]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kvm/book3s_hv_ras.c
Merge remote-tracking branches 'asoc/fix/nau8825', 'asoc/fix/rt5645', 'asoc/fix/tlv32...
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_hv_ras.c
CommitLineData
b4072df4
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
8
9#include <linux/types.h>
10#include <linux/string.h>
11#include <linux/kvm.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <asm/opal.h>
36df96f8 15#include <asm/mce.h>
fd7bacbc
MS
16#include <asm/machdep.h>
17#include <asm/cputhreads.h>
18#include <asm/hmi.h>
e34af784 19#include <asm/kvm_ppc.h>
b4072df4
PM
20
21/* SRR1 bits for machine check on POWER7 */
22#define SRR1_MC_LDSTERR (1ul << (63-42))
23#define SRR1_MC_IFETCH_SH (63-45)
24#define SRR1_MC_IFETCH_MASK 0x7
25#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
26#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
27#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
28#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
29
30/* DSISR bits for machine check on POWER7 */
31#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
32#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
33#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
34#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
35#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
36
37/* POWER7 SLB flush and reload */
38static void reload_slb(struct kvm_vcpu *vcpu)
39{
40 struct slb_shadow *slb;
41 unsigned long i, n;
42
43 /* First clear out SLB */
44 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
45
46 /* Do they have an SLB shadow buffer registered? */
47 slb = vcpu->arch.slb_shadow.pinned_addr;
48 if (!slb)
49 return;
50
51 /* Sanity check */
02407552 52 n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
b4072df4
PM
53 if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
54 return;
55
56 /* Load up the SLB from that */
57 for (i = 0; i < n; ++i) {
02407552
AG
58 unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
59 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
b4072df4
PM
60
61 rb = (rb & ~0xFFFul) | i; /* insert entry number */
62 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
63 }
64}
65
b4072df4
PM
66/*
67 * On POWER7, see if we can handle a machine check that occurred inside
68 * the guest in real mode, without switching to the host partition.
69 *
70 * Returns: 0 => exit guest, 1 => deliver machine check to guest
71 */
72static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
73{
74 unsigned long srr1 = vcpu->arch.shregs.msr;
36df96f8 75 struct machine_check_event mce_evt;
b4072df4
PM
76 long handled = 1;
77
78 if (srr1 & SRR1_MC_LDSTERR) {
79 /* error on load/store */
80 unsigned long dsisr = vcpu->arch.shregs.dsisr;
81
82 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
84 /* flush and reload SLB; flushes D-ERAT too */
85 reload_slb(vcpu);
86 dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
87 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
88 }
89 if (dsisr & DSISR_MC_TLB_MULTI) {
04407050 90 if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
45706bb5 91 cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
b4072df4
PM
92 dsisr &= ~DSISR_MC_TLB_MULTI;
93 }
94 /* Any other errors we don't understand? */
95 if (dsisr & 0xffffffffUL)
96 handled = 0;
97 }
98
99 switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
100 case 0:
101 break;
102 case SRR1_MC_IFETCH_SLBPAR:
103 case SRR1_MC_IFETCH_SLBMULTI:
104 case SRR1_MC_IFETCH_SLBPARMULTI:
105 reload_slb(vcpu);
106 break;
107 case SRR1_MC_IFETCH_TLBMULTI:
04407050 108 if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
45706bb5 109 cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
b4072df4
PM
110 break;
111 default:
112 handled = 0;
113 }
114
115 /*
36df96f8
MS
116 * See if we have already handled the condition in the linux host.
117 * We assume that if the condition is recovered then linux host
b4072df4
PM
118 * will have generated an error log event that we will pick
119 * up and log later.
74845bc2
MS
120 * Don't release mce event now. We will queue up the event so that
121 * we can log the MCE event info on host console.
b4072df4 122 */
36df96f8
MS
123 if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
124 goto out;
125
126 if (mce_evt.version == MCE_V1 &&
127 (mce_evt.severity == MCE_SEV_NO_ERROR ||
128 mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
b4072df4
PM
129 handled = 1;
130
36df96f8
MS
131out:
132 /*
74845bc2
MS
133 * We are now going enter guest either through machine check
134 * interrupt (for unhandled errors) or will continue from
135 * current HSRR0 (for handled errors) in guest. Hence
136 * queue up the event so that we can log it from host console later.
36df96f8 137 */
74845bc2 138 machine_check_queue_event();
b4072df4
PM
139
140 return handled;
141}
142
143long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
144{
c17b98cf 145 return kvmppc_realmode_mc_power7(vcpu);
b4072df4 146}
fd7bacbc
MS
147
148/* Check if dynamic split is in force and return subcore size accordingly. */
149static inline int kvmppc_cur_subcore_size(void)
150{
151 if (local_paca->kvm_hstate.kvm_split_mode)
152 return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
153
154 return threads_per_subcore;
155}
156
157void kvmppc_subcore_enter_guest(void)
158{
159 int thread_id, subcore_id;
160
161 thread_id = cpu_thread_in_core(local_paca->paca_index);
162 subcore_id = thread_id / kvmppc_cur_subcore_size();
163
164 local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
165}
166
167void kvmppc_subcore_exit_guest(void)
168{
169 int thread_id, subcore_id;
170
171 thread_id = cpu_thread_in_core(local_paca->paca_index);
172 subcore_id = thread_id / kvmppc_cur_subcore_size();
173
174 local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
175}
176
177static bool kvmppc_tb_resync_required(void)
178{
179 if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
180 &local_paca->sibling_subcore_state->flags))
181 return false;
182
183 return true;
184}
185
186static void kvmppc_tb_resync_done(void)
187{
188 clear_bit(CORE_TB_RESYNC_REQ_BIT,
189 &local_paca->sibling_subcore_state->flags);
190}
191
192/*
193 * kvmppc_realmode_hmi_handler() is called only by primary thread during
194 * guest exit path.
195 *
196 * There are multiple reasons why HMI could occur, one of them is
197 * Timebase (TB) error. If this HMI is due to TB error, then TB would
198 * have been in stopped state. The opal hmi handler Will fix it and
199 * restore the TB value with host timebase value. For HMI caused due
200 * to non-TB errors, opal hmi handler will not touch/restore TB register
201 * and hence there won't be any change in TB value.
202 *
203 * Since we are not sure about the cause of this HMI, we can't be sure
204 * about the content of TB register whether it holds guest or host timebase
205 * value. Hence the idea is to resync the TB on every HMI, so that we
206 * know about the exact state of the TB value. Resync TB call will
207 * restore TB to host timebase.
208 *
209 * Things to consider:
210 * - On TB error, HMI interrupt is reported on all the threads of the core
211 * that has encountered TB error irrespective of split-core mode.
212 * - The very first thread on the core that get chance to fix TB error
213 * would rsync the TB with local chipTOD value.
214 * - The resync TB is a core level action i.e. it will sync all the TBs
215 * in that core independent of split-core mode. This means if we trigger
216 * TB sync from a thread from one subcore, it would affect TB values of
217 * sibling subcores of the same core.
218 *
219 * All threads need to co-ordinate before making opal hmi handler.
220 * All threads will use sibling_subcore_state->in_guest[] (shared by all
221 * threads in the core) in paca which holds information about whether
222 * sibling subcores are in Guest mode or host mode. The in_guest[] array
223 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
224 * subcore status. Only primary threads from each subcore is responsible
225 * to set/unset its designated array element while entering/exiting the
226 * guset.
227 *
228 * After invoking opal hmi handler call, one of the thread (of entire core)
229 * will need to resync the TB. Bit 63 from subcore state bitmap flags
230 * (sibling_subcore_state->flags) will be used to co-ordinate between
231 * primary threads to decide who takes up the responsibility.
232 *
233 * This is what we do:
234 * - Primary thread from each subcore tries to set resync required bit[63]
235 * of paca->sibling_subcore_state->flags.
236 * - The first primary thread that is able to set the flag takes the
237 * responsibility of TB resync. (Let us call it as thread leader)
238 * - All other threads which are in host will call
239 * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
240 * paca->sibling_subcore_state to get cleared.
241 * - All the primary thread will clear its subcore status from subcore
242 * state in_guest[] array respectively.
243 * - Once all primary threads clear in_guest[0-3], all of them will invoke
244 * opal hmi handler.
245 * - Now all threads will wait for TB resync to complete by invoking
246 * wait_for_tb_resync() except the thread leader.
247 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
248 * call and the it will clear the resync required bit.
249 * - All other threads will now come out of resync wait loop and proceed
250 * with individual execution.
251 * - On return of this function, primary thread will signal all
252 * secondary threads to proceed.
253 * - All secondary threads will eventually call opal hmi handler on
254 * their exit path.
255 */
256
257long kvmppc_realmode_hmi_handler(void)
258{
259 int ptid = local_paca->kvm_hstate.ptid;
260 bool resync_req;
261
262 /* This is only called on primary thread. */
263 BUG_ON(ptid != 0);
264 __this_cpu_inc(irq_stat.hmi_exceptions);
265
266 /*
267 * By now primary thread has already completed guest->host
268 * partition switch but haven't signaled secondaries yet.
269 * All the secondary threads on this subcore is waiting
270 * for primary thread to signal them to go ahead.
271 *
272 * For threads from subcore which isn't in guest, they all will
273 * wait until all other subcores on this core exit the guest.
274 *
275 * Now set the resync required bit. If you are the first to
276 * set this bit then kvmppc_tb_resync_required() function will
277 * return true. For rest all other subcores
278 * kvmppc_tb_resync_required() will return false.
279 *
280 * If resync_req == true, then this thread is responsible to
281 * initiate TB resync after hmi handler has completed.
282 * All other threads on this core will wait until this thread
283 * clears the resync required bit flag.
284 */
285 resync_req = kvmppc_tb_resync_required();
286
287 /* Reset the subcore status to indicate it has exited guest */
288 kvmppc_subcore_exit_guest();
289
290 /*
291 * Wait for other subcores on this core to exit the guest.
292 * All the primary threads and threads from subcore that are
293 * not in guest will wait here until all subcores are out
294 * of guest context.
295 */
296 wait_for_subcore_guest_exit();
297
298 /*
299 * At this point we are sure that primary threads from each
300 * subcore on this core have completed guest->host partition
301 * switch. Now it is safe to call HMI handler.
302 */
303 if (ppc_md.hmi_exception_early)
304 ppc_md.hmi_exception_early(NULL);
305
306 /*
307 * Check if this thread is responsible to resync TB.
308 * All other threads will wait until this thread completes the
309 * TB resync.
310 */
311 if (resync_req) {
312 opal_resync_timebase();
313 /* Reset TB resync req bit */
314 kvmppc_tb_resync_done();
315 } else {
316 wait_for_tb_resync();
317 }
318 return 0;
319}