]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/mm/numa.c
mm/mempolicy.c: forbid static or relative flags for local NUMA mode
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
2d73bae1
NA
11#define pr_fmt(fmt) "numa: " fmt
12
1da177e4
LT
13#include <linux/threads.h>
14#include <linux/bootmem.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/mmzone.h>
4b16f8e2 18#include <linux/export.h>
1da177e4
LT
19#include <linux/nodemask.h>
20#include <linux/cpu.h>
21#include <linux/notifier.h>
95f72d1e 22#include <linux/memblock.h>
6df1646e 23#include <linux/of.h>
06eccea6 24#include <linux/pfn.h>
9eff1a38
JL
25#include <linux/cpuset.h>
26#include <linux/node.h>
30c05350 27#include <linux/stop_machine.h>
e04fa612
NF
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/uaccess.h>
191a7120 31#include <linux/slab.h>
3be7db6a 32#include <asm/cputhreads.h>
45fb6cea 33#include <asm/sparsemem.h>
d9b2b2a2 34#include <asm/prom.h>
2249ca9d 35#include <asm/smp.h>
d4edc5b6
SB
36#include <asm/cputhreads.h>
37#include <asm/topology.h>
9eff1a38
JL
38#include <asm/firmware.h>
39#include <asm/paca.h>
39bf990e 40#include <asm/hvcall.h>
ae3a197e 41#include <asm/setup.h>
176bbf14 42#include <asm/vdso.h>
1da177e4
LT
43
44static int numa_enabled = 1;
45
1daa6d08
BS
46static char *cmdline __initdata;
47
1da177e4
LT
48static int numa_debug;
49#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
45fb6cea 51int numa_cpu_lookup_table[NR_CPUS];
25863de0 52cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 53struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
54
55EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 56EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
57EXPORT_SYMBOL(node_data);
58
1da177e4 59static int min_common_depth;
237a0989 60static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
61static int form1_affinity;
62
63#define MAX_DISTANCE_REF_POINTS 4
64static int distance_ref_points_depth;
b08a2a12 65static const __be32 *distance_ref_points;
41eab6f8 66static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 67
25863de0
AB
68/*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
9512938b 72 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
73 */
74static void __init setup_node_to_cpumask_map(void)
75{
f9d531b8 76 unsigned int node;
25863de0
AB
77
78 /* setup nr_node_ids if not done yet */
f9d531b8
CS
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
25863de0
AB
81
82 /* allocate the map */
c118baf8 83 for_each_node(node)
25863de0
AB
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88}
89
55671f3c 90static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
91 unsigned int *nid)
92{
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135}
136
d4edc5b6
SB
137static void reset_numa_cpu_lookup_table(void)
138{
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143}
144
145static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
1da177e4
LT
146{
147 numa_cpu_lookup_table[cpu] = node;
d4edc5b6
SB
148}
149
150static void map_cpu_to_node(int cpu, int node)
151{
152 update_numa_cpu_lookup_table(cpu, node);
45fb6cea 153
bf4b85b0
NL
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
25863de0
AB
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
158}
159
39bf990e 160#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
161static void unmap_cpu_from_node(unsigned long cpu)
162{
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
25863de0 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173}
39bf990e 174#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 175
1da177e4 176/* must hold reference to node during call */
b08a2a12 177static const __be32 *of_get_associativity(struct device_node *dev)
1da177e4 178{
e2eb6392 179 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
180}
181
cf00085d
C
182/*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
b08a2a12 187static const __be32 *of_get_usable_memory(struct device_node *memory)
cf00085d 188{
b08a2a12 189 const __be32 *prop;
cf00085d
C
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
ec32dd66 193 return NULL;
cf00085d
C
194 return prop;
195}
196
41eab6f8
AB
197int __node_distance(int a, int b)
198{
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
7122beee 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214}
12c743eb 215EXPORT_SYMBOL(__node_distance);
41eab6f8
AB
216
217static void initialize_distance_lookup_table(int nid,
b08a2a12 218 const __be32 *associativity)
41eab6f8
AB
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
b08a2a12
AP
226 const __be32 *entry;
227
1d805440 228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
b08a2a12 229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
41eab6f8
AB
230 }
231}
232
482ec7c4
NL
233/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
b08a2a12 236static int associativity_to_nid(const __be32 *associativity)
1da177e4 237{
482ec7c4 238 int nid = -1;
1da177e4
LT
239
240 if (min_common_depth == -1)
482ec7c4 241 goto out;
1da177e4 242
b08a2a12
AP
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
bc16a759
NL
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
41eab6f8 249
b08a2a12 250 if (nid > 0 &&
1d805440
ND
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
41eab6f8 257
482ec7c4 258out:
cf950b7a 259 return nid;
1da177e4
LT
260}
261
9eff1a38
JL
262/* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265static int of_node_to_nid_single(struct device_node *device)
266{
267 int nid = -1;
b08a2a12 268 const __be32 *tmp;
9eff1a38
JL
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274}
275
953039c8
JK
276/* Walk the device tree upwards, looking for an associativity id */
277int of_node_to_nid(struct device_node *device)
278{
953039c8
JK
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
1def3758 287 device = of_get_next_parent(device);
953039c8
JK
288 }
289 of_node_put(device);
290
291 return nid;
292}
293EXPORT_SYMBOL_GPL(of_node_to_nid);
294
1da177e4
LT
295static int __init find_min_common_depth(void)
296{
41eab6f8 297 int depth;
e70606eb 298 struct device_node *root;
1da177e4 299
1c8ee733
DS
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
e70606eb
ME
304 if (!root)
305 root = of_find_node_by_path("/");
1da177e4
LT
306
307 /*
41eab6f8
AB
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
1da177e4 318 */
e70606eb 319 distance_ref_points = of_get_property(root,
41eab6f8
AB
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
1da177e4 329
8002b0c5
NF
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
1c8ee733 333 form1_affinity = 1;
4b83c330
AB
334 }
335
41eab6f8 336 if (form1_affinity) {
b08a2a12 337 depth = of_read_number(distance_ref_points, 1);
1da177e4 338 } else {
41eab6f8
AB
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
b08a2a12 345 depth = of_read_number(&distance_ref_points[1], 1);
1da177e4 346 }
1da177e4 347
41eab6f8
AB
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
e70606eb 358 of_node_put(root);
1da177e4 359 return depth;
41eab6f8
AB
360
361err:
e70606eb 362 of_node_put(root);
41eab6f8 363 return -1;
1da177e4
LT
364}
365
84c9fdd1 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
367{
368 struct device_node *memory = NULL;
1da177e4
LT
369
370 memory = of_find_node_by_type(memory, "memory");
54c23310 371 if (!memory)
84c9fdd1 372 panic("numa.c: No memory nodes found!");
54c23310 373
a8bda5dd 374 *n_addr_cells = of_n_addr_cells(memory);
9213feea 375 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 376 of_node_put(memory);
1da177e4
LT
377}
378
b08a2a12 379static unsigned long read_n_cells(int n, const __be32 **buf)
1da177e4
LT
380{
381 unsigned long result = 0;
382
383 while (n--) {
b08a2a12 384 result = (result << 32) | of_read_number(*buf, 1);
1da177e4
LT
385 (*buf)++;
386 }
387 return result;
388}
389
8342681d 390/*
95f72d1e 391 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
392 * and return the information in the provided of_drconf_cell structure.
393 */
b08a2a12 394static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
8342681d 395{
b08a2a12 396 const __be32 *cp;
8342681d
NF
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
b08a2a12
AP
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
8342681d
NF
405
406 *cellp = cp + 4;
407}
408
409/*
25985edc 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 411 *
95f72d1e
YL
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 414 * contains information as laid out in the of_drconf_cell struct above.
8342681d 415 */
b08a2a12 416static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
8342681d 417{
b08a2a12 418 const __be32 *prop;
8342681d
NF
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
b08a2a12 425 entries = of_read_number(prop++, 1);
8342681d
NF
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435}
436
437/*
25985edc 438 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
439 * from the device tree.
440 */
3fdfd990 441static u64 of_get_lmb_size(struct device_node *memory)
8342681d 442{
b08a2a12 443 const __be32 *prop;
8342681d
NF
444 u32 len;
445
3fdfd990 446 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451}
452
453struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
b08a2a12 456 const __be32 *arrays;
8342681d
NF
457};
458
459/*
25985edc 460 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471{
b08a2a12 472 const __be32 *prop;
8342681d
NF
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
b08a2a12
AP
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
8342681d 481
42b2aa86 482 /* Now that we know the number of arrays and size of each array,
8342681d
NF
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490}
491
492/*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498{
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
b08a2a12 507 nid = of_read_number(&aa->arrays[index], 1);
8342681d
NF
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
1d805440
ND
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
8342681d
NF
517 }
518
519 return nid;
520}
521
1da177e4
LT
522/*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
061d19f2 526static int numa_setup_cpu(unsigned long lcpu)
1da177e4 527{
297cf502 528 int nid = -1;
d4edc5b6
SB
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
542
543 if (!cpu) {
544 WARN_ON(1);
297cf502
LZ
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
1da177e4
LT
549 }
550
953039c8 551 nid = of_node_to_nid_single(cpu);
1da177e4 552
297cf502 553out_present:
482ec7c4 554 if (nid < 0 || !node_online(nid))
72c33688 555 nid = first_online_node;
1da177e4 556
297cf502 557 map_cpu_to_node(lcpu, nid);
1da177e4 558 of_node_put(cpu);
297cf502 559out:
cf950b7a 560 return nid;
1da177e4
LT
561}
562
68fb18aa
SB
563static void verify_cpu_node_mapping(int cpu, int node)
564{
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582}
583
bdab88e0
SAS
584/* Must run before sched domains notifier. */
585static int ppc_numa_cpu_prepare(unsigned int cpu)
586{
587 int nid;
588
589 nid = numa_setup_cpu(cpu);
590 verify_cpu_node_mapping(cpu, nid);
591 return 0;
592}
593
594static int ppc_numa_cpu_dead(unsigned int cpu)
595{
1da177e4 596#ifdef CONFIG_HOTPLUG_CPU
bdab88e0 597 unmap_cpu_from_node(cpu);
1da177e4 598#endif
bdab88e0 599 return 0;
1da177e4
LT
600}
601
602/*
603 * Check and possibly modify a memory region to enforce the memory limit.
604 *
605 * Returns the size the region should have to enforce the memory limit.
606 * This will either be the original value of size, a truncated value,
607 * or zero. If the returned value of size is 0 the region should be
25985edc 608 * discarded as it lies wholly above the memory limit.
1da177e4 609 */
45fb6cea
AB
610static unsigned long __init numa_enforce_memory_limit(unsigned long start,
611 unsigned long size)
1da177e4
LT
612{
613 /*
95f72d1e 614 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 615 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
616 * having memory holes below the limit. Also, in the case of
617 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 618 */
1da177e4 619
95f72d1e 620 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
621 return size;
622
95f72d1e 623 if (start >= memblock_end_of_DRAM())
1da177e4
LT
624 return 0;
625
95f72d1e 626 return memblock_end_of_DRAM() - start;
1da177e4
LT
627}
628
cf00085d
C
629/*
630 * Reads the counter for a given entry in
631 * linux,drconf-usable-memory property
632 */
b08a2a12 633static inline int __init read_usm_ranges(const __be32 **usm)
cf00085d
C
634{
635 /*
3fdfd990 636 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
637 * entry in linux,drconf-usable-memory property contains
638 * a counter followed by that many (base, size) duple.
639 * read the counter from linux,drconf-usable-memory
640 */
641 return read_n_cells(n_mem_size_cells, usm);
642}
643
0204568a
PM
644/*
645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
646 * node. This assumes n_mem_{addr,size}_cells have been set.
647 */
648static void __init parse_drconf_memory(struct device_node *memory)
649{
b08a2a12 650 const __be32 *uninitialized_var(dm), *usm;
cf00085d 651 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 652 unsigned long lmb_size, base, size, sz;
8342681d 653 int nid;
aa709f3b 654 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
655
656 n = of_get_drconf_memory(memory, &dm);
657 if (!n)
0204568a
PM
658 return;
659
3fdfd990
BH
660 lmb_size = of_get_lmb_size(memory);
661 if (!lmb_size)
8342681d
NF
662 return;
663
664 rc = of_get_assoc_arrays(memory, &aa);
665 if (rc)
0204568a
PM
666 return;
667
cf00085d
C
668 /* check if this is a kexec/kdump kernel */
669 usm = of_get_usable_memory(memory);
670 if (usm != NULL)
671 is_kexec_kdump = 1;
672
0204568a 673 for (; n != 0; --n) {
8342681d
NF
674 struct of_drconf_cell drmem;
675
676 read_drconf_cell(&drmem, &dm);
677
678 /* skip this block if the reserved bit is set in flags (0x80)
679 or if the block is not assigned to this partition (0x8) */
680 if ((drmem.flags & DRCONF_MEM_RESERVED)
681 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 682 continue;
1daa6d08 683
cf00085d 684 base = drmem.base_addr;
3fdfd990 685 size = lmb_size;
cf00085d 686 ranges = 1;
8342681d 687
cf00085d
C
688 if (is_kexec_kdump) {
689 ranges = read_usm_ranges(&usm);
690 if (!ranges) /* there are no (base, size) duple */
691 continue;
692 }
693 do {
694 if (is_kexec_kdump) {
695 base = read_n_cells(n_mem_addr_cells, &usm);
696 size = read_n_cells(n_mem_size_cells, &usm);
697 }
698 nid = of_drconf_to_nid_single(&drmem, &aa);
699 fake_numa_create_new_node(
700 ((base + size) >> PAGE_SHIFT),
8342681d 701 &nid);
cf00085d
C
702 node_set_online(nid);
703 sz = numa_enforce_memory_limit(base, size);
704 if (sz)
e7e8de59
TC
705 memblock_set_node(base, sz,
706 &memblock.memory, nid);
cf00085d 707 } while (--ranges);
0204568a
PM
708 }
709}
710
1da177e4
LT
711static int __init parse_numa_properties(void)
712{
94db7c5e 713 struct device_node *memory;
482ec7c4 714 int default_nid = 0;
1da177e4
LT
715 unsigned long i;
716
717 if (numa_enabled == 0) {
718 printk(KERN_WARNING "NUMA disabled by user\n");
719 return -1;
720 }
721
1da177e4
LT
722 min_common_depth = find_min_common_depth();
723
1da177e4
LT
724 if (min_common_depth < 0)
725 return min_common_depth;
726
bf4b85b0
NL
727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
728
1da177e4 729 /*
482ec7c4
NL
730 * Even though we connect cpus to numa domains later in SMP
731 * init, we need to know the node ids now. This is because
732 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 733 */
482ec7c4 734 for_each_present_cpu(i) {
dfbe93a2 735 struct device_node *cpu;
cf950b7a 736 int nid;
1da177e4 737
8b16cd23 738 cpu = of_get_cpu_node(i, NULL);
482ec7c4 739 BUG_ON(!cpu);
953039c8 740 nid = of_node_to_nid_single(cpu);
482ec7c4 741 of_node_put(cpu);
1da177e4 742
482ec7c4
NL
743 /*
744 * Don't fall back to default_nid yet -- we will plug
745 * cpus into nodes once the memory scan has discovered
746 * the topology.
747 */
748 if (nid < 0)
749 continue;
750 node_set_online(nid);
1da177e4
LT
751 }
752
237a0989 753 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
754
755 for_each_node_by_type(memory, "memory") {
1da177e4
LT
756 unsigned long start;
757 unsigned long size;
cf950b7a 758 int nid;
1da177e4 759 int ranges;
b08a2a12 760 const __be32 *memcell_buf;
1da177e4
LT
761 unsigned int len;
762
e2eb6392 763 memcell_buf = of_get_property(memory,
ba759485
ME
764 "linux,usable-memory", &len);
765 if (!memcell_buf || len <= 0)
e2eb6392 766 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
767 if (!memcell_buf || len <= 0)
768 continue;
769
cc5d0189
BH
770 /* ranges in cell */
771 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
772new_range:
773 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
774 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
775 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 776
482ec7c4
NL
777 /*
778 * Assumption: either all memory nodes or none will
779 * have associativity properties. If none, then
780 * everything goes to default_nid.
781 */
953039c8 782 nid = of_node_to_nid_single(memory);
482ec7c4
NL
783 if (nid < 0)
784 nid = default_nid;
1daa6d08
BS
785
786 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 787 node_set_online(nid);
1da177e4 788
45fb6cea 789 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
790 if (--ranges)
791 goto new_range;
792 else
793 continue;
794 }
795
e7e8de59 796 memblock_set_node(start, size, &memblock.memory, nid);
1da177e4
LT
797
798 if (--ranges)
799 goto new_range;
800 }
801
0204568a 802 /*
dfbe93a2
AB
803 * Now do the same thing for each MEMBLOCK listed in the
804 * ibm,dynamic-memory property in the
805 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
806 */
807 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
808 if (memory)
809 parse_drconf_memory(memory);
810
1da177e4
LT
811 return 0;
812}
813
814static void __init setup_nonnuma(void)
815{
95f72d1e
YL
816 unsigned long top_of_ram = memblock_end_of_DRAM();
817 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 818 unsigned long start_pfn, end_pfn;
28be7072
BH
819 unsigned int nid = 0;
820 struct memblock_region *reg;
1da177e4 821
e110b281 822 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 823 top_of_ram, total_ram);
e110b281 824 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
825 (top_of_ram - total_ram) >> 20);
826
28be7072 827 for_each_memblock(memory, reg) {
c7fc2de0
YL
828 start_pfn = memblock_region_memory_base_pfn(reg);
829 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
830
831 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18 832 memblock_set_node(PFN_PHYS(start_pfn),
e7e8de59
TC
833 PFN_PHYS(end_pfn - start_pfn),
834 &memblock.memory, nid);
1daa6d08 835 node_set_online(nid);
c67c3cb4 836 }
1da177e4
LT
837}
838
4b703a23
AB
839void __init dump_numa_cpu_topology(void)
840{
841 unsigned int node;
842 unsigned int cpu, count;
843
844 if (min_common_depth == -1 || !numa_enabled)
845 return;
846
847 for_each_online_node(node) {
8467801c 848 pr_info("Node %d CPUs:", node);
4b703a23
AB
849
850 count = 0;
851 /*
852 * If we used a CPU iterator here we would miss printing
853 * the holes in the cpumap.
854 */
25863de0
AB
855 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
856 if (cpumask_test_cpu(cpu,
857 node_to_cpumask_map[node])) {
4b703a23 858 if (count == 0)
8467801c 859 pr_cont(" %u", cpu);
4b703a23
AB
860 ++count;
861 } else {
862 if (count > 1)
8467801c 863 pr_cont("-%u", cpu - 1);
4b703a23
AB
864 count = 0;
865 }
866 }
867
868 if (count > 1)
8467801c
AK
869 pr_cont("-%u", nr_cpu_ids - 1);
870 pr_cont("\n");
4b703a23
AB
871 }
872}
873
10239733
AB
874/* Initialize NODE_DATA for a node on the local memory */
875static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
4a618669 876{
10239733
AB
877 u64 spanned_pages = end_pfn - start_pfn;
878 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
879 u64 nd_pa;
880 void *nd;
881 int tnid;
4a618669 882
10239733
AB
883 if (spanned_pages)
884 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
885 nid, start_pfn << PAGE_SHIFT,
886 (end_pfn << PAGE_SHIFT) - 1);
887 else
888 pr_info("Initmem setup node %d\n", nid);
4a618669 889
10239733
AB
890 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
891 nd = __va(nd_pa);
4a618669 892
10239733
AB
893 /* report and initialize */
894 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
895 nd_pa, nd_pa + nd_size - 1);
896 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
897 if (tnid != nid)
898 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
4a618669 899
10239733
AB
900 node_data[nid] = nd;
901 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
902 NODE_DATA(nid)->node_id = nid;
903 NODE_DATA(nid)->node_start_pfn = start_pfn;
904 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
905}
4a618669 906
10239733 907void __init initmem_init(void)
1da177e4 908{
2fabf084 909 int nid, cpu;
1da177e4 910
95f72d1e 911 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
912 max_pfn = max_low_pfn;
913
914 if (parse_numa_properties())
915 setup_nonnuma();
1da177e4 916
10239733
AB
917 memblock_dump_all();
918
3af229f2
NA
919 /*
920 * Reduce the possible NUMA nodes to the online NUMA nodes,
921 * since we do not support node hotplug. This ensures that we
922 * lower the maximum NUMA node ID to what is actually present.
923 */
924 nodes_and(node_possible_map, node_possible_map, node_online_map);
925
1da177e4 926 for_each_online_node(nid) {
c67c3cb4 927 unsigned long start_pfn, end_pfn;
1da177e4 928
c67c3cb4 929 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
10239733 930 setup_node_data(nid, start_pfn, end_pfn);
8f64e1f2 931 sparse_memory_present_with_active_regions(nid);
4a618669 932 }
d3f6204a 933
21098b9e 934 sparse_init();
25863de0 935
25863de0
AB
936 setup_node_to_cpumask_map();
937
d4edc5b6 938 reset_numa_cpu_lookup_table();
bdab88e0 939
2fabf084
NA
940 /*
941 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
942 * even before we online them, so that we can use cpu_to_{node,mem}
943 * early in boot, cf. smp_prepare_cpus().
bdab88e0
SAS
944 * _nocalls() + manual invocation is used because cpuhp is not yet
945 * initialized for the boot CPU.
2fabf084 946 */
bdab88e0
SAS
947 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "POWER_NUMA_PREPARE",
948 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
949 for_each_present_cpu(cpu)
950 numa_setup_cpu(cpu);
1da177e4
LT
951}
952
1da177e4
LT
953static int __init early_numa(char *p)
954{
955 if (!p)
956 return 0;
957
958 if (strstr(p, "off"))
959 numa_enabled = 0;
960
961 if (strstr(p, "debug"))
962 numa_debug = 1;
963
1daa6d08
BS
964 p = strstr(p, "fake=");
965 if (p)
966 cmdline = p + strlen("fake=");
967
1da177e4
LT
968 return 0;
969}
970early_param("numa", early_numa);
237a0989 971
2d73bae1
NA
972static bool topology_updates_enabled = true;
973
974static int __init early_topology_updates(char *p)
975{
976 if (!p)
977 return 0;
978
979 if (!strcmp(p, "off")) {
980 pr_info("Disabling topology updates\n");
981 topology_updates_enabled = false;
982 }
983
984 return 0;
985}
986early_param("topology_updates", early_topology_updates);
987
237a0989 988#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 989/*
0f16ef7f
NF
990 * Find the node associated with a hot added memory section for
991 * memory represented in the device tree by the property
992 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
993 */
994static int hot_add_drconf_scn_to_nid(struct device_node *memory,
995 unsigned long scn_addr)
996{
b08a2a12 997 const __be32 *dm;
0f16ef7f 998 unsigned int drconf_cell_cnt, rc;
3fdfd990 999 unsigned long lmb_size;
0db9360a 1000 struct assoc_arrays aa;
0f16ef7f 1001 int nid = -1;
0db9360a 1002
0f16ef7f
NF
1003 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1004 if (!drconf_cell_cnt)
1005 return -1;
0db9360a 1006
3fdfd990
BH
1007 lmb_size = of_get_lmb_size(memory);
1008 if (!lmb_size)
0f16ef7f 1009 return -1;
0db9360a
NF
1010
1011 rc = of_get_assoc_arrays(memory, &aa);
1012 if (rc)
0f16ef7f 1013 return -1;
0db9360a 1014
0f16ef7f 1015 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1016 struct of_drconf_cell drmem;
1017
1018 read_drconf_cell(&drmem, &dm);
1019
1020 /* skip this block if it is reserved or not assigned to
1021 * this partition */
1022 if ((drmem.flags & DRCONF_MEM_RESERVED)
1023 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1024 continue;
1025
0f16ef7f 1026 if ((scn_addr < drmem.base_addr)
3fdfd990 1027 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1028 continue;
1029
0db9360a 1030 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1031 break;
1032 }
1033
1034 return nid;
1035}
1036
1037/*
1038 * Find the node associated with a hot added memory section for memory
1039 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1040 * each memblock.
0f16ef7f 1041 */
ec32dd66 1042static int hot_add_node_scn_to_nid(unsigned long scn_addr)
0f16ef7f 1043{
94db7c5e 1044 struct device_node *memory;
0f16ef7f
NF
1045 int nid = -1;
1046
94db7c5e 1047 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1048 unsigned long start, size;
1049 int ranges;
b08a2a12 1050 const __be32 *memcell_buf;
0f16ef7f
NF
1051 unsigned int len;
1052
1053 memcell_buf = of_get_property(memory, "reg", &len);
1054 if (!memcell_buf || len <= 0)
1055 continue;
1056
1057 /* ranges in cell */
1058 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1059
1060 while (ranges--) {
1061 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1062 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1063
1064 if ((scn_addr < start) || (scn_addr >= (start + size)))
1065 continue;
1066
1067 nid = of_node_to_nid_single(memory);
1068 break;
1069 }
0db9360a 1070
0f16ef7f
NF
1071 if (nid >= 0)
1072 break;
0db9360a
NF
1073 }
1074
60831842
AB
1075 of_node_put(memory);
1076
0f16ef7f 1077 return nid;
0db9360a
NF
1078}
1079
237a0989
MK
1080/*
1081 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1082 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1083 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1084 */
1085int hot_add_scn_to_nid(unsigned long scn_addr)
1086{
1087 struct device_node *memory = NULL;
0f16ef7f 1088 int nid, found = 0;
237a0989
MK
1089
1090 if (!numa_enabled || (min_common_depth < 0))
72c33688 1091 return first_online_node;
0db9360a
NF
1092
1093 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1094 if (memory) {
1095 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1096 of_node_put(memory);
0f16ef7f
NF
1097 } else {
1098 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1099 }
237a0989 1100
0f16ef7f 1101 if (nid < 0 || !node_online(nid))
72c33688 1102 nid = first_online_node;
237a0989 1103
0f16ef7f
NF
1104 if (NODE_DATA(nid)->node_spanned_pages)
1105 return nid;
237a0989 1106
0f16ef7f
NF
1107 for_each_online_node(nid) {
1108 if (NODE_DATA(nid)->node_spanned_pages) {
1109 found = 1;
1110 break;
237a0989 1111 }
237a0989 1112 }
0f16ef7f
NF
1113
1114 BUG_ON(!found);
1115 return nid;
237a0989 1116}
0f16ef7f 1117
cd34206e
NA
1118static u64 hot_add_drconf_memory_max(void)
1119{
e70bd3ae 1120 struct device_node *memory = NULL;
45b64ee6 1121 struct device_node *dn = NULL;
e70bd3ae
BR
1122 unsigned int drconf_cell_cnt = 0;
1123 u64 lmb_size = 0;
ec32dd66 1124 const __be32 *dm = NULL;
45b64ee6
BR
1125 const __be64 *lrdr = NULL;
1126 struct of_drconf_cell drmem;
1127
1128 dn = of_find_node_by_path("/rtas");
1129 if (dn) {
1130 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1131 of_node_put(dn);
1132 if (lrdr)
1133 return be64_to_cpup(lrdr);
1134 }
cd34206e 1135
e70bd3ae
BR
1136 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1137 if (memory) {
1138 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1139 lmb_size = of_get_lmb_size(memory);
cd34206e 1140
45b64ee6
BR
1141 /* Advance to the last cell, each cell has 6 32 bit integers */
1142 dm += (drconf_cell_cnt - 1) * 6;
1143 read_drconf_cell(&drmem, &dm);
e70bd3ae 1144 of_node_put(memory);
45b64ee6 1145 return drmem.base_addr + lmb_size;
e70bd3ae 1146 }
45b64ee6 1147 return 0;
cd34206e
NA
1148}
1149
1150/*
1151 * memory_hotplug_max - return max address of memory that may be added
1152 *
1153 * This is currently only used on systems that support drconfig memory
1154 * hotplug.
1155 */
1156u64 memory_hotplug_max(void)
1157{
1158 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1159}
237a0989 1160#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1161
bd03403a 1162/* Virtual Processor Home Node (VPHN) support */
39bf990e 1163#ifdef CONFIG_PPC_SPLPAR
4b6cfb2a
GK
1164
1165#include "vphn.h"
1166
30c05350
NF
1167struct topology_update_data {
1168 struct topology_update_data *next;
1169 unsigned int cpu;
1170 int old_nid;
1171 int new_nid;
1172};
1173
5de16699 1174static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1175static cpumask_t cpu_associativity_changes_mask;
1176static int vphn_enabled;
5d88aa85
JL
1177static int prrn_enabled;
1178static void reset_topology_timer(void);
9eff1a38
JL
1179
1180/*
1181 * Store the current values of the associativity change counters in the
1182 * hypervisor.
1183 */
1184static void setup_cpu_associativity_change_counters(void)
1185{
cd9d6cc7 1186 int cpu;
9eff1a38 1187
5de16699
AB
1188 /* The VPHN feature supports a maximum of 8 reference points */
1189 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1190
9eff1a38 1191 for_each_possible_cpu(cpu) {
cd9d6cc7 1192 int i;
9eff1a38
JL
1193 u8 *counts = vphn_cpu_change_counts[cpu];
1194 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1195
5de16699 1196 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1197 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1198 }
1199}
1200
1201/*
1202 * The hypervisor maintains a set of 8 associativity change counters in
1203 * the VPA of each cpu that correspond to the associativity levels in the
1204 * ibm,associativity-reference-points property. When an associativity
1205 * level changes, the corresponding counter is incremented.
1206 *
1207 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1208 * node associativity levels have changed.
1209 *
1210 * Returns the number of cpus with unhandled associativity changes.
1211 */
1212static int update_cpu_associativity_changes_mask(void)
1213{
5d88aa85 1214 int cpu;
9eff1a38
JL
1215 cpumask_t *changes = &cpu_associativity_changes_mask;
1216
9eff1a38
JL
1217 for_each_possible_cpu(cpu) {
1218 int i, changed = 0;
1219 u8 *counts = vphn_cpu_change_counts[cpu];
1220 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1221
5de16699 1222 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1223 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1224 counts[i] = hypervisor_counts[i];
1225 changed = 1;
1226 }
1227 }
1228 if (changed) {
3be7db6a
RJ
1229 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1230 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1231 }
1232 }
1233
5d88aa85 1234 return cpumask_weight(changes);
9eff1a38
JL
1235}
1236
9eff1a38
JL
1237/*
1238 * Retrieve the new associativity information for a virtual processor's
1239 * home node.
1240 */
b08a2a12 1241static long hcall_vphn(unsigned long cpu, __be32 *associativity)
9eff1a38 1242{
cd9d6cc7 1243 long rc;
9eff1a38
JL
1244 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1245 u64 flags = 1;
1246 int hwcpu = get_hard_smp_processor_id(cpu);
1247
1248 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1249 vphn_unpack_associativity(retbuf, associativity);
1250
1251 return rc;
1252}
1253
1254static long vphn_get_associativity(unsigned long cpu,
b08a2a12 1255 __be32 *associativity)
9eff1a38 1256{
cd9d6cc7 1257 long rc;
9eff1a38
JL
1258
1259 rc = hcall_vphn(cpu, associativity);
1260
1261 switch (rc) {
1262 case H_FUNCTION:
1263 printk(KERN_INFO
1264 "VPHN is not supported. Disabling polling...\n");
1265 stop_topology_update();
1266 break;
1267 case H_HARDWARE:
1268 printk(KERN_ERR
1269 "hcall_vphn() experienced a hardware fault "
1270 "preventing VPHN. Disabling polling...\n");
1271 stop_topology_update();
1272 }
1273
1274 return rc;
1275}
1276
30c05350
NF
1277/*
1278 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1279 * characteristics change. This function doesn't perform any locking and is
1280 * only safe to call from stop_machine().
1281 */
1282static int update_cpu_topology(void *data)
1283{
1284 struct topology_update_data *update;
1285 unsigned long cpu;
1286
1287 if (!data)
1288 return -EINVAL;
1289
3be7db6a 1290 cpu = smp_processor_id();
30c05350
NF
1291
1292 for (update = data; update; update = update->next) {
2c0a33f9 1293 int new_nid = update->new_nid;
30c05350
NF
1294 if (cpu != update->cpu)
1295 continue;
1296
49f8d8c0 1297 unmap_cpu_from_node(cpu);
2c0a33f9
NA
1298 map_cpu_to_node(cpu, new_nid);
1299 set_cpu_numa_node(cpu, new_nid);
1300 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
176bbf14 1301 vdso_getcpu_init();
30c05350
NF
1302 }
1303
1304 return 0;
1305}
1306
d4edc5b6
SB
1307static int update_lookup_table(void *data)
1308{
1309 struct topology_update_data *update;
1310
1311 if (!data)
1312 return -EINVAL;
1313
1314 /*
1315 * Upon topology update, the numa-cpu lookup table needs to be updated
1316 * for all threads in the core, including offline CPUs, to ensure that
1317 * future hotplug operations respect the cpu-to-node associativity
1318 * properly.
1319 */
1320 for (update = data; update; update = update->next) {
1321 int nid, base, j;
1322
1323 nid = update->new_nid;
1324 base = cpu_first_thread_sibling(update->cpu);
1325
1326 for (j = 0; j < threads_per_core; j++) {
1327 update_numa_cpu_lookup_table(base + j, nid);
1328 }
1329 }
1330
1331 return 0;
1332}
1333
9eff1a38
JL
1334/*
1335 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1336 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1337 */
1338int arch_update_cpu_topology(void)
1339{
3be7db6a 1340 unsigned int cpu, sibling, changed = 0;
30c05350 1341 struct topology_update_data *updates, *ud;
b08a2a12 1342 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1343 cpumask_t updated_cpus;
8a25a2fd 1344 struct device *dev;
3be7db6a 1345 int weight, new_nid, i = 0;
9eff1a38 1346
2d73bae1
NA
1347 if (!prrn_enabled && !vphn_enabled)
1348 return 0;
1349
30c05350
NF
1350 weight = cpumask_weight(&cpu_associativity_changes_mask);
1351 if (!weight)
1352 return 0;
1353
1354 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1355 if (!updates)
1356 return 0;
9eff1a38 1357
176bbf14
JL
1358 cpumask_clear(&updated_cpus);
1359
5d88aa85 1360 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
3be7db6a
RJ
1361 /*
1362 * If siblings aren't flagged for changes, updates list
1363 * will be too short. Skip on this update and set for next
1364 * update.
1365 */
1366 if (!cpumask_subset(cpu_sibling_mask(cpu),
1367 &cpu_associativity_changes_mask)) {
1368 pr_info("Sibling bits not set for associativity "
1369 "change, cpu%d\n", cpu);
1370 cpumask_or(&cpu_associativity_changes_mask,
1371 &cpu_associativity_changes_mask,
1372 cpu_sibling_mask(cpu));
1373 cpu = cpu_last_thread_sibling(cpu);
1374 continue;
1375 }
9eff1a38 1376
3be7db6a
RJ
1377 /* Use associativity from first thread for all siblings */
1378 vphn_get_associativity(cpu, associativity);
1379 new_nid = associativity_to_nid(associativity);
1380 if (new_nid < 0 || !node_online(new_nid))
1381 new_nid = first_online_node;
1382
1383 if (new_nid == numa_cpu_lookup_table[cpu]) {
1384 cpumask_andnot(&cpu_associativity_changes_mask,
1385 &cpu_associativity_changes_mask,
1386 cpu_sibling_mask(cpu));
1387 cpu = cpu_last_thread_sibling(cpu);
1388 continue;
1389 }
9eff1a38 1390
3be7db6a
RJ
1391 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1392 ud = &updates[i++];
1393 ud->cpu = sibling;
1394 ud->new_nid = new_nid;
1395 ud->old_nid = numa_cpu_lookup_table[sibling];
1396 cpumask_set_cpu(sibling, &updated_cpus);
1397 if (i < weight)
1398 ud->next = &updates[i];
1399 }
1400 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1401 }
1402
2d73bae1
NA
1403 pr_debug("Topology update for the following CPUs:\n");
1404 if (cpumask_weight(&updated_cpus)) {
1405 for (ud = &updates[0]; ud; ud = ud->next) {
1406 pr_debug("cpu %d moving from node %d "
1407 "to %d\n", ud->cpu,
1408 ud->old_nid, ud->new_nid);
1409 }
1410 }
1411
9a013361
MW
1412 /*
1413 * In cases where we have nothing to update (because the updates list
1414 * is too short or because the new topology is same as the old one),
1415 * skip invoking update_cpu_topology() via stop-machine(). This is
1416 * necessary (and not just a fast-path optimization) since stop-machine
1417 * can end up electing a random CPU to run update_cpu_topology(), and
1418 * thus trick us into setting up incorrect cpu-node mappings (since
1419 * 'updates' is kzalloc()'ed).
1420 *
1421 * And for the similar reason, we will skip all the following updating.
1422 */
1423 if (!cpumask_weight(&updated_cpus))
1424 goto out;
1425
176bbf14 1426 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350 1427
d4edc5b6
SB
1428 /*
1429 * Update the numa-cpu lookup table with the new mappings, even for
1430 * offline CPUs. It is best to perform this update from the stop-
1431 * machine context.
1432 */
1433 stop_machine(update_lookup_table, &updates[0],
1434 cpumask_of(raw_smp_processor_id()));
1435
30c05350 1436 for (ud = &updates[0]; ud; ud = ud->next) {
dd023217
NF
1437 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1438 register_cpu_under_node(ud->cpu, ud->new_nid);
1439
30c05350 1440 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1441 if (dev)
1442 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1443 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1444 changed = 1;
9eff1a38
JL
1445 }
1446
9a013361 1447out:
30c05350 1448 kfree(updates);
79c5fceb 1449 return changed;
9eff1a38
JL
1450}
1451
1452static void topology_work_fn(struct work_struct *work)
1453{
1454 rebuild_sched_domains();
1455}
1456static DECLARE_WORK(topology_work, topology_work_fn);
1457
ec32dd66 1458static void topology_schedule_update(void)
9eff1a38
JL
1459{
1460 schedule_work(&topology_work);
1461}
1462
1463static void topology_timer_fn(unsigned long ignored)
1464{
5d88aa85 1465 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1466 topology_schedule_update();
5d88aa85
JL
1467 else if (vphn_enabled) {
1468 if (update_cpu_associativity_changes_mask() > 0)
1469 topology_schedule_update();
1470 reset_topology_timer();
1471 }
9eff1a38
JL
1472}
1473static struct timer_list topology_timer =
1474 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1475
5d88aa85 1476static void reset_topology_timer(void)
9eff1a38
JL
1477{
1478 topology_timer.data = 0;
1479 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1480 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1481}
1482
601abdc3
NF
1483#ifdef CONFIG_SMP
1484
5d88aa85
JL
1485static void stage_topology_update(int core_id)
1486{
1487 cpumask_or(&cpu_associativity_changes_mask,
1488 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1489 reset_topology_timer();
1490}
1491
1492static int dt_update_callback(struct notifier_block *nb,
1493 unsigned long action, void *data)
1494{
f5242e5a 1495 struct of_reconfig_data *update = data;
5d88aa85
JL
1496 int rc = NOTIFY_DONE;
1497
1498 switch (action) {
5d88aa85 1499 case OF_RECONFIG_UPDATE_PROPERTY:
30c05350
NF
1500 if (!of_prop_cmp(update->dn->type, "cpu") &&
1501 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1502 u32 core_id;
1503 of_property_read_u32(update->dn, "reg", &core_id);
1504 stage_topology_update(core_id);
1505 rc = NOTIFY_OK;
1506 }
1507 break;
1508 }
1509
1510 return rc;
9eff1a38
JL
1511}
1512
5d88aa85
JL
1513static struct notifier_block dt_update_nb = {
1514 .notifier_call = dt_update_callback,
1515};
1516
601abdc3
NF
1517#endif
1518
9eff1a38 1519/*
5d88aa85 1520 * Start polling for associativity changes.
9eff1a38
JL
1521 */
1522int start_topology_update(void)
1523{
1524 int rc = 0;
1525
5d88aa85
JL
1526 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1527 if (!prrn_enabled) {
1528 prrn_enabled = 1;
1529 vphn_enabled = 0;
601abdc3 1530#ifdef CONFIG_SMP
5d88aa85 1531 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1532#endif
5d88aa85 1533 }
b7abef04 1534 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
f13c13a0 1535 lppaca_shared_proc(get_lppaca())) {
5d88aa85
JL
1536 if (!vphn_enabled) {
1537 prrn_enabled = 0;
1538 vphn_enabled = 1;
1539 setup_cpu_associativity_change_counters();
1540 init_timer_deferrable(&topology_timer);
1541 reset_topology_timer();
1542 }
9eff1a38
JL
1543 }
1544
1545 return rc;
1546}
9eff1a38
JL
1547
1548/*
1549 * Disable polling for VPHN associativity changes.
1550 */
1551int stop_topology_update(void)
1552{
5d88aa85
JL
1553 int rc = 0;
1554
1555 if (prrn_enabled) {
1556 prrn_enabled = 0;
601abdc3 1557#ifdef CONFIG_SMP
5d88aa85 1558 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1559#endif
5d88aa85
JL
1560 } else if (vphn_enabled) {
1561 vphn_enabled = 0;
1562 rc = del_timer_sync(&topology_timer);
1563 }
1564
1565 return rc;
9eff1a38 1566}
e04fa612
NF
1567
1568int prrn_is_enabled(void)
1569{
1570 return prrn_enabled;
1571}
1572
1573static int topology_read(struct seq_file *file, void *v)
1574{
1575 if (vphn_enabled || prrn_enabled)
1576 seq_puts(file, "on\n");
1577 else
1578 seq_puts(file, "off\n");
1579
1580 return 0;
1581}
1582
1583static int topology_open(struct inode *inode, struct file *file)
1584{
1585 return single_open(file, topology_read, NULL);
1586}
1587
1588static ssize_t topology_write(struct file *file, const char __user *buf,
1589 size_t count, loff_t *off)
1590{
1591 char kbuf[4]; /* "on" or "off" plus null. */
1592 int read_len;
1593
1594 read_len = count < 3 ? count : 3;
1595 if (copy_from_user(kbuf, buf, read_len))
1596 return -EINVAL;
1597
1598 kbuf[read_len] = '\0';
1599
1600 if (!strncmp(kbuf, "on", 2))
1601 start_topology_update();
1602 else if (!strncmp(kbuf, "off", 3))
1603 stop_topology_update();
1604 else
1605 return -EINVAL;
1606
1607 return count;
1608}
1609
1610static const struct file_operations topology_ops = {
1611 .read = seq_read,
1612 .write = topology_write,
1613 .open = topology_open,
1614 .release = single_release
1615};
1616
1617static int topology_update_init(void)
1618{
2d73bae1
NA
1619 /* Do not poll for changes if disabled at boot */
1620 if (topology_updates_enabled)
1621 start_topology_update();
1622
2d15b9b4
NA
1623 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1624 return -ENOMEM;
e04fa612
NF
1625
1626 return 0;
9eff1a38 1627}
e04fa612 1628device_initcall(topology_update_init);
39bf990e 1629#endif /* CONFIG_PPC_SPLPAR */