]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/mm/fault.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / fault.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
14cf11af
PM
18#include <linux/signal.h>
19#include <linux/sched.h>
68db0cf1 20#include <linux/sched/task_stack.h>
14cf11af
PM
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/string.h>
24#include <linux/types.h>
25#include <linux/ptrace.h>
26#include <linux/mman.h>
27#include <linux/mm.h>
28#include <linux/interrupt.h>
29#include <linux/highmem.h>
8a39b05f 30#include <linux/extable.h>
14cf11af 31#include <linux/kprobes.h>
1eeb66a1 32#include <linux/kdebug.h>
cdd6c482 33#include <linux/perf_event.h>
76462232 34#include <linux/ratelimit.h>
ba12eede 35#include <linux/context_tracking.h>
9d57472f 36#include <linux/hugetlb.h>
70ffdb93 37#include <linux/uaccess.h>
14cf11af 38
40900194 39#include <asm/firmware.h>
14cf11af
PM
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/mmu.h>
43#include <asm/mmu_context.h>
14cf11af 44#include <asm/tlbflush.h>
14cf11af 45#include <asm/siginfo.h>
ae3a197e 46#include <asm/debug.h>
4f9e87c0 47
c3dcf53a
JX
48#include "icswx.h"
49
9f90b997
CH
50#ifdef CONFIG_KPROBES
51static inline int notify_page_fault(struct pt_regs *regs)
4f9e87c0 52{
9f90b997
CH
53 int ret = 0;
54
55 /* kprobe_running() needs smp_processor_id() */
56 if (!user_mode(regs)) {
57 preempt_disable();
58 if (kprobe_running() && kprobe_fault_handler(regs, 11))
59 ret = 1;
60 preempt_enable();
61 }
4f9e87c0 62
9f90b997 63 return ret;
4f9e87c0
AK
64}
65#else
9f90b997 66static inline int notify_page_fault(struct pt_regs *regs)
4f9e87c0 67{
9f90b997 68 return 0;
4f9e87c0
AK
69}
70#endif
71
14cf11af
PM
72/*
73 * Check whether the instruction at regs->nip is a store using
74 * an update addressing form which will update r1.
75 */
76static int store_updates_sp(struct pt_regs *regs)
77{
78 unsigned int inst;
79
80 if (get_user(inst, (unsigned int __user *)regs->nip))
81 return 0;
82 /* check for 1 in the rA field */
83 if (((inst >> 16) & 0x1f) != 1)
84 return 0;
85 /* check major opcode */
86 switch (inst >> 26) {
87 case 37: /* stwu */
88 case 39: /* stbu */
89 case 45: /* sthu */
90 case 53: /* stfsu */
91 case 55: /* stfdu */
92 return 1;
93 case 62: /* std or stdu */
94 return (inst & 3) == 1;
95 case 31:
96 /* check minor opcode */
97 switch ((inst >> 1) & 0x3ff) {
98 case 181: /* stdux */
99 case 183: /* stwux */
100 case 247: /* stbux */
101 case 439: /* sthux */
102 case 695: /* stfsux */
103 case 759: /* stfdux */
104 return 1;
105 }
106 }
107 return 0;
108}
9be72573
BH
109/*
110 * do_page_fault error handling helpers
111 */
112
113#define MM_FAULT_RETURN 0
114#define MM_FAULT_CONTINUE -1
115#define MM_FAULT_ERR(sig) (sig)
116
3913fdd7
AB
117static int do_sigbus(struct pt_regs *regs, unsigned long address,
118 unsigned int fault)
9be72573
BH
119{
120 siginfo_t info;
9d57472f 121 unsigned int lsb = 0;
9be72573
BH
122
123 up_read(&current->mm->mmap_sem);
124
63af5262
AB
125 if (!user_mode(regs))
126 return MM_FAULT_ERR(SIGBUS);
127
128 current->thread.trap_nr = BUS_ADRERR;
129 info.si_signo = SIGBUS;
130 info.si_errno = 0;
131 info.si_code = BUS_ADRERR;
132 info.si_addr = (void __user *)address;
3913fdd7
AB
133#ifdef CONFIG_MEMORY_FAILURE
134 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
135 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
136 current->comm, current->pid, address);
137 info.si_code = BUS_MCEERR_AR;
138 }
9d57472f
AB
139
140 if (fault & VM_FAULT_HWPOISON_LARGE)
141 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
142 if (fault & VM_FAULT_HWPOISON)
143 lsb = PAGE_SHIFT;
3913fdd7 144#endif
9d57472f 145 info.si_addr_lsb = lsb;
63af5262
AB
146 force_sig_info(SIGBUS, &info, current);
147 return MM_FAULT_RETURN;
9be72573
BH
148}
149
150static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
151{
152 /*
153 * Pagefault was interrupted by SIGKILL. We have no reason to
154 * continue the pagefault.
155 */
156 if (fatal_signal_pending(current)) {
157 /*
158 * If we have retry set, the mmap semaphore will have
159 * alrady been released in __lock_page_or_retry(). Else
160 * we release it now.
161 */
162 if (!(fault & VM_FAULT_RETRY))
163 up_read(&current->mm->mmap_sem);
164 /* Coming from kernel, we need to deal with uaccess fixups */
165 if (user_mode(regs))
166 return MM_FAULT_RETURN;
167 return MM_FAULT_ERR(SIGKILL);
168 }
169
170 /* No fault: be happy */
171 if (!(fault & VM_FAULT_ERROR))
172 return MM_FAULT_CONTINUE;
173
174 /* Out of memory */
c2d23f91
DR
175 if (fault & VM_FAULT_OOM) {
176 up_read(&current->mm->mmap_sem);
177
178 /*
179 * We ran out of memory, or some other thing happened to us that
180 * made us unable to handle the page fault gracefully.
181 */
182 if (!user_mode(regs))
183 return MM_FAULT_ERR(SIGKILL);
184 pagefault_out_of_memory();
185 return MM_FAULT_RETURN;
186 }
9be72573 187
3913fdd7
AB
188 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
189 return do_sigbus(regs, addr, fault);
9be72573
BH
190
191 /* We don't understand the fault code, this is fatal */
192 BUG();
193 return MM_FAULT_CONTINUE;
194}
14cf11af 195
14cf11af
PM
196/*
197 * For 600- and 800-family processors, the error_code parameter is DSISR
198 * for a data fault, SRR1 for an instruction fault. For 400-family processors
199 * the error_code parameter is ESR for a data fault, 0 for an instruction
200 * fault.
201 * For 64-bit processors, the error_code parameter is
202 * - DSISR for a non-SLB data access fault,
203 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
204 * - 0 any SLB fault.
205 *
206 * The return value is 0 if the fault was handled, or the signal
207 * number if this is a kernel fault that can't be handled here.
208 */
03465f89 209int do_page_fault(struct pt_regs *regs, unsigned long address,
14cf11af
PM
210 unsigned long error_code)
211{
ba12eede 212 enum ctx_state prev_state = exception_enter();
14cf11af
PM
213 struct vm_area_struct * vma;
214 struct mm_struct *mm = current->mm;
9be72573 215 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
14cf11af 216 int code = SEGV_MAPERR;
9be72573 217 int is_write = 0;
14cf11af
PM
218 int trap = TRAP(regs);
219 int is_exec = trap == 0x400;
9be72573 220 int fault;
69e044dd 221 int rc = 0, store_update_sp = 0;
14cf11af
PM
222
223#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
224 /*
225 * Fortunately the bit assignments in SRR1 for an instruction
226 * fault and DSISR for a data fault are mostly the same for the
227 * bits we are interested in. But there are some bits which
228 * indicate errors in DSISR but can validly be set in SRR1.
229 */
230 if (trap == 0x400)
231 error_code &= 0x48200000;
232 else
233 is_write = error_code & DSISR_ISSTORE;
234#else
235 is_write = error_code & ESR_DST;
236#endif /* CONFIG_4xx || CONFIG_BOOKE */
237
c3dcf53a
JX
238#ifdef CONFIG_PPC_ICSWX
239 /*
240 * we need to do this early because this "data storage
241 * interrupt" does not update the DAR/DEAR so we don't want to
242 * look at it
243 */
244 if (error_code & ICSWX_DSI_UCT) {
ba12eede 245 rc = acop_handle_fault(regs, address, error_code);
9be72573 246 if (rc)
ba12eede 247 goto bail;
c3dcf53a 248 }
9be72573 249#endif /* CONFIG_PPC_ICSWX */
c3dcf53a 250
9f90b997 251 if (notify_page_fault(regs))
ba12eede 252 goto bail;
14cf11af 253
c3b75bd7 254 if (unlikely(debugger_fault_handler(regs)))
ba12eede 255 goto bail;
14cf11af 256
d7df2443
BH
257 /*
258 * The kernel should never take an execute fault nor should it
259 * take a page fault to a kernel address.
260 */
261 if (!user_mode(regs) && (is_exec || (address >= TASK_SIZE))) {
ba12eede
LZ
262 rc = SIGSEGV;
263 goto bail;
264 }
14cf11af 265
9c7cc234
P
266#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
267 defined(CONFIG_PPC_BOOK3S_64))
14cf11af 268 if (error_code & DSISR_DABRMATCH) {
9422de3e
MN
269 /* breakpoint match */
270 do_break(regs, address, error_code);
ba12eede 271 goto bail;
14cf11af 272 }
9c7cc234 273#endif
14cf11af 274
a546498f
BH
275 /* We restore the interrupt state now */
276 if (!arch_irq_disabled_regs(regs))
277 local_irq_enable();
278
70ffdb93 279 if (faulthandler_disabled() || mm == NULL) {
ba12eede
LZ
280 if (!user_mode(regs)) {
281 rc = SIGSEGV;
282 goto bail;
283 }
70ffdb93 284 /* faulthandler_disabled() in user mode is really bad,
14cf11af 285 as is current->mm == NULL. */
df3c9019 286 printk(KERN_EMERG "Page fault in user mode with "
70ffdb93
DH
287 "faulthandler_disabled() = %d mm = %p\n",
288 faulthandler_disabled(), mm);
14cf11af
PM
289 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
290 regs->nip, regs->msr);
291 die("Weird page fault", regs, SIGSEGV);
292 }
293
a8b0ca17 294 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 295
69e044dd
AK
296 /*
297 * We want to do this outside mmap_sem, because reading code around nip
298 * can result in fault, which will cause a deadlock when called with
299 * mmap_sem held
300 */
301 if (user_mode(regs))
302 store_update_sp = store_updates_sp(regs);
303
759496ba
JW
304 if (user_mode(regs))
305 flags |= FAULT_FLAG_USER;
306
14cf11af
PM
307 /* When running in the kernel we expect faults to occur only to
308 * addresses in user space. All other faults represent errors in the
fc5266ea
AB
309 * kernel and should generate an OOPS. Unfortunately, in the case of an
310 * erroneous fault occurring in a code path which already holds mmap_sem
14cf11af
PM
311 * we will deadlock attempting to validate the fault against the
312 * address space. Luckily the kernel only validly references user
313 * space from well defined areas of code, which are listed in the
314 * exceptions table.
315 *
316 * As the vast majority of faults will be valid we will only perform
fc5266ea 317 * the source reference check when there is a possibility of a deadlock.
14cf11af
PM
318 * Attempt to lock the address space, if we cannot we then validate the
319 * source. If this is invalid we can skip the address space check,
320 * thus avoiding the deadlock.
321 */
322 if (!down_read_trylock(&mm->mmap_sem)) {
323 if (!user_mode(regs) && !search_exception_tables(regs->nip))
324 goto bad_area_nosemaphore;
325
9be72573 326retry:
14cf11af 327 down_read(&mm->mmap_sem);
a546498f
BH
328 } else {
329 /*
330 * The above down_read_trylock() might have succeeded in
331 * which case we'll have missed the might_sleep() from
332 * down_read():
333 */
334 might_sleep();
14cf11af
PM
335 }
336
337 vma = find_vma(mm, address);
338 if (!vma)
339 goto bad_area;
340 if (vma->vm_start <= address)
341 goto good_area;
342 if (!(vma->vm_flags & VM_GROWSDOWN))
343 goto bad_area;
344
345 /*
346 * N.B. The POWER/Open ABI allows programs to access up to
347 * 288 bytes below the stack pointer.
348 * The kernel signal delivery code writes up to about 1.5kB
349 * below the stack pointer (r1) before decrementing it.
350 * The exec code can write slightly over 640kB to the stack
351 * before setting the user r1. Thus we allow the stack to
352 * expand to 1MB without further checks.
353 */
354 if (address + 0x100000 < vma->vm_end) {
355 /* get user regs even if this fault is in kernel mode */
356 struct pt_regs *uregs = current->thread.regs;
357 if (uregs == NULL)
358 goto bad_area;
359
360 /*
361 * A user-mode access to an address a long way below
362 * the stack pointer is only valid if the instruction
363 * is one which would update the stack pointer to the
364 * address accessed if the instruction completed,
365 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
366 * (or the byte, halfword, float or double forms).
367 *
368 * If we don't check this then any write to the area
369 * between the last mapped region and the stack will
370 * expand the stack rather than segfaulting.
371 */
69e044dd 372 if (address + 2048 < uregs->gpr[1] && !store_update_sp)
14cf11af
PM
373 goto bad_area;
374 }
375 if (expand_stack(vma, address))
376 goto bad_area;
377
378good_area:
379 code = SEGV_ACCERR;
380#if defined(CONFIG_6xx)
381 if (error_code & 0x95700000)
382 /* an error such as lwarx to I/O controller space,
383 address matching DABR, eciwx, etc. */
384 goto bad_area;
385#endif /* CONFIG_6xx */
386#if defined(CONFIG_8xx)
387 /* The MPC8xx seems to always set 0x80000000, which is
388 * "undefined". Of those that can be set, this is the only
389 * one which seems bad.
390 */
391 if (error_code & 0x10000000)
392 /* Guarded storage error. */
393 goto bad_area;
394#endif /* CONFIG_8xx */
395
396 if (is_exec) {
08ae6cc1
PM
397 /*
398 * Allow execution from readable areas if the MMU does not
399 * provide separate controls over reading and executing.
8d30c14c
BH
400 *
401 * Note: That code used to not be enabled for 4xx/BookE.
402 * It is now as I/D cache coherency for these is done at
403 * set_pte_at() time and I see no reason why the test
404 * below wouldn't be valid on those processors. This -may-
405 * break programs compiled with a really old ABI though.
08ae6cc1
PM
406 */
407 if (!(vma->vm_flags & VM_EXEC) &&
408 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
409 !(vma->vm_flags & (VM_READ | VM_WRITE))))
14cf11af 410 goto bad_area;
14cf11af
PM
411 /* a write */
412 } else if (is_write) {
413 if (!(vma->vm_flags & VM_WRITE))
414 goto bad_area;
759496ba 415 flags |= FAULT_FLAG_WRITE;
14cf11af
PM
416 /* a read */
417 } else {
df67b3da 418 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
14cf11af
PM
419 goto bad_area;
420 }
18061c17
AK
421#ifdef CONFIG_PPC_STD_MMU
422 /*
423 * For hash translation mode, we should never get a
424 * PROTFAULT. Any update to pte to reduce access will result in us
425 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
426 * fault instead of DSISR_PROTFAULT.
427 *
428 * A pte update to relax the access will not result in a hash page table
429 * entry invalidate and hence can result in DSISR_PROTFAULT.
430 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
431 * the special !is_write in the below conditional.
432 *
433 * For platforms that doesn't supports coherent icache and do support
434 * per page noexec bit, we do setup things such that we do the
435 * sync between D/I cache via fault. But that is handled via low level
436 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
437 * here in such case.
438 *
439 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
440 * check should handle those and hence we should fall to the bad_area
441 * handling correctly.
442 *
443 * For embedded with per page exec support that doesn't support coherent
444 * icache we do get PROTFAULT and we handle that D/I cache sync in
445 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
446 * is conditional for server MMU.
447 *
448 * For radix, we can get prot fault for autonuma case, because radix
449 * page table will have them marked noaccess for user.
450 */
451 if (!radix_enabled() && !is_write)
452 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
453#endif /* CONFIG_PPC_STD_MMU */
14cf11af
PM
454
455 /*
456 * If for any reason at all we couldn't handle the fault,
457 * make sure we exit gracefully rather than endlessly redo
458 * the fault.
459 */
dcddffd4 460 fault = handle_mm_fault(vma, address, flags);
9be72573 461 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
33692f27
LT
462 if (fault & VM_FAULT_SIGSEGV)
463 goto bad_area;
ba12eede 464 rc = mm_fault_error(regs, address, fault);
9be72573 465 if (rc >= MM_FAULT_RETURN)
ba12eede
LZ
466 goto bail;
467 else
468 rc = 0;
14cf11af 469 }
9be72573
BH
470
471 /*
472 * Major/minor page fault accounting is only done on the
473 * initial attempt. If we go through a retry, it is extremely
474 * likely that the page will be found in page cache at that point.
475 */
476 if (flags & FAULT_FLAG_ALLOW_RETRY) {
477 if (fault & VM_FAULT_MAJOR) {
478 current->maj_flt++;
479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
480 regs, address);
40900194 481#ifdef CONFIG_PPC_SMLPAR
9be72573 482 if (firmware_has_feature(FW_FEATURE_CMO)) {
7ffcf8ec
AB
483 u32 page_ins;
484
9be72573 485 preempt_disable();
7ffcf8ec
AB
486 page_ins = be32_to_cpu(get_lppaca()->page_ins);
487 page_ins += 1 << PAGE_FACTOR;
488 get_lppaca()->page_ins = cpu_to_be32(page_ins);
9be72573
BH
489 preempt_enable();
490 }
491#endif /* CONFIG_PPC_SMLPAR */
492 } else {
493 current->min_flt++;
494 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
495 regs, address);
496 }
497 if (fault & VM_FAULT_RETRY) {
498 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
499 * of starvation. */
500 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 501 flags |= FAULT_FLAG_TRIED;
9be72573 502 goto retry;
40900194 503 }
ac17dc8e 504 }
9be72573 505
14cf11af 506 up_read(&mm->mmap_sem);
ba12eede 507 goto bail;
14cf11af
PM
508
509bad_area:
510 up_read(&mm->mmap_sem);
511
512bad_area_nosemaphore:
513 /* User mode accesses cause a SIGSEGV */
514 if (user_mode(regs)) {
515 _exception(SIGSEGV, regs, code, address);
ba12eede 516 goto bail;
14cf11af
PM
517 }
518
76462232
CD
519 if (is_exec && (error_code & DSISR_PROTFAULT))
520 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
521 " page (%lx) - exploit attempt? (uid: %d)\n",
9e184e0a 522 address, from_kuid(&init_user_ns, current_uid()));
14cf11af 523
ba12eede
LZ
524 rc = SIGSEGV;
525
526bail:
527 exception_exit(prev_state);
528 return rc;
14cf11af 529}
03465f89 530NOKPROBE_SYMBOL(do_page_fault);
14cf11af
PM
531
532/*
533 * bad_page_fault is called when we have a bad access from the kernel.
534 * It is called from the DSI and ISI handlers in head.S and from some
535 * of the procedures in traps.c.
536 */
537void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
538{
539 const struct exception_table_entry *entry;
540
541 /* Are we prepared to handle this fault? */
542 if ((entry = search_exception_tables(regs->nip)) != NULL) {
61a92f70 543 regs->nip = extable_fixup(entry);
14cf11af
PM
544 return;
545 }
546
547 /* kernel has accessed a bad area */
723925b7 548
723925b7 549 switch (regs->trap) {
a416dd8d
ME
550 case 0x300:
551 case 0x380:
552 printk(KERN_ALERT "Unable to handle kernel paging request for "
553 "data at address 0x%08lx\n", regs->dar);
554 break;
555 case 0x400:
556 case 0x480:
557 printk(KERN_ALERT "Unable to handle kernel paging request for "
558 "instruction fetch\n");
559 break;
eab861a7
AB
560 case 0x600:
561 printk(KERN_ALERT "Unable to handle kernel paging request for "
562 "unaligned access at address 0x%08lx\n", regs->dar);
563 break;
a416dd8d
ME
564 default:
565 printk(KERN_ALERT "Unable to handle kernel paging request for "
566 "unknown fault\n");
567 break;
723925b7
OJ
568 }
569 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
570 regs->nip);
571
a70857e4 572 if (task_stack_end_corrupted(current))
28b54990
AB
573 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
574
14cf11af
PM
575 die("Kernel access of bad area", regs, sig);
576}