]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/mm/hugetlbpage.c
mm: report the pagesize backing a VMA in /proc/pid/smaps
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4
LT
1/*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10#include <linux/init.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/hugetlb.h>
14#include <linux/pagemap.h>
1da177e4
LT
15#include <linux/slab.h>
16#include <linux/err.h>
17#include <linux/sysctl.h>
18#include <asm/mman.h>
19#include <asm/pgalloc.h>
20#include <asm/tlb.h>
21#include <asm/tlbflush.h>
22#include <asm/mmu_context.h>
23#include <asm/machdep.h>
24#include <asm/cputable.h>
94b2a439 25#include <asm/spu.h>
1da177e4 26
91224346
JT
27#define PAGE_SHIFT_64K 16
28#define PAGE_SHIFT_16M 24
29#define PAGE_SHIFT_16G 34
4ec161cf 30
c594adad
DG
31#define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
32#define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
ec4b2c0c
JT
33#define MAX_NUMBER_GPAGES 1024
34
35/* Tracks the 16G pages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. */
37static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
38static unsigned nr_gpages;
c594adad 39
0d9ea754
JT
40/* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41 * stored for the huge page sizes that are valid.
42 */
43unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */
44
45#define hugepte_shift mmu_huge_psizes
46#define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize])
47#define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize])
48
49#define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \
50 + hugepte_shift[psize])
51#define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize))
52#define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1))
f10a04c0 53
0d9ea754
JT
54/* Subtract one from array size because we don't need a cache for 4K since
55 * is not a huge page size */
7d4320f3 56#define HUGE_PGTABLE_INDEX(psize) (HUGEPTE_CACHE_NUM + psize - 1)
0d9ea754 57#define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize])
f10a04c0 58
0d9ea754
JT
59static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = {
60 "unused_4K", "hugepte_cache_64K", "unused_64K_AP",
61 "hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G"
62};
f10a04c0
DG
63
64/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
65 * will choke on pointers to hugepte tables, which is handy for
66 * catching screwups early. */
67#define HUGEPD_OK 0x1
68
69typedef struct { unsigned long pd; } hugepd_t;
70
71#define hugepd_none(hpd) ((hpd).pd == 0)
72
0d9ea754
JT
73static inline int shift_to_mmu_psize(unsigned int shift)
74{
75 switch (shift) {
76#ifndef CONFIG_PPC_64K_PAGES
77 case PAGE_SHIFT_64K:
78 return MMU_PAGE_64K;
79#endif
80 case PAGE_SHIFT_16M:
81 return MMU_PAGE_16M;
82 case PAGE_SHIFT_16G:
83 return MMU_PAGE_16G;
84 }
85 return -1;
86}
87
88static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
89{
90 if (mmu_psize_defs[mmu_psize].shift)
91 return mmu_psize_defs[mmu_psize].shift;
92 BUG();
93}
94
f10a04c0
DG
95static inline pte_t *hugepd_page(hugepd_t hpd)
96{
97 BUG_ON(!(hpd.pd & HUGEPD_OK));
98 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
99}
100
0d9ea754
JT
101static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
102 struct hstate *hstate)
f10a04c0 103{
0d9ea754
JT
104 unsigned int shift = huge_page_shift(hstate);
105 int psize = shift_to_mmu_psize(shift);
106 unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
f10a04c0
DG
107 pte_t *dir = hugepd_page(*hpdp);
108
109 return dir + idx;
110}
111
112static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
0d9ea754 113 unsigned long address, unsigned int psize)
f10a04c0 114{
7d4320f3 115 pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)],
f10a04c0
DG
116 GFP_KERNEL|__GFP_REPEAT);
117
118 if (! new)
119 return -ENOMEM;
120
121 spin_lock(&mm->page_table_lock);
122 if (!hugepd_none(*hpdp))
7d4320f3 123 kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new);
f10a04c0
DG
124 else
125 hpdp->pd = (unsigned long)new | HUGEPD_OK;
126 spin_unlock(&mm->page_table_lock);
127 return 0;
128}
129
0b26425c
DG
130
131static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
132{
133 if (huge_page_shift(hstate) < PUD_SHIFT)
134 return pud_offset(pgd, addr);
135 else
136 return (pud_t *) pgd;
137}
138static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
139 struct hstate *hstate)
4ec161cf 140{
0b26425c
DG
141 if (huge_page_shift(hstate) < PUD_SHIFT)
142 return pud_alloc(mm, pgd, addr);
143 else
144 return (pud_t *) pgd;
145}
146static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
147{
148 if (huge_page_shift(hstate) < PMD_SHIFT)
4ec161cf
JT
149 return pmd_offset(pud, addr);
150 else
151 return (pmd_t *) pud;
152}
0b26425c
DG
153static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
154 struct hstate *hstate)
4ec161cf 155{
0b26425c 156 if (huge_page_shift(hstate) < PMD_SHIFT)
4ec161cf
JT
157 return pmd_alloc(mm, pud, addr);
158 else
159 return (pmd_t *) pud;
160}
4ec161cf 161
658013e9
JT
162/* Build list of addresses of gigantic pages. This function is used in early
163 * boot before the buddy or bootmem allocator is setup.
164 */
165void add_gpage(unsigned long addr, unsigned long page_size,
166 unsigned long number_of_pages)
167{
168 if (!addr)
169 return;
170 while (number_of_pages > 0) {
171 gpage_freearray[nr_gpages] = addr;
172 nr_gpages++;
173 number_of_pages--;
174 addr += page_size;
175 }
176}
177
ec4b2c0c 178/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
179 * huge_boot_pages list.
180 */
181int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
182{
183 struct huge_bootmem_page *m;
184 if (nr_gpages == 0)
185 return 0;
186 m = phys_to_virt(gpage_freearray[--nr_gpages]);
187 gpage_freearray[nr_gpages] = 0;
188 list_add(&m->list, &huge_boot_pages);
0d9ea754 189 m->hstate = hstate;
ec4b2c0c
JT
190 return 1;
191}
192
193
e28f7faf
DG
194/* Modelled after find_linux_pte() */
195pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
1da177e4 196{
e28f7faf
DG
197 pgd_t *pg;
198 pud_t *pu;
4ec161cf 199 pmd_t *pm;
1da177e4 200
0d9ea754
JT
201 unsigned int psize;
202 unsigned int shift;
203 unsigned long sz;
204 struct hstate *hstate;
205 psize = get_slice_psize(mm, addr);
206 shift = mmu_psize_to_shift(psize);
207 sz = ((1UL) << shift);
208 hstate = size_to_hstate(sz);
1da177e4 209
0d9ea754 210 addr &= hstate->mask;
e28f7faf
DG
211
212 pg = pgd_offset(mm, addr);
213 if (!pgd_none(*pg)) {
0b26425c 214 pu = hpud_offset(pg, addr, hstate);
e28f7faf 215 if (!pud_none(*pu)) {
0d9ea754 216 pm = hpmd_offset(pu, addr, hstate);
f10a04c0 217 if (!pmd_none(*pm))
0d9ea754
JT
218 return hugepte_offset((hugepd_t *)pm, addr,
219 hstate);
e28f7faf
DG
220 }
221 }
1da177e4 222
e28f7faf 223 return NULL;
1da177e4
LT
224}
225
a5516438
AK
226pte_t *huge_pte_alloc(struct mm_struct *mm,
227 unsigned long addr, unsigned long sz)
1da177e4 228{
e28f7faf
DG
229 pgd_t *pg;
230 pud_t *pu;
4ec161cf 231 pmd_t *pm;
f10a04c0 232 hugepd_t *hpdp = NULL;
0d9ea754
JT
233 struct hstate *hstate;
234 unsigned int psize;
235 hstate = size_to_hstate(sz);
1da177e4 236
0d9ea754
JT
237 psize = get_slice_psize(mm, addr);
238 BUG_ON(!mmu_huge_psizes[psize]);
1da177e4 239
0d9ea754 240 addr &= hstate->mask;
1da177e4 241
e28f7faf 242 pg = pgd_offset(mm, addr);
0b26425c 243 pu = hpud_alloc(mm, pg, addr, hstate);
1da177e4 244
e28f7faf 245 if (pu) {
0d9ea754 246 pm = hpmd_alloc(mm, pu, addr, hstate);
f10a04c0
DG
247 if (pm)
248 hpdp = (hugepd_t *)pm;
f10a04c0
DG
249 }
250
251 if (! hpdp)
252 return NULL;
253
0d9ea754 254 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
f10a04c0
DG
255 return NULL;
256
0d9ea754 257 return hugepte_offset(hpdp, addr, hstate);
f10a04c0
DG
258}
259
39dde65c
KC
260int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
261{
262 return 0;
263}
264
0d9ea754
JT
265static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
266 unsigned int psize)
f10a04c0
DG
267{
268 pte_t *hugepte = hugepd_page(*hpdp);
269
270 hpdp->pd = 0;
271 tlb->need_flush = 1;
0d9ea754
JT
272 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte,
273 HUGEPTE_CACHE_NUM+psize-1,
c9169f87 274 PGF_CACHENUM_MASK));
f10a04c0
DG
275}
276
f10a04c0
DG
277static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
278 unsigned long addr, unsigned long end,
0d9ea754
JT
279 unsigned long floor, unsigned long ceiling,
280 unsigned int psize)
f10a04c0
DG
281{
282 pmd_t *pmd;
283 unsigned long next;
284 unsigned long start;
285
286 start = addr;
287 pmd = pmd_offset(pud, addr);
288 do {
289 next = pmd_addr_end(addr, end);
290 if (pmd_none(*pmd))
291 continue;
0d9ea754 292 free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
f10a04c0
DG
293 } while (pmd++, addr = next, addr != end);
294
295 start &= PUD_MASK;
296 if (start < floor)
297 return;
298 if (ceiling) {
299 ceiling &= PUD_MASK;
300 if (!ceiling)
301 return;
1da177e4 302 }
f10a04c0
DG
303 if (end - 1 > ceiling - 1)
304 return;
1da177e4 305
f10a04c0
DG
306 pmd = pmd_offset(pud, start);
307 pud_clear(pud);
308 pmd_free_tlb(tlb, pmd);
309}
f10a04c0
DG
310
311static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
312 unsigned long addr, unsigned long end,
313 unsigned long floor, unsigned long ceiling)
314{
315 pud_t *pud;
316 unsigned long next;
317 unsigned long start;
0d9ea754
JT
318 unsigned int shift;
319 unsigned int psize = get_slice_psize(tlb->mm, addr);
320 shift = mmu_psize_to_shift(psize);
f10a04c0
DG
321
322 start = addr;
323 pud = pud_offset(pgd, addr);
324 do {
325 next = pud_addr_end(addr, end);
0b26425c 326 if (shift < PMD_SHIFT) {
4ec161cf
JT
327 if (pud_none_or_clear_bad(pud))
328 continue;
0d9ea754
JT
329 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
330 ceiling, psize);
4ec161cf
JT
331 } else {
332 if (pud_none(*pud))
333 continue;
0d9ea754 334 free_hugepte_range(tlb, (hugepd_t *)pud, psize);
4ec161cf 335 }
f10a04c0
DG
336 } while (pud++, addr = next, addr != end);
337
338 start &= PGDIR_MASK;
339 if (start < floor)
340 return;
341 if (ceiling) {
342 ceiling &= PGDIR_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 return;
348
349 pud = pud_offset(pgd, start);
350 pgd_clear(pgd);
351 pud_free_tlb(tlb, pud);
352}
353
354/*
355 * This function frees user-level page tables of a process.
356 *
357 * Must be called with pagetable lock held.
358 */
42b77728 359void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
360 unsigned long addr, unsigned long end,
361 unsigned long floor, unsigned long ceiling)
362{
363 pgd_t *pgd;
364 unsigned long next;
365 unsigned long start;
366
367 /*
368 * Comments below take from the normal free_pgd_range(). They
369 * apply here too. The tests against HUGEPD_MASK below are
370 * essential, because we *don't* test for this at the bottom
371 * level. Without them we'll attempt to free a hugepte table
372 * when we unmap just part of it, even if there are other
373 * active mappings using it.
374 *
375 * The next few lines have given us lots of grief...
376 *
377 * Why are we testing HUGEPD* at this top level? Because
378 * often there will be no work to do at all, and we'd prefer
379 * not to go all the way down to the bottom just to discover
380 * that.
381 *
382 * Why all these "- 1"s? Because 0 represents both the bottom
383 * of the address space and the top of it (using -1 for the
384 * top wouldn't help much: the masks would do the wrong thing).
385 * The rule is that addr 0 and floor 0 refer to the bottom of
386 * the address space, but end 0 and ceiling 0 refer to the top
387 * Comparisons need to use "end - 1" and "ceiling - 1" (though
388 * that end 0 case should be mythical).
389 *
390 * Wherever addr is brought up or ceiling brought down, we
391 * must be careful to reject "the opposite 0" before it
392 * confuses the subsequent tests. But what about where end is
393 * brought down by HUGEPD_SIZE below? no, end can't go down to
394 * 0 there.
395 *
396 * Whereas we round start (addr) and ceiling down, by different
397 * masks at different levels, in order to test whether a table
398 * now has no other vmas using it, so can be freed, we don't
399 * bother to round floor or end up - the tests don't need that.
400 */
0d9ea754 401 unsigned int psize = get_slice_psize(tlb->mm, addr);
f10a04c0 402
0d9ea754 403 addr &= HUGEPD_MASK(psize);
f10a04c0 404 if (addr < floor) {
0d9ea754 405 addr += HUGEPD_SIZE(psize);
f10a04c0
DG
406 if (!addr)
407 return;
408 }
409 if (ceiling) {
0d9ea754 410 ceiling &= HUGEPD_MASK(psize);
f10a04c0
DG
411 if (!ceiling)
412 return;
413 }
414 if (end - 1 > ceiling - 1)
0d9ea754 415 end -= HUGEPD_SIZE(psize);
f10a04c0
DG
416 if (addr > end - 1)
417 return;
418
419 start = addr;
42b77728 420 pgd = pgd_offset(tlb->mm, addr);
f10a04c0 421 do {
0d9ea754
JT
422 psize = get_slice_psize(tlb->mm, addr);
423 BUG_ON(!mmu_huge_psizes[psize]);
f10a04c0 424 next = pgd_addr_end(addr, end);
0b26425c
DG
425 if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
426 if (pgd_none_or_clear_bad(pgd))
427 continue;
428 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
429 } else {
430 if (pgd_none(*pgd))
431 continue;
432 free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
433 }
f10a04c0 434 } while (pgd++, addr = next, addr != end);
1da177e4
LT
435}
436
e28f7faf
DG
437void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
438 pte_t *ptep, pte_t pte)
439{
e28f7faf 440 if (pte_present(*ptep)) {
3c726f8d 441 /* We open-code pte_clear because we need to pass the right
a741e679
BH
442 * argument to hpte_need_flush (huge / !huge). Might not be
443 * necessary anymore if we make hpte_need_flush() get the
444 * page size from the slices
3c726f8d 445 */
0d9ea754
JT
446 unsigned int psize = get_slice_psize(mm, addr);
447 unsigned int shift = mmu_psize_to_shift(psize);
448 unsigned long sz = ((1UL) << shift);
449 struct hstate *hstate = size_to_hstate(sz);
450 pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1);
e28f7faf 451 }
3c726f8d 452 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
1da177e4
LT
453}
454
e28f7faf
DG
455pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
456 pte_t *ptep)
1da177e4 457{
a741e679 458 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
e28f7faf 459 return __pte(old);
1da177e4
LT
460}
461
1da177e4
LT
462struct page *
463follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
464{
465 pte_t *ptep;
466 struct page *page;
0d9ea754 467 unsigned int mmu_psize = get_slice_psize(mm, address);
1da177e4 468
0d9ea754
JT
469 /* Verify it is a huge page else bail. */
470 if (!mmu_huge_psizes[mmu_psize])
1da177e4
LT
471 return ERR_PTR(-EINVAL);
472
473 ptep = huge_pte_offset(mm, address);
474 page = pte_page(*ptep);
0d9ea754
JT
475 if (page) {
476 unsigned int shift = mmu_psize_to_shift(mmu_psize);
477 unsigned long sz = ((1UL) << shift);
478 page += (address % sz) / PAGE_SIZE;
479 }
1da177e4
LT
480
481 return page;
482}
483
484int pmd_huge(pmd_t pmd)
485{
486 return 0;
487}
488
ceb86879
AK
489int pud_huge(pud_t pud)
490{
491 return 0;
492}
493
1da177e4
LT
494struct page *
495follow_huge_pmd(struct mm_struct *mm, unsigned long address,
496 pmd_t *pmd, int write)
497{
498 BUG();
499 return NULL;
500}
501
1da177e4
LT
502
503unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
504 unsigned long len, unsigned long pgoff,
505 unsigned long flags)
506{
0d9ea754
JT
507 struct hstate *hstate = hstate_file(file);
508 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de
BK
509
510 if (!mmu_huge_psizes[mmu_psize])
511 return -EINVAL;
0d9ea754 512 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
1da177e4
LT
513}
514
cbf52afd
DG
515/*
516 * Called by asm hashtable.S for doing lazy icache flush
517 */
518static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
0d9ea754 519 pte_t pte, int trap, unsigned long sz)
cbf52afd
DG
520{
521 struct page *page;
522 int i;
523
524 if (!pfn_valid(pte_pfn(pte)))
525 return rflags;
526
527 page = pte_page(pte);
528
529 /* page is dirty */
530 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
531 if (trap == 0x400) {
0d9ea754 532 for (i = 0; i < (sz / PAGE_SIZE); i++)
cbf52afd
DG
533 __flush_dcache_icache(page_address(page+i));
534 set_bit(PG_arch_1, &page->flags);
535 } else {
536 rflags |= HPTE_R_N;
537 }
538 }
539 return rflags;
540}
541
1da177e4 542int hash_huge_page(struct mm_struct *mm, unsigned long access,
cbf52afd
DG
543 unsigned long ea, unsigned long vsid, int local,
544 unsigned long trap)
1da177e4
LT
545{
546 pte_t *ptep;
3c726f8d 547 unsigned long old_pte, new_pte;
0d9ea754 548 unsigned long va, rflags, pa, sz;
1da177e4
LT
549 long slot;
550 int err = 1;
1189be65 551 int ssize = user_segment_size(ea);
0d9ea754
JT
552 unsigned int mmu_psize;
553 int shift;
554 mmu_psize = get_slice_psize(mm, ea);
1da177e4 555
0d9ea754
JT
556 if (!mmu_huge_psizes[mmu_psize])
557 goto out;
1da177e4
LT
558 ptep = huge_pte_offset(mm, ea);
559
560 /* Search the Linux page table for a match with va */
1189be65 561 va = hpt_va(ea, vsid, ssize);
1da177e4
LT
562
563 /*
564 * If no pte found or not present, send the problem up to
565 * do_page_fault
566 */
567 if (unlikely(!ptep || pte_none(*ptep)))
568 goto out;
569
1da177e4
LT
570 /*
571 * Check the user's access rights to the page. If access should be
572 * prevented then send the problem up to do_page_fault.
573 */
574 if (unlikely(access & ~pte_val(*ptep)))
575 goto out;
576 /*
577 * At this point, we have a pte (old_pte) which can be used to build
578 * or update an HPTE. There are 2 cases:
579 *
580 * 1. There is a valid (present) pte with no associated HPTE (this is
581 * the most common case)
582 * 2. There is a valid (present) pte with an associated HPTE. The
583 * current values of the pp bits in the HPTE prevent access
584 * because we are doing software DIRTY bit management and the
585 * page is currently not DIRTY.
586 */
587
588
3c726f8d
BH
589 do {
590 old_pte = pte_val(*ptep);
591 if (old_pte & _PAGE_BUSY)
592 goto out;
41743a4e 593 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
3c726f8d
BH
594 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
595 old_pte, new_pte));
596
597 rflags = 0x2 | (!(new_pte & _PAGE_RW));
1da177e4 598 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
3c726f8d 599 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
0d9ea754
JT
600 shift = mmu_psize_to_shift(mmu_psize);
601 sz = ((1UL) << shift);
cbf52afd
DG
602 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
603 /* No CPU has hugepages but lacks no execute, so we
604 * don't need to worry about that case */
605 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
0d9ea754 606 trap, sz);
1da177e4
LT
607
608 /* Check if pte already has an hpte (case 2) */
3c726f8d 609 if (unlikely(old_pte & _PAGE_HASHPTE)) {
1da177e4
LT
610 /* There MIGHT be an HPTE for this pte */
611 unsigned long hash, slot;
612
0d9ea754 613 hash = hpt_hash(va, shift, ssize);
3c726f8d 614 if (old_pte & _PAGE_F_SECOND)
1da177e4
LT
615 hash = ~hash;
616 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
3c726f8d 617 slot += (old_pte & _PAGE_F_GIX) >> 12;
1da177e4 618
0d9ea754 619 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
1189be65 620 ssize, local) == -1)
3c726f8d 621 old_pte &= ~_PAGE_HPTEFLAGS;
1da177e4
LT
622 }
623
3c726f8d 624 if (likely(!(old_pte & _PAGE_HASHPTE))) {
0d9ea754 625 unsigned long hash = hpt_hash(va, shift, ssize);
1da177e4
LT
626 unsigned long hpte_group;
627
3c726f8d 628 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
1da177e4
LT
629
630repeat:
631 hpte_group = ((hash & htab_hash_mask) *
632 HPTES_PER_GROUP) & ~0x7UL;
633
3c726f8d 634 /* clear HPTE slot informations in new PTE */
41743a4e
BH
635#ifdef CONFIG_PPC_64K_PAGES
636 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
637#else
3c726f8d 638 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
41743a4e 639#endif
1da177e4 640 /* Add in WIMG bits */
87e9ab13
DK
641 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
642 _PAGE_COHERENT | _PAGE_GUARDED));
1da177e4 643
3c726f8d
BH
644 /* Insert into the hash table, primary slot */
645 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
0d9ea754 646 mmu_psize, ssize);
1da177e4
LT
647
648 /* Primary is full, try the secondary */
649 if (unlikely(slot == -1)) {
1da177e4
LT
650 hpte_group = ((~hash & htab_hash_mask) *
651 HPTES_PER_GROUP) & ~0x7UL;
3c726f8d 652 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
67b10813 653 HPTE_V_SECONDARY,
0d9ea754 654 mmu_psize, ssize);
1da177e4
LT
655 if (slot == -1) {
656 if (mftb() & 0x1)
67b10813
BH
657 hpte_group = ((hash & htab_hash_mask) *
658 HPTES_PER_GROUP)&~0x7UL;
1da177e4
LT
659
660 ppc_md.hpte_remove(hpte_group);
661 goto repeat;
662 }
663 }
664
665 if (unlikely(slot == -2))
666 panic("hash_huge_page: pte_insert failed\n");
667
d649bd7b 668 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
1da177e4
LT
669 }
670
3c726f8d 671 /*
01edcd89 672 * No need to use ldarx/stdcx here
3c726f8d
BH
673 */
674 *ptep = __pte(new_pte & ~_PAGE_BUSY);
675
1da177e4
LT
676 err = 0;
677
678 out:
1da177e4
LT
679 return err;
680}
f10a04c0 681
4ea8fb9c 682static void __init set_huge_psize(int psize)
4ec161cf
JT
683{
684 /* Check that it is a page size supported by the hardware and
685 * that it fits within pagetable limits. */
91224346
JT
686 if (mmu_psize_defs[psize].shift &&
687 mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
4ec161cf 688 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
91224346
JT
689 mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
690 mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
0d9ea754
JT
691 /* Return if huge page size has already been setup or is the
692 * same as the base page size. */
693 if (mmu_huge_psizes[psize] ||
694 mmu_psize_defs[psize].shift == PAGE_SHIFT)
91224346 695 return;
0d9ea754 696 hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
91224346 697
0d9ea754 698 switch (mmu_psize_defs[psize].shift) {
91224346
JT
699 case PAGE_SHIFT_64K:
700 /* We only allow 64k hpages with 4k base page,
701 * which was checked above, and always put them
702 * at the PMD */
0d9ea754 703 hugepte_shift[psize] = PMD_SHIFT;
91224346
JT
704 break;
705 case PAGE_SHIFT_16M:
706 /* 16M pages can be at two different levels
707 * of pagestables based on base page size */
708 if (PAGE_SHIFT == PAGE_SHIFT_64K)
0d9ea754 709 hugepte_shift[psize] = PMD_SHIFT;
91224346 710 else /* 4k base page */
0d9ea754 711 hugepte_shift[psize] = PUD_SHIFT;
91224346
JT
712 break;
713 case PAGE_SHIFT_16G:
714 /* 16G pages are always at PGD level */
0d9ea754 715 hugepte_shift[psize] = PGDIR_SHIFT;
91224346
JT
716 break;
717 }
0d9ea754 718 hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
4ec161cf 719 } else
0d9ea754 720 hugepte_shift[psize] = 0;
4ec161cf
JT
721}
722
723static int __init hugepage_setup_sz(char *str)
724{
725 unsigned long long size;
0d9ea754 726 int mmu_psize;
4ec161cf
JT
727 int shift;
728
729 size = memparse(str, &str);
730
731 shift = __ffs(size);
0d9ea754
JT
732 mmu_psize = shift_to_mmu_psize(shift);
733 if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
4ec161cf
JT
734 set_huge_psize(mmu_psize);
735 else
736 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
737
738 return 1;
739}
740__setup("hugepagesz=", hugepage_setup_sz);
741
f10a04c0
DG
742static int __init hugetlbpage_init(void)
743{
0d9ea754
JT
744 unsigned int psize;
745
f10a04c0
DG
746 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
747 return -ENODEV;
00df438e 748
0d9ea754
JT
749 /* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE
750 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
751 * sizes changes.
752 */
753 set_huge_psize(MMU_PAGE_16M);
0d9ea754
JT
754 set_huge_psize(MMU_PAGE_16G);
755
00df438e
BH
756 /* Temporarily disable support for 64K huge pages when 64K SPU local
757 * store support is enabled as the current implementation conflicts.
758 */
759#ifndef CONFIG_SPU_FS_64K_LS
760 set_huge_psize(MMU_PAGE_64K);
761#endif
762
0d9ea754
JT
763 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
764 if (mmu_huge_psizes[psize]) {
7d4320f3
JT
765 pgtable_cache[HUGE_PGTABLE_INDEX(psize)] =
766 kmem_cache_create(
767 HUGEPTE_CACHE_NAME(psize),
768 HUGEPTE_TABLE_SIZE(psize),
769 HUGEPTE_TABLE_SIZE(psize),
770 0,
771 NULL);
772 if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)])
0d9ea754
JT
773 panic("hugetlbpage_init(): could not create %s"\
774 "\n", HUGEPTE_CACHE_NAME(psize));
775 }
776 }
f10a04c0
DG
777
778 return 0;
779}
780
781module_init(hugetlbpage_init);