]>
Commit | Line | Data |
---|---|---|
2874c5fd | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
1da177e4 LT |
2 | /* |
3 | * pSeries NUMA support | |
4 | * | |
5 | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | |
1da177e4 | 6 | */ |
2d73bae1 NA |
7 | #define pr_fmt(fmt) "numa: " fmt |
8 | ||
1da177e4 | 9 | #include <linux/threads.h> |
57c8a661 | 10 | #include <linux/memblock.h> |
1da177e4 LT |
11 | #include <linux/init.h> |
12 | #include <linux/mm.h> | |
13 | #include <linux/mmzone.h> | |
4b16f8e2 | 14 | #include <linux/export.h> |
1da177e4 LT |
15 | #include <linux/nodemask.h> |
16 | #include <linux/cpu.h> | |
17 | #include <linux/notifier.h> | |
6df1646e | 18 | #include <linux/of.h> |
06eccea6 | 19 | #include <linux/pfn.h> |
9eff1a38 JL |
20 | #include <linux/cpuset.h> |
21 | #include <linux/node.h> | |
30c05350 | 22 | #include <linux/stop_machine.h> |
e04fa612 NF |
23 | #include <linux/proc_fs.h> |
24 | #include <linux/seq_file.h> | |
25 | #include <linux/uaccess.h> | |
191a7120 | 26 | #include <linux/slab.h> |
3be7db6a | 27 | #include <asm/cputhreads.h> |
45fb6cea | 28 | #include <asm/sparsemem.h> |
d9b2b2a2 | 29 | #include <asm/prom.h> |
2249ca9d | 30 | #include <asm/smp.h> |
d4edc5b6 | 31 | #include <asm/topology.h> |
9eff1a38 JL |
32 | #include <asm/firmware.h> |
33 | #include <asm/paca.h> | |
39bf990e | 34 | #include <asm/hvcall.h> |
ae3a197e | 35 | #include <asm/setup.h> |
176bbf14 | 36 | #include <asm/vdso.h> |
514a9cb3 | 37 | #include <asm/drmem.h> |
1da177e4 LT |
38 | |
39 | static int numa_enabled = 1; | |
40 | ||
1daa6d08 BS |
41 | static char *cmdline __initdata; |
42 | ||
1da177e4 LT |
43 | static int numa_debug; |
44 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | |
45 | ||
45fb6cea | 46 | int numa_cpu_lookup_table[NR_CPUS]; |
25863de0 | 47 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
1da177e4 | 48 | struct pglist_data *node_data[MAX_NUMNODES]; |
45fb6cea AB |
49 | |
50 | EXPORT_SYMBOL(numa_cpu_lookup_table); | |
25863de0 | 51 | EXPORT_SYMBOL(node_to_cpumask_map); |
45fb6cea AB |
52 | EXPORT_SYMBOL(node_data); |
53 | ||
7e35ef66 | 54 | static int primary_domain_index; |
237a0989 | 55 | static int n_mem_addr_cells, n_mem_size_cells; |
0eacd06b AK |
56 | |
57 | #define FORM0_AFFINITY 0 | |
58 | #define FORM1_AFFINITY 1 | |
59 | static int affinity_form; | |
41eab6f8 AB |
60 | |
61 | #define MAX_DISTANCE_REF_POINTS 4 | |
62 | static int distance_ref_points_depth; | |
b08a2a12 | 63 | static const __be32 *distance_ref_points; |
41eab6f8 | 64 | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; |
1da177e4 | 65 | |
25863de0 AB |
66 | /* |
67 | * Allocate node_to_cpumask_map based on number of available nodes | |
68 | * Requires node_possible_map to be valid. | |
69 | * | |
9512938b | 70 | * Note: cpumask_of_node() is not valid until after this is done. |
25863de0 AB |
71 | */ |
72 | static void __init setup_node_to_cpumask_map(void) | |
73 | { | |
f9d531b8 | 74 | unsigned int node; |
25863de0 AB |
75 | |
76 | /* setup nr_node_ids if not done yet */ | |
f9d531b8 CS |
77 | if (nr_node_ids == MAX_NUMNODES) |
78 | setup_nr_node_ids(); | |
25863de0 AB |
79 | |
80 | /* allocate the map */ | |
c118baf8 | 81 | for_each_node(node) |
25863de0 AB |
82 | alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
83 | ||
84 | /* cpumask_of_node() will now work */ | |
b9726c26 | 85 | dbg("Node to cpumask map for %u nodes\n", nr_node_ids); |
25863de0 AB |
86 | } |
87 | ||
55671f3c | 88 | static int __init fake_numa_create_new_node(unsigned long end_pfn, |
1daa6d08 BS |
89 | unsigned int *nid) |
90 | { | |
91 | unsigned long long mem; | |
92 | char *p = cmdline; | |
93 | static unsigned int fake_nid; | |
94 | static unsigned long long curr_boundary; | |
95 | ||
96 | /* | |
97 | * Modify node id, iff we started creating NUMA nodes | |
98 | * We want to continue from where we left of the last time | |
99 | */ | |
100 | if (fake_nid) | |
101 | *nid = fake_nid; | |
102 | /* | |
103 | * In case there are no more arguments to parse, the | |
104 | * node_id should be the same as the last fake node id | |
105 | * (we've handled this above). | |
106 | */ | |
107 | if (!p) | |
108 | return 0; | |
109 | ||
110 | mem = memparse(p, &p); | |
111 | if (!mem) | |
112 | return 0; | |
113 | ||
114 | if (mem < curr_boundary) | |
115 | return 0; | |
116 | ||
117 | curr_boundary = mem; | |
118 | ||
119 | if ((end_pfn << PAGE_SHIFT) > mem) { | |
120 | /* | |
121 | * Skip commas and spaces | |
122 | */ | |
123 | while (*p == ',' || *p == ' ' || *p == '\t') | |
124 | p++; | |
125 | ||
126 | cmdline = p; | |
127 | fake_nid++; | |
128 | *nid = fake_nid; | |
129 | dbg("created new fake_node with id %d\n", fake_nid); | |
130 | return 1; | |
131 | } | |
132 | return 0; | |
133 | } | |
134 | ||
d4edc5b6 SB |
135 | static void reset_numa_cpu_lookup_table(void) |
136 | { | |
137 | unsigned int cpu; | |
138 | ||
139 | for_each_possible_cpu(cpu) | |
140 | numa_cpu_lookup_table[cpu] = -1; | |
141 | } | |
142 | ||
d4edc5b6 SB |
143 | static void map_cpu_to_node(int cpu, int node) |
144 | { | |
145 | update_numa_cpu_lookup_table(cpu, node); | |
45fb6cea | 146 | |
bf4b85b0 NL |
147 | dbg("adding cpu %d to node %d\n", cpu, node); |
148 | ||
25863de0 AB |
149 | if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) |
150 | cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | |
1da177e4 LT |
151 | } |
152 | ||
39bf990e | 153 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) |
1da177e4 LT |
154 | static void unmap_cpu_from_node(unsigned long cpu) |
155 | { | |
156 | int node = numa_cpu_lookup_table[cpu]; | |
157 | ||
158 | dbg("removing cpu %lu from node %d\n", cpu, node); | |
159 | ||
25863de0 | 160 | if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { |
429f4d8d | 161 | cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); |
1da177e4 LT |
162 | } else { |
163 | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | |
164 | cpu, node); | |
165 | } | |
166 | } | |
39bf990e | 167 | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ |
1da177e4 | 168 | |
d62c8dee NR |
169 | int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) |
170 | { | |
171 | int dist = 0; | |
172 | ||
173 | int i, index; | |
174 | ||
175 | for (i = 0; i < distance_ref_points_depth; i++) { | |
176 | index = be32_to_cpu(distance_ref_points[i]); | |
177 | if (cpu1_assoc[index] == cpu2_assoc[index]) | |
178 | break; | |
179 | dist++; | |
180 | } | |
181 | ||
182 | return dist; | |
183 | } | |
184 | ||
1da177e4 | 185 | /* must hold reference to node during call */ |
b08a2a12 | 186 | static const __be32 *of_get_associativity(struct device_node *dev) |
1da177e4 | 187 | { |
e2eb6392 | 188 | return of_get_property(dev, "ibm,associativity", NULL); |
1da177e4 LT |
189 | } |
190 | ||
41eab6f8 AB |
191 | int __node_distance(int a, int b) |
192 | { | |
193 | int i; | |
194 | int distance = LOCAL_DISTANCE; | |
195 | ||
0eacd06b | 196 | if (affinity_form == FORM0_AFFINITY) |
7122beee | 197 | return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); |
41eab6f8 AB |
198 | |
199 | for (i = 0; i < distance_ref_points_depth; i++) { | |
200 | if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | |
201 | break; | |
202 | ||
203 | /* Double the distance for each NUMA level */ | |
204 | distance *= 2; | |
205 | } | |
206 | ||
207 | return distance; | |
208 | } | |
12c743eb | 209 | EXPORT_SYMBOL(__node_distance); |
41eab6f8 | 210 | |
8ddc6448 AK |
211 | static int __associativity_to_nid(const __be32 *associativity, |
212 | int max_array_sz) | |
41eab6f8 | 213 | { |
8ddc6448 AK |
214 | int nid; |
215 | /* | |
216 | * primary_domain_index is 1 based array index. | |
217 | */ | |
218 | int index = primary_domain_index - 1; | |
41eab6f8 | 219 | |
8ddc6448 AK |
220 | if (!numa_enabled || index >= max_array_sz) |
221 | return NUMA_NO_NODE; | |
41eab6f8 | 222 | |
8ddc6448 | 223 | nid = of_read_number(&associativity[index], 1); |
b08a2a12 | 224 | |
8ddc6448 AK |
225 | /* POWER4 LPAR uses 0xffff as invalid node */ |
226 | if (nid == 0xffff || nid >= nr_node_ids) | |
227 | nid = NUMA_NO_NODE; | |
228 | return nid; | |
41eab6f8 | 229 | } |
dbce4562 SD |
230 | /* |
231 | * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA | |
482ec7c4 NL |
232 | * info is found. |
233 | */ | |
b08a2a12 | 234 | static int associativity_to_nid(const __be32 *associativity) |
1da177e4 | 235 | { |
8ddc6448 | 236 | int array_sz = of_read_number(associativity, 1); |
41eab6f8 | 237 | |
8ddc6448 AK |
238 | /* Skip the first element in the associativity array */ |
239 | return __associativity_to_nid((associativity + 1), array_sz); | |
1da177e4 LT |
240 | } |
241 | ||
9eff1a38 JL |
242 | /* Returns the nid associated with the given device tree node, |
243 | * or -1 if not found. | |
244 | */ | |
245 | static int of_node_to_nid_single(struct device_node *device) | |
246 | { | |
98fa15f3 | 247 | int nid = NUMA_NO_NODE; |
b08a2a12 | 248 | const __be32 *tmp; |
9eff1a38 JL |
249 | |
250 | tmp = of_get_associativity(device); | |
251 | if (tmp) | |
252 | nid = associativity_to_nid(tmp); | |
253 | return nid; | |
254 | } | |
255 | ||
953039c8 JK |
256 | /* Walk the device tree upwards, looking for an associativity id */ |
257 | int of_node_to_nid(struct device_node *device) | |
258 | { | |
98fa15f3 | 259 | int nid = NUMA_NO_NODE; |
953039c8 JK |
260 | |
261 | of_node_get(device); | |
262 | while (device) { | |
263 | nid = of_node_to_nid_single(device); | |
264 | if (nid != -1) | |
265 | break; | |
266 | ||
1def3758 | 267 | device = of_get_next_parent(device); |
953039c8 JK |
268 | } |
269 | of_node_put(device); | |
270 | ||
271 | return nid; | |
272 | } | |
be9ba9ff | 273 | EXPORT_SYMBOL(of_node_to_nid); |
953039c8 | 274 | |
8ddc6448 AK |
275 | static void __initialize_form1_numa_distance(const __be32 *associativity, |
276 | int max_array_sz) | |
277 | { | |
278 | int i, nid; | |
279 | ||
280 | if (affinity_form != FORM1_AFFINITY) | |
281 | return; | |
282 | ||
283 | nid = __associativity_to_nid(associativity, max_array_sz); | |
284 | if (nid != NUMA_NO_NODE) { | |
285 | for (i = 0; i < distance_ref_points_depth; i++) { | |
286 | const __be32 *entry; | |
287 | int index = be32_to_cpu(distance_ref_points[i]) - 1; | |
288 | ||
289 | /* | |
290 | * broken hierarchy, return with broken distance table | |
291 | */ | |
292 | if (WARN(index >= max_array_sz, "Broken ibm,associativity property")) | |
293 | return; | |
294 | ||
295 | entry = &associativity[index]; | |
296 | distance_lookup_table[nid][i] = of_read_number(entry, 1); | |
297 | } | |
298 | } | |
299 | } | |
300 | ||
301 | static void initialize_form1_numa_distance(const __be32 *associativity) | |
302 | { | |
303 | int array_sz; | |
304 | ||
305 | array_sz = of_read_number(associativity, 1); | |
306 | /* Skip the first element in the associativity array */ | |
307 | __initialize_form1_numa_distance(associativity + 1, array_sz); | |
308 | } | |
309 | ||
310 | /* | |
311 | * Used to update distance information w.r.t newly added node. | |
312 | */ | |
313 | void update_numa_distance(struct device_node *node) | |
314 | { | |
315 | if (affinity_form == FORM0_AFFINITY) | |
316 | return; | |
317 | else if (affinity_form == FORM1_AFFINITY) { | |
318 | const __be32 *associativity; | |
319 | ||
320 | associativity = of_get_associativity(node); | |
321 | if (!associativity) | |
322 | return; | |
323 | ||
324 | initialize_form1_numa_distance(associativity); | |
325 | return; | |
326 | } | |
327 | } | |
328 | ||
7e35ef66 | 329 | static int __init find_primary_domain_index(void) |
1da177e4 | 330 | { |
7e35ef66 | 331 | int index; |
e70606eb | 332 | struct device_node *root; |
1da177e4 | 333 | |
0eacd06b AK |
334 | /* |
335 | * Check for which form of affinity. | |
336 | */ | |
337 | if (firmware_has_feature(FW_FEATURE_OPAL)) { | |
338 | affinity_form = FORM1_AFFINITY; | |
339 | } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) { | |
340 | dbg("Using form 1 affinity\n"); | |
341 | affinity_form = FORM1_AFFINITY; | |
342 | } else | |
343 | affinity_form = FORM0_AFFINITY; | |
344 | ||
1c8ee733 DS |
345 | if (firmware_has_feature(FW_FEATURE_OPAL)) |
346 | root = of_find_node_by_path("/ibm,opal"); | |
347 | else | |
348 | root = of_find_node_by_path("/rtas"); | |
e70606eb ME |
349 | if (!root) |
350 | root = of_find_node_by_path("/"); | |
1da177e4 LT |
351 | |
352 | /* | |
41eab6f8 AB |
353 | * This property is a set of 32-bit integers, each representing |
354 | * an index into the ibm,associativity nodes. | |
355 | * | |
356 | * With form 0 affinity the first integer is for an SMP configuration | |
357 | * (should be all 0's) and the second is for a normal NUMA | |
358 | * configuration. We have only one level of NUMA. | |
359 | * | |
360 | * With form 1 affinity the first integer is the most significant | |
361 | * NUMA boundary and the following are progressively less significant | |
362 | * boundaries. There can be more than one level of NUMA. | |
1da177e4 | 363 | */ |
e70606eb | 364 | distance_ref_points = of_get_property(root, |
41eab6f8 AB |
365 | "ibm,associativity-reference-points", |
366 | &distance_ref_points_depth); | |
367 | ||
368 | if (!distance_ref_points) { | |
369 | dbg("NUMA: ibm,associativity-reference-points not found.\n"); | |
370 | goto err; | |
371 | } | |
372 | ||
373 | distance_ref_points_depth /= sizeof(int); | |
0eacd06b | 374 | if (affinity_form == FORM0_AFFINITY) { |
41eab6f8 AB |
375 | if (distance_ref_points_depth < 2) { |
376 | printk(KERN_WARNING "NUMA: " | |
0eacd06b | 377 | "short ibm,associativity-reference-points\n"); |
41eab6f8 AB |
378 | goto err; |
379 | } | |
380 | ||
7e35ef66 | 381 | index = of_read_number(&distance_ref_points[1], 1); |
0eacd06b AK |
382 | } else { |
383 | index = of_read_number(distance_ref_points, 1); | |
1da177e4 | 384 | } |
1da177e4 | 385 | |
41eab6f8 AB |
386 | /* |
387 | * Warn and cap if the hardware supports more than | |
388 | * MAX_DISTANCE_REF_POINTS domains. | |
389 | */ | |
390 | if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | |
391 | printk(KERN_WARNING "NUMA: distance array capped at " | |
392 | "%d entries\n", MAX_DISTANCE_REF_POINTS); | |
393 | distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | |
394 | } | |
395 | ||
e70606eb | 396 | of_node_put(root); |
7e35ef66 | 397 | return index; |
41eab6f8 AB |
398 | |
399 | err: | |
e70606eb | 400 | of_node_put(root); |
41eab6f8 | 401 | return -1; |
1da177e4 LT |
402 | } |
403 | ||
84c9fdd1 | 404 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) |
1da177e4 LT |
405 | { |
406 | struct device_node *memory = NULL; | |
1da177e4 LT |
407 | |
408 | memory = of_find_node_by_type(memory, "memory"); | |
54c23310 | 409 | if (!memory) |
84c9fdd1 | 410 | panic("numa.c: No memory nodes found!"); |
54c23310 | 411 | |
a8bda5dd | 412 | *n_addr_cells = of_n_addr_cells(memory); |
9213feea | 413 | *n_size_cells = of_n_size_cells(memory); |
84c9fdd1 | 414 | of_node_put(memory); |
1da177e4 LT |
415 | } |
416 | ||
b08a2a12 | 417 | static unsigned long read_n_cells(int n, const __be32 **buf) |
1da177e4 LT |
418 | { |
419 | unsigned long result = 0; | |
420 | ||
421 | while (n--) { | |
b08a2a12 | 422 | result = (result << 32) | of_read_number(*buf, 1); |
1da177e4 LT |
423 | (*buf)++; |
424 | } | |
425 | return result; | |
426 | } | |
427 | ||
8342681d NF |
428 | struct assoc_arrays { |
429 | u32 n_arrays; | |
430 | u32 array_sz; | |
b08a2a12 | 431 | const __be32 *arrays; |
8342681d NF |
432 | }; |
433 | ||
434 | /* | |
25985edc | 435 | * Retrieve and validate the list of associativity arrays for drconf |
8342681d NF |
436 | * memory from the ibm,associativity-lookup-arrays property of the |
437 | * device tree.. | |
438 | * | |
439 | * The layout of the ibm,associativity-lookup-arrays property is a number N | |
440 | * indicating the number of associativity arrays, followed by a number M | |
441 | * indicating the size of each associativity array, followed by a list | |
442 | * of N associativity arrays. | |
443 | */ | |
35f80deb | 444 | static int of_get_assoc_arrays(struct assoc_arrays *aa) |
8342681d | 445 | { |
35f80deb | 446 | struct device_node *memory; |
b08a2a12 | 447 | const __be32 *prop; |
8342681d NF |
448 | u32 len; |
449 | ||
35f80deb NF |
450 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
451 | if (!memory) | |
452 | return -1; | |
453 | ||
8342681d | 454 | prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); |
35f80deb NF |
455 | if (!prop || len < 2 * sizeof(unsigned int)) { |
456 | of_node_put(memory); | |
8342681d | 457 | return -1; |
35f80deb | 458 | } |
8342681d | 459 | |
b08a2a12 AP |
460 | aa->n_arrays = of_read_number(prop++, 1); |
461 | aa->array_sz = of_read_number(prop++, 1); | |
8342681d | 462 | |
35f80deb NF |
463 | of_node_put(memory); |
464 | ||
42b2aa86 | 465 | /* Now that we know the number of arrays and size of each array, |
8342681d NF |
466 | * revalidate the size of the property read in. |
467 | */ | |
468 | if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | |
469 | return -1; | |
470 | ||
471 | aa->arrays = prop; | |
472 | return 0; | |
473 | } | |
474 | ||
8ddc6448 AK |
475 | static int get_nid_and_numa_distance(struct drmem_lmb *lmb) |
476 | { | |
477 | struct assoc_arrays aa = { .arrays = NULL }; | |
478 | int default_nid = NUMA_NO_NODE; | |
479 | int nid = default_nid; | |
480 | int rc, index; | |
481 | ||
482 | if ((primary_domain_index < 0) || !numa_enabled) | |
483 | return default_nid; | |
484 | ||
485 | rc = of_get_assoc_arrays(&aa); | |
486 | if (rc) | |
487 | return default_nid; | |
488 | ||
489 | if (primary_domain_index <= aa.array_sz && | |
490 | !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { | |
491 | const __be32 *associativity; | |
492 | ||
493 | index = lmb->aa_index * aa.array_sz; | |
494 | associativity = &aa.arrays[index]; | |
495 | nid = __associativity_to_nid(associativity, aa.array_sz); | |
496 | if (nid > 0 && affinity_form == FORM1_AFFINITY) { | |
497 | /* | |
498 | * lookup array associativity entries have | |
499 | * no length of the array as the first element. | |
500 | */ | |
501 | __initialize_form1_numa_distance(associativity, aa.array_sz); | |
502 | } | |
503 | } | |
504 | return nid; | |
505 | } | |
506 | ||
8342681d NF |
507 | /* |
508 | * This is like of_node_to_nid_single() for memory represented in the | |
509 | * ibm,dynamic-reconfiguration-memory node. | |
510 | */ | |
72cdd117 | 511 | int of_drconf_to_nid_single(struct drmem_lmb *lmb) |
8342681d | 512 | { |
b88fc309 | 513 | struct assoc_arrays aa = { .arrays = NULL }; |
ea9f5b70 | 514 | int default_nid = NUMA_NO_NODE; |
8342681d | 515 | int nid = default_nid; |
b88fc309 NF |
516 | int rc, index; |
517 | ||
7e35ef66 | 518 | if ((primary_domain_index < 0) || !numa_enabled) |
ea9f5b70 AK |
519 | return default_nid; |
520 | ||
b88fc309 NF |
521 | rc = of_get_assoc_arrays(&aa); |
522 | if (rc) | |
523 | return default_nid; | |
8342681d | 524 | |
7e35ef66 | 525 | if (primary_domain_index <= aa.array_sz && |
ea9f5b70 | 526 | !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { |
8ddc6448 | 527 | const __be32 *associativity; |
8342681d | 528 | |
8ddc6448 AK |
529 | index = lmb->aa_index * aa.array_sz; |
530 | associativity = &aa.arrays[index]; | |
531 | nid = __associativity_to_nid(associativity, aa.array_sz); | |
8342681d | 532 | } |
8342681d NF |
533 | return nid; |
534 | } | |
535 | ||
dc909d8b | 536 | #ifdef CONFIG_PPC_SPLPAR |
8ddc6448 AK |
537 | |
538 | static int __vphn_get_associativity(long lcpu, __be32 *associativity) | |
dc909d8b | 539 | { |
dc909d8b SD |
540 | long rc, hwid; |
541 | ||
542 | /* | |
543 | * On a shared lpar, device tree will not have node associativity. | |
544 | * At this time lppaca, or its __old_status field may not be | |
545 | * updated. Hence kernel cannot detect if its on a shared lpar. So | |
546 | * request an explicit associativity irrespective of whether the | |
547 | * lpar is shared or dedicated. Use the device tree property as a | |
548 | * fallback. cpu_to_phys_id is only valid between | |
549 | * smp_setup_cpu_maps() and smp_setup_pacas(). | |
550 | */ | |
551 | if (firmware_has_feature(FW_FEATURE_VPHN)) { | |
552 | if (cpu_to_phys_id) | |
553 | hwid = cpu_to_phys_id[lcpu]; | |
554 | else | |
555 | hwid = get_hard_smp_processor_id(lcpu); | |
556 | ||
557 | rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); | |
558 | if (rc == H_SUCCESS) | |
8ddc6448 | 559 | return 0; |
dc909d8b SD |
560 | } |
561 | ||
8ddc6448 AK |
562 | return -1; |
563 | } | |
564 | ||
565 | static int vphn_get_nid(long lcpu) | |
566 | { | |
567 | __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | |
568 | ||
569 | ||
570 | if (!__vphn_get_associativity(lcpu, associativity)) | |
571 | return associativity_to_nid(associativity); | |
572 | ||
dc909d8b | 573 | return NUMA_NO_NODE; |
8ddc6448 | 574 | |
dc909d8b SD |
575 | } |
576 | #else | |
8ddc6448 AK |
577 | |
578 | static int __vphn_get_associativity(long lcpu, __be32 *associativity) | |
579 | { | |
580 | return -1; | |
581 | } | |
582 | ||
dc909d8b SD |
583 | static int vphn_get_nid(long unused) |
584 | { | |
585 | return NUMA_NO_NODE; | |
586 | } | |
587 | #endif /* CONFIG_PPC_SPLPAR */ | |
588 | ||
1da177e4 LT |
589 | /* |
590 | * Figure out to which domain a cpu belongs and stick it there. | |
591 | * Return the id of the domain used. | |
592 | */ | |
061d19f2 | 593 | static int numa_setup_cpu(unsigned long lcpu) |
1da177e4 | 594 | { |
d4edc5b6 | 595 | struct device_node *cpu; |
413e4055 SD |
596 | int fcpu = cpu_first_thread_sibling(lcpu); |
597 | int nid = NUMA_NO_NODE; | |
d4edc5b6 | 598 | |
a874f100 SD |
599 | if (!cpu_present(lcpu)) { |
600 | set_cpu_numa_node(lcpu, first_online_node); | |
601 | return first_online_node; | |
602 | } | |
603 | ||
d4edc5b6 SB |
604 | /* |
605 | * If a valid cpu-to-node mapping is already available, use it | |
606 | * directly instead of querying the firmware, since it represents | |
607 | * the most recent mapping notified to us by the platform (eg: VPHN). | |
413e4055 SD |
608 | * Since cpu_to_node binding remains the same for all threads in the |
609 | * core. If a valid cpu-to-node mapping is already available, for | |
610 | * the first thread in the core, use it. | |
d4edc5b6 | 611 | */ |
413e4055 SD |
612 | nid = numa_cpu_lookup_table[fcpu]; |
613 | if (nid >= 0) { | |
d4edc5b6 SB |
614 | map_cpu_to_node(lcpu, nid); |
615 | return nid; | |
616 | } | |
617 | ||
dc909d8b SD |
618 | nid = vphn_get_nid(lcpu); |
619 | if (nid != NUMA_NO_NODE) | |
620 | goto out_present; | |
621 | ||
d4edc5b6 | 622 | cpu = of_get_cpu_node(lcpu, NULL); |
1da177e4 LT |
623 | |
624 | if (!cpu) { | |
625 | WARN_ON(1); | |
297cf502 LZ |
626 | if (cpu_present(lcpu)) |
627 | goto out_present; | |
628 | else | |
629 | goto out; | |
1da177e4 LT |
630 | } |
631 | ||
953039c8 | 632 | nid = of_node_to_nid_single(cpu); |
dc909d8b | 633 | of_node_put(cpu); |
1da177e4 | 634 | |
297cf502 | 635 | out_present: |
ea05ba7c | 636 | if (nid < 0 || !node_possible(nid)) |
72c33688 | 637 | nid = first_online_node; |
1da177e4 | 638 | |
413e4055 SD |
639 | /* |
640 | * Update for the first thread of the core. All threads of a core | |
641 | * have to be part of the same node. This not only avoids querying | |
642 | * for every other thread in the core, but always avoids a case | |
643 | * where virtual node associativity change causes subsequent threads | |
644 | * of a core to be associated with different nid. However if first | |
645 | * thread is already online, expect it to have a valid mapping. | |
646 | */ | |
647 | if (fcpu != lcpu) { | |
648 | WARN_ON(cpu_online(fcpu)); | |
649 | map_cpu_to_node(fcpu, nid); | |
650 | } | |
651 | ||
297cf502 | 652 | map_cpu_to_node(lcpu, nid); |
297cf502 | 653 | out: |
cf950b7a | 654 | return nid; |
1da177e4 LT |
655 | } |
656 | ||
68fb18aa SB |
657 | static void verify_cpu_node_mapping(int cpu, int node) |
658 | { | |
659 | int base, sibling, i; | |
660 | ||
661 | /* Verify that all the threads in the core belong to the same node */ | |
662 | base = cpu_first_thread_sibling(cpu); | |
663 | ||
664 | for (i = 0; i < threads_per_core; i++) { | |
665 | sibling = base + i; | |
666 | ||
667 | if (sibling == cpu || cpu_is_offline(sibling)) | |
668 | continue; | |
669 | ||
670 | if (cpu_to_node(sibling) != node) { | |
671 | WARN(1, "CPU thread siblings %d and %d don't belong" | |
672 | " to the same node!\n", cpu, sibling); | |
673 | break; | |
674 | } | |
675 | } | |
676 | } | |
677 | ||
bdab88e0 SAS |
678 | /* Must run before sched domains notifier. */ |
679 | static int ppc_numa_cpu_prepare(unsigned int cpu) | |
680 | { | |
681 | int nid; | |
682 | ||
683 | nid = numa_setup_cpu(cpu); | |
684 | verify_cpu_node_mapping(cpu, nid); | |
685 | return 0; | |
686 | } | |
687 | ||
688 | static int ppc_numa_cpu_dead(unsigned int cpu) | |
689 | { | |
1da177e4 | 690 | #ifdef CONFIG_HOTPLUG_CPU |
bdab88e0 | 691 | unmap_cpu_from_node(cpu); |
1da177e4 | 692 | #endif |
bdab88e0 | 693 | return 0; |
1da177e4 LT |
694 | } |
695 | ||
696 | /* | |
697 | * Check and possibly modify a memory region to enforce the memory limit. | |
698 | * | |
699 | * Returns the size the region should have to enforce the memory limit. | |
700 | * This will either be the original value of size, a truncated value, | |
701 | * or zero. If the returned value of size is 0 the region should be | |
25985edc | 702 | * discarded as it lies wholly above the memory limit. |
1da177e4 | 703 | */ |
45fb6cea AB |
704 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, |
705 | unsigned long size) | |
1da177e4 LT |
706 | { |
707 | /* | |
95f72d1e | 708 | * We use memblock_end_of_DRAM() in here instead of memory_limit because |
1da177e4 | 709 | * we've already adjusted it for the limit and it takes care of |
fe55249d MM |
710 | * having memory holes below the limit. Also, in the case of |
711 | * iommu_is_off, memory_limit is not set but is implicitly enforced. | |
1da177e4 | 712 | */ |
1da177e4 | 713 | |
95f72d1e | 714 | if (start + size <= memblock_end_of_DRAM()) |
1da177e4 LT |
715 | return size; |
716 | ||
95f72d1e | 717 | if (start >= memblock_end_of_DRAM()) |
1da177e4 LT |
718 | return 0; |
719 | ||
95f72d1e | 720 | return memblock_end_of_DRAM() - start; |
1da177e4 LT |
721 | } |
722 | ||
cf00085d C |
723 | /* |
724 | * Reads the counter for a given entry in | |
725 | * linux,drconf-usable-memory property | |
726 | */ | |
b08a2a12 | 727 | static inline int __init read_usm_ranges(const __be32 **usm) |
cf00085d C |
728 | { |
729 | /* | |
3fdfd990 | 730 | * For each lmb in ibm,dynamic-memory a corresponding |
cf00085d C |
731 | * entry in linux,drconf-usable-memory property contains |
732 | * a counter followed by that many (base, size) duple. | |
733 | * read the counter from linux,drconf-usable-memory | |
734 | */ | |
735 | return read_n_cells(n_mem_size_cells, usm); | |
736 | } | |
737 | ||
0204568a PM |
738 | /* |
739 | * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | |
740 | * node. This assumes n_mem_{addr,size}_cells have been set. | |
741 | */ | |
adfefc60 HB |
742 | static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, |
743 | const __be32 **usm, | |
744 | void *data) | |
0204568a | 745 | { |
514a9cb3 NF |
746 | unsigned int ranges, is_kexec_kdump = 0; |
747 | unsigned long base, size, sz; | |
8342681d | 748 | int nid; |
8342681d | 749 | |
514a9cb3 NF |
750 | /* |
751 | * Skip this block if the reserved bit is set in flags (0x80) | |
752 | * or if the block is not assigned to this partition (0x8) | |
753 | */ | |
754 | if ((lmb->flags & DRCONF_MEM_RESERVED) | |
755 | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | |
adfefc60 | 756 | return 0; |
8342681d | 757 | |
514a9cb3 | 758 | if (*usm) |
cf00085d C |
759 | is_kexec_kdump = 1; |
760 | ||
514a9cb3 NF |
761 | base = lmb->base_addr; |
762 | size = drmem_lmb_size(); | |
763 | ranges = 1; | |
8342681d | 764 | |
514a9cb3 NF |
765 | if (is_kexec_kdump) { |
766 | ranges = read_usm_ranges(usm); | |
767 | if (!ranges) /* there are no (base, size) duple */ | |
adfefc60 | 768 | return 0; |
514a9cb3 | 769 | } |
8342681d | 770 | |
514a9cb3 | 771 | do { |
cf00085d | 772 | if (is_kexec_kdump) { |
514a9cb3 NF |
773 | base = read_n_cells(n_mem_addr_cells, usm); |
774 | size = read_n_cells(n_mem_size_cells, usm); | |
cf00085d | 775 | } |
514a9cb3 | 776 | |
8ddc6448 | 777 | nid = get_nid_and_numa_distance(lmb); |
514a9cb3 NF |
778 | fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), |
779 | &nid); | |
780 | node_set_online(nid); | |
781 | sz = numa_enforce_memory_limit(base, size); | |
782 | if (sz) | |
783 | memblock_set_node(base, sz, &memblock.memory, nid); | |
784 | } while (--ranges); | |
adfefc60 HB |
785 | |
786 | return 0; | |
0204568a PM |
787 | } |
788 | ||
1da177e4 LT |
789 | static int __init parse_numa_properties(void) |
790 | { | |
94db7c5e | 791 | struct device_node *memory; |
482ec7c4 | 792 | int default_nid = 0; |
1da177e4 | 793 | unsigned long i; |
8ddc6448 | 794 | const __be32 *associativity; |
1da177e4 LT |
795 | |
796 | if (numa_enabled == 0) { | |
797 | printk(KERN_WARNING "NUMA disabled by user\n"); | |
798 | return -1; | |
799 | } | |
800 | ||
7e35ef66 | 801 | primary_domain_index = find_primary_domain_index(); |
1da177e4 | 802 | |
7e35ef66 | 803 | if (primary_domain_index < 0) { |
495c2ff4 | 804 | /* |
7e35ef66 | 805 | * if we fail to parse primary_domain_index from device tree |
495c2ff4 AK |
806 | * mark the numa disabled, boot with numa disabled. |
807 | */ | |
808 | numa_enabled = false; | |
7e35ef66 | 809 | return primary_domain_index; |
495c2ff4 | 810 | } |
1da177e4 | 811 | |
7e35ef66 | 812 | dbg("NUMA associativity depth for CPU/Memory: %d\n", primary_domain_index); |
bf4b85b0 | 813 | |
1da177e4 | 814 | /* |
482ec7c4 NL |
815 | * Even though we connect cpus to numa domains later in SMP |
816 | * init, we need to know the node ids now. This is because | |
817 | * each node to be onlined must have NODE_DATA etc backing it. | |
1da177e4 | 818 | */ |
482ec7c4 | 819 | for_each_present_cpu(i) { |
8ddc6448 | 820 | __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE]; |
dfbe93a2 | 821 | struct device_node *cpu; |
8ddc6448 | 822 | int nid = NUMA_NO_NODE; |
1da177e4 | 823 | |
8ddc6448 AK |
824 | memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32)); |
825 | ||
826 | if (__vphn_get_associativity(i, vphn_assoc) == 0) { | |
827 | nid = associativity_to_nid(vphn_assoc); | |
828 | initialize_form1_numa_distance(vphn_assoc); | |
829 | } else { | |
830 | ||
831 | /* | |
832 | * Don't fall back to default_nid yet -- we will plug | |
833 | * cpus into nodes once the memory scan has discovered | |
834 | * the topology. | |
835 | */ | |
6398eaa2 SD |
836 | cpu = of_get_cpu_node(i, NULL); |
837 | BUG_ON(!cpu); | |
8ddc6448 AK |
838 | |
839 | associativity = of_get_associativity(cpu); | |
840 | if (associativity) { | |
841 | nid = associativity_to_nid(associativity); | |
842 | initialize_form1_numa_distance(associativity); | |
843 | } | |
6398eaa2 SD |
844 | of_node_put(cpu); |
845 | } | |
846 | ||
10f78fd0 | 847 | node_set_online(nid); |
1da177e4 LT |
848 | } |
849 | ||
237a0989 | 850 | get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); |
94db7c5e AB |
851 | |
852 | for_each_node_by_type(memory, "memory") { | |
1da177e4 LT |
853 | unsigned long start; |
854 | unsigned long size; | |
cf950b7a | 855 | int nid; |
1da177e4 | 856 | int ranges; |
b08a2a12 | 857 | const __be32 *memcell_buf; |
1da177e4 LT |
858 | unsigned int len; |
859 | ||
e2eb6392 | 860 | memcell_buf = of_get_property(memory, |
ba759485 ME |
861 | "linux,usable-memory", &len); |
862 | if (!memcell_buf || len <= 0) | |
e2eb6392 | 863 | memcell_buf = of_get_property(memory, "reg", &len); |
1da177e4 LT |
864 | if (!memcell_buf || len <= 0) |
865 | continue; | |
866 | ||
cc5d0189 BH |
867 | /* ranges in cell */ |
868 | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | |
1da177e4 LT |
869 | new_range: |
870 | /* these are order-sensitive, and modify the buffer pointer */ | |
237a0989 MK |
871 | start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
872 | size = read_n_cells(n_mem_size_cells, &memcell_buf); | |
1da177e4 | 873 | |
482ec7c4 NL |
874 | /* |
875 | * Assumption: either all memory nodes or none will | |
876 | * have associativity properties. If none, then | |
877 | * everything goes to default_nid. | |
878 | */ | |
8ddc6448 AK |
879 | associativity = of_get_associativity(memory); |
880 | if (associativity) { | |
881 | nid = associativity_to_nid(associativity); | |
882 | initialize_form1_numa_distance(associativity); | |
883 | } else | |
482ec7c4 | 884 | nid = default_nid; |
1daa6d08 BS |
885 | |
886 | fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | |
482ec7c4 | 887 | node_set_online(nid); |
1da177e4 | 888 | |
7656cd8e RA |
889 | size = numa_enforce_memory_limit(start, size); |
890 | if (size) | |
891 | memblock_set_node(start, size, &memblock.memory, nid); | |
1da177e4 LT |
892 | |
893 | if (--ranges) | |
894 | goto new_range; | |
895 | } | |
896 | ||
0204568a | 897 | /* |
dfbe93a2 AB |
898 | * Now do the same thing for each MEMBLOCK listed in the |
899 | * ibm,dynamic-memory property in the | |
900 | * ibm,dynamic-reconfiguration-memory node. | |
0204568a PM |
901 | */ |
902 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | |
514a9cb3 | 903 | if (memory) { |
adfefc60 | 904 | walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); |
514a9cb3 NF |
905 | of_node_put(memory); |
906 | } | |
0204568a | 907 | |
1da177e4 LT |
908 | return 0; |
909 | } | |
910 | ||
911 | static void __init setup_nonnuma(void) | |
912 | { | |
95f72d1e YL |
913 | unsigned long top_of_ram = memblock_end_of_DRAM(); |
914 | unsigned long total_ram = memblock_phys_mem_size(); | |
c67c3cb4 | 915 | unsigned long start_pfn, end_pfn; |
28be7072 | 916 | unsigned int nid = 0; |
c9118e6c | 917 | int i; |
1da177e4 | 918 | |
e110b281 | 919 | printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
1da177e4 | 920 | top_of_ram, total_ram); |
e110b281 | 921 | printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
1da177e4 LT |
922 | (top_of_ram - total_ram) >> 20); |
923 | ||
c9118e6c | 924 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { |
1daa6d08 | 925 | fake_numa_create_new_node(end_pfn, &nid); |
1d7cfe18 | 926 | memblock_set_node(PFN_PHYS(start_pfn), |
e7e8de59 TC |
927 | PFN_PHYS(end_pfn - start_pfn), |
928 | &memblock.memory, nid); | |
1daa6d08 | 929 | node_set_online(nid); |
c67c3cb4 | 930 | } |
1da177e4 LT |
931 | } |
932 | ||
4b703a23 AB |
933 | void __init dump_numa_cpu_topology(void) |
934 | { | |
935 | unsigned int node; | |
936 | unsigned int cpu, count; | |
937 | ||
495c2ff4 | 938 | if (!numa_enabled) |
4b703a23 AB |
939 | return; |
940 | ||
941 | for_each_online_node(node) { | |
8467801c | 942 | pr_info("Node %d CPUs:", node); |
4b703a23 AB |
943 | |
944 | count = 0; | |
945 | /* | |
946 | * If we used a CPU iterator here we would miss printing | |
947 | * the holes in the cpumap. | |
948 | */ | |
25863de0 AB |
949 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
950 | if (cpumask_test_cpu(cpu, | |
951 | node_to_cpumask_map[node])) { | |
4b703a23 | 952 | if (count == 0) |
8467801c | 953 | pr_cont(" %u", cpu); |
4b703a23 AB |
954 | ++count; |
955 | } else { | |
956 | if (count > 1) | |
8467801c | 957 | pr_cont("-%u", cpu - 1); |
4b703a23 AB |
958 | count = 0; |
959 | } | |
960 | } | |
961 | ||
962 | if (count > 1) | |
8467801c AK |
963 | pr_cont("-%u", nr_cpu_ids - 1); |
964 | pr_cont("\n"); | |
4b703a23 AB |
965 | } |
966 | } | |
967 | ||
10239733 AB |
968 | /* Initialize NODE_DATA for a node on the local memory */ |
969 | static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) | |
4a618669 | 970 | { |
10239733 AB |
971 | u64 spanned_pages = end_pfn - start_pfn; |
972 | const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); | |
973 | u64 nd_pa; | |
974 | void *nd; | |
975 | int tnid; | |
4a618669 | 976 | |
9a8dd708 | 977 | nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); |
33755574 MR |
978 | if (!nd_pa) |
979 | panic("Cannot allocate %zu bytes for node %d data\n", | |
980 | nd_size, nid); | |
981 | ||
10239733 | 982 | nd = __va(nd_pa); |
4a618669 | 983 | |
10239733 AB |
984 | /* report and initialize */ |
985 | pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", | |
986 | nd_pa, nd_pa + nd_size - 1); | |
987 | tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | |
988 | if (tnid != nid) | |
989 | pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); | |
4a618669 | 990 | |
10239733 AB |
991 | node_data[nid] = nd; |
992 | memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | |
993 | NODE_DATA(nid)->node_id = nid; | |
994 | NODE_DATA(nid)->node_start_pfn = start_pfn; | |
995 | NODE_DATA(nid)->node_spanned_pages = spanned_pages; | |
996 | } | |
4a618669 | 997 | |
a346137e MB |
998 | static void __init find_possible_nodes(void) |
999 | { | |
1000 | struct device_node *rtas; | |
9c7248bb | 1001 | const __be32 *domains = NULL; |
f9f130ff SD |
1002 | int prop_length, max_nodes; |
1003 | u32 i; | |
a346137e | 1004 | |
495c2ff4 | 1005 | if (!numa_enabled) |
a346137e MB |
1006 | return; |
1007 | ||
1008 | rtas = of_find_node_by_path("/rtas"); | |
1009 | if (!rtas) | |
1010 | return; | |
1011 | ||
f9f130ff SD |
1012 | /* |
1013 | * ibm,current-associativity-domains is a fairly recent property. If | |
1014 | * it doesn't exist, then fallback on ibm,max-associativity-domains. | |
1015 | * Current denotes what the platform can support compared to max | |
1016 | * which denotes what the Hypervisor can support. | |
9c7248bb LD |
1017 | * |
1018 | * If the LPAR is migratable, new nodes might be activated after a LPM, | |
1019 | * so we should consider the max number in that case. | |
f9f130ff | 1020 | */ |
9c7248bb LD |
1021 | if (!of_get_property(of_root, "ibm,migratable-partition", NULL)) |
1022 | domains = of_get_property(rtas, | |
1023 | "ibm,current-associativity-domains", | |
1024 | &prop_length); | |
f9f130ff SD |
1025 | if (!domains) { |
1026 | domains = of_get_property(rtas, "ibm,max-associativity-domains", | |
1027 | &prop_length); | |
1028 | if (!domains) | |
67df7784 SD |
1029 | goto out; |
1030 | } | |
a346137e | 1031 | |
7e35ef66 | 1032 | max_nodes = of_read_number(&domains[primary_domain_index], 1); |
9c7248bb LD |
1033 | pr_info("Partition configured for %d NUMA nodes.\n", max_nodes); |
1034 | ||
f9f130ff | 1035 | for (i = 0; i < max_nodes; i++) { |
ea05ba7c | 1036 | if (!node_possible(i)) |
a346137e | 1037 | node_set(i, node_possible_map); |
a346137e MB |
1038 | } |
1039 | ||
f9f130ff | 1040 | prop_length /= sizeof(int); |
7e35ef66 | 1041 | if (prop_length > primary_domain_index + 2) |
f9f130ff SD |
1042 | coregroup_enabled = 1; |
1043 | ||
a346137e MB |
1044 | out: |
1045 | of_node_put(rtas); | |
1046 | } | |
1047 | ||
9bd9be00 | 1048 | void __init mem_topology_setup(void) |
1da177e4 | 1049 | { |
9bd9be00 | 1050 | int cpu; |
1da177e4 | 1051 | |
e75130f2 SD |
1052 | /* |
1053 | * Linux/mm assumes node 0 to be online at boot. However this is not | |
1054 | * true on PowerPC, where node 0 is similar to any other node, it | |
1055 | * could be cpuless, memoryless node. So force node 0 to be offline | |
1056 | * for now. This will prevent cpuless, memoryless node 0 showing up | |
1057 | * unnecessarily as online. If a node has cpus or memory that need | |
1058 | * to be online, then node will anyway be marked online. | |
1059 | */ | |
1060 | node_set_offline(0); | |
1061 | ||
1da177e4 LT |
1062 | if (parse_numa_properties()) |
1063 | setup_nonnuma(); | |
1da177e4 | 1064 | |
3af229f2 | 1065 | /* |
a346137e MB |
1066 | * Modify the set of possible NUMA nodes to reflect information |
1067 | * available about the set of online nodes, and the set of nodes | |
1068 | * that we expect to make use of for this platform's affinity | |
1069 | * calculations. | |
3af229f2 NA |
1070 | */ |
1071 | nodes_and(node_possible_map, node_possible_map, node_online_map); | |
1072 | ||
a346137e MB |
1073 | find_possible_nodes(); |
1074 | ||
9bd9be00 NP |
1075 | setup_node_to_cpumask_map(); |
1076 | ||
1077 | reset_numa_cpu_lookup_table(); | |
1078 | ||
a874f100 SD |
1079 | for_each_possible_cpu(cpu) { |
1080 | /* | |
1081 | * Powerpc with CONFIG_NUMA always used to have a node 0, | |
1082 | * even if it was memoryless or cpuless. For all cpus that | |
1083 | * are possible but not present, cpu_to_node() would point | |
1084 | * to node 0. To remove a cpuless, memoryless dummy node, | |
1085 | * powerpc need to make sure all possible but not present | |
1086 | * cpu_to_node are set to a proper node. | |
1087 | */ | |
9bd9be00 | 1088 | numa_setup_cpu(cpu); |
a874f100 | 1089 | } |
9bd9be00 NP |
1090 | } |
1091 | ||
1092 | void __init initmem_init(void) | |
1093 | { | |
1094 | int nid; | |
1095 | ||
1096 | max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | |
1097 | max_pfn = max_low_pfn; | |
1098 | ||
1099 | memblock_dump_all(); | |
1100 | ||
1da177e4 | 1101 | for_each_online_node(nid) { |
c67c3cb4 | 1102 | unsigned long start_pfn, end_pfn; |
1da177e4 | 1103 | |
c67c3cb4 | 1104 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
10239733 | 1105 | setup_node_data(nid, start_pfn, end_pfn); |
4a618669 | 1106 | } |
d3f6204a | 1107 | |
21098b9e | 1108 | sparse_init(); |
25863de0 | 1109 | |
2fabf084 NA |
1110 | /* |
1111 | * We need the numa_cpu_lookup_table to be accurate for all CPUs, | |
1112 | * even before we online them, so that we can use cpu_to_{node,mem} | |
1113 | * early in boot, cf. smp_prepare_cpus(). | |
bdab88e0 SAS |
1114 | * _nocalls() + manual invocation is used because cpuhp is not yet |
1115 | * initialized for the boot CPU. | |
2fabf084 | 1116 | */ |
73c1b41e | 1117 | cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", |
bdab88e0 | 1118 | ppc_numa_cpu_prepare, ppc_numa_cpu_dead); |
1da177e4 LT |
1119 | } |
1120 | ||
1da177e4 LT |
1121 | static int __init early_numa(char *p) |
1122 | { | |
1123 | if (!p) | |
1124 | return 0; | |
1125 | ||
1126 | if (strstr(p, "off")) | |
1127 | numa_enabled = 0; | |
1128 | ||
1129 | if (strstr(p, "debug")) | |
1130 | numa_debug = 1; | |
1131 | ||
1daa6d08 BS |
1132 | p = strstr(p, "fake="); |
1133 | if (p) | |
1134 | cmdline = p + strlen("fake="); | |
1135 | ||
1da177e4 LT |
1136 | return 0; |
1137 | } | |
1138 | early_param("numa", early_numa); | |
237a0989 MK |
1139 | |
1140 | #ifdef CONFIG_MEMORY_HOTPLUG | |
0db9360a | 1141 | /* |
0f16ef7f NF |
1142 | * Find the node associated with a hot added memory section for |
1143 | * memory represented in the device tree by the property | |
1144 | * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | |
0db9360a | 1145 | */ |
514a9cb3 | 1146 | static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) |
0db9360a | 1147 | { |
514a9cb3 | 1148 | struct drmem_lmb *lmb; |
3fdfd990 | 1149 | unsigned long lmb_size; |
98fa15f3 | 1150 | int nid = NUMA_NO_NODE; |
0db9360a | 1151 | |
514a9cb3 | 1152 | lmb_size = drmem_lmb_size(); |
0db9360a | 1153 | |
514a9cb3 | 1154 | for_each_drmem_lmb(lmb) { |
0db9360a NF |
1155 | /* skip this block if it is reserved or not assigned to |
1156 | * this partition */ | |
514a9cb3 NF |
1157 | if ((lmb->flags & DRCONF_MEM_RESERVED) |
1158 | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | |
0db9360a NF |
1159 | continue; |
1160 | ||
514a9cb3 NF |
1161 | if ((scn_addr < lmb->base_addr) |
1162 | || (scn_addr >= (lmb->base_addr + lmb_size))) | |
0f16ef7f NF |
1163 | continue; |
1164 | ||
514a9cb3 | 1165 | nid = of_drconf_to_nid_single(lmb); |
0f16ef7f NF |
1166 | break; |
1167 | } | |
1168 | ||
1169 | return nid; | |
1170 | } | |
1171 | ||
1172 | /* | |
1173 | * Find the node associated with a hot added memory section for memory | |
1174 | * represented in the device tree as a node (i.e. memory@XXXX) for | |
95f72d1e | 1175 | * each memblock. |
0f16ef7f | 1176 | */ |
ec32dd66 | 1177 | static int hot_add_node_scn_to_nid(unsigned long scn_addr) |
0f16ef7f | 1178 | { |
94db7c5e | 1179 | struct device_node *memory; |
98fa15f3 | 1180 | int nid = NUMA_NO_NODE; |
0f16ef7f | 1181 | |
94db7c5e | 1182 | for_each_node_by_type(memory, "memory") { |
0f16ef7f NF |
1183 | unsigned long start, size; |
1184 | int ranges; | |
b08a2a12 | 1185 | const __be32 *memcell_buf; |
0f16ef7f NF |
1186 | unsigned int len; |
1187 | ||
1188 | memcell_buf = of_get_property(memory, "reg", &len); | |
1189 | if (!memcell_buf || len <= 0) | |
1190 | continue; | |
1191 | ||
1192 | /* ranges in cell */ | |
1193 | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | |
1194 | ||
1195 | while (ranges--) { | |
1196 | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | |
1197 | size = read_n_cells(n_mem_size_cells, &memcell_buf); | |
1198 | ||
1199 | if ((scn_addr < start) || (scn_addr >= (start + size))) | |
1200 | continue; | |
1201 | ||
1202 | nid = of_node_to_nid_single(memory); | |
1203 | break; | |
1204 | } | |
0db9360a | 1205 | |
0f16ef7f NF |
1206 | if (nid >= 0) |
1207 | break; | |
0db9360a NF |
1208 | } |
1209 | ||
60831842 AB |
1210 | of_node_put(memory); |
1211 | ||
0f16ef7f | 1212 | return nid; |
0db9360a NF |
1213 | } |
1214 | ||
237a0989 MK |
1215 | /* |
1216 | * Find the node associated with a hot added memory section. Section | |
95f72d1e YL |
1217 | * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that |
1218 | * sections are fully contained within a single MEMBLOCK. | |
237a0989 MK |
1219 | */ |
1220 | int hot_add_scn_to_nid(unsigned long scn_addr) | |
1221 | { | |
1222 | struct device_node *memory = NULL; | |
4a3bac4e | 1223 | int nid; |
237a0989 | 1224 | |
495c2ff4 | 1225 | if (!numa_enabled) |
72c33688 | 1226 | return first_online_node; |
0db9360a NF |
1227 | |
1228 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | |
1229 | if (memory) { | |
514a9cb3 | 1230 | nid = hot_add_drconf_scn_to_nid(scn_addr); |
0db9360a | 1231 | of_node_put(memory); |
0f16ef7f NF |
1232 | } else { |
1233 | nid = hot_add_node_scn_to_nid(scn_addr); | |
0db9360a | 1234 | } |
237a0989 | 1235 | |
2a8628d4 | 1236 | if (nid < 0 || !node_possible(nid)) |
72c33688 | 1237 | nid = first_online_node; |
237a0989 | 1238 | |
0f16ef7f | 1239 | return nid; |
237a0989 | 1240 | } |
0f16ef7f | 1241 | |
cd34206e NA |
1242 | static u64 hot_add_drconf_memory_max(void) |
1243 | { | |
e70bd3ae | 1244 | struct device_node *memory = NULL; |
45b64ee6 | 1245 | struct device_node *dn = NULL; |
45b64ee6 | 1246 | const __be64 *lrdr = NULL; |
45b64ee6 BR |
1247 | |
1248 | dn = of_find_node_by_path("/rtas"); | |
1249 | if (dn) { | |
1250 | lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); | |
1251 | of_node_put(dn); | |
1252 | if (lrdr) | |
1253 | return be64_to_cpup(lrdr); | |
1254 | } | |
cd34206e | 1255 | |
e70bd3ae BR |
1256 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
1257 | if (memory) { | |
e70bd3ae | 1258 | of_node_put(memory); |
514a9cb3 | 1259 | return drmem_lmb_memory_max(); |
e70bd3ae | 1260 | } |
45b64ee6 | 1261 | return 0; |
cd34206e NA |
1262 | } |
1263 | ||
1264 | /* | |
1265 | * memory_hotplug_max - return max address of memory that may be added | |
1266 | * | |
1267 | * This is currently only used on systems that support drconfig memory | |
1268 | * hotplug. | |
1269 | */ | |
1270 | u64 memory_hotplug_max(void) | |
1271 | { | |
1272 | return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | |
1273 | } | |
237a0989 | 1274 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
9eff1a38 | 1275 | |
bd03403a | 1276 | /* Virtual Processor Home Node (VPHN) support */ |
39bf990e | 1277 | #ifdef CONFIG_PPC_SPLPAR |
17f444c0 | 1278 | static int topology_inited; |
9eff1a38 | 1279 | |
9eff1a38 JL |
1280 | /* |
1281 | * Retrieve the new associativity information for a virtual processor's | |
1282 | * home node. | |
1283 | */ | |
9eff1a38 | 1284 | static long vphn_get_associativity(unsigned long cpu, |
b08a2a12 | 1285 | __be32 *associativity) |
9eff1a38 | 1286 | { |
cd9d6cc7 | 1287 | long rc; |
9eff1a38 | 1288 | |
ef34e0ef NR |
1289 | rc = hcall_vphn(get_hard_smp_processor_id(cpu), |
1290 | VPHN_FLAG_VCPU, associativity); | |
9eff1a38 JL |
1291 | |
1292 | switch (rc) { | |
76b7bfb1 SD |
1293 | case H_SUCCESS: |
1294 | dbg("VPHN hcall succeeded. Reset polling...\n"); | |
76b7bfb1 SD |
1295 | goto out; |
1296 | ||
9eff1a38 | 1297 | case H_FUNCTION: |
76b7bfb1 | 1298 | pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); |
9eff1a38 JL |
1299 | break; |
1300 | case H_HARDWARE: | |
76b7bfb1 | 1301 | pr_err_ratelimited("hcall_vphn() experienced a hardware fault " |
9eff1a38 | 1302 | "preventing VPHN. Disabling polling...\n"); |
17f444c0 | 1303 | break; |
76b7bfb1 SD |
1304 | case H_PARAMETER: |
1305 | pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " | |
1306 | "Disabling polling...\n"); | |
1307 | break; | |
1308 | default: | |
1309 | pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" | |
1310 | , rc); | |
17f444c0 | 1311 | break; |
9eff1a38 | 1312 | } |
76b7bfb1 | 1313 | out: |
9eff1a38 JL |
1314 | return rc; |
1315 | } | |
1316 | ||
e67e02a5 | 1317 | int find_and_online_cpu_nid(int cpu) |
ea05ba7c MB |
1318 | { |
1319 | __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | |
1320 | int new_nid; | |
1321 | ||
1322 | /* Use associativity from first thread for all siblings */ | |
2483ef05 SD |
1323 | if (vphn_get_associativity(cpu, associativity)) |
1324 | return cpu_to_node(cpu); | |
1325 | ||
ea05ba7c MB |
1326 | new_nid = associativity_to_nid(associativity); |
1327 | if (new_nid < 0 || !node_possible(new_nid)) | |
1328 | new_nid = first_online_node; | |
1329 | ||
1330 | if (NODE_DATA(new_nid) == NULL) { | |
1331 | #ifdef CONFIG_MEMORY_HOTPLUG | |
1332 | /* | |
1333 | * Need to ensure that NODE_DATA is initialized for a node from | |
1334 | * available memory (see memblock_alloc_try_nid). If unable to | |
1335 | * init the node, then default to nearest node that has memory | |
ac1788cc SD |
1336 | * installed. Skip onlining a node if the subsystems are not |
1337 | * yet initialized. | |
ea05ba7c | 1338 | */ |
ac1788cc | 1339 | if (!topology_inited || try_online_node(new_nid)) |
ea05ba7c MB |
1340 | new_nid = first_online_node; |
1341 | #else | |
1342 | /* | |
1343 | * Default to using the nearest node that has memory installed. | |
1344 | * Otherwise, it would be necessary to patch the kernel MM code | |
1345 | * to deal with more memoryless-node error conditions. | |
1346 | */ | |
1347 | new_nid = first_online_node; | |
1348 | #endif | |
1349 | } | |
1350 | ||
e67e02a5 MB |
1351 | pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, |
1352 | cpu, new_nid); | |
ea05ba7c MB |
1353 | return new_nid; |
1354 | } | |
1355 | ||
72730bfc SD |
1356 | int cpu_to_coregroup_id(int cpu) |
1357 | { | |
fa35e868 SD |
1358 | __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
1359 | int index; | |
1360 | ||
1361 | if (cpu < 0 || cpu > nr_cpu_ids) | |
1362 | return -1; | |
1363 | ||
1364 | if (!coregroup_enabled) | |
1365 | goto out; | |
1366 | ||
1367 | if (!firmware_has_feature(FW_FEATURE_VPHN)) | |
1368 | goto out; | |
1369 | ||
1370 | if (vphn_get_associativity(cpu, associativity)) | |
1371 | goto out; | |
1372 | ||
1373 | index = of_read_number(associativity, 1); | |
7e35ef66 | 1374 | if (index > primary_domain_index + 1) |
fa35e868 SD |
1375 | return of_read_number(&associativity[index - 1], 1); |
1376 | ||
1377 | out: | |
72730bfc SD |
1378 | return cpu_to_core_id(cpu); |
1379 | } | |
1380 | ||
e04fa612 NF |
1381 | static int topology_update_init(void) |
1382 | { | |
17f444c0 | 1383 | topology_inited = 1; |
e04fa612 | 1384 | return 0; |
9eff1a38 | 1385 | } |
e04fa612 | 1386 | device_initcall(topology_update_init); |
39bf990e | 1387 | #endif /* CONFIG_PPC_SPLPAR */ |