]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/mm/hugetlbpage.c
powerpc: Make sure "cache" directory is removed when offlining cpu
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4 1/*
41151e77 2 * PPC Huge TLB Page Support for Kernel.
1da177e4
LT
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
41151e77 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
1da177e4
LT
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
1da177e4 11#include <linux/mm.h>
883a3e52 12#include <linux/io.h>
5a0e3ad6 13#include <linux/slab.h>
1da177e4 14#include <linux/hugetlb.h>
342d3db7 15#include <linux/export.h>
41151e77
BB
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
13020be8 19#include <linux/moduleparam.h>
883a3e52 20#include <asm/pgtable.h>
1da177e4
LT
21#include <asm/pgalloc.h>
22#include <asm/tlb.h>
41151e77 23#include <asm/setup.h>
29409997
AK
24#include <asm/hugetlb.h>
25
26#ifdef CONFIG_HUGETLB_PAGE
1da177e4 27
91224346
JT
28#define PAGE_SHIFT_64K 16
29#define PAGE_SHIFT_16M 24
30#define PAGE_SHIFT_16G 34
4ec161cf 31
41151e77 32unsigned int HPAGE_SHIFT;
ec4b2c0c 33
41151e77
BB
34/*
35 * Tracks gpages after the device tree is scanned and before the
a6146888
BB
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41151e77 40 */
881fde1d 41#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
42#define MAX_NUMBER_GPAGES 128
43struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46};
47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
881fde1d
BB
48#else
49#define MAX_NUMBER_GPAGES 1024
50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51static unsigned nr_gpages;
41151e77 52#endif
f10a04c0 53
a4fe3ce7
DG
54#define hugepd_none(hpd) ((hpd).pd == 0)
55
e2b3d202
AK
56#ifdef CONFIG_PPC_BOOK3S_64
57/*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62/*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 */
66int pmd_huge(pmd_t pmd)
67{
68 /*
69 * leaf pte for huge page, bottom two bits != 00
70 */
71 return ((pmd_val(pmd) & 0x3) != 0x0);
72}
73
74int pud_huge(pud_t pud)
75{
76 /*
77 * leaf pte for huge page, bottom two bits != 00
78 */
79 return ((pud_val(pud) & 0x3) != 0x0);
80}
81
82int pgd_huge(pgd_t pgd)
83{
84 /*
85 * leaf pte for huge page, bottom two bits != 00
86 */
87 return ((pgd_val(pgd) & 0x3) != 0x0);
88}
83467efb
NH
89
90int pmd_huge_support(void)
91{
92 return 1;
93}
e2b3d202
AK
94#else
95int pmd_huge(pmd_t pmd)
96{
97 return 0;
98}
99
100int pud_huge(pud_t pud)
101{
102 return 0;
103}
104
105int pgd_huge(pgd_t pgd)
106{
107 return 0;
108}
83467efb
NH
109
110int pmd_huge_support(void)
111{
112 return 0;
113}
e2b3d202
AK
114#endif
115
a4fe3ce7
DG
116pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
117{
12bc9f6f 118 /* Only called for hugetlbfs pages, hence can ignore THP */
a4fe3ce7
DG
119 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
120}
121
f10a04c0 122static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
a4fe3ce7 123 unsigned long address, unsigned pdshift, unsigned pshift)
f10a04c0 124{
41151e77
BB
125 struct kmem_cache *cachep;
126 pte_t *new;
127
881fde1d 128#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
129 int i;
130 int num_hugepd = 1 << (pshift - pdshift);
131 cachep = hugepte_cache;
881fde1d
BB
132#else
133 cachep = PGT_CACHE(pdshift - pshift);
41151e77
BB
134#endif
135
136 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
f10a04c0 137
a4fe3ce7
DG
138 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
139 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
140
f10a04c0
DG
141 if (! new)
142 return -ENOMEM;
143
144 spin_lock(&mm->page_table_lock);
881fde1d 145#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
146 /*
147 * We have multiple higher-level entries that point to the same
148 * actual pte location. Fill in each as we go and backtrack on error.
149 * We need all of these so the DTLB pgtable walk code can find the
150 * right higher-level entry without knowing if it's a hugepage or not.
151 */
152 for (i = 0; i < num_hugepd; i++, hpdp++) {
153 if (unlikely(!hugepd_none(*hpdp)))
154 break;
155 else
cf9427b8 156 /* We use the old format for PPC_FSL_BOOK3E */
41151e77
BB
157 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
158 }
159 /* If we bailed from the for loop early, an error occurred, clean up */
160 if (i < num_hugepd) {
161 for (i = i - 1 ; i >= 0; i--, hpdp--)
162 hpdp->pd = 0;
163 kmem_cache_free(cachep, new);
164 }
a1cd5419
BB
165#else
166 if (!hugepd_none(*hpdp))
167 kmem_cache_free(cachep, new);
cf9427b8
AK
168 else {
169#ifdef CONFIG_PPC_BOOK3S_64
170 hpdp->pd = (unsigned long)new |
171 (shift_to_mmu_psize(pshift) << 2);
172#else
a1cd5419 173 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
cf9427b8
AK
174#endif
175 }
41151e77 176#endif
f10a04c0
DG
177 spin_unlock(&mm->page_table_lock);
178 return 0;
179}
180
a1cd5419
BB
181/*
182 * These macros define how to determine which level of the page table holds
183 * the hpdp.
184 */
185#ifdef CONFIG_PPC_FSL_BOOK3E
186#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
187#define HUGEPD_PUD_SHIFT PUD_SHIFT
188#else
189#define HUGEPD_PGD_SHIFT PUD_SHIFT
190#define HUGEPD_PUD_SHIFT PMD_SHIFT
191#endif
192
e2b3d202
AK
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * At this point we do the placement change only for BOOK3S 64. This would
196 * possibly work on other subarchs.
197 */
198pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
199{
200 pgd_t *pg;
201 pud_t *pu;
202 pmd_t *pm;
203 hugepd_t *hpdp = NULL;
204 unsigned pshift = __ffs(sz);
205 unsigned pdshift = PGDIR_SHIFT;
206
207 addr &= ~(sz-1);
208 pg = pgd_offset(mm, addr);
209
210 if (pshift == PGDIR_SHIFT)
211 /* 16GB huge page */
212 return (pte_t *) pg;
213 else if (pshift > PUD_SHIFT)
214 /*
215 * We need to use hugepd table
216 */
217 hpdp = (hugepd_t *)pg;
218 else {
219 pdshift = PUD_SHIFT;
220 pu = pud_alloc(mm, pg, addr);
221 if (pshift == PUD_SHIFT)
222 return (pte_t *)pu;
223 else if (pshift > PMD_SHIFT)
224 hpdp = (hugepd_t *)pu;
225 else {
226 pdshift = PMD_SHIFT;
227 pm = pmd_alloc(mm, pu, addr);
228 if (pshift == PMD_SHIFT)
229 /* 16MB hugepage */
230 return (pte_t *)pm;
231 else
232 hpdp = (hugepd_t *)pm;
233 }
234 }
235 if (!hpdp)
236 return NULL;
237
238 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
239
240 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
241 return NULL;
242
243 return hugepte_offset(hpdp, addr, pdshift);
244}
245
246#else
247
a4fe3ce7 248pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
0b26425c 249{
a4fe3ce7
DG
250 pgd_t *pg;
251 pud_t *pu;
252 pmd_t *pm;
253 hugepd_t *hpdp = NULL;
254 unsigned pshift = __ffs(sz);
255 unsigned pdshift = PGDIR_SHIFT;
256
257 addr &= ~(sz-1);
258
259 pg = pgd_offset(mm, addr);
a1cd5419
BB
260
261 if (pshift >= HUGEPD_PGD_SHIFT) {
a4fe3ce7
DG
262 hpdp = (hugepd_t *)pg;
263 } else {
264 pdshift = PUD_SHIFT;
265 pu = pud_alloc(mm, pg, addr);
a1cd5419 266 if (pshift >= HUGEPD_PUD_SHIFT) {
a4fe3ce7
DG
267 hpdp = (hugepd_t *)pu;
268 } else {
269 pdshift = PMD_SHIFT;
270 pm = pmd_alloc(mm, pu, addr);
271 hpdp = (hugepd_t *)pm;
272 }
273 }
274
275 if (!hpdp)
276 return NULL;
277
278 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
279
280 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
281 return NULL;
282
283 return hugepte_offset(hpdp, addr, pdshift);
4ec161cf 284}
e2b3d202 285#endif
4ec161cf 286
881fde1d 287#ifdef CONFIG_PPC_FSL_BOOK3E
658013e9
JT
288/* Build list of addresses of gigantic pages. This function is used in early
289 * boot before the buddy or bootmem allocator is setup.
290 */
41151e77
BB
291void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
292{
293 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
294 int i;
295
296 if (addr == 0)
297 return;
298
299 gpage_freearray[idx].nr_gpages = number_of_pages;
300
301 for (i = 0; i < number_of_pages; i++) {
302 gpage_freearray[idx].gpage_list[i] = addr;
303 addr += page_size;
304 }
305}
306
307/*
308 * Moves the gigantic page addresses from the temporary list to the
309 * huge_boot_pages list.
310 */
311int alloc_bootmem_huge_page(struct hstate *hstate)
312{
313 struct huge_bootmem_page *m;
2415cf12 314 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
41151e77
BB
315 int nr_gpages = gpage_freearray[idx].nr_gpages;
316
317 if (nr_gpages == 0)
318 return 0;
319
320#ifdef CONFIG_HIGHMEM
321 /*
322 * If gpages can be in highmem we can't use the trick of storing the
323 * data structure in the page; allocate space for this
324 */
325 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
326 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
327#else
328 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
329#endif
330
331 list_add(&m->list, &huge_boot_pages);
332 gpage_freearray[idx].nr_gpages = nr_gpages;
333 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
334 m->hstate = hstate;
335
336 return 1;
337}
338/*
339 * Scan the command line hugepagesz= options for gigantic pages; store those in
340 * a list that we use to allocate the memory once all options are parsed.
341 */
342
343unsigned long gpage_npages[MMU_PAGE_COUNT];
344
89528127
PG
345static int __init do_gpage_early_setup(char *param, char *val,
346 const char *unused)
41151e77
BB
347{
348 static phys_addr_t size;
349 unsigned long npages;
350
351 /*
352 * The hugepagesz and hugepages cmdline options are interleaved. We
353 * use the size variable to keep track of whether or not this was done
354 * properly and skip over instances where it is incorrect. Other
355 * command-line parsing code will issue warnings, so we don't need to.
356 *
357 */
358 if ((strcmp(param, "default_hugepagesz") == 0) ||
359 (strcmp(param, "hugepagesz") == 0)) {
360 size = memparse(val, NULL);
361 } else if (strcmp(param, "hugepages") == 0) {
362 if (size != 0) {
363 if (sscanf(val, "%lu", &npages) <= 0)
364 npages = 0;
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370}
371
372
373/*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380void __init reserve_hugetlb_gpages(void)
381{
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
026cee00
PM
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
41151e77
BB
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407}
408
881fde1d 409#else /* !PPC_FSL_BOOK3E */
41151e77
BB
410
411/* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy or bootmem allocator is setup.
413 */
414void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
658013e9
JT
415{
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424}
425
ec4b2c0c 426/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
427 * huge_boot_pages list.
428 */
429int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
430{
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
0d9ea754 437 m->hstate = hstate;
ec4b2c0c
JT
438 return 1;
439}
41151e77 440#endif
ec4b2c0c 441
39dde65c
KC
442int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443{
444 return 0;
445}
446
881fde1d 447#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
448#define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450
451struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
455};
456
457static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458
459static void hugepd_free_rcu_callback(struct rcu_head *head)
460{
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
464
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
467
468 free_page((unsigned long)batch);
469}
470
471static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472{
473 struct hugepd_freelist **batchp;
474
475 batchp = &__get_cpu_var(hugepd_freelist_cur);
476
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
481 return;
482 }
483
484 if (*batchp == NULL) {
485 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
486 (*batchp)->index = 0;
487 }
488
489 (*batchp)->ptes[(*batchp)->index++] = hugepte;
490 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
491 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
492 *batchp = NULL;
493 }
494}
495#endif
496
a4fe3ce7
DG
497static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
498 unsigned long start, unsigned long end,
499 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
500{
501 pte_t *hugepte = hugepd_page(*hpdp);
41151e77
BB
502 int i;
503
a4fe3ce7 504 unsigned long pdmask = ~((1UL << pdshift) - 1);
41151e77
BB
505 unsigned int num_hugepd = 1;
506
881fde1d
BB
507#ifdef CONFIG_PPC_FSL_BOOK3E
508 /* Note: On fsl the hpdp may be the first of several */
41151e77 509 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
881fde1d
BB
510#else
511 unsigned int shift = hugepd_shift(*hpdp);
41151e77 512#endif
a4fe3ce7
DG
513
514 start &= pdmask;
515 if (start < floor)
516 return;
517 if (ceiling) {
518 ceiling &= pdmask;
519 if (! ceiling)
520 return;
521 }
522 if (end - 1 > ceiling - 1)
523 return;
f10a04c0 524
41151e77
BB
525 for (i = 0; i < num_hugepd; i++, hpdp++)
526 hpdp->pd = 0;
527
f10a04c0 528 tlb->need_flush = 1;
881fde1d
BB
529
530#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77 531 hugepd_free(tlb, hugepte);
881fde1d
BB
532#else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
41151e77 534#endif
f10a04c0
DG
535}
536
f10a04c0
DG
537static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
a4fe3ce7 539 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
540{
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
f10a04c0 546 do {
a1cd5419 547 pmd = pmd_offset(pud, addr);
f10a04c0 548 next = pmd_addr_end(addr, end);
8bbd9f04
AK
549 if (!is_hugepd(pmd)) {
550 /*
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
553 */
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
f10a04c0 555 continue;
8bbd9f04 556 }
a1cd5419
BB
557#ifdef CONFIG_PPC_FSL_BOOK3E
558 /*
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565#endif
a4fe3ce7
DG
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
a1cd5419 568 } while (addr = next, addr != end);
f10a04c0
DG
569
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
1da177e4 577 }
f10a04c0
DG
578 if (end - 1 > ceiling - 1)
579 return;
1da177e4 580
f10a04c0
DG
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
9e1b32ca 583 pmd_free_tlb(tlb, pmd, start);
f10a04c0 584}
f10a04c0
DG
585
586static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
589{
590 pud_t *pud;
591 unsigned long next;
592 unsigned long start;
593
594 start = addr;
f10a04c0 595 do {
a1cd5419 596 pud = pud_offset(pgd, addr);
f10a04c0 597 next = pud_addr_end(addr, end);
a4fe3ce7 598 if (!is_hugepd(pud)) {
4ec161cf
JT
599 if (pud_none_or_clear_bad(pud))
600 continue;
0d9ea754 601 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
a4fe3ce7 602 ceiling);
4ec161cf 603 } else {
a1cd5419
BB
604#ifdef CONFIG_PPC_FSL_BOOK3E
605 /*
606 * Increment next by the size of the huge mapping since
607 * there may be more than one entry at this level for a
608 * single hugepage, but all of them point to
609 * the same kmem cache that holds the hugepte.
610 */
611 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
612#endif
a4fe3ce7
DG
613 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
614 addr, next, floor, ceiling);
4ec161cf 615 }
a1cd5419 616 } while (addr = next, addr != end);
f10a04c0
DG
617
618 start &= PGDIR_MASK;
619 if (start < floor)
620 return;
621 if (ceiling) {
622 ceiling &= PGDIR_MASK;
623 if (!ceiling)
624 return;
625 }
626 if (end - 1 > ceiling - 1)
627 return;
628
629 pud = pud_offset(pgd, start);
630 pgd_clear(pgd);
9e1b32ca 631 pud_free_tlb(tlb, pud, start);
f10a04c0
DG
632}
633
634/*
635 * This function frees user-level page tables of a process.
f10a04c0 636 */
42b77728 637void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
638 unsigned long addr, unsigned long end,
639 unsigned long floor, unsigned long ceiling)
640{
641 pgd_t *pgd;
642 unsigned long next;
f10a04c0
DG
643
644 /*
a4fe3ce7
DG
645 * Because there are a number of different possible pagetable
646 * layouts for hugepage ranges, we limit knowledge of how
647 * things should be laid out to the allocation path
648 * (huge_pte_alloc(), above). Everything else works out the
649 * structure as it goes from information in the hugepd
650 * pointers. That means that we can't here use the
651 * optimization used in the normal page free_pgd_range(), of
652 * checking whether we're actually covering a large enough
653 * range to have to do anything at the top level of the walk
654 * instead of at the bottom.
f10a04c0 655 *
a4fe3ce7
DG
656 * To make sense of this, you should probably go read the big
657 * block comment at the top of the normal free_pgd_range(),
658 * too.
f10a04c0 659 */
f10a04c0 660
f10a04c0 661 do {
f10a04c0 662 next = pgd_addr_end(addr, end);
41151e77 663 pgd = pgd_offset(tlb->mm, addr);
a4fe3ce7 664 if (!is_hugepd(pgd)) {
0b26425c
DG
665 if (pgd_none_or_clear_bad(pgd))
666 continue;
667 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
668 } else {
881fde1d 669#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
670 /*
671 * Increment next by the size of the huge mapping since
881fde1d
BB
672 * there may be more than one entry at the pgd level
673 * for a single hugepage, but all of them point to the
674 * same kmem cache that holds the hugepte.
41151e77
BB
675 */
676 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
677#endif
a4fe3ce7
DG
678 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
679 addr, next, floor, ceiling);
0b26425c 680 }
41151e77 681 } while (addr = next, addr != end);
1da177e4
LT
682}
683
1da177e4
LT
684struct page *
685follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686{
687 pte_t *ptep;
688 struct page *page;
a4fe3ce7
DG
689 unsigned shift;
690 unsigned long mask;
12bc9f6f
AK
691 /*
692 * Transparent hugepages are handled by generic code. We can skip them
693 * here.
694 */
a4fe3ce7 695 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
1da177e4 696
0d9ea754 697 /* Verify it is a huge page else bail. */
12bc9f6f 698 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
1da177e4
LT
699 return ERR_PTR(-EINVAL);
700
a4fe3ce7 701 mask = (1UL << shift) - 1;
1da177e4 702 page = pte_page(*ptep);
a4fe3ce7
DG
703 if (page)
704 page += (address & mask) / PAGE_SIZE;
1da177e4
LT
705
706 return page;
707}
708
1da177e4
LT
709struct page *
710follow_huge_pmd(struct mm_struct *mm, unsigned long address,
711 pmd_t *pmd, int write)
712{
713 BUG();
714 return NULL;
715}
716
39adfa54
DG
717static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
718 unsigned long sz)
719{
720 unsigned long __boundary = (addr + sz) & ~(sz-1);
721 return (__boundary - 1 < end - 1) ? __boundary : end;
722}
723
a4fe3ce7
DG
724int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
725 unsigned long addr, unsigned long end,
726 int write, struct page **pages, int *nr)
727{
728 pte_t *ptep;
729 unsigned long sz = 1UL << hugepd_shift(*hugepd);
39adfa54 730 unsigned long next;
a4fe3ce7
DG
731
732 ptep = hugepte_offset(hugepd, addr, pdshift);
733 do {
39adfa54 734 next = hugepte_addr_end(addr, end, sz);
a4fe3ce7
DG
735 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
736 return 0;
39adfa54 737 } while (ptep++, addr = next, addr != end);
a4fe3ce7
DG
738
739 return 1;
740}
1da177e4 741
76512959 742#ifdef CONFIG_PPC_MM_SLICES
1da177e4
LT
743unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
744 unsigned long len, unsigned long pgoff,
745 unsigned long flags)
746{
0d9ea754
JT
747 struct hstate *hstate = hstate_file(file);
748 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de 749
34d07177 750 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
1da177e4 751}
76512959 752#endif
1da177e4 753
3340289d
MG
754unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
755{
25c29f9e 756#ifdef CONFIG_PPC_MM_SLICES
3340289d
MG
757 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
758
759 return 1UL << mmu_psize_to_shift(psize);
41151e77
BB
760#else
761 if (!is_vm_hugetlb_page(vma))
762 return PAGE_SIZE;
763
764 return huge_page_size(hstate_vma(vma));
765#endif
766}
767
768static inline bool is_power_of_4(unsigned long x)
769{
770 if (is_power_of_2(x))
771 return (__ilog2(x) % 2) ? false : true;
772 return false;
3340289d
MG
773}
774
d1837cba 775static int __init add_huge_page_size(unsigned long long size)
4ec161cf 776{
d1837cba
DG
777 int shift = __ffs(size);
778 int mmu_psize;
a4fe3ce7 779
4ec161cf 780 /* Check that it is a page size supported by the hardware and
d1837cba 781 * that it fits within pagetable and slice limits. */
41151e77
BB
782#ifdef CONFIG_PPC_FSL_BOOK3E
783 if ((size < PAGE_SIZE) || !is_power_of_4(size))
784 return -EINVAL;
785#else
d1837cba
DG
786 if (!is_power_of_2(size)
787 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
788 return -EINVAL;
41151e77 789#endif
91224346 790
d1837cba
DG
791 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
792 return -EINVAL;
793
794#ifdef CONFIG_SPU_FS_64K_LS
795 /* Disable support for 64K huge pages when 64K SPU local store
796 * support is enabled as the current implementation conflicts.
797 */
798 if (shift == PAGE_SHIFT_64K)
799 return -EINVAL;
800#endif /* CONFIG_SPU_FS_64K_LS */
801
802 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
803
804 /* Return if huge page size has already been setup */
805 if (size_to_hstate(size))
806 return 0;
807
808 hugetlb_add_hstate(shift - PAGE_SHIFT);
809
810 return 0;
4ec161cf
JT
811}
812
813static int __init hugepage_setup_sz(char *str)
814{
815 unsigned long long size;
4ec161cf
JT
816
817 size = memparse(str, &str);
818
d1837cba 819 if (add_huge_page_size(size) != 0)
4ec161cf
JT
820 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
821
822 return 1;
823}
824__setup("hugepagesz=", hugepage_setup_sz);
825
881fde1d 826#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
827struct kmem_cache *hugepte_cache;
828static int __init hugetlbpage_init(void)
829{
830 int psize;
831
832 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
833 unsigned shift;
834
835 if (!mmu_psize_defs[psize].shift)
836 continue;
837
838 shift = mmu_psize_to_shift(psize);
839
840 /* Don't treat normal page sizes as huge... */
841 if (shift != PAGE_SHIFT)
842 if (add_huge_page_size(1ULL << shift) < 0)
843 continue;
844 }
845
846 /*
847 * Create a kmem cache for hugeptes. The bottom bits in the pte have
848 * size information encoded in them, so align them to allow this
849 */
850 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
851 HUGEPD_SHIFT_MASK + 1, 0, NULL);
852 if (hugepte_cache == NULL)
853 panic("%s: Unable to create kmem cache for hugeptes\n",
854 __func__);
855
856 /* Default hpage size = 4M */
857 if (mmu_psize_defs[MMU_PAGE_4M].shift)
858 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
859 else
860 panic("%s: Unable to set default huge page size\n", __func__);
861
862
863 return 0;
864}
865#else
f10a04c0
DG
866static int __init hugetlbpage_init(void)
867{
a4fe3ce7 868 int psize;
0d9ea754 869
44ae3ab3 870 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
f10a04c0 871 return -ENODEV;
00df438e 872
d1837cba
DG
873 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
874 unsigned shift;
875 unsigned pdshift;
0d9ea754 876
d1837cba
DG
877 if (!mmu_psize_defs[psize].shift)
878 continue;
00df438e 879
d1837cba
DG
880 shift = mmu_psize_to_shift(psize);
881
882 if (add_huge_page_size(1ULL << shift) < 0)
883 continue;
884
885 if (shift < PMD_SHIFT)
886 pdshift = PMD_SHIFT;
887 else if (shift < PUD_SHIFT)
888 pdshift = PUD_SHIFT;
889 else
890 pdshift = PGDIR_SHIFT;
e2b3d202
AK
891 /*
892 * if we have pdshift and shift value same, we don't
893 * use pgt cache for hugepd.
894 */
895 if (pdshift != shift) {
896 pgtable_cache_add(pdshift - shift, NULL);
897 if (!PGT_CACHE(pdshift - shift))
898 panic("hugetlbpage_init(): could not create "
899 "pgtable cache for %d bit pagesize\n", shift);
900 }
0d9ea754 901 }
f10a04c0 902
d1837cba
DG
903 /* Set default large page size. Currently, we pick 16M or 1M
904 * depending on what is available
905 */
906 if (mmu_psize_defs[MMU_PAGE_16M].shift)
907 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
908 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
909 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
910
f10a04c0
DG
911 return 0;
912}
41151e77 913#endif
f10a04c0 914module_init(hugetlbpage_init);
0895ecda
DG
915
916void flush_dcache_icache_hugepage(struct page *page)
917{
918 int i;
41151e77 919 void *start;
0895ecda
DG
920
921 BUG_ON(!PageCompound(page));
922
41151e77
BB
923 for (i = 0; i < (1UL << compound_order(page)); i++) {
924 if (!PageHighMem(page)) {
925 __flush_dcache_icache(page_address(page+i));
926 } else {
2480b208 927 start = kmap_atomic(page+i);
41151e77 928 __flush_dcache_icache(start);
2480b208 929 kunmap_atomic(start);
41151e77
BB
930 }
931 }
0895ecda 932}
29409997
AK
933
934#endif /* CONFIG_HUGETLB_PAGE */
935
936/*
937 * We have 4 cases for pgds and pmds:
938 * (1) invalid (all zeroes)
939 * (2) pointer to next table, as normal; bottom 6 bits == 0
940 * (3) leaf pte for huge page, bottom two bits != 00
941 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
0ac52dd7
AK
942 *
943 * So long as we atomically load page table pointers we are safe against teardown,
944 * we can follow the address down to the the page and take a ref on it.
29409997 945 */
0ac52dd7 946
29409997
AK
947pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
948{
0ac52dd7
AK
949 pgd_t pgd, *pgdp;
950 pud_t pud, *pudp;
951 pmd_t pmd, *pmdp;
29409997
AK
952 pte_t *ret_pte;
953 hugepd_t *hpdp = NULL;
954 unsigned pdshift = PGDIR_SHIFT;
955
956 if (shift)
957 *shift = 0;
958
0ac52dd7
AK
959 pgdp = pgdir + pgd_index(ea);
960 pgd = ACCESS_ONCE(*pgdp);
ac52ae47 961 /*
0ac52dd7
AK
962 * Always operate on the local stack value. This make sure the
963 * value don't get updated by a parallel THP split/collapse,
964 * page fault or a page unmap. The return pte_t * is still not
965 * stable. So should be checked there for above conditions.
ac52ae47 966 */
0ac52dd7 967 if (pgd_none(pgd))
ac52ae47 968 return NULL;
0ac52dd7
AK
969 else if (pgd_huge(pgd)) {
970 ret_pte = (pte_t *) pgdp;
29409997 971 goto out;
0ac52dd7
AK
972 } else if (is_hugepd(&pgd))
973 hpdp = (hugepd_t *)&pgd;
ac52ae47 974 else {
0ac52dd7
AK
975 /*
976 * Even if we end up with an unmap, the pgtable will not
977 * be freed, because we do an rcu free and here we are
978 * irq disabled
979 */
29409997 980 pdshift = PUD_SHIFT;
0ac52dd7
AK
981 pudp = pud_offset(&pgd, ea);
982 pud = ACCESS_ONCE(*pudp);
29409997 983
0ac52dd7 984 if (pud_none(pud))
ac52ae47 985 return NULL;
0ac52dd7
AK
986 else if (pud_huge(pud)) {
987 ret_pte = (pte_t *) pudp;
29409997 988 goto out;
0ac52dd7
AK
989 } else if (is_hugepd(&pud))
990 hpdp = (hugepd_t *)&pud;
ac52ae47 991 else {
29409997 992 pdshift = PMD_SHIFT;
0ac52dd7
AK
993 pmdp = pmd_offset(&pud, ea);
994 pmd = ACCESS_ONCE(*pmdp);
ac52ae47
AK
995 /*
996 * A hugepage collapse is captured by pmd_none, because
997 * it mark the pmd none and do a hpte invalidate.
998 *
999 * A hugepage split is captured by pmd_trans_splitting
1000 * because we mark the pmd trans splitting and do a
1001 * hpte invalidate
1002 *
1003 */
0ac52dd7 1004 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
ac52ae47 1005 return NULL;
29409997 1006
0ac52dd7
AK
1007 if (pmd_huge(pmd) || pmd_large(pmd)) {
1008 ret_pte = (pte_t *) pmdp;
29409997 1009 goto out;
0ac52dd7
AK
1010 } else if (is_hugepd(&pmd))
1011 hpdp = (hugepd_t *)&pmd;
ac52ae47 1012 else
0ac52dd7 1013 return pte_offset_kernel(&pmd, ea);
29409997
AK
1014 }
1015 }
1016 if (!hpdp)
1017 return NULL;
1018
1019 ret_pte = hugepte_offset(hpdp, ea, pdshift);
1020 pdshift = hugepd_shift(*hpdp);
1021out:
1022 if (shift)
1023 *shift = pdshift;
1024 return ret_pte;
1025}
1026EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1027
1028int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1029 unsigned long end, int write, struct page **pages, int *nr)
1030{
1031 unsigned long mask;
1032 unsigned long pte_end;
1033 struct page *head, *page, *tail;
1034 pte_t pte;
1035 int refs;
1036
1037 pte_end = (addr + sz) & ~(sz-1);
1038 if (pte_end < end)
1039 end = pte_end;
1040
7888b4dd 1041 pte = ACCESS_ONCE(*ptep);
29409997
AK
1042 mask = _PAGE_PRESENT | _PAGE_USER;
1043 if (write)
1044 mask |= _PAGE_RW;
1045
1046 if ((pte_val(pte) & mask) != mask)
1047 return 0;
1048
0ac52dd7
AK
1049#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1050 /*
1051 * check for splitting here
1052 */
1053 if (pmd_trans_splitting(pte_pmd(pte)))
1054 return 0;
1055#endif
1056
29409997
AK
1057 /* hugepages are never "special" */
1058 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1059
1060 refs = 0;
1061 head = pte_page(pte);
1062
1063 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1064 tail = page;
1065 do {
1066 VM_BUG_ON(compound_head(page) != head);
1067 pages[*nr] = page;
1068 (*nr)++;
1069 page++;
1070 refs++;
1071 } while (addr += PAGE_SIZE, addr != end);
1072
1073 if (!page_cache_add_speculative(head, refs)) {
1074 *nr -= refs;
1075 return 0;
1076 }
1077
1078 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1079 /* Could be optimized better */
1080 *nr -= refs;
1081 while (refs--)
1082 put_page(head);
1083 return 0;
1084 }
1085
1086 /*
1087 * Any tail page need their mapcount reference taken before we
1088 * return.
1089 */
1090 while (refs--) {
1091 if (PageTail(tail))
1092 get_huge_page_tail(tail);
1093 tail++;
1094 }
1095
1096 return 1;
1097}