157 else
2158 continue;
2159 kvmppc_remove_runnable(vc, vcpu);
2160 wake_up(&vcpu->arch.cpu_run);
2161 }
2162}
2163
ec257165
PM
2164static void collect_piggybacks(struct core_info *cip, int target_threads)
2165{
2166 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2167 struct kvmppc_vcore *pvc, *vcnext;
2168
2169 spin_lock(&lp->lock);
2170 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2171 if (!spin_trylock(&pvc->lock))
2172 continue;
2173 prepare_threads(pvc);
2174 if (!pvc->n_runnable) {
2175 list_del_init(&pvc->preempt_list);
2176 if (pvc->runner == NULL) {
2177 pvc->vcore_state = VCORE_INACTIVE;
2178 kvmppc_core_end_stolen(pvc);
2179 }
2180 spin_unlock(&pvc->lock);
2181 continue;
2182 }
2183 if (!can_piggyback(pvc, cip, target_threads)) {
2184 spin_unlock(&pvc->lock);
2185 continue;
2186 }
2187 kvmppc_core_end_stolen(pvc);
2188 pvc->vcore_state = VCORE_PIGGYBACK;
2189 if (cip->total_threads >= target_threads)
2190 break;
2191 }
2192 spin_unlock(&lp->lock);
2193}
2194
2195static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
25fedfca 2196{
7b5f8272 2197 int still_running = 0, i;
25fedfca
PM
2198 u64 now;
2199 long ret;
7b5f8272 2200 struct kvm_vcpu *vcpu;
25fedfca 2201
ec257165 2202 spin_lock(&vc->lock);
25fedfca 2203 now = get_tb();
7b5f8272 2204 for_each_runnable_thread(i, vcpu, vc) {
25fedfca
PM
2205 /* cancel pending dec exception if dec is positive */
2206 if (now < vcpu->arch.dec_expires &&
2207 kvmppc_core_pending_dec(vcpu))
2208 kvmppc_core_dequeue_dec(vcpu);
2209
2210 trace_kvm_guest_exit(vcpu);
2211
2212 ret = RESUME_GUEST;
2213 if (vcpu->arch.trap)
2214 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2215 vcpu->arch.run_task);
2216
2217 vcpu->arch.ret = ret;
2218 vcpu->arch.trap = 0;
2219
ec257165
PM
2220 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2221 if (vcpu->arch.pending_exceptions)
2222 kvmppc_core_prepare_to_enter(vcpu);
2223 if (vcpu->arch.ceded)
25fedfca 2224 kvmppc_set_timer(vcpu);
ec257165
PM
2225 else
2226 ++still_running;
2227 } else {
25fedfca
PM
2228 kvmppc_remove_runnable(vc, vcpu);
2229 wake_up(&vcpu->arch.cpu_run);
2230 }
2231 }
ec257165
PM
2232 list_del_init(&vc->preempt_list);
2233 if (!is_master) {
563a1e93 2234 if (still_running > 0) {
ec257165 2235 kvmppc_vcore_preempt(vc);
563a1e93
PM
2236 } else if (vc->runner) {
2237 vc->vcore_state = VCORE_PREEMPT;
2238 kvmppc_core_start_stolen(vc);
2239 } else {
2240 vc->vcore_state = VCORE_INACTIVE;
2241 }
ec257165
PM
2242 if (vc->n_runnable > 0 && vc->runner == NULL) {
2243 /* make sure there's a candidate runner awake */
7b5f8272
SJS
2244 i = -1;
2245 vcpu = next_runnable_thread(vc, &i);
ec257165
PM
2246 wake_up(&vcpu->arch.cpu_run);
2247 }
2248 }
2249 spin_unlock(&vc->lock);
25fedfca
PM
2250}
2251
b8e6a87c
SW
2252/*
2253 * Clear core from the list of active host cores as we are about to
2254 * enter the guest. Only do this if it is the primary thread of the
2255 * core (not if a subcore) that is entering the guest.
2256 */
2257static inline void kvmppc_clear_host_core(int cpu)
2258{
2259 int core;
2260
2261 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2262 return;
2263 /*
2264 * Memory barrier can be omitted here as we will do a smp_wmb()
2265 * later in kvmppc_start_thread and we need ensure that state is
2266 * visible to other CPUs only after we enter guest.
2267 */
2268 core = cpu >> threads_shift;
2269 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2270}
2271
2272/*
2273 * Advertise this core as an active host core since we exited the guest
2274 * Only need to do this if it is the primary thread of the core that is
2275 * exiting.
2276 */
2277static inline void kvmppc_set_host_core(int cpu)
2278{
2279 int core;
2280
2281 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2282 return;
2283
2284 /*
2285 * Memory barrier can be omitted here because we do a spin_unlock
2286 * immediately after this which provides the memory barrier.
2287 */
2288 core = cpu >> threads_shift;
2289 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2290}
2291
371fefd6
PM
2292/*
2293 * Run a set of guest threads on a physical core.
2294 * Called with vc->lock held.
2295 */
66feed61 2296static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
371fefd6 2297{
7b5f8272 2298 struct kvm_vcpu *vcpu;
d911f0be 2299 int i;
2c9097e4 2300 int srcu_idx;
ec257165
PM
2301 struct core_info core_info;
2302 struct kvmppc_vcore *pvc, *vcnext;
b4deba5c
PM
2303 struct kvm_split_mode split_info, *sip;
2304 int split, subcore_size, active;
2305 int sub;
2306 bool thr0_done;
2307 unsigned long cmd_bit, stat_bit;
ec257165
PM
2308 int pcpu, thr;
2309 int target_threads;
371fefd6 2310
d911f0be
PM
2311 /*
2312 * Remove from the list any threads that have a signal pending
2313 * or need a VPA update done
2314 */
2315 prepare_threads(vc);
2316
2317 /* if the runner is no longer runnable, let the caller pick a new one */
2318 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2319 return;
081f323b
PM
2320
2321 /*
d911f0be 2322 * Initialize *vc.
081f323b 2323 */
ec257165 2324 init_master_vcore(vc);
2711e248 2325 vc->preempt_tb = TB_NIL;
081f323b 2326
7b444c67 2327 /*
3102f784
ME
2328 * Make sure we are running on primary threads, and that secondary
2329 * threads are offline. Also check if the number of threads in this
2330 * guest are greater than the current system threads per guest.
7b444c67 2331 */
3102f784
ME
2332 if ((threads_per_core > 1) &&
2333 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
7b5f8272 2334 for_each_runnable_thread(i, vcpu, vc) {
7b444c67 2335 vcpu->arch.ret = -EBUSY;
25fedfca
PM
2336 kvmppc_remove_runnable(vc, vcpu);
2337 wake_up(&vcpu->arch.cpu_run);
2338 }
7b444c67
PM
2339 goto out;
2340 }
2341
ec257165
PM
2342 /*
2343 * See if we could run any other vcores on the physical core
2344 * along with this one.
2345 */
2346 init_core_info(&core_info, vc);
2347 pcpu = smp_processor_id();
2348 target_threads = threads_per_subcore;
2349 if (target_smt_mode && target_smt_mode < target_threads)
2350 target_threads = target_smt_mode;
2351 if (vc->num_threads < target_threads)
2352 collect_piggybacks(&core_info, target_threads);
3102f784 2353
b4deba5c
PM
2354 /* Decide on micro-threading (split-core) mode */
2355 subcore_size = threads_per_subcore;
2356 cmd_bit = stat_bit = 0;
2357 split = core_info.n_subcores;
2358 sip = NULL;
2359 if (split > 1) {
2360 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2361 if (split == 2 && (dynamic_mt_modes & 2)) {
2362 cmd_bit = HID0_POWER8_1TO2LPAR;
2363 stat_bit = HID0_POWER8_2LPARMODE;
2364 } else {
2365 split = 4;
2366 cmd_bit = HID0_POWER8_1TO4LPAR;
2367 stat_bit = HID0_POWER8_4LPARMODE;
2368 }
2369 subcore_size = MAX_SMT_THREADS / split;
2370 sip = &split_info;
2371 memset(&split_info, 0, sizeof(split_info));
2372 split_info.rpr = mfspr(SPRN_RPR);
2373 split_info.pmmar = mfspr(SPRN_PMMAR);
2374 split_info.ldbar = mfspr(SPRN_LDBAR);
2375 split_info.subcore_size = subcore_size;
2376 for (sub = 0; sub < core_info.n_subcores; ++sub)
2377 split_info.master_vcs[sub] =
2378 list_first_entry(&core_info.vcs[sub],
2379 struct kvmppc_vcore, preempt_list);
2380 /* order writes to split_info before kvm_split_mode pointer */
2381 smp_wmb();
2382 }
2383 pcpu = smp_processor_id();
2384 for (thr = 0; thr < threads_per_subcore; ++thr)
2385 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2386
2387 /* Initiate micro-threading (split-core) if required */
2388 if (cmd_bit) {
2389 unsigned long hid0 = mfspr(SPRN_HID0);
2390
2391 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2392 mb();
2393 mtspr(SPRN_HID0, hid0);
2394 isync();
2395 for (;;) {
2396 hid0 = mfspr(SPRN_HID0);
2397 if (hid0 & stat_bit)
2398 break;
2399 cpu_relax();
ec257165 2400 }
2e25aa5f 2401 }
3102f784 2402
b8e6a87c
SW
2403 kvmppc_clear_host_core(pcpu);
2404
b4deba5c
PM
2405 /* Start all the threads */
2406 active = 0;
2407 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2408 thr = subcore_thread_map[sub];
2409 thr0_done = false;
2410 active |= 1 << thr;
2411 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2412 pvc->pcpu = pcpu + thr;
7b5f8272 2413 for_each_runnable_thread(i, vcpu, pvc) {
b4deba5c
PM
2414 kvmppc_start_thread(vcpu, pvc);
2415 kvmppc_create_dtl_entry(vcpu, pvc);
2416 trace_kvm_guest_enter(vcpu);
2417 if (!vcpu->arch.ptid)
2418 thr0_done = true;
2419 active |= 1 << (thr + vcpu->arch.ptid);
2420 }
2421 /*
2422 * We need to start the first thread of each subcore
2423 * even if it doesn't have a vcpu.
2424 */
2425 if (pvc->master_vcore == pvc && !thr0_done)
2426 kvmppc_start_thread(NULL, pvc);
2427 thr += pvc->num_threads;
2428 }
2e25aa5f 2429 }
371fefd6 2430
7f235328
GS
2431 /*
2432 * Ensure that split_info.do_nap is set after setting
2433 * the vcore pointer in the PACA of the secondaries.
2434 */
2435 smp_mb();
2436 if (cmd_bit)
2437 split_info.do_nap = 1; /* ask secondaries to nap when done */
2438
b4deba5c
PM
2439 /*
2440 * When doing micro-threading, poke the inactive threads as well.
2441 * This gets them to the nap instruction after kvm_do_nap,
2442 * which reduces the time taken to unsplit later.
2443 */
2444 if (split > 1)
2445 for (thr = 1; thr < threads_per_subcore; ++thr)
2446 if (!(active & (1 << thr)))
2447 kvmppc_ipi_thread(pcpu + thr);
e0b7ec05 2448
2f12f034 2449 vc->vcore_state = VCORE_RUNNING;
19ccb76a 2450 preempt_disable();
3c78f78a
SW
2451
2452 trace_kvmppc_run_core(vc, 0);
2453
b4deba5c
PM
2454 for (sub = 0; sub < core_info.n_subcores; ++sub)
2455 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2456 spin_unlock(&pvc->lock);
de56a948 2457
6edaa530 2458 guest_enter();
2c9097e4 2459
e0b7ec05 2460 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2c9097e4 2461
e0b7ec05 2462 __kvmppc_vcore_entry();
de56a948 2463
ec257165
PM
2464 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2465
2466 spin_lock(&vc->lock);
371fefd6 2467 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
19ccb76a 2468 vc->vcore_state = VCORE_EXITING;
371fefd6 2469
19ccb76a 2470 /* wait for secondary threads to finish writing their state to memory */
5d5b99cd 2471 kvmppc_wait_for_nap();
b4deba5c
PM
2472
2473 /* Return to whole-core mode if we split the core earlier */
2474 if (split > 1) {
2475 unsigned long hid0 = mfspr(SPRN_HID0);
2476 unsigned long loops = 0;
2477
2478 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2479 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2480 mb();
2481 mtspr(SPRN_HID0, hid0);
2482 isync();
2483 for (;;) {
2484 hid0 = mfspr(SPRN_HID0);
2485 if (!(hid0 & stat_bit))
2486 break;
2487 cpu_relax();
2488 ++loops;
2489 }
2490 split_info.do_nap = 0;
2491 }
2492
2493 /* Let secondaries go back to the offline loop */
2494 for (i = 0; i < threads_per_subcore; ++i) {
2495 kvmppc_release_hwthread(pcpu + i);
2496 if (sip && sip->napped[i])
2497 kvmppc_ipi_thread(pcpu + i);
2498 }
2499
b8e6a87c
SW
2500 kvmppc_set_host_core(pcpu);
2501
371fefd6 2502 spin_unlock(&vc->lock);
2c9097e4 2503
371fefd6
PM
2504 /* make sure updates to secondary vcpu structs are visible now */
2505 smp_mb();
6edaa530 2506 guest_exit();
de56a948 2507
b4deba5c
PM
2508 for (sub = 0; sub < core_info.n_subcores; ++sub)
2509 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2510 preempt_list)
2511 post_guest_process(pvc, pvc == vc);
de56a948 2512
913d3ff9 2513 spin_lock(&vc->lock);
ec257165 2514 preempt_enable();
de56a948
PM
2515
2516 out:
19ccb76a 2517 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 2518 trace_kvmppc_run_core(vc, 1);
371fefd6
PM
2519}
2520
19ccb76a
PM
2521/*
2522 * Wait for some other vcpu thread to execute us, and
2523 * wake us up when we need to handle something in the host.
2524 */
ec257165
PM
2525static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2526 struct kvm_vcpu *vcpu, int wait_state)
371fefd6 2527{
371fefd6
PM
2528 DEFINE_WAIT(wait);
2529
19ccb76a 2530 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
ec257165
PM
2531 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2532 spin_unlock(&vc->lock);
19ccb76a 2533 schedule();
ec257165
PM
2534 spin_lock(&vc->lock);
2535 }
19ccb76a
PM
2536 finish_wait(&vcpu->arch.cpu_run, &wait);
2537}
2538
0cda69dd
SJS
2539static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2540{
2541 /* 10us base */
2542 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2543 vc->halt_poll_ns = 10000;
2544 else
2545 vc->halt_poll_ns *= halt_poll_ns_grow;
2546
2547 if (vc->halt_poll_ns > halt_poll_max_ns)
2548 vc->halt_poll_ns = halt_poll_max_ns;
2549}
2550
2551static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2552{
2553 if (halt_poll_ns_shrink == 0)
2554 vc->halt_poll_ns = 0;
2555 else
2556 vc->halt_poll_ns /= halt_poll_ns_shrink;
2557}
2558
2559/* Check to see if any of the runnable vcpus on the vcore have pending
2560 * exceptions or are no longer ceded
2561 */
2562static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2563{
2564 struct kvm_vcpu *vcpu;
2565 int i;
2566
2567 for_each_runnable_thread(i, vcpu, vc) {
2568 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
2569 return 1;
2570 }
2571
2572 return 0;
2573}
2574
19ccb76a
PM
2575/*
2576 * All the vcpus in this vcore are idle, so wait for a decrementer
2577 * or external interrupt to one of the vcpus. vc->lock is held.
2578 */
2579static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2580{
2a27f514 2581 ktime_t cur, start_poll, start_wait;
0cda69dd 2582 int do_sleep = 1;
0cda69dd 2583 u64 block_ns;
8577370f 2584 DECLARE_SWAITQUEUE(wait);
1bc5d59c 2585
0cda69dd 2586 /* Poll for pending exceptions and ceded state */
2a27f514 2587 cur = start_poll = ktime_get();
0cda69dd 2588 if (vc->halt_poll_ns) {
2a27f514
SJS
2589 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2590 ++vc->runner->stat.halt_attempted_poll;
1bc5d59c 2591
0cda69dd
SJS
2592 vc->vcore_state = VCORE_POLLING;
2593 spin_unlock(&vc->lock);
2594
2595 do {
2596 if (kvmppc_vcore_check_block(vc)) {
2597 do_sleep = 0;
2598 break;
2599 }
2600 cur = ktime_get();
2601 } while (single_task_running() && ktime_before(cur, stop));
2602
2603 spin_lock(&vc->lock);
2604 vc->vcore_state = VCORE_INACTIVE;
2605
2a27f514
SJS
2606 if (!do_sleep) {
2607 ++vc->runner->stat.halt_successful_poll;
0cda69dd 2608 goto out;
2a27f514 2609 }
1bc5d59c
SW
2610 }
2611
0cda69dd
SJS
2612 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2613
2614 if (kvmppc_vcore_check_block(vc)) {
8577370f 2615 finish_swait(&vc->wq, &wait);
0cda69dd 2616 do_sleep = 0;
2a27f514
SJS
2617 /* If we polled, count this as a successful poll */
2618 if (vc->halt_poll_ns)
2619 ++vc->runner->stat.halt_successful_poll;
0cda69dd 2620 goto out;
1bc5d59c
SW
2621 }
2622
2a27f514
SJS
2623 start_wait = ktime_get();
2624
19ccb76a 2625 vc->vcore_state = VCORE_SLEEPING;
3c78f78a 2626 trace_kvmppc_vcore_blocked(vc, 0);
19ccb76a 2627 spin_unlock(&vc->lock);
913d3ff9 2628 schedule();
8577370f 2629 finish_swait(&vc->wq, &wait);
19ccb76a
PM
2630 spin_lock(&vc->lock);
2631 vc->vcore_state = VCORE_INACTIVE;
3c78f78a 2632 trace_kvmppc_vcore_blocked(vc, 1);
2a27f514 2633 ++vc->runner->stat.halt_successful_wait;
0cda69dd
SJS
2634
2635 cur = ktime_get();
2636
2637out:
2a27f514
SJS
2638 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2639
2640 /* Attribute wait time */
2641 if (do_sleep) {
2642 vc->runner->stat.halt_wait_ns +=
2643 ktime_to_ns(cur) - ktime_to_ns(start_wait);
2644 /* Attribute failed poll time */
2645 if (vc->halt_poll_ns)
2646 vc->runner->stat.halt_poll_fail_ns +=
2647 ktime_to_ns(start_wait) -
2648 ktime_to_ns(start_poll);
2649 } else {
2650 /* Attribute successful poll time */
2651 if (vc->halt_poll_ns)
2652 vc->runner->stat.halt_poll_success_ns +=
2653 ktime_to_ns(cur) -
2654 ktime_to_ns(start_poll);
2655 }
0cda69dd
SJS
2656
2657 /* Adjust poll time */
2658 if (halt_poll_max_ns) {
2659 if (block_ns <= vc->halt_poll_ns)
2660 ;
2661 /* We slept and blocked for longer than the max halt time */
2662 else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
2663 shrink_halt_poll_ns(vc);
2664 /* We slept and our poll time is too small */
2665 else if (vc->halt_poll_ns < halt_poll_max_ns &&
2666 block_ns < halt_poll_max_ns)
2667 grow_halt_poll_ns(vc);
2668 } else
2669 vc->halt_poll_ns = 0;
2670
2671 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
19ccb76a 2672}
371fefd6 2673
19ccb76a
PM
2674static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2675{
7b5f8272 2676 int n_ceded, i;
19ccb76a 2677 struct kvmppc_vcore *vc;
7b5f8272 2678 struct kvm_vcpu *v;
9e368f29 2679
3c78f78a
SW
2680 trace_kvmppc_run_vcpu_enter(vcpu);
2681
371fefd6
PM
2682 kvm_run->exit_reason = 0;
2683 vcpu->arch.ret = RESUME_GUEST;
2684 vcpu->arch.trap = 0;
2f12f034 2685 kvmppc_update_vpas(vcpu);
371fefd6 2686
371fefd6
PM
2687 /*
2688 * Synchronize with other threads in this virtual core
2689 */
2690 vc = vcpu->arch.vcore;
2691 spin_lock(&vc->lock);
19ccb76a 2692 vcpu->arch.ceded = 0;
371fefd6
PM
2693 vcpu->arch.run_task = current;
2694 vcpu->arch.kvm_run = kvm_run;
c7b67670 2695 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
19ccb76a 2696 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
c7b67670 2697 vcpu->arch.busy_preempt = TB_NIL;
7b5f8272 2698 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
371fefd6
PM
2699 ++vc->n_runnable;
2700
19ccb76a
PM
2701 /*
2702 * This happens the first time this is called for a vcpu.
2703 * If the vcore is already running, we may be able to start
2704 * this thread straight away and have it join in.
2705 */
8455d79e 2706 if (!signal_pending(current)) {
ec257165
PM
2707 if (vc->vcore_state == VCORE_PIGGYBACK) {
2708 struct kvmppc_vcore *mvc = vc->master_vcore;
2709 if (spin_trylock(&mvc->lock)) {
2710 if (mvc->vcore_state == VCORE_RUNNING &&
2711 !VCORE_IS_EXITING(mvc)) {
2712 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 2713 kvmppc_start_thread(vcpu, vc);
ec257165
PM
2714 trace_kvm_guest_enter(vcpu);
2715 }
2716 spin_unlock(&mvc->lock);
2717 }
2718 } else if (vc->vcore_state == VCORE_RUNNING &&
2719 !VCORE_IS_EXITING(vc)) {
2f12f034 2720 kvmppc_create_dtl_entry(vcpu, vc);
b4deba5c 2721 kvmppc_start_thread(vcpu, vc);
3c78f78a 2722 trace_kvm_guest_enter(vcpu);
8455d79e 2723 } else if (vc->vcore_state == VCORE_SLEEPING) {
8577370f 2724 swake_up(&vc->wq);
371fefd6
PM
2725 }
2726
8455d79e 2727 }
371fefd6 2728
19ccb76a
PM
2729 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2730 !signal_pending(current)) {
ec257165
PM
2731 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2732 kvmppc_vcore_end_preempt(vc);
2733
8455d79e 2734 if (vc->vcore_state != VCORE_INACTIVE) {
ec257165 2735 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
19ccb76a
PM
2736 continue;
2737 }
7b5f8272 2738 for_each_runnable_thread(i, v, vc) {
7e28e60e 2739 kvmppc_core_prepare_to_enter(v);
19ccb76a
PM
2740 if (signal_pending(v->arch.run_task)) {
2741 kvmppc_remove_runnable(vc, v);
2742 v->stat.signal_exits++;
2743 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2744 v->arch.ret = -EINTR;
2745 wake_up(&v->arch.cpu_run);
2746 }
2747 }
8455d79e
PM
2748 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2749 break;
8455d79e 2750 n_ceded = 0;
7b5f8272 2751 for_each_runnable_thread(i, v, vc) {
8455d79e
PM
2752 if (!v->arch.pending_exceptions)
2753 n_ceded += v->arch.ceded;
4619ac88
PM
2754 else
2755 v->arch.ceded = 0;
2756 }
25fedfca
PM
2757 vc->runner = vcpu;
2758 if (n_ceded == vc->n_runnable) {
8455d79e 2759 kvmppc_vcore_blocked(vc);
c56dadf3 2760 } else if (need_resched()) {
ec257165 2761 kvmppc_vcore_preempt(vc);
25fedfca
PM
2762 /* Let something else run */
2763 cond_resched_lock(&vc->lock);
ec257165
PM
2764 if (vc->vcore_state == VCORE_PREEMPT)
2765 kvmppc_vcore_end_preempt(vc);
25fedfca 2766 } else {
8455d79e 2767 kvmppc_run_core(vc);
25fedfca 2768 }
0456ec4f 2769 vc->runner = NULL;
19ccb76a 2770 }
371fefd6 2771
8455d79e
PM
2772 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2773 (vc->vcore_state == VCORE_RUNNING ||
5fc3e64f
PM
2774 vc->vcore_state == VCORE_EXITING ||
2775 vc->vcore_state == VCORE_PIGGYBACK))
ec257165 2776 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
8455d79e 2777
5fc3e64f
PM
2778 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2779 kvmppc_vcore_end_preempt(vc);
2780
8455d79e
PM
2781 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2782 kvmppc_remove_runnable(vc, vcpu);
2783 vcpu->stat.signal_exits++;
2784 kvm_run->exit_reason = KVM_EXIT_INTR;
2785 vcpu->arch.ret = -EINTR;
2786 }
2787
2788 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2789 /* Wake up some vcpu to run the core */
7b5f8272
SJS
2790 i = -1;
2791 v = next_runnable_thread(vc, &i);
8455d79e 2792 wake_up(&v->arch.cpu_run);
371fefd6
PM
2793 }
2794
3c78f78a 2795 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
371fefd6 2796 spin_unlock(&vc->lock);
371fefd6 2797 return vcpu->arch.ret;
de56a948
PM
2798}
2799
3a167bea 2800static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
a8606e20
PM
2801{
2802 int r;
913d3ff9 2803 int srcu_idx;
a8606e20 2804
af8f38b3
AG
2805 if (!vcpu->arch.sane) {
2806 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2807 return -EINVAL;
2808 }
2809
25051b5a
SW
2810 kvmppc_core_prepare_to_enter(vcpu);
2811
19ccb76a
PM
2812 /* No need to go into the guest when all we'll do is come back out */
2813 if (signal_pending(current)) {
2814 run->exit_reason = KVM_EXIT_INTR;
2815 return -EINTR;
2816 }
2817
32fad281 2818 atomic_inc(&vcpu->kvm->arch.vcpus_running);
31037eca 2819 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
32fad281
PM
2820 smp_mb();
2821
c17b98cf 2822 /* On the first time here, set up HTAB and VRMA */
31037eca 2823 if (!vcpu->kvm->arch.hpte_setup_done) {
32fad281 2824 r = kvmppc_hv_setup_htab_rma(vcpu);
c77162de 2825 if (r)
32fad281 2826 goto out;
c77162de 2827 }
19ccb76a 2828
579e633e
AB
2829 flush_all_to_thread(current);
2830
19ccb76a 2831 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
342d3db7 2832 vcpu->arch.pgdir = current->mm->pgd;
c7b67670 2833 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
19ccb76a 2834
a8606e20
PM
2835 do {
2836 r = kvmppc_run_vcpu(run, vcpu);
2837
2838 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2839 !(vcpu->arch.shregs.msr & MSR_PR)) {
3c78f78a 2840 trace_kvm_hcall_enter(vcpu);
a8606e20 2841 r = kvmppc_pseries_do_hcall(vcpu);
3c78f78a 2842 trace_kvm_hcall_exit(vcpu, r);
7e28e60e 2843 kvmppc_core_prepare_to_enter(vcpu);
913d3ff9
PM
2844 } else if (r == RESUME_PAGE_FAULT) {
2845 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2846 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2847 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2848 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
f7af5209
SW
2849 } else if (r == RESUME_PASSTHROUGH)
2850 r = kvmppc_xics_rm_complete(vcpu, 0);
e59d24e6 2851 } while (is_kvmppc_resume_guest(r));
32fad281
PM
2852
2853 out:
c7b67670 2854 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
32fad281 2855 atomic_dec(&vcpu->kvm->arch.vcpus_running);
a8606e20
PM
2856 return r;
2857}
2858
5b74716e
BH
2859static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2860 int linux_psize)
2861{
2862 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2863
2864 if (!def->shift)
2865 return;
2866 (*sps)->page_shift = def->shift;
2867 (*sps)->slb_enc = def->sllp;
2868 (*sps)->enc[0].page_shift = def->shift;
b1022fbd 2869 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1f365bb0
AK
2870 /*
2871 * Add 16MB MPSS support if host supports it
2872 */
2873 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2874 (*sps)->enc[1].page_shift = 24;
2875 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2876 }
5b74716e
BH
2877 (*sps)++;
2878}
2879
3a167bea
AK
2880static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2881 struct kvm_ppc_smmu_info *info)
5b74716e
BH
2882{
2883 struct kvm_ppc_one_seg_page_size *sps;
2884
2885 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2886 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2887 info->flags |= KVM_PPC_1T_SEGMENTS;
2888 info->slb_size = mmu_slb_size;
2889
2890 /* We only support these sizes for now, and no muti-size segments */
2891 sps = &info->sps[0];
2892 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2893 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2894 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2895
2896 return 0;
2897}
2898
82ed3616
PM
2899/*
2900 * Get (and clear) the dirty memory log for a memory slot.
2901 */
3a167bea
AK
2902static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2903 struct kvm_dirty_log *log)
82ed3616 2904{
9f6b8029 2905 struct kvm_memslots *slots;
82ed3616
PM
2906 struct kvm_memory_slot *memslot;
2907 int r;
2908 unsigned long n;
2909
2910 mutex_lock(&kvm->slots_lock);
2911
2912 r = -EINVAL;
bbacc0c1 2913 if (log->slot >= KVM_USER_MEM_SLOTS)
82ed3616
PM
2914 goto out;
2915
9f6b8029
PB
2916 slots = kvm_memslots(kvm);
2917 memslot = id_to_memslot(slots, log->slot);
82ed3616
PM
2918 r = -ENOENT;
2919 if (!memslot->dirty_bitmap)
2920 goto out;
2921
2922 n = kvm_dirty_bitmap_bytes(memslot);
2923 memset(memslot->dirty_bitmap, 0, n);
2924
dfe49dbd 2925 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
82ed3616
PM
2926 if (r)
2927 goto out;
2928
2929 r = -EFAULT;
2930 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2931 goto out;
2932
2933 r = 0;
2934out:
2935 mutex_unlock(&kvm->slots_lock);
2936 return r;
2937}
2938
3a167bea
AK
2939static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2940 struct kvm_memory_slot *dont)
a66b48c3
PM
2941{
2942 if (!dont || free->arch.rmap != dont->arch.rmap) {
2943 vfree(free->arch.rmap);
2944 free->arch.rmap = NULL;
b2b2f165 2945 }
a66b48c3
PM
2946}
2947
3a167bea
AK
2948static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2949 unsigned long npages)
a66b48c3
PM
2950{
2951 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2952 if (!slot->arch.rmap)
2953 return -ENOMEM;
aa04b4cc 2954
c77162de
PM
2955 return 0;
2956}
aa04b4cc 2957
3a167bea
AK
2958static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2959 struct kvm_memory_slot *memslot,
09170a49 2960 const struct kvm_userspace_memory_region *mem)
c77162de 2961{
a66b48c3 2962 return 0;
c77162de
PM
2963}
2964
3a167bea 2965static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
09170a49 2966 const struct kvm_userspace_memory_region *mem,
f36f3f28
PB
2967 const struct kvm_memory_slot *old,
2968 const struct kvm_memory_slot *new)
c77162de 2969{
dfe49dbd 2970 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
9f6b8029 2971 struct kvm_memslots *slots;
dfe49dbd
PM
2972 struct kvm_memory_slot *memslot;
2973
8482644a 2974 if (npages && old->npages) {
dfe49dbd
PM
2975 /*
2976 * If modifying a memslot, reset all the rmap dirty bits.
2977 * If this is a new memslot, we don't need to do anything
2978 * since the rmap array starts out as all zeroes,
2979 * i.e. no pages are dirty.
2980 */
9f6b8029
PB
2981 slots = kvm_memslots(kvm);
2982 memslot = id_to_memslot(slots, mem->slot);
dfe49dbd
PM
2983 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2984 }
c77162de
PM
2985}
2986
a0144e2a
PM
2987/*
2988 * Update LPCR values in kvm->arch and in vcores.
2989 * Caller must hold kvm->lock.
2990 */
2991void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2992{
2993 long int i;
2994 u32 cores_done = 0;
2995
2996 if ((kvm->arch.lpcr & mask) == lpcr)
2997 return;
2998
2999 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3000
3001 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3002 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3003 if (!vc)
3004 continue;
3005 spin_lock(&vc->lock);
3006 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3007 spin_unlock(&vc->lock);
3008 if (++cores_done >= kvm->arch.online_vcores)
3009 break;
3010 }
3011}
3012
3a167bea
AK
3013static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3014{
3015 return;
3016}
3017
32fad281 3018static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
c77162de
PM
3019{
3020 int err = 0;
3021 struct kvm *kvm = vcpu->kvm;
c77162de
PM
3022 unsigned long hva;
3023 struct kvm_memory_slot *memslot;
3024 struct vm_area_struct *vma;
a0144e2a 3025 unsigned long lpcr = 0, senc;
c77162de 3026 unsigned long psize, porder;
2c9097e4 3027 int srcu_idx;
c77162de
PM
3028
3029 mutex_lock(&kvm->lock);
31037eca 3030 if (kvm->arch.hpte_setup_done)
c77162de 3031 goto out; /* another vcpu beat us to it */
aa04b4cc 3032
32fad281
PM
3033 /* Allocate hashed page table (if not done already) and reset it */
3034 if (!kvm->arch.hpt_virt) {
3035 err = kvmppc_alloc_hpt(kvm, NULL);
3036 if (err) {
3037 pr_err("KVM: Couldn't alloc HPT\n");
3038 goto out;
3039 }
3040 }
3041
c77162de 3042 /* Look up the memslot for guest physical address 0 */
2c9097e4 3043 srcu_idx = srcu_read_lock(&kvm->srcu);
c77162de 3044 memslot = gfn_to_memslot(kvm, 0);
aa04b4cc 3045
c77162de
PM
3046 /* We must have some memory at 0 by now */
3047 err = -EINVAL;
3048 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 3049 goto out_srcu;
c77162de
PM
3050
3051 /* Look up the VMA for the start of this memory slot */
3052 hva = memslot->userspace_addr;
3053 down_read(&current->mm->mmap_sem);
3054 vma = find_vma(current->mm, hva);
3055 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3056 goto up_out;
3057
3058 psize = vma_kernel_pagesize(vma);
da9d1d7f 3059 porder = __ilog2(psize);
c77162de 3060
c77162de
PM
3061 up_read(&current->mm->mmap_sem);
3062
c17b98cf
PM
3063 /* We can handle 4k, 64k or 16M pages in the VRMA */
3064 err = -EINVAL;
3065 if (!(psize == 0x1000 || psize == 0x10000 ||
3066 psize == 0x1000000))
3067 goto out_srcu;
c77162de 3068
c17b98cf
PM
3069 /* Update VRMASD field in the LPCR */
3070 senc = slb_pgsize_encoding(psize);
3071 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3072 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3073 /* the -4 is to account for senc values starting at 0x10 */
3074 lpcr = senc << (LPCR_VRMASD_SH - 4);
c77162de 3075
c17b98cf
PM
3076 /* Create HPTEs in the hash page table for the VRMA */
3077 kvmppc_map_vrma(vcpu, memslot, porder);
aa04b4cc 3078
c17b98cf 3079 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
a0144e2a 3080
31037eca 3081 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
c77162de 3082 smp_wmb();
31037eca 3083 kvm->arch.hpte_setup_done = 1;
c77162de 3084 err = 0;
2c9097e4
PM
3085 out_srcu:
3086 srcu_read_unlock(&kvm->srcu, srcu_idx);
c77162de
PM
3087 out:
3088 mutex_unlock(&kvm->lock);
3089 return err;
b2b2f165 3090
c77162de
PM
3091 up_out:
3092 up_read(&current->mm->mmap_sem);
505d6421 3093 goto out_srcu;
de56a948
PM
3094}
3095
79b6c247 3096#ifdef CONFIG_KVM_XICS
6f3bb809
SW
3097static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
3098 void *hcpu)
3099{
3100 unsigned long cpu = (long)hcpu;
3101
3102 switch (action) {
3103 case CPU_UP_PREPARE:
3104 case CPU_UP_PREPARE_FROZEN:
3105 kvmppc_set_host_core(cpu);
3106 break;
3107
3108#ifdef CONFIG_HOTPLUG_CPU
3109 case CPU_DEAD:
3110 case CPU_DEAD_FROZEN:
3111 case CPU_UP_CANCELED:
3112 case CPU_UP_CANCELED_FROZEN:
3113 kvmppc_clear_host_core(cpu);
3114 break;
3115#endif
3116 default:
3117 break;
3118 }
3119
3120 return NOTIFY_OK;
3121}
3122
3123static struct notifier_block kvmppc_cpu_notifier = {
3124 .notifier_call = kvmppc_cpu_notify,
3125};
3126
79b6c247
SW
3127/*
3128 * Allocate a per-core structure for managing state about which cores are
3129 * running in the host versus the guest and for exchanging data between
3130 * real mode KVM and CPU running in the host.
3131 * This is only done for the first VM.
3132 * The allocated structure stays even if all VMs have stopped.
3133 * It is only freed when the kvm-hv module is unloaded.
3134 * It's OK for this routine to fail, we just don't support host
3135 * core operations like redirecting H_IPI wakeups.
3136 */
3137void kvmppc_alloc_host_rm_ops(void)
3138{
3139 struct kvmppc_host_rm_ops *ops;
3140 unsigned long l_ops;
3141 int cpu, core;
3142 int size;
3143
3144 /* Not the first time here ? */
3145 if (kvmppc_host_rm_ops_hv != NULL)
3146 return;
3147
3148 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3149 if (!ops)
3150 return;
3151
3152 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3153 ops->rm_core = kzalloc(size, GFP_KERNEL);
3154
3155 if (!ops->rm_core) {
3156 kfree(ops);
3157 return;
3158 }
3159
6f3bb809
SW
3160 get_online_cpus();
3161
79b6c247
SW
3162 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3163 if (!cpu_online(cpu))
3164 continue;
3165
3166 core = cpu >> threads_shift;
3167 ops->rm_core[core].rm_state.in_host = 1;
3168 }
3169
0c2a6606
SW
3170 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3171
79b6c247
SW
3172 /*
3173 * Make the contents of the kvmppc_host_rm_ops structure visible
3174 * to other CPUs before we assign it to the global variable.
3175 * Do an atomic assignment (no locks used here), but if someone
3176 * beats us to it, just free our copy and return.
3177 */
3178 smp_wmb();
3179 l_ops = (unsigned long) ops;
3180
3181 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
6f3bb809 3182 put_online_cpus();
79b6c247
SW
3183 kfree(ops->rm_core);
3184 kfree(ops);
6f3bb809 3185 return;
79b6c247 3186 }
6f3bb809
SW
3187
3188 register_cpu_notifier(&kvmppc_cpu_notifier);
3189
3190 put_online_cpus();
79b6c247
SW
3191}
3192
3193void kvmppc_free_host_rm_ops(void)
3194{
3195 if (kvmppc_host_rm_ops_hv) {
6f3bb809 3196 unregister_cpu_notifier(&kvmppc_cpu_notifier);
79b6c247
SW
3197 kfree(kvmppc_host_rm_ops_hv->rm_core);
3198 kfree(kvmppc_host_rm_ops_hv);
3199 kvmppc_host_rm_ops_hv = NULL;
3200 }
3201}
3202#endif
3203
3a167bea 3204static int kvmppc_core_init_vm_hv(struct kvm *kvm)
de56a948 3205{
32fad281 3206 unsigned long lpcr, lpid;
e23a808b 3207 char buf[32];
de56a948 3208
32fad281
PM
3209 /* Allocate the guest's logical partition ID */
3210
3211 lpid = kvmppc_alloc_lpid();
5d226ae5 3212 if ((long)lpid < 0)
32fad281
PM
3213 return -ENOMEM;
3214 kvm->arch.lpid = lpid;
de56a948 3215
79b6c247
SW
3216 kvmppc_alloc_host_rm_ops();
3217
1b400ba0
PM
3218 /*
3219 * Since we don't flush the TLB when tearing down a VM,
3220 * and this lpid might have previously been used,
3221 * make sure we flush on each core before running the new VM.
3222 */
3223 cpumask_setall(&kvm->arch.need_tlb_flush);
3224
699a0ea0
PM
3225 /* Start out with the default set of hcalls enabled */
3226 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3227 sizeof(kvm->arch.enabled_hcalls));
3228
9e368f29 3229 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
aa04b4cc 3230
c17b98cf
PM
3231 /* Init LPCR for virtual RMA mode */
3232 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3233 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3234 lpcr &= LPCR_PECE | LPCR_LPES;
3235 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3236 LPCR_VPM0 | LPCR_VPM1;
3237 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3238 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3239 /* On POWER8 turn on online bit to enable PURR/SPURR */
3240 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3241 lpcr |= LPCR_ONL;
9e368f29 3242 kvm->arch.lpcr = lpcr;
aa04b4cc 3243
512691d4 3244 /*
441c19c8
ME
3245 * Track that we now have a HV mode VM active. This blocks secondary
3246 * CPU threads from coming online.
512691d4 3247 */
441c19c8 3248 kvm_hv_vm_activated();
512691d4 3249
e23a808b
PM
3250 /*
3251 * Create a debugfs directory for the VM
3252 */
3253 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3254 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3255 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3256 kvmppc_mmu_debugfs_init(kvm);
3257
54738c09 3258 return 0;
de56a948
PM
3259}
3260
f1378b1c
PM
3261static void kvmppc_free_vcores(struct kvm *kvm)
3262{
3263 long int i;
3264
23316316 3265 for (i = 0; i < KVM_MAX_VCORES; ++i)
f1378b1c
PM
3266 kfree(kvm->arch.vcores[i]);
3267 kvm->arch.online_vcores = 0;
3268}
3269
3a167bea 3270static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
de56a948 3271{
e23a808b
PM
3272 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3273
441c19c8 3274 kvm_hv_vm_deactivated();
512691d4 3275
f1378b1c 3276 kvmppc_free_vcores(kvm);
aa04b4cc 3277
de56a948 3278 kvmppc_free_hpt(kvm);
c57875f5
SW
3279
3280 kvmppc_free_pimap(kvm);
de56a948
PM
3281}
3282
3a167bea
AK
3283/* We don't need to emulate any privileged instructions or dcbz */
3284static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3285 unsigned int inst, int *advance)
de56a948 3286{
3a167bea 3287 return EMULATE_FAIL;
de56a948
PM
3288}
3289
3a167bea
AK
3290static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3291 ulong spr_val)
de56a948
PM
3292{
3293 return EMULATE_FAIL;
3294}
3295
3a167bea
AK
3296static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3297 ulong *spr_val)
de56a948
PM
3298{
3299 return EMULATE_FAIL;
3300}
3301
3a167bea 3302static int kvmppc_core_check_processor_compat_hv(void)
de56a948 3303{
c17b98cf
PM
3304 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3305 !cpu_has_feature(CPU_FTR_ARCH_206))
3a167bea 3306 return -EIO;
50de596d
AK
3307 /*
3308 * Disable KVM for Power9, untill the required bits merged.
3309 */
3310 if (cpu_has_feature(CPU_FTR_ARCH_300))
3311 return -EIO;
3312
3a167bea 3313 return 0;
de56a948
PM
3314}
3315
8daaafc8
SW
3316#ifdef CONFIG_KVM_XICS
3317
3318void kvmppc_free_pimap(struct kvm *kvm)
3319{
3320 kfree(kvm->arch.pimap);
3321}
3322
c57875f5 3323static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
8daaafc8
SW
3324{
3325 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3326}
c57875f5
SW
3327
3328static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3329{
3330 struct irq_desc *desc;
3331 struct kvmppc_irq_map *irq_map;
3332 struct kvmppc_passthru_irqmap *pimap;
3333 struct irq_chip *chip;
3334 int i;
3335
644abbb2
SW
3336 if (!kvm_irq_bypass)
3337 return 1;
3338
c57875f5
SW
3339 desc = irq_to_desc(host_irq);
3340 if (!desc)
3341 return -EIO;
3342
3343 mutex_lock(&kvm->lock);
3344
3345 pimap = kvm->arch.pimap;
3346 if (pimap == NULL) {
3347 /* First call, allocate structure to hold IRQ map */
3348 pimap = kvmppc_alloc_pimap();
3349 if (pimap == NULL) {
3350 mutex_unlock(&kvm->lock);
3351 return -ENOMEM;
3352 }
3353 kvm->arch.pimap = pimap;
3354 }
3355
3356 /*
3357 * For now, we only support interrupts for which the EOI operation
3358 * is an OPAL call followed by a write to XIRR, since that's
3359 * what our real-mode EOI code does.
3360 */
3361 chip = irq_data_get_irq_chip(&desc->irq_data);
3362 if (!chip || !is_pnv_opal_msi(chip)) {
3363 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3364 host_irq, guest_gsi);
3365 mutex_unlock(&kvm->lock);
3366 return -ENOENT;
3367 }
3368
3369 /*
3370 * See if we already have an entry for this guest IRQ number.
3371 * If it's mapped to a hardware IRQ number, that's an error,
3372 * otherwise re-use this entry.
3373 */
3374 for (i = 0; i < pimap->n_mapped; i++) {
3375 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3376 if (pimap->mapped[i].r_hwirq) {
3377 mutex_unlock(&kvm->lock);
3378 return -EINVAL;
3379 }
3380 break;
3381 }
3382 }
3383
3384 if (i == KVMPPC_PIRQ_MAPPED) {
3385 mutex_unlock(&kvm->lock);
3386 return -EAGAIN; /* table is full */
3387 }
3388
3389 irq_map = &pimap->mapped[i];
3390
3391 irq_map->v_hwirq = guest_gsi;
c57875f5
SW
3392 irq_map->desc = desc;
3393
e3c13e56
SW
3394 /*
3395 * Order the above two stores before the next to serialize with
3396 * the KVM real mode handler.
3397 */
3398 smp_wmb();
3399 irq_map->r_hwirq = desc->irq_data.hwirq;
3400
c57875f5
SW
3401 if (i == pimap->n_mapped)
3402 pimap->n_mapped++;
3403
5d375199
PM
3404 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3405
c57875f5
SW
3406 mutex_unlock(&kvm->lock);
3407
3408 return 0;
3409}
3410
3411static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3412{
3413 struct irq_desc *desc;
3414 struct kvmppc_passthru_irqmap *pimap;
3415 int i;
3416
644abbb2
SW
3417 if (!kvm_irq_bypass)
3418 return 0;
3419
c57875f5
SW
3420 desc = irq_to_desc(host_irq);
3421 if (!desc)
3422 return -EIO;
3423
3424 mutex_lock(&kvm->lock);
3425
3426 if (kvm->arch.pimap == NULL) {
3427 mutex_unlock(&kvm->lock);
3428 return 0;
3429 }
3430 pimap = kvm->arch.pimap;
3431
3432 for (i = 0; i < pimap->n_mapped; i++) {
3433 if (guest_gsi == pimap->mapped[i].v_hwirq)
3434 break;
3435 }
3436
3437 if (i == pimap->n_mapped) {
3438 mutex_unlock(&kvm->lock);
3439 return -ENODEV;
3440 }
3441
5d375199
PM
3442 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3443
c57875f5
SW
3444 /* invalidate the entry */
3445 pimap->mapped[i].r_hwirq = 0;
3446
3447 /*
3448 * We don't free this structure even when the count goes to
3449 * zero. The structure is freed when we destroy the VM.
3450 */
3451
3452 mutex_unlock(&kvm->lock);
3453 return 0;
3454}
3455
3456static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3457 struct irq_bypass_producer *prod)
3458{
3459 int ret = 0;
3460 struct kvm_kernel_irqfd *irqfd =
3461 container_of(cons, struct kvm_kernel_irqfd, consumer);
3462
3463 irqfd->producer = prod;
3464
3465 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3466 if (ret)
3467 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3468 prod->irq, irqfd->gsi, ret);
3469
3470 return ret;
3471}
3472
3473static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3474 struct irq_bypass_producer *prod)
3475{
3476 int ret;
3477 struct kvm_kernel_irqfd *irqfd =
3478 container_of(cons, struct kvm_kernel_irqfd, consumer);
3479
3480 irqfd->producer = NULL;
3481
3482 /*
3483 * When producer of consumer is unregistered, we change back to
3484 * default external interrupt handling mode - KVM real mode
3485 * will switch back to host.
3486 */
3487 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3488 if (ret)
3489 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3490 prod->irq, irqfd->gsi, ret);
3491}
8daaafc8
SW
3492#endif
3493
3a167bea
AK
3494static long kvm_arch_vm_ioctl_hv(struct file *filp,
3495 unsigned int ioctl, unsigned long arg)
3496{
3497 struct kvm *kvm __maybe_unused = filp->private_data;
3498 void __user *argp = (void __user *)arg;
3499 long r;
3500
3501 switch (ioctl) {
3502
3a167bea
AK
3503 case KVM_PPC_ALLOCATE_HTAB: {
3504 u32 htab_order;
3505
3506 r = -EFAULT;
3507 if (get_user(htab_order, (u32 __user *)argp))
3508 break;
3509 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3510 if (r)
3511 break;
3512 r = -EFAULT;
3513 if (put_user(htab_order, (u32 __user *)argp))
3514 break;
3515 r = 0;
3516 break;
3517 }
3518
3519 case KVM_PPC_GET_HTAB_FD: {
3520 struct kvm_get_htab_fd ghf;
3521
3522 r = -EFAULT;
3523 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3524 break;
3525 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3526 break;
3527 }
3528
3529 default:
3530 r = -ENOTTY;
3531 }
3532
3533 return r;
3534}
3535
699a0ea0
PM
3536/*
3537 * List of hcall numbers to enable by default.
3538 * For compatibility with old userspace, we enable by default
3539 * all hcalls that were implemented before the hcall-enabling
3540 * facility was added. Note this list should not include H_RTAS.
3541 */
3542static unsigned int default_hcall_list[] = {
3543 H_REMOVE,
3544 H_ENTER,
3545 H_READ,
3546 H_PROTECT,
3547 H_BULK_REMOVE,
3548 H_GET_TCE,
3549 H_PUT_TCE,
3550 H_SET_DABR,
3551 H_SET_XDABR,
3552 H_CEDE,
3553 H_PROD,
3554 H_CONFER,
3555 H_REGISTER_VPA,
3556#ifdef CONFIG_KVM_XICS
3557 H_EOI,
3558 H_CPPR,
3559 H_IPI,
3560 H_IPOLL,
3561 H_XIRR,
3562 H_XIRR_X,
3563#endif
3564 0
3565};
3566
3567static void init_default_hcalls(void)
3568{
3569 int i;
ae2113a4 3570 unsigned int hcall;
699a0ea0 3571
ae2113a4
PM
3572 for (i = 0; default_hcall_list[i]; ++i) {
3573 hcall = default_hcall_list[i];
3574 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3575 __set_bit(hcall / 4, default_enabled_hcalls);
3576 }
699a0ea0
PM
3577}
3578
cbbc58d4 3579static struct kvmppc_ops kvm_ops_hv = {
3a167bea
AK
3580 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3581 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3582 .get_one_reg = kvmppc_get_one_reg_hv,
3583 .set_one_reg = kvmppc_set_one_reg_hv,
3584 .vcpu_load = kvmppc_core_vcpu_load_hv,
3585 .vcpu_put = kvmppc_core_vcpu_put_hv,
3586 .set_msr = kvmppc_set_msr_hv,
3587 .vcpu_run = kvmppc_vcpu_run_hv,
3588 .vcpu_create = kvmppc_core_vcpu_create_hv,
3589 .vcpu_free = kvmppc_core_vcpu_free_hv,
3590 .check_requests = kvmppc_core_check_requests_hv,
3591 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3592 .flush_memslot = kvmppc_core_flush_memslot_hv,
3593 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3594 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3595 .unmap_hva = kvm_unmap_hva_hv,
3596 .unmap_hva_range = kvm_unmap_hva_range_hv,
3597 .age_hva = kvm_age_hva_hv,
3598 .test_age_hva = kvm_test_age_hva_hv,
3599 .set_spte_hva = kvm_set_spte_hva_hv,
3600 .mmu_destroy = kvmppc_mmu_destroy_hv,
3601 .free_memslot = kvmppc_core_free_memslot_hv,
3602 .create_memslot = kvmppc_core_create_memslot_hv,
3603 .init_vm = kvmppc_core_init_vm_hv,
3604 .destroy_vm = kvmppc_core_destroy_vm_hv,
3a167bea
AK
3605 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3606 .emulate_op = kvmppc_core_emulate_op_hv,
3607 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3608 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3609 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3610 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
ae2113a4 3611 .hcall_implemented = kvmppc_hcall_impl_hv,
c57875f5
SW
3612#ifdef CONFIG_KVM_XICS
3613 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3614 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3615#endif
3a167bea
AK
3616};
3617
fd7bacbc
MS
3618static int kvm_init_subcore_bitmap(void)
3619{
3620 int i, j;
3621 int nr_cores = cpu_nr_cores();
3622 struct sibling_subcore_state *sibling_subcore_state;
3623
3624 for (i = 0; i < nr_cores; i++) {
3625 int first_cpu = i * threads_per_core;
3626 int node = cpu_to_node(first_cpu);
3627
3628 /* Ignore if it is already allocated. */
3629 if (paca[first_cpu].sibling_subcore_state)
3630 continue;
3631
3632 sibling_subcore_state =
3633 kmalloc_node(sizeof(struct sibling_subcore_state),
3634 GFP_KERNEL, node);
3635 if (!sibling_subcore_state)
3636 return -ENOMEM;
3637
3638 memset(sibling_subcore_state, 0,
3639 sizeof(struct sibling_subcore_state));
3640
3641 for (j = 0; j < threads_per_core; j++) {
3642 int cpu = first_cpu + j;
3643
3644 paca[cpu].sibling_subcore_state = sibling_subcore_state;
3645 }
3646 }
3647 return 0;
3648}
3649
3a167bea 3650static int kvmppc_book3s_init_hv(void)
de56a948
PM
3651{
3652 int r;
cbbc58d4
AK
3653 /*
3654 * FIXME!! Do we need to check on all cpus ?
3655 */
3656 r = kvmppc_core_check_processor_compat_hv();
3657 if (r < 0)
739e2425 3658 return -ENODEV;
de56a948 3659
fd7bacbc
MS
3660 r = kvm_init_subcore_bitmap();
3661 if (r)
3662 return r;
3663
cbbc58d4
AK
3664 kvm_ops_hv.owner = THIS_MODULE;
3665 kvmppc_hv_ops = &kvm_ops_hv;
de56a948 3666
699a0ea0
PM
3667 init_default_hcalls();
3668
ec257165
PM
3669 init_vcore_lists();
3670
cbbc58d4 3671 r = kvmppc_mmu_hv_init();
de56a948
PM
3672 return r;
3673}
3674
3a167bea 3675static void kvmppc_book3s_exit_hv(void)
de56a948 3676{
79b6c247 3677 kvmppc_free_host_rm_ops();
cbbc58d4 3678 kvmppc_hv_ops = NULL;
de56a948
PM
3679}
3680
3a167bea
AK
3681module_init(kvmppc_book3s_init_hv);
3682module_exit(kvmppc_book3s_exit_hv);
2ba9f0d8 3683MODULE_LICENSE("GPL");
398a76c6
AG
3684MODULE_ALIAS_MISCDEV(KVM_MINOR);
3685MODULE_ALIAS("devname:kvm");