]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/mm/fault.c
signal: Ensure every siginfo we send has all bits initialized
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / mm / fault.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
14cf11af
PM
18#include <linux/signal.h>
19#include <linux/sched.h>
68db0cf1 20#include <linux/sched/task_stack.h>
14cf11af
PM
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/string.h>
24#include <linux/types.h>
25#include <linux/ptrace.h>
26#include <linux/mman.h>
27#include <linux/mm.h>
28#include <linux/interrupt.h>
29#include <linux/highmem.h>
8a39b05f 30#include <linux/extable.h>
14cf11af 31#include <linux/kprobes.h>
1eeb66a1 32#include <linux/kdebug.h>
cdd6c482 33#include <linux/perf_event.h>
76462232 34#include <linux/ratelimit.h>
ba12eede 35#include <linux/context_tracking.h>
9d57472f 36#include <linux/hugetlb.h>
70ffdb93 37#include <linux/uaccess.h>
14cf11af 38
40900194 39#include <asm/firmware.h>
14cf11af
PM
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/mmu.h>
43#include <asm/mmu_context.h>
14cf11af 44#include <asm/tlbflush.h>
14cf11af 45#include <asm/siginfo.h>
ae3a197e 46#include <asm/debug.h>
4f9e87c0 47
bb4be50e 48static inline bool notify_page_fault(struct pt_regs *regs)
4f9e87c0 49{
bb4be50e 50 bool ret = false;
9f90b997 51
bb4be50e 52#ifdef CONFIG_KPROBES
9f90b997
CH
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 11))
bb4be50e 57 ret = true;
9f90b997
CH
58 preempt_enable();
59 }
bb4be50e
BH
60#endif /* CONFIG_KPROBES */
61
62 if (unlikely(debugger_fault_handler(regs)))
63 ret = true;
4f9e87c0 64
9f90b997 65 return ret;
4f9e87c0 66}
4f9e87c0 67
14cf11af
PM
68/*
69 * Check whether the instruction at regs->nip is a store using
70 * an update addressing form which will update r1.
71 */
8f5ca0b3 72static bool store_updates_sp(struct pt_regs *regs)
14cf11af
PM
73{
74 unsigned int inst;
75
76 if (get_user(inst, (unsigned int __user *)regs->nip))
8f5ca0b3 77 return false;
14cf11af
PM
78 /* check for 1 in the rA field */
79 if (((inst >> 16) & 0x1f) != 1)
8f5ca0b3 80 return false;
14cf11af
PM
81 /* check major opcode */
82 switch (inst >> 26) {
83 case 37: /* stwu */
84 case 39: /* stbu */
85 case 45: /* sthu */
86 case 53: /* stfsu */
87 case 55: /* stfdu */
8f5ca0b3 88 return true;
14cf11af
PM
89 case 62: /* std or stdu */
90 return (inst & 3) == 1;
91 case 31:
92 /* check minor opcode */
93 switch ((inst >> 1) & 0x3ff) {
94 case 181: /* stdux */
95 case 183: /* stwux */
96 case 247: /* stbux */
97 case 439: /* sthux */
98 case 695: /* stfsux */
99 case 759: /* stfdux */
8f5ca0b3 100 return true;
14cf11af
PM
101 }
102 }
8f5ca0b3 103 return false;
14cf11af 104}
9be72573
BH
105/*
106 * do_page_fault error handling helpers
107 */
108
c3350602 109static int
99cd1302
RP
110__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
111 int pkey)
c3350602
BH
112{
113 /*
114 * If we are in kernel mode, bail out with a SEGV, this will
115 * be caught by the assembly which will restore the non-volatile
116 * registers before calling bad_page_fault()
117 */
118 if (!user_mode(regs))
119 return SIGSEGV;
120
99cd1302 121 _exception_pkey(SIGSEGV, regs, si_code, address, pkey);
c3350602
BH
122
123 return 0;
124}
125
126static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127{
99cd1302 128 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
c3350602
BH
129}
130
99cd1302
RP
131static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
132 int pkey)
c3350602
BH
133{
134 struct mm_struct *mm = current->mm;
135
136 /*
137 * Something tried to access memory that isn't in our memory map..
138 * Fix it, but check if it's kernel or user first..
139 */
140 up_read(&mm->mmap_sem);
141
99cd1302 142 return __bad_area_nosemaphore(regs, address, si_code, pkey);
c3350602
BH
143}
144
145static noinline int bad_area(struct pt_regs *regs, unsigned long address)
146{
99cd1302
RP
147 return __bad_area(regs, address, SEGV_MAPERR, 0);
148}
149
150static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
151 int pkey)
152{
153 return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
c3350602
BH
154}
155
ecb101ae
JS
156static noinline int bad_access(struct pt_regs *regs, unsigned long address)
157{
ebf0b6a8 158 return __bad_area(regs, address, SEGV_ACCERR, 0);
ecb101ae
JS
159}
160
3913fdd7
AB
161static int do_sigbus(struct pt_regs *regs, unsigned long address,
162 unsigned int fault)
9be72573
BH
163{
164 siginfo_t info;
9d57472f 165 unsigned int lsb = 0;
9be72573 166
63af5262 167 if (!user_mode(regs))
b5c8f0fd 168 return SIGBUS;
63af5262
AB
169
170 current->thread.trap_nr = BUS_ADRERR;
3eb0f519 171 clear_siginfo(&info);
63af5262
AB
172 info.si_signo = SIGBUS;
173 info.si_errno = 0;
174 info.si_code = BUS_ADRERR;
175 info.si_addr = (void __user *)address;
3913fdd7
AB
176#ifdef CONFIG_MEMORY_FAILURE
177 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
178 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
179 current->comm, current->pid, address);
180 info.si_code = BUS_MCEERR_AR;
181 }
9d57472f
AB
182
183 if (fault & VM_FAULT_HWPOISON_LARGE)
184 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
185 if (fault & VM_FAULT_HWPOISON)
186 lsb = PAGE_SHIFT;
3913fdd7 187#endif
9d57472f 188 info.si_addr_lsb = lsb;
63af5262 189 force_sig_info(SIGBUS, &info, current);
b5c8f0fd 190 return 0;
9be72573
BH
191}
192
193static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
194{
195 /*
b5c8f0fd
BH
196 * Kernel page fault interrupted by SIGKILL. We have no reason to
197 * continue processing.
9be72573 198 */
b5c8f0fd
BH
199 if (fatal_signal_pending(current) && !user_mode(regs))
200 return SIGKILL;
9be72573
BH
201
202 /* Out of memory */
c2d23f91 203 if (fault & VM_FAULT_OOM) {
c2d23f91
DR
204 /*
205 * We ran out of memory, or some other thing happened to us that
206 * made us unable to handle the page fault gracefully.
207 */
208 if (!user_mode(regs))
b5c8f0fd 209 return SIGSEGV;
c2d23f91 210 pagefault_out_of_memory();
b5c8f0fd
BH
211 } else {
212 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
213 VM_FAULT_HWPOISON_LARGE))
214 return do_sigbus(regs, addr, fault);
215 else if (fault & VM_FAULT_SIGSEGV)
216 return bad_area_nosemaphore(regs, addr);
217 else
218 BUG();
c2d23f91 219 }
b5c8f0fd 220 return 0;
9be72573 221}
14cf11af 222
d3ca5874
BH
223/* Is this a bad kernel fault ? */
224static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
225 unsigned long address)
226{
227 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
228 printk_ratelimited(KERN_CRIT "kernel tried to execute"
229 " exec-protected page (%lx) -"
230 "exploit attempt? (uid: %d)\n",
231 address, from_kuid(&init_user_ns,
232 current_uid()));
233 }
234 return is_exec || (address >= TASK_SIZE);
235}
236
8f5ca0b3
BH
237static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
238 struct vm_area_struct *vma,
239 bool store_update_sp)
240{
241 /*
242 * N.B. The POWER/Open ABI allows programs to access up to
243 * 288 bytes below the stack pointer.
244 * The kernel signal delivery code writes up to about 1.5kB
245 * below the stack pointer (r1) before decrementing it.
246 * The exec code can write slightly over 640kB to the stack
247 * before setting the user r1. Thus we allow the stack to
248 * expand to 1MB without further checks.
249 */
250 if (address + 0x100000 < vma->vm_end) {
251 /* get user regs even if this fault is in kernel mode */
252 struct pt_regs *uregs = current->thread.regs;
253 if (uregs == NULL)
254 return true;
255
256 /*
257 * A user-mode access to an address a long way below
258 * the stack pointer is only valid if the instruction
259 * is one which would update the stack pointer to the
260 * address accessed if the instruction completed,
261 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
262 * (or the byte, halfword, float or double forms).
263 *
264 * If we don't check this then any write to the area
265 * between the last mapped region and the stack will
266 * expand the stack rather than segfaulting.
267 */
268 if (address + 2048 < uregs->gpr[1] && !store_update_sp)
269 return true;
270 }
271 return false;
272}
273
bd0d63f8
BH
274static bool access_error(bool is_write, bool is_exec,
275 struct vm_area_struct *vma)
276{
277 /*
278 * Allow execution from readable areas if the MMU does not
279 * provide separate controls over reading and executing.
280 *
281 * Note: That code used to not be enabled for 4xx/BookE.
282 * It is now as I/D cache coherency for these is done at
283 * set_pte_at() time and I see no reason why the test
284 * below wouldn't be valid on those processors. This -may-
285 * break programs compiled with a really old ABI though.
286 */
287 if (is_exec) {
288 return !(vma->vm_flags & VM_EXEC) &&
289 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
290 !(vma->vm_flags & (VM_READ | VM_WRITE)));
291 }
292
293 if (is_write) {
294 if (unlikely(!(vma->vm_flags & VM_WRITE)))
295 return true;
296 return false;
297 }
298
299 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
300 return true;
f2ed480f
AK
301 /*
302 * We should ideally do the vma pkey access check here. But in the
303 * fault path, handle_mm_fault() also does the same check. To avoid
304 * these multiple checks, we skip it here and handle access error due
305 * to pkeys later.
306 */
bd0d63f8
BH
307 return false;
308}
309
3da02648
BH
310#ifdef CONFIG_PPC_SMLPAR
311static inline void cmo_account_page_fault(void)
312{
313 if (firmware_has_feature(FW_FEATURE_CMO)) {
314 u32 page_ins;
315
316 preempt_disable();
317 page_ins = be32_to_cpu(get_lppaca()->page_ins);
318 page_ins += 1 << PAGE_FACTOR;
319 get_lppaca()->page_ins = cpu_to_be32(page_ins);
320 preempt_enable();
321 }
322}
323#else
324static inline void cmo_account_page_fault(void) { }
325#endif /* CONFIG_PPC_SMLPAR */
326
2865d08d
BH
327#ifdef CONFIG_PPC_STD_MMU
328static void sanity_check_fault(bool is_write, unsigned long error_code)
329{
330 /*
331 * For hash translation mode, we should never get a
332 * PROTFAULT. Any update to pte to reduce access will result in us
333 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
334 * fault instead of DSISR_PROTFAULT.
335 *
336 * A pte update to relax the access will not result in a hash page table
337 * entry invalidate and hence can result in DSISR_PROTFAULT.
338 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
339 * the special !is_write in the below conditional.
340 *
341 * For platforms that doesn't supports coherent icache and do support
342 * per page noexec bit, we do setup things such that we do the
343 * sync between D/I cache via fault. But that is handled via low level
344 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
345 * here in such case.
346 *
347 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
348 * check should handle those and hence we should fall to the bad_area
349 * handling correctly.
350 *
351 * For embedded with per page exec support that doesn't support coherent
352 * icache we do get PROTFAULT and we handle that D/I cache sync in
353 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
354 * is conditional for server MMU.
355 *
356 * For radix, we can get prot fault for autonuma case, because radix
357 * page table will have them marked noaccess for user.
358 */
359 if (!radix_enabled() && !is_write)
360 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
361}
362#else
363static void sanity_check_fault(bool is_write, unsigned long error_code) { }
364#endif /* CONFIG_PPC_STD_MMU */
365
41b464e5
BH
366/*
367 * Define the correct "is_write" bit in error_code based
368 * on the processor family
369 */
370#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
371#define page_fault_is_write(__err) ((__err) & ESR_DST)
f3d96e69 372#define page_fault_is_bad(__err) (0)
41b464e5
BH
373#else
374#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
968159c0 375#if defined(CONFIG_PPC_8xx)
4915349b 376#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
f3d96e69
BH
377#elif defined(CONFIG_PPC64)
378#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
379#else
380#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
381#endif
41b464e5
BH
382#endif
383
14cf11af
PM
384/*
385 * For 600- and 800-family processors, the error_code parameter is DSISR
386 * for a data fault, SRR1 for an instruction fault. For 400-family processors
387 * the error_code parameter is ESR for a data fault, 0 for an instruction
388 * fault.
389 * For 64-bit processors, the error_code parameter is
390 * - DSISR for a non-SLB data access fault,
391 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
392 * - 0 any SLB fault.
393 *
394 * The return value is 0 if the fault was handled, or the signal
395 * number if this is a kernel fault that can't be handled here.
396 */
7afad422
BH
397static int __do_page_fault(struct pt_regs *regs, unsigned long address,
398 unsigned long error_code)
14cf11af
PM
399{
400 struct vm_area_struct * vma;
401 struct mm_struct *mm = current->mm;
9be72573 402 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
c433ec04 403 int is_exec = TRAP(regs) == 0x400;
da929f6a 404 int is_user = user_mode(regs);
41b464e5 405 int is_write = page_fault_is_write(error_code);
f43bb27e 406 int fault, major = 0;
8f5ca0b3 407 bool store_update_sp = false;
14cf11af 408
9f90b997 409 if (notify_page_fault(regs))
65d47fd4 410 return 0;
14cf11af 411
f3d96e69 412 if (unlikely(page_fault_is_bad(error_code))) {
65d47fd4 413 if (is_user) {
f3d96e69 414 _exception(SIGBUS, regs, BUS_OBJERR, address);
65d47fd4
BH
415 return 0;
416 }
417 return SIGBUS;
e6c8290a 418 }
e6c8290a 419
2865d08d
BH
420 /* Additional sanity check(s) */
421 sanity_check_fault(is_write, error_code);
422
d7df2443
BH
423 /*
424 * The kernel should never take an execute fault nor should it
425 * take a page fault to a kernel address.
426 */
d3ca5874 427 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
65d47fd4 428 return SIGSEGV;
14cf11af 429
11ccdd33
BH
430 /*
431 * If we're in an interrupt, have no user context or are running
432 * in a region with pagefaults disabled then we must not take the fault
433 */
434 if (unlikely(faulthandler_disabled() || !mm)) {
435 if (is_user)
436 printk_ratelimited(KERN_ERR "Page fault in user mode"
437 " with faulthandler_disabled()=%d"
438 " mm=%p\n",
439 faulthandler_disabled(), mm);
440 return bad_area_nosemaphore(regs, address);
441 }
442
a546498f
BH
443 /* We restore the interrupt state now */
444 if (!arch_irq_disabled_regs(regs))
445 local_irq_enable();
446
a8b0ca17 447 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 448
99cd1302
RP
449 if (error_code & DSISR_KEYFAULT)
450 return bad_key_fault_exception(regs, address,
451 get_mm_addr_key(mm, address));
e6c2a479 452
69e044dd
AK
453 /*
454 * We want to do this outside mmap_sem, because reading code around nip
455 * can result in fault, which will cause a deadlock when called with
456 * mmap_sem held
457 */
da929f6a 458 if (is_write && is_user)
69e044dd
AK
459 store_update_sp = store_updates_sp(regs);
460
da929f6a 461 if (is_user)
759496ba 462 flags |= FAULT_FLAG_USER;
d2e0d2c5
BH
463 if (is_write)
464 flags |= FAULT_FLAG_WRITE;
465 if (is_exec)
466 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 467
14cf11af
PM
468 /* When running in the kernel we expect faults to occur only to
469 * addresses in user space. All other faults represent errors in the
fc5266ea
AB
470 * kernel and should generate an OOPS. Unfortunately, in the case of an
471 * erroneous fault occurring in a code path which already holds mmap_sem
14cf11af
PM
472 * we will deadlock attempting to validate the fault against the
473 * address space. Luckily the kernel only validly references user
474 * space from well defined areas of code, which are listed in the
475 * exceptions table.
476 *
477 * As the vast majority of faults will be valid we will only perform
fc5266ea 478 * the source reference check when there is a possibility of a deadlock.
14cf11af
PM
479 * Attempt to lock the address space, if we cannot we then validate the
480 * source. If this is invalid we can skip the address space check,
481 * thus avoiding the deadlock.
482 */
b15021d9 483 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
da929f6a 484 if (!is_user && !search_exception_tables(regs->nip))
c3350602 485 return bad_area_nosemaphore(regs, address);
14cf11af 486
9be72573 487retry:
14cf11af 488 down_read(&mm->mmap_sem);
a546498f
BH
489 } else {
490 /*
491 * The above down_read_trylock() might have succeeded in
492 * which case we'll have missed the might_sleep() from
493 * down_read():
494 */
495 might_sleep();
14cf11af
PM
496 }
497
498 vma = find_vma(mm, address);
b15021d9 499 if (unlikely(!vma))
c3350602 500 return bad_area(regs, address);
b15021d9 501 if (likely(vma->vm_start <= address))
14cf11af 502 goto good_area;
b15021d9 503 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
c3350602 504 return bad_area(regs, address);
14cf11af 505
8f5ca0b3
BH
506 /* The stack is being expanded, check if it's valid */
507 if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
508 return bad_area(regs, address);
14cf11af 509
8f5ca0b3 510 /* Try to expand it */
b15021d9 511 if (unlikely(expand_stack(vma, address)))
c3350602 512 return bad_area(regs, address);
14cf11af
PM
513
514good_area:
bd0d63f8 515 if (unlikely(access_error(is_write, is_exec, vma)))
ecb101ae 516 return bad_access(regs, address);
14cf11af
PM
517
518 /*
519 * If for any reason at all we couldn't handle the fault,
520 * make sure we exit gracefully rather than endlessly redo
521 * the fault.
522 */
dcddffd4 523 fault = handle_mm_fault(vma, address, flags);
e6c2a479
RP
524
525#ifdef CONFIG_PPC_MEM_KEYS
526 /*
f2ed480f
AK
527 * we skipped checking for access error due to key earlier.
528 * Check that using handle_mm_fault error return.
e6c2a479
RP
529 */
530 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
f2ed480f
AK
531 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
532
e6c2a479
RP
533 int pkey = vma_pkey(vma);
534
f2ed480f
AK
535 up_read(&mm->mmap_sem);
536 return bad_key_fault_exception(regs, address, pkey);
e6c2a479
RP
537 }
538#endif /* CONFIG_PPC_MEM_KEYS */
539
f43bb27e 540 major |= fault & VM_FAULT_MAJOR;
14c02e41
LD
541
542 /*
543 * Handle the retry right now, the mmap_sem has been released in that
544 * case.
545 */
546 if (unlikely(fault & VM_FAULT_RETRY)) {
547 /* We retry only once */
548 if (flags & FAULT_FLAG_ALLOW_RETRY) {
549 /*
550 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
551 * of starvation.
552 */
553 flags &= ~FAULT_FLAG_ALLOW_RETRY;
554 flags |= FAULT_FLAG_TRIED;
555 if (!fatal_signal_pending(current))
556 goto retry;
557 }
14c02e41 558
b5c8f0fd
BH
559 /*
560 * User mode? Just return to handle the fatal exception otherwise
561 * return to bad_page_fault
562 */
563 return is_user ? 0 : SIGBUS;
14cf11af 564 }
9be72573 565
b5c8f0fd
BH
566 up_read(&current->mm->mmap_sem);
567
568 if (unlikely(fault & VM_FAULT_ERROR))
569 return mm_fault_error(regs, address, fault);
570
9be72573 571 /*
14c02e41 572 * Major/minor page fault accounting.
9be72573 573 */
f43bb27e 574 if (major) {
14c02e41 575 current->maj_flt++;
04aafdc6 576 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
3da02648 577 cmo_account_page_fault();
14c02e41
LD
578 } else {
579 current->min_flt++;
04aafdc6 580 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 581 }
c3350602 582 return 0;
7afad422
BH
583}
584NOKPROBE_SYMBOL(__do_page_fault);
585
586int do_page_fault(struct pt_regs *regs, unsigned long address,
587 unsigned long error_code)
588{
589 enum ctx_state prev_state = exception_enter();
590 int rc = __do_page_fault(regs, address, error_code);
ba12eede
LZ
591 exception_exit(prev_state);
592 return rc;
14cf11af 593}
03465f89 594NOKPROBE_SYMBOL(do_page_fault);
14cf11af
PM
595
596/*
597 * bad_page_fault is called when we have a bad access from the kernel.
598 * It is called from the DSI and ISI handlers in head.S and from some
599 * of the procedures in traps.c.
600 */
601void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
602{
603 const struct exception_table_entry *entry;
604
605 /* Are we prepared to handle this fault? */
606 if ((entry = search_exception_tables(regs->nip)) != NULL) {
61a92f70 607 regs->nip = extable_fixup(entry);
14cf11af
PM
608 return;
609 }
610
611 /* kernel has accessed a bad area */
723925b7 612
2271db20 613 switch (TRAP(regs)) {
a416dd8d
ME
614 case 0x300:
615 case 0x380:
616 printk(KERN_ALERT "Unable to handle kernel paging request for "
617 "data at address 0x%08lx\n", regs->dar);
618 break;
619 case 0x400:
620 case 0x480:
621 printk(KERN_ALERT "Unable to handle kernel paging request for "
622 "instruction fetch\n");
623 break;
eab861a7
AB
624 case 0x600:
625 printk(KERN_ALERT "Unable to handle kernel paging request for "
626 "unaligned access at address 0x%08lx\n", regs->dar);
627 break;
a416dd8d
ME
628 default:
629 printk(KERN_ALERT "Unable to handle kernel paging request for "
630 "unknown fault\n");
631 break;
723925b7
OJ
632 }
633 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
634 regs->nip);
635
a70857e4 636 if (task_stack_end_corrupted(current))
28b54990
AB
637 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
638
14cf11af
PM
639 die("Kernel access of bad area", regs, sig);
640}