]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/mm/numa.c
powerpc: Only set numa node information for present cpus at boottime
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
191a7120 29#include <linux/slab.h>
3be7db6a 30#include <asm/cputhreads.h>
45fb6cea 31#include <asm/sparsemem.h>
d9b2b2a2 32#include <asm/prom.h>
2249ca9d 33#include <asm/smp.h>
d4edc5b6
SB
34#include <asm/cputhreads.h>
35#include <asm/topology.h>
9eff1a38
JL
36#include <asm/firmware.h>
37#include <asm/paca.h>
39bf990e 38#include <asm/hvcall.h>
ae3a197e 39#include <asm/setup.h>
176bbf14 40#include <asm/vdso.h>
1da177e4
LT
41
42static int numa_enabled = 1;
43
1daa6d08
BS
44static char *cmdline __initdata;
45
1da177e4
LT
46static int numa_debug;
47#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
48
45fb6cea 49int numa_cpu_lookup_table[NR_CPUS];
25863de0 50cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 51struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
52
53EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 54EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
55EXPORT_SYMBOL(node_data);
56
1da177e4 57static int min_common_depth;
237a0989 58static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
59static int form1_affinity;
60
61#define MAX_DISTANCE_REF_POINTS 4
62static int distance_ref_points_depth;
b08a2a12 63static const __be32 *distance_ref_points;
41eab6f8 64static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 65
25863de0
AB
66/*
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
69 *
9512938b 70 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
71 */
72static void __init setup_node_to_cpumask_map(void)
73{
f9d531b8 74 unsigned int node;
25863de0
AB
75
76 /* setup nr_node_ids if not done yet */
f9d531b8
CS
77 if (nr_node_ids == MAX_NUMNODES)
78 setup_nr_node_ids();
25863de0
AB
79
80 /* allocate the map */
81 for (node = 0; node < nr_node_ids; node++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86}
87
55671f3c 88static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
89 unsigned int *nid)
90{
91 unsigned long long mem;
92 char *p = cmdline;
93 static unsigned int fake_nid;
94 static unsigned long long curr_boundary;
95
96 /*
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
99 */
100 if (fake_nid)
101 *nid = fake_nid;
102 /*
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
106 */
107 if (!p)
108 return 0;
109
110 mem = memparse(p, &p);
111 if (!mem)
112 return 0;
113
114 if (mem < curr_boundary)
115 return 0;
116
117 curr_boundary = mem;
118
119 if ((end_pfn << PAGE_SHIFT) > mem) {
120 /*
121 * Skip commas and spaces
122 */
123 while (*p == ',' || *p == ' ' || *p == '\t')
124 p++;
125
126 cmdline = p;
127 fake_nid++;
128 *nid = fake_nid;
129 dbg("created new fake_node with id %d\n", fake_nid);
130 return 1;
131 }
132 return 0;
133}
134
8f64e1f2 135/*
5dfe8660 136 * get_node_active_region - Return active region containing pfn
e8170372 137 * Active range returned is empty if none found.
5dfe8660
TH
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 140 */
5dfe8660
TH
141static void __init get_node_active_region(unsigned long pfn,
142 struct node_active_region *node_ar)
8f64e1f2 143{
5dfe8660
TH
144 unsigned long start_pfn, end_pfn;
145 int i, nid;
146
147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148 if (pfn >= start_pfn && pfn < end_pfn) {
149 node_ar->nid = nid;
150 node_ar->start_pfn = start_pfn;
151 node_ar->end_pfn = end_pfn;
152 break;
153 }
154 }
8f64e1f2
JT
155}
156
d4edc5b6
SB
157static void reset_numa_cpu_lookup_table(void)
158{
159 unsigned int cpu;
160
161 for_each_possible_cpu(cpu)
162 numa_cpu_lookup_table[cpu] = -1;
163}
164
165static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
1da177e4
LT
166{
167 numa_cpu_lookup_table[cpu] = node;
d4edc5b6
SB
168}
169
170static void map_cpu_to_node(int cpu, int node)
171{
172 update_numa_cpu_lookup_table(cpu, node);
45fb6cea 173
bf4b85b0
NL
174 dbg("adding cpu %d to node %d\n", cpu, node);
175
25863de0
AB
176 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
177 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
178}
179
39bf990e 180#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
181static void unmap_cpu_from_node(unsigned long cpu)
182{
183 int node = numa_cpu_lookup_table[cpu];
184
185 dbg("removing cpu %lu from node %d\n", cpu, node);
186
25863de0 187 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 188 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
189 } else {
190 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
191 cpu, node);
192 }
193}
39bf990e 194#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 195
1da177e4 196/* must hold reference to node during call */
b08a2a12 197static const __be32 *of_get_associativity(struct device_node *dev)
1da177e4 198{
e2eb6392 199 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
200}
201
cf00085d
C
202/*
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
206 */
b08a2a12 207static const __be32 *of_get_usable_memory(struct device_node *memory)
cf00085d 208{
b08a2a12 209 const __be32 *prop;
cf00085d
C
210 u32 len;
211 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
212 if (!prop || len < sizeof(unsigned int))
ec32dd66 213 return NULL;
cf00085d
C
214 return prop;
215}
216
41eab6f8
AB
217int __node_distance(int a, int b)
218{
219 int i;
220 int distance = LOCAL_DISTANCE;
221
222 if (!form1_affinity)
7122beee 223 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
227 break;
228
229 /* Double the distance for each NUMA level */
230 distance *= 2;
231 }
232
233 return distance;
234}
12c743eb 235EXPORT_SYMBOL(__node_distance);
41eab6f8
AB
236
237static void initialize_distance_lookup_table(int nid,
b08a2a12 238 const __be32 *associativity)
41eab6f8
AB
239{
240 int i;
241
242 if (!form1_affinity)
243 return;
244
245 for (i = 0; i < distance_ref_points_depth; i++) {
b08a2a12
AP
246 const __be32 *entry;
247
248 entry = &associativity[be32_to_cpu(distance_ref_points[i])];
249 distance_lookup_table[nid][i] = of_read_number(entry, 1);
41eab6f8
AB
250 }
251}
252
482ec7c4
NL
253/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
254 * info is found.
255 */
b08a2a12 256static int associativity_to_nid(const __be32 *associativity)
1da177e4 257{
482ec7c4 258 int nid = -1;
1da177e4
LT
259
260 if (min_common_depth == -1)
482ec7c4 261 goto out;
1da177e4 262
b08a2a12
AP
263 if (of_read_number(associativity, 1) >= min_common_depth)
264 nid = of_read_number(&associativity[min_common_depth], 1);
bc16a759
NL
265
266 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
267 if (nid == 0xffff || nid >= MAX_NUMNODES)
268 nid = -1;
41eab6f8 269
b08a2a12
AP
270 if (nid > 0 &&
271 of_read_number(associativity, 1) >= distance_ref_points_depth)
9eff1a38 272 initialize_distance_lookup_table(nid, associativity);
41eab6f8 273
482ec7c4 274out:
cf950b7a 275 return nid;
1da177e4
LT
276}
277
9eff1a38
JL
278/* Returns the nid associated with the given device tree node,
279 * or -1 if not found.
280 */
281static int of_node_to_nid_single(struct device_node *device)
282{
283 int nid = -1;
b08a2a12 284 const __be32 *tmp;
9eff1a38
JL
285
286 tmp = of_get_associativity(device);
287 if (tmp)
288 nid = associativity_to_nid(tmp);
289 return nid;
290}
291
953039c8
JK
292/* Walk the device tree upwards, looking for an associativity id */
293int of_node_to_nid(struct device_node *device)
294{
295 struct device_node *tmp;
296 int nid = -1;
297
298 of_node_get(device);
299 while (device) {
300 nid = of_node_to_nid_single(device);
301 if (nid != -1)
302 break;
303
304 tmp = device;
305 device = of_get_parent(tmp);
306 of_node_put(tmp);
307 }
308 of_node_put(device);
309
310 return nid;
311}
312EXPORT_SYMBOL_GPL(of_node_to_nid);
313
1da177e4
LT
314static int __init find_min_common_depth(void)
315{
41eab6f8 316 int depth;
e70606eb 317 struct device_node *root;
1da177e4 318
1c8ee733
DS
319 if (firmware_has_feature(FW_FEATURE_OPAL))
320 root = of_find_node_by_path("/ibm,opal");
321 else
322 root = of_find_node_by_path("/rtas");
e70606eb
ME
323 if (!root)
324 root = of_find_node_by_path("/");
1da177e4
LT
325
326 /*
41eab6f8
AB
327 * This property is a set of 32-bit integers, each representing
328 * an index into the ibm,associativity nodes.
329 *
330 * With form 0 affinity the first integer is for an SMP configuration
331 * (should be all 0's) and the second is for a normal NUMA
332 * configuration. We have only one level of NUMA.
333 *
334 * With form 1 affinity the first integer is the most significant
335 * NUMA boundary and the following are progressively less significant
336 * boundaries. There can be more than one level of NUMA.
1da177e4 337 */
e70606eb 338 distance_ref_points = of_get_property(root,
41eab6f8
AB
339 "ibm,associativity-reference-points",
340 &distance_ref_points_depth);
341
342 if (!distance_ref_points) {
343 dbg("NUMA: ibm,associativity-reference-points not found.\n");
344 goto err;
345 }
346
347 distance_ref_points_depth /= sizeof(int);
1da177e4 348
8002b0c5
NF
349 if (firmware_has_feature(FW_FEATURE_OPAL) ||
350 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
351 dbg("Using form 1 affinity\n");
1c8ee733 352 form1_affinity = 1;
4b83c330
AB
353 }
354
41eab6f8 355 if (form1_affinity) {
b08a2a12 356 depth = of_read_number(distance_ref_points, 1);
1da177e4 357 } else {
41eab6f8
AB
358 if (distance_ref_points_depth < 2) {
359 printk(KERN_WARNING "NUMA: "
360 "short ibm,associativity-reference-points\n");
361 goto err;
362 }
363
b08a2a12 364 depth = of_read_number(&distance_ref_points[1], 1);
1da177e4 365 }
1da177e4 366
41eab6f8
AB
367 /*
368 * Warn and cap if the hardware supports more than
369 * MAX_DISTANCE_REF_POINTS domains.
370 */
371 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
372 printk(KERN_WARNING "NUMA: distance array capped at "
373 "%d entries\n", MAX_DISTANCE_REF_POINTS);
374 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
375 }
376
e70606eb 377 of_node_put(root);
1da177e4 378 return depth;
41eab6f8
AB
379
380err:
e70606eb 381 of_node_put(root);
41eab6f8 382 return -1;
1da177e4
LT
383}
384
84c9fdd1 385static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
386{
387 struct device_node *memory = NULL;
1da177e4
LT
388
389 memory = of_find_node_by_type(memory, "memory");
54c23310 390 if (!memory)
84c9fdd1 391 panic("numa.c: No memory nodes found!");
54c23310 392
a8bda5dd 393 *n_addr_cells = of_n_addr_cells(memory);
9213feea 394 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 395 of_node_put(memory);
1da177e4
LT
396}
397
b08a2a12 398static unsigned long read_n_cells(int n, const __be32 **buf)
1da177e4
LT
399{
400 unsigned long result = 0;
401
402 while (n--) {
b08a2a12 403 result = (result << 32) | of_read_number(*buf, 1);
1da177e4
LT
404 (*buf)++;
405 }
406 return result;
407}
408
8342681d 409/*
95f72d1e 410 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
411 * and return the information in the provided of_drconf_cell structure.
412 */
b08a2a12 413static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
8342681d 414{
b08a2a12 415 const __be32 *cp;
8342681d
NF
416
417 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
418
419 cp = *cellp;
b08a2a12
AP
420 drmem->drc_index = of_read_number(cp, 1);
421 drmem->reserved = of_read_number(&cp[1], 1);
422 drmem->aa_index = of_read_number(&cp[2], 1);
423 drmem->flags = of_read_number(&cp[3], 1);
8342681d
NF
424
425 *cellp = cp + 4;
426}
427
428/*
25985edc 429 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 430 *
95f72d1e
YL
431 * The layout of the ibm,dynamic-memory property is a number N of memblock
432 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 433 * contains information as laid out in the of_drconf_cell struct above.
8342681d 434 */
b08a2a12 435static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
8342681d 436{
b08a2a12 437 const __be32 *prop;
8342681d
NF
438 u32 len, entries;
439
440 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
441 if (!prop || len < sizeof(unsigned int))
442 return 0;
443
b08a2a12 444 entries = of_read_number(prop++, 1);
8342681d
NF
445
446 /* Now that we know the number of entries, revalidate the size
447 * of the property read in to ensure we have everything
448 */
449 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
450 return 0;
451
452 *dm = prop;
453 return entries;
454}
455
456/*
25985edc 457 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
458 * from the device tree.
459 */
3fdfd990 460static u64 of_get_lmb_size(struct device_node *memory)
8342681d 461{
b08a2a12 462 const __be32 *prop;
8342681d
NF
463 u32 len;
464
3fdfd990 465 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
466 if (!prop || len < sizeof(unsigned int))
467 return 0;
468
469 return read_n_cells(n_mem_size_cells, &prop);
470}
471
472struct assoc_arrays {
473 u32 n_arrays;
474 u32 array_sz;
b08a2a12 475 const __be32 *arrays;
8342681d
NF
476};
477
478/*
25985edc 479 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
480 * memory from the ibm,associativity-lookup-arrays property of the
481 * device tree..
482 *
483 * The layout of the ibm,associativity-lookup-arrays property is a number N
484 * indicating the number of associativity arrays, followed by a number M
485 * indicating the size of each associativity array, followed by a list
486 * of N associativity arrays.
487 */
488static int of_get_assoc_arrays(struct device_node *memory,
489 struct assoc_arrays *aa)
490{
b08a2a12 491 const __be32 *prop;
8342681d
NF
492 u32 len;
493
494 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
495 if (!prop || len < 2 * sizeof(unsigned int))
496 return -1;
497
b08a2a12
AP
498 aa->n_arrays = of_read_number(prop++, 1);
499 aa->array_sz = of_read_number(prop++, 1);
8342681d 500
42b2aa86 501 /* Now that we know the number of arrays and size of each array,
8342681d
NF
502 * revalidate the size of the property read in.
503 */
504 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
505 return -1;
506
507 aa->arrays = prop;
508 return 0;
509}
510
511/*
512 * This is like of_node_to_nid_single() for memory represented in the
513 * ibm,dynamic-reconfiguration-memory node.
514 */
515static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
516 struct assoc_arrays *aa)
517{
518 int default_nid = 0;
519 int nid = default_nid;
520 int index;
521
522 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
523 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
524 drmem->aa_index < aa->n_arrays) {
525 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
b08a2a12 526 nid = of_read_number(&aa->arrays[index], 1);
8342681d
NF
527
528 if (nid == 0xffff || nid >= MAX_NUMNODES)
529 nid = default_nid;
530 }
531
532 return nid;
533}
534
1da177e4
LT
535/*
536 * Figure out to which domain a cpu belongs and stick it there.
537 * Return the id of the domain used.
538 */
061d19f2 539static int numa_setup_cpu(unsigned long lcpu)
1da177e4 540{
d4edc5b6
SB
541 int nid;
542 struct device_node *cpu;
543
544 /*
545 * If a valid cpu-to-node mapping is already available, use it
546 * directly instead of querying the firmware, since it represents
547 * the most recent mapping notified to us by the platform (eg: VPHN).
548 */
549 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
550 map_cpu_to_node(lcpu, nid);
551 return nid;
552 }
553
554 cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
555
556 if (!cpu) {
557 WARN_ON(1);
d4edc5b6 558 nid = 0;
1da177e4
LT
559 goto out;
560 }
561
953039c8 562 nid = of_node_to_nid_single(cpu);
1da177e4 563
482ec7c4 564 if (nid < 0 || !node_online(nid))
72c33688 565 nid = first_online_node;
1da177e4 566out:
cf950b7a 567 map_cpu_to_node(lcpu, nid);
1da177e4
LT
568
569 of_node_put(cpu);
570
cf950b7a 571 return nid;
1da177e4
LT
572}
573
68fb18aa
SB
574static void verify_cpu_node_mapping(int cpu, int node)
575{
576 int base, sibling, i;
577
578 /* Verify that all the threads in the core belong to the same node */
579 base = cpu_first_thread_sibling(cpu);
580
581 for (i = 0; i < threads_per_core; i++) {
582 sibling = base + i;
583
584 if (sibling == cpu || cpu_is_offline(sibling))
585 continue;
586
587 if (cpu_to_node(sibling) != node) {
588 WARN(1, "CPU thread siblings %d and %d don't belong"
589 " to the same node!\n", cpu, sibling);
590 break;
591 }
592 }
593}
594
061d19f2 595static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
1da177e4
LT
596 void *hcpu)
597{
598 unsigned long lcpu = (unsigned long)hcpu;
68fb18aa 599 int ret = NOTIFY_DONE, nid;
1da177e4
LT
600
601 switch (action) {
602 case CPU_UP_PREPARE:
8bb78442 603 case CPU_UP_PREPARE_FROZEN:
68fb18aa
SB
604 nid = numa_setup_cpu(lcpu);
605 verify_cpu_node_mapping((int)lcpu, nid);
1da177e4
LT
606 ret = NOTIFY_OK;
607 break;
608#ifdef CONFIG_HOTPLUG_CPU
609 case CPU_DEAD:
8bb78442 610 case CPU_DEAD_FROZEN:
1da177e4 611 case CPU_UP_CANCELED:
8bb78442 612 case CPU_UP_CANCELED_FROZEN:
1da177e4 613 unmap_cpu_from_node(lcpu);
1da177e4 614 ret = NOTIFY_OK;
b00fc6ec 615 break;
1da177e4
LT
616#endif
617 }
618 return ret;
619}
620
621/*
622 * Check and possibly modify a memory region to enforce the memory limit.
623 *
624 * Returns the size the region should have to enforce the memory limit.
625 * This will either be the original value of size, a truncated value,
626 * or zero. If the returned value of size is 0 the region should be
25985edc 627 * discarded as it lies wholly above the memory limit.
1da177e4 628 */
45fb6cea
AB
629static unsigned long __init numa_enforce_memory_limit(unsigned long start,
630 unsigned long size)
1da177e4
LT
631{
632 /*
95f72d1e 633 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 634 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
635 * having memory holes below the limit. Also, in the case of
636 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 637 */
1da177e4 638
95f72d1e 639 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
640 return size;
641
95f72d1e 642 if (start >= memblock_end_of_DRAM())
1da177e4
LT
643 return 0;
644
95f72d1e 645 return memblock_end_of_DRAM() - start;
1da177e4
LT
646}
647
cf00085d
C
648/*
649 * Reads the counter for a given entry in
650 * linux,drconf-usable-memory property
651 */
b08a2a12 652static inline int __init read_usm_ranges(const __be32 **usm)
cf00085d
C
653{
654 /*
3fdfd990 655 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
656 * entry in linux,drconf-usable-memory property contains
657 * a counter followed by that many (base, size) duple.
658 * read the counter from linux,drconf-usable-memory
659 */
660 return read_n_cells(n_mem_size_cells, usm);
661}
662
0204568a
PM
663/*
664 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
665 * node. This assumes n_mem_{addr,size}_cells have been set.
666 */
667static void __init parse_drconf_memory(struct device_node *memory)
668{
b08a2a12 669 const __be32 *uninitialized_var(dm), *usm;
cf00085d 670 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 671 unsigned long lmb_size, base, size, sz;
8342681d 672 int nid;
aa709f3b 673 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
674
675 n = of_get_drconf_memory(memory, &dm);
676 if (!n)
0204568a
PM
677 return;
678
3fdfd990
BH
679 lmb_size = of_get_lmb_size(memory);
680 if (!lmb_size)
8342681d
NF
681 return;
682
683 rc = of_get_assoc_arrays(memory, &aa);
684 if (rc)
0204568a
PM
685 return;
686
cf00085d
C
687 /* check if this is a kexec/kdump kernel */
688 usm = of_get_usable_memory(memory);
689 if (usm != NULL)
690 is_kexec_kdump = 1;
691
0204568a 692 for (; n != 0; --n) {
8342681d
NF
693 struct of_drconf_cell drmem;
694
695 read_drconf_cell(&drmem, &dm);
696
697 /* skip this block if the reserved bit is set in flags (0x80)
698 or if the block is not assigned to this partition (0x8) */
699 if ((drmem.flags & DRCONF_MEM_RESERVED)
700 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 701 continue;
1daa6d08 702
cf00085d 703 base = drmem.base_addr;
3fdfd990 704 size = lmb_size;
cf00085d 705 ranges = 1;
8342681d 706
cf00085d
C
707 if (is_kexec_kdump) {
708 ranges = read_usm_ranges(&usm);
709 if (!ranges) /* there are no (base, size) duple */
710 continue;
711 }
712 do {
713 if (is_kexec_kdump) {
714 base = read_n_cells(n_mem_addr_cells, &usm);
715 size = read_n_cells(n_mem_size_cells, &usm);
716 }
717 nid = of_drconf_to_nid_single(&drmem, &aa);
718 fake_numa_create_new_node(
719 ((base + size) >> PAGE_SHIFT),
8342681d 720 &nid);
cf00085d
C
721 node_set_online(nid);
722 sz = numa_enforce_memory_limit(base, size);
723 if (sz)
e7e8de59
TC
724 memblock_set_node(base, sz,
725 &memblock.memory, nid);
cf00085d 726 } while (--ranges);
0204568a
PM
727 }
728}
729
1da177e4
LT
730static int __init parse_numa_properties(void)
731{
94db7c5e 732 struct device_node *memory;
482ec7c4 733 int default_nid = 0;
1da177e4
LT
734 unsigned long i;
735
736 if (numa_enabled == 0) {
737 printk(KERN_WARNING "NUMA disabled by user\n");
738 return -1;
739 }
740
1da177e4
LT
741 min_common_depth = find_min_common_depth();
742
1da177e4
LT
743 if (min_common_depth < 0)
744 return min_common_depth;
745
bf4b85b0
NL
746 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
747
1da177e4 748 /*
482ec7c4
NL
749 * Even though we connect cpus to numa domains later in SMP
750 * init, we need to know the node ids now. This is because
751 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 752 */
482ec7c4 753 for_each_present_cpu(i) {
dfbe93a2 754 struct device_node *cpu;
cf950b7a 755 int nid;
1da177e4 756
8b16cd23 757 cpu = of_get_cpu_node(i, NULL);
482ec7c4 758 BUG_ON(!cpu);
953039c8 759 nid = of_node_to_nid_single(cpu);
482ec7c4 760 of_node_put(cpu);
1da177e4 761
482ec7c4
NL
762 /*
763 * Don't fall back to default_nid yet -- we will plug
764 * cpus into nodes once the memory scan has discovered
765 * the topology.
766 */
767 if (nid < 0)
768 continue;
769 node_set_online(nid);
1da177e4
LT
770 }
771
237a0989 772 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
773
774 for_each_node_by_type(memory, "memory") {
1da177e4
LT
775 unsigned long start;
776 unsigned long size;
cf950b7a 777 int nid;
1da177e4 778 int ranges;
b08a2a12 779 const __be32 *memcell_buf;
1da177e4
LT
780 unsigned int len;
781
e2eb6392 782 memcell_buf = of_get_property(memory,
ba759485
ME
783 "linux,usable-memory", &len);
784 if (!memcell_buf || len <= 0)
e2eb6392 785 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
786 if (!memcell_buf || len <= 0)
787 continue;
788
cc5d0189
BH
789 /* ranges in cell */
790 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
791new_range:
792 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
793 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
794 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 795
482ec7c4
NL
796 /*
797 * Assumption: either all memory nodes or none will
798 * have associativity properties. If none, then
799 * everything goes to default_nid.
800 */
953039c8 801 nid = of_node_to_nid_single(memory);
482ec7c4
NL
802 if (nid < 0)
803 nid = default_nid;
1daa6d08
BS
804
805 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 806 node_set_online(nid);
1da177e4 807
45fb6cea 808 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
809 if (--ranges)
810 goto new_range;
811 else
812 continue;
813 }
814
e7e8de59 815 memblock_set_node(start, size, &memblock.memory, nid);
1da177e4
LT
816
817 if (--ranges)
818 goto new_range;
819 }
820
0204568a 821 /*
dfbe93a2
AB
822 * Now do the same thing for each MEMBLOCK listed in the
823 * ibm,dynamic-memory property in the
824 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
825 */
826 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
827 if (memory)
828 parse_drconf_memory(memory);
829
1da177e4
LT
830 return 0;
831}
832
833static void __init setup_nonnuma(void)
834{
95f72d1e
YL
835 unsigned long top_of_ram = memblock_end_of_DRAM();
836 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 837 unsigned long start_pfn, end_pfn;
28be7072
BH
838 unsigned int nid = 0;
839 struct memblock_region *reg;
1da177e4 840
e110b281 841 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 842 top_of_ram, total_ram);
e110b281 843 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
844 (top_of_ram - total_ram) >> 20);
845
28be7072 846 for_each_memblock(memory, reg) {
c7fc2de0
YL
847 start_pfn = memblock_region_memory_base_pfn(reg);
848 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
849
850 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18 851 memblock_set_node(PFN_PHYS(start_pfn),
e7e8de59
TC
852 PFN_PHYS(end_pfn - start_pfn),
853 &memblock.memory, nid);
1daa6d08 854 node_set_online(nid);
c67c3cb4 855 }
1da177e4
LT
856}
857
4b703a23
AB
858void __init dump_numa_cpu_topology(void)
859{
860 unsigned int node;
861 unsigned int cpu, count;
862
863 if (min_common_depth == -1 || !numa_enabled)
864 return;
865
866 for_each_online_node(node) {
e110b281 867 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
868
869 count = 0;
870 /*
871 * If we used a CPU iterator here we would miss printing
872 * the holes in the cpumap.
873 */
25863de0
AB
874 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
875 if (cpumask_test_cpu(cpu,
876 node_to_cpumask_map[node])) {
4b703a23
AB
877 if (count == 0)
878 printk(" %u", cpu);
879 ++count;
880 } else {
881 if (count > 1)
882 printk("-%u", cpu - 1);
883 count = 0;
884 }
885 }
886
887 if (count > 1)
25863de0 888 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
889 printk("\n");
890 }
891}
892
893static void __init dump_numa_memory_topology(void)
1da177e4
LT
894{
895 unsigned int node;
896 unsigned int count;
897
898 if (min_common_depth == -1 || !numa_enabled)
899 return;
900
901 for_each_online_node(node) {
902 unsigned long i;
903
e110b281 904 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
905
906 count = 0;
907
95f72d1e 908 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
909 i += (1 << SECTION_SIZE_BITS)) {
910 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
911 if (count == 0)
912 printk(" 0x%lx", i);
913 ++count;
914 } else {
915 if (count > 0)
916 printk("-0x%lx", i);
917 count = 0;
918 }
919 }
920
921 if (count > 0)
922 printk("-0x%lx", i);
923 printk("\n");
924 }
1da177e4
LT
925}
926
927/*
95f72d1e 928 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
929 * required. nid is the preferred node and end is the physical address of
930 * the highest address in the node.
931 *
0be210fd 932 * Returns the virtual address of the memory.
1da177e4 933 */
893473df 934static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
935 unsigned long align,
936 unsigned long end_pfn)
1da177e4 937{
0be210fd 938 void *ret;
45fb6cea 939 int new_nid;
0be210fd
DH
940 unsigned long ret_paddr;
941
95f72d1e 942 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
943
944 /* retry over all memory */
0be210fd 945 if (!ret_paddr)
95f72d1e 946 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 947
0be210fd 948 if (!ret_paddr)
5d21ea2b 949 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
950 size, nid);
951
0be210fd
DH
952 ret = __va(ret_paddr);
953
1da177e4 954 /*
c555e520 955 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 956 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
957 * bootmem allocator. If this function is called for
958 * node 5, then we know that all nodes <5 are using the
95f72d1e 959 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
960 *
961 * So, check the nid from which this allocation came
962 * and double check to see if we need to use bootmem
95f72d1e 963 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 964 * since it would be useless.
1da177e4 965 */
0be210fd 966 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 967 if (new_nid < nid) {
0be210fd 968 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
969 size, align, 0);
970
0be210fd 971 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
972 }
973
893473df 974 memset(ret, 0, size);
0be210fd 975 return ret;
1da177e4
LT
976}
977
061d19f2 978static struct notifier_block ppc64_numa_nb = {
74b85f37
CS
979 .notifier_call = cpu_numa_callback,
980 .priority = 1 /* Must run before sched domains notifier. */
981};
982
28e86bdb 983static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
984{
985 struct pglist_data *node = NODE_DATA(nid);
28be7072 986 struct memblock_region *reg;
4a618669 987
28be7072
BH
988 for_each_memblock(reserved, reg) {
989 unsigned long physbase = reg->base;
990 unsigned long size = reg->size;
4a618669 991 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 992 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669 993 struct node_active_region node_ar;
6408068e 994 unsigned long node_end_pfn = pgdat_end_pfn(node);
4a618669
DH
995
996 /*
95f72d1e 997 * Check to make sure that this memblock.reserved area is
4a618669
DH
998 * within the bounds of the node that we care about.
999 * Checking the nid of the start and end points is not
1000 * sufficient because the reserved area could span the
1001 * entire node.
1002 */
1003 if (end_pfn <= node->node_start_pfn ||
1004 start_pfn >= node_end_pfn)
1005 continue;
1006
1007 get_node_active_region(start_pfn, &node_ar);
1008 while (start_pfn < end_pfn &&
1009 node_ar.start_pfn < node_ar.end_pfn) {
1010 unsigned long reserve_size = size;
1011 /*
1012 * if reserved region extends past active region
1013 * then trim size to active region
1014 */
1015 if (end_pfn > node_ar.end_pfn)
1016 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 1017 - physbase;
a4c74ddd
DH
1018 /*
1019 * Only worry about *this* node, others may not
1020 * yet have valid NODE_DATA().
1021 */
1022 if (node_ar.nid == nid) {
1023 dbg("reserve_bootmem %lx %lx nid=%d\n",
1024 physbase, reserve_size, node_ar.nid);
1025 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1026 physbase, reserve_size,
1027 BOOTMEM_DEFAULT);
1028 }
4a618669
DH
1029 /*
1030 * if reserved region is contained in the active region
1031 * then done.
1032 */
1033 if (end_pfn <= node_ar.end_pfn)
1034 break;
1035
1036 /*
1037 * reserved region extends past the active region
1038 * get next active region that contains this
1039 * reserved region
1040 */
1041 start_pfn = node_ar.end_pfn;
1042 physbase = start_pfn << PAGE_SHIFT;
1043 size = size - reserve_size;
1044 get_node_active_region(start_pfn, &node_ar);
1045 }
1046 }
1047}
1048
1049
1da177e4
LT
1050void __init do_init_bootmem(void)
1051{
2fabf084 1052 int nid, cpu;
1da177e4
LT
1053
1054 min_low_pfn = 0;
95f72d1e 1055 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1056 max_pfn = max_low_pfn;
1057
1058 if (parse_numa_properties())
1059 setup_nonnuma();
1060 else
4b703a23 1061 dump_numa_memory_topology();
1da177e4 1062
1da177e4 1063 for_each_online_node(nid) {
c67c3cb4 1064 unsigned long start_pfn, end_pfn;
0be210fd 1065 void *bootmem_vaddr;
1da177e4
LT
1066 unsigned long bootmap_pages;
1067
c67c3cb4 1068 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1069
4a618669
DH
1070 /*
1071 * Allocate the node structure node local if possible
1072 *
1073 * Be careful moving this around, as it relies on all
1074 * previous nodes' bootmem to be initialized and have
1075 * all reserved areas marked.
1076 */
893473df 1077 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1078 sizeof(struct pglist_data),
45fb6cea 1079 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1080
1081 dbg("node %d\n", nid);
1082 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1083
b61bfa3c 1084 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1085 NODE_DATA(nid)->node_start_pfn = start_pfn;
1086 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1087
1088 if (NODE_DATA(nid)->node_spanned_pages == 0)
1089 continue;
1090
45fb6cea
AB
1091 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1092 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1093
45fb6cea 1094 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1095 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1096 bootmap_pages << PAGE_SHIFT,
1097 PAGE_SIZE, end_pfn);
1da177e4 1098
0be210fd 1099 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1100
0be210fd
DH
1101 init_bootmem_node(NODE_DATA(nid),
1102 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1103 start_pfn, end_pfn);
1da177e4 1104
c67c3cb4 1105 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1106 /*
1107 * Be very careful about moving this around. Future
893473df 1108 * calls to careful_zallocation() depend on this getting
4a618669
DH
1109 * done correctly.
1110 */
1111 mark_reserved_regions_for_nid(nid);
8f64e1f2 1112 sparse_memory_present_with_active_regions(nid);
4a618669 1113 }
d3f6204a
BH
1114
1115 init_bootmem_done = 1;
25863de0
AB
1116
1117 /*
1118 * Now bootmem is initialised we can create the node to cpumask
1119 * lookup tables and setup the cpu callback to populate them.
1120 */
1121 setup_node_to_cpumask_map();
1122
d4edc5b6 1123 reset_numa_cpu_lookup_table();
25863de0 1124 register_cpu_notifier(&ppc64_numa_nb);
2fabf084
NA
1125 /*
1126 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1127 * even before we online them, so that we can use cpu_to_{node,mem}
1128 * early in boot, cf. smp_prepare_cpus().
1129 */
bc3c4327 1130 for_each_present_cpu(cpu) {
70ad2375 1131 numa_setup_cpu((unsigned long)cpu);
2fabf084 1132 }
1da177e4
LT
1133}
1134
1135void __init paging_init(void)
1136{
6391af17
MG
1137 unsigned long max_zone_pfns[MAX_NR_ZONES];
1138 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1139 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1140 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1141}
1142
1143static int __init early_numa(char *p)
1144{
1145 if (!p)
1146 return 0;
1147
1148 if (strstr(p, "off"))
1149 numa_enabled = 0;
1150
1151 if (strstr(p, "debug"))
1152 numa_debug = 1;
1153
1daa6d08
BS
1154 p = strstr(p, "fake=");
1155 if (p)
1156 cmdline = p + strlen("fake=");
1157
1da177e4
LT
1158 return 0;
1159}
1160early_param("numa", early_numa);
237a0989
MK
1161
1162#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1163/*
0f16ef7f
NF
1164 * Find the node associated with a hot added memory section for
1165 * memory represented in the device tree by the property
1166 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1167 */
1168static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1169 unsigned long scn_addr)
1170{
b08a2a12 1171 const __be32 *dm;
0f16ef7f 1172 unsigned int drconf_cell_cnt, rc;
3fdfd990 1173 unsigned long lmb_size;
0db9360a 1174 struct assoc_arrays aa;
0f16ef7f 1175 int nid = -1;
0db9360a 1176
0f16ef7f
NF
1177 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1178 if (!drconf_cell_cnt)
1179 return -1;
0db9360a 1180
3fdfd990
BH
1181 lmb_size = of_get_lmb_size(memory);
1182 if (!lmb_size)
0f16ef7f 1183 return -1;
0db9360a
NF
1184
1185 rc = of_get_assoc_arrays(memory, &aa);
1186 if (rc)
0f16ef7f 1187 return -1;
0db9360a 1188
0f16ef7f 1189 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1190 struct of_drconf_cell drmem;
1191
1192 read_drconf_cell(&drmem, &dm);
1193
1194 /* skip this block if it is reserved or not assigned to
1195 * this partition */
1196 if ((drmem.flags & DRCONF_MEM_RESERVED)
1197 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1198 continue;
1199
0f16ef7f 1200 if ((scn_addr < drmem.base_addr)
3fdfd990 1201 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1202 continue;
1203
0db9360a 1204 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1205 break;
1206 }
1207
1208 return nid;
1209}
1210
1211/*
1212 * Find the node associated with a hot added memory section for memory
1213 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1214 * each memblock.
0f16ef7f 1215 */
ec32dd66 1216static int hot_add_node_scn_to_nid(unsigned long scn_addr)
0f16ef7f 1217{
94db7c5e 1218 struct device_node *memory;
0f16ef7f
NF
1219 int nid = -1;
1220
94db7c5e 1221 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1222 unsigned long start, size;
1223 int ranges;
b08a2a12 1224 const __be32 *memcell_buf;
0f16ef7f
NF
1225 unsigned int len;
1226
1227 memcell_buf = of_get_property(memory, "reg", &len);
1228 if (!memcell_buf || len <= 0)
1229 continue;
1230
1231 /* ranges in cell */
1232 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1233
1234 while (ranges--) {
1235 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1236 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1237
1238 if ((scn_addr < start) || (scn_addr >= (start + size)))
1239 continue;
1240
1241 nid = of_node_to_nid_single(memory);
1242 break;
1243 }
0db9360a 1244
0f16ef7f
NF
1245 if (nid >= 0)
1246 break;
0db9360a
NF
1247 }
1248
60831842
AB
1249 of_node_put(memory);
1250
0f16ef7f 1251 return nid;
0db9360a
NF
1252}
1253
237a0989
MK
1254/*
1255 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1256 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1257 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1258 */
1259int hot_add_scn_to_nid(unsigned long scn_addr)
1260{
1261 struct device_node *memory = NULL;
0f16ef7f 1262 int nid, found = 0;
237a0989
MK
1263
1264 if (!numa_enabled || (min_common_depth < 0))
72c33688 1265 return first_online_node;
0db9360a
NF
1266
1267 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1268 if (memory) {
1269 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1270 of_node_put(memory);
0f16ef7f
NF
1271 } else {
1272 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1273 }
237a0989 1274
0f16ef7f 1275 if (nid < 0 || !node_online(nid))
72c33688 1276 nid = first_online_node;
237a0989 1277
0f16ef7f
NF
1278 if (NODE_DATA(nid)->node_spanned_pages)
1279 return nid;
237a0989 1280
0f16ef7f
NF
1281 for_each_online_node(nid) {
1282 if (NODE_DATA(nid)->node_spanned_pages) {
1283 found = 1;
1284 break;
237a0989 1285 }
237a0989 1286 }
0f16ef7f
NF
1287
1288 BUG_ON(!found);
1289 return nid;
237a0989 1290}
0f16ef7f 1291
cd34206e
NA
1292static u64 hot_add_drconf_memory_max(void)
1293{
1294 struct device_node *memory = NULL;
1295 unsigned int drconf_cell_cnt = 0;
1296 u64 lmb_size = 0;
ec32dd66 1297 const __be32 *dm = NULL;
cd34206e
NA
1298
1299 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1300 if (memory) {
1301 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1302 lmb_size = of_get_lmb_size(memory);
1303 of_node_put(memory);
1304 }
1305 return lmb_size * drconf_cell_cnt;
1306}
1307
1308/*
1309 * memory_hotplug_max - return max address of memory that may be added
1310 *
1311 * This is currently only used on systems that support drconfig memory
1312 * hotplug.
1313 */
1314u64 memory_hotplug_max(void)
1315{
1316 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1317}
237a0989 1318#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1319
bd03403a 1320/* Virtual Processor Home Node (VPHN) support */
39bf990e 1321#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1322struct topology_update_data {
1323 struct topology_update_data *next;
1324 unsigned int cpu;
1325 int old_nid;
1326 int new_nid;
1327};
1328
5de16699 1329static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1330static cpumask_t cpu_associativity_changes_mask;
1331static int vphn_enabled;
5d88aa85
JL
1332static int prrn_enabled;
1333static void reset_topology_timer(void);
9eff1a38
JL
1334
1335/*
1336 * Store the current values of the associativity change counters in the
1337 * hypervisor.
1338 */
1339static void setup_cpu_associativity_change_counters(void)
1340{
cd9d6cc7 1341 int cpu;
9eff1a38 1342
5de16699
AB
1343 /* The VPHN feature supports a maximum of 8 reference points */
1344 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1345
9eff1a38 1346 for_each_possible_cpu(cpu) {
cd9d6cc7 1347 int i;
9eff1a38
JL
1348 u8 *counts = vphn_cpu_change_counts[cpu];
1349 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1350
5de16699 1351 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1352 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1353 }
1354}
1355
1356/*
1357 * The hypervisor maintains a set of 8 associativity change counters in
1358 * the VPA of each cpu that correspond to the associativity levels in the
1359 * ibm,associativity-reference-points property. When an associativity
1360 * level changes, the corresponding counter is incremented.
1361 *
1362 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1363 * node associativity levels have changed.
1364 *
1365 * Returns the number of cpus with unhandled associativity changes.
1366 */
1367static int update_cpu_associativity_changes_mask(void)
1368{
5d88aa85 1369 int cpu;
9eff1a38
JL
1370 cpumask_t *changes = &cpu_associativity_changes_mask;
1371
9eff1a38
JL
1372 for_each_possible_cpu(cpu) {
1373 int i, changed = 0;
1374 u8 *counts = vphn_cpu_change_counts[cpu];
1375 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1376
5de16699 1377 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1378 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1379 counts[i] = hypervisor_counts[i];
1380 changed = 1;
1381 }
1382 }
1383 if (changed) {
3be7db6a
RJ
1384 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1385 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1386 }
1387 }
1388
5d88aa85 1389 return cpumask_weight(changes);
9eff1a38
JL
1390}
1391
c0e5e46f
AB
1392/*
1393 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1394 * the complete property we have to add the length in the first cell.
1395 */
1396#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1397
1398/*
1399 * Convert the associativity domain numbers returned from the hypervisor
1400 * to the sequence they would appear in the ibm,associativity property.
1401 */
b08a2a12 1402static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
9eff1a38 1403{
cd9d6cc7 1404 int i, nr_assoc_doms = 0;
b08a2a12 1405 const __be16 *field = (const __be16 *) packed;
9eff1a38
JL
1406
1407#define VPHN_FIELD_UNUSED (0xffff)
1408#define VPHN_FIELD_MSB (0x8000)
1409#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1410
c0e5e46f 1411 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
b08a2a12 1412 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
9eff1a38
JL
1413 /* All significant fields processed, and remaining
1414 * fields contain the reserved value of all 1's.
1415 * Just store them.
1416 */
b08a2a12 1417 unpacked[i] = *((__be32 *)field);
9eff1a38 1418 field += 2;
b08a2a12 1419 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
9eff1a38 1420 /* Data is in the lower 15 bits of this field */
b08a2a12
AP
1421 unpacked[i] = cpu_to_be32(
1422 be16_to_cpup(field) & VPHN_FIELD_MASK);
9eff1a38
JL
1423 field++;
1424 nr_assoc_doms++;
7639adaa 1425 } else {
9eff1a38
JL
1426 /* Data is in the lower 15 bits of this field
1427 * concatenated with the next 16 bit field
1428 */
b08a2a12 1429 unpacked[i] = *((__be32 *)field);
9eff1a38
JL
1430 field += 2;
1431 nr_assoc_doms++;
1432 }
1433 }
1434
c0e5e46f 1435 /* The first cell contains the length of the property */
b08a2a12 1436 unpacked[0] = cpu_to_be32(nr_assoc_doms);
c0e5e46f 1437
9eff1a38
JL
1438 return nr_assoc_doms;
1439}
1440
1441/*
1442 * Retrieve the new associativity information for a virtual processor's
1443 * home node.
1444 */
b08a2a12 1445static long hcall_vphn(unsigned long cpu, __be32 *associativity)
9eff1a38 1446{
cd9d6cc7 1447 long rc;
9eff1a38
JL
1448 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1449 u64 flags = 1;
1450 int hwcpu = get_hard_smp_processor_id(cpu);
1451
1452 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1453 vphn_unpack_associativity(retbuf, associativity);
1454
1455 return rc;
1456}
1457
1458static long vphn_get_associativity(unsigned long cpu,
b08a2a12 1459 __be32 *associativity)
9eff1a38 1460{
cd9d6cc7 1461 long rc;
9eff1a38
JL
1462
1463 rc = hcall_vphn(cpu, associativity);
1464
1465 switch (rc) {
1466 case H_FUNCTION:
1467 printk(KERN_INFO
1468 "VPHN is not supported. Disabling polling...\n");
1469 stop_topology_update();
1470 break;
1471 case H_HARDWARE:
1472 printk(KERN_ERR
1473 "hcall_vphn() experienced a hardware fault "
1474 "preventing VPHN. Disabling polling...\n");
1475 stop_topology_update();
1476 }
1477
1478 return rc;
1479}
1480
30c05350
NF
1481/*
1482 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1483 * characteristics change. This function doesn't perform any locking and is
1484 * only safe to call from stop_machine().
1485 */
1486static int update_cpu_topology(void *data)
1487{
1488 struct topology_update_data *update;
1489 unsigned long cpu;
1490
1491 if (!data)
1492 return -EINVAL;
1493
3be7db6a 1494 cpu = smp_processor_id();
30c05350
NF
1495
1496 for (update = data; update; update = update->next) {
1497 if (cpu != update->cpu)
1498 continue;
1499
30c05350
NF
1500 unmap_cpu_from_node(update->cpu);
1501 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1502 vdso_getcpu_init();
30c05350
NF
1503 }
1504
1505 return 0;
1506}
1507
d4edc5b6
SB
1508static int update_lookup_table(void *data)
1509{
1510 struct topology_update_data *update;
1511
1512 if (!data)
1513 return -EINVAL;
1514
1515 /*
1516 * Upon topology update, the numa-cpu lookup table needs to be updated
1517 * for all threads in the core, including offline CPUs, to ensure that
1518 * future hotplug operations respect the cpu-to-node associativity
1519 * properly.
1520 */
1521 for (update = data; update; update = update->next) {
1522 int nid, base, j;
1523
1524 nid = update->new_nid;
1525 base = cpu_first_thread_sibling(update->cpu);
1526
1527 for (j = 0; j < threads_per_core; j++) {
1528 update_numa_cpu_lookup_table(base + j, nid);
1529 }
1530 }
1531
1532 return 0;
1533}
1534
9eff1a38
JL
1535/*
1536 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1537 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1538 */
1539int arch_update_cpu_topology(void)
1540{
3be7db6a 1541 unsigned int cpu, sibling, changed = 0;
30c05350 1542 struct topology_update_data *updates, *ud;
b08a2a12 1543 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1544 cpumask_t updated_cpus;
8a25a2fd 1545 struct device *dev;
3be7db6a 1546 int weight, new_nid, i = 0;
9eff1a38 1547
30c05350
NF
1548 weight = cpumask_weight(&cpu_associativity_changes_mask);
1549 if (!weight)
1550 return 0;
1551
1552 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1553 if (!updates)
1554 return 0;
9eff1a38 1555
176bbf14
JL
1556 cpumask_clear(&updated_cpus);
1557
5d88aa85 1558 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
3be7db6a
RJ
1559 /*
1560 * If siblings aren't flagged for changes, updates list
1561 * will be too short. Skip on this update and set for next
1562 * update.
1563 */
1564 if (!cpumask_subset(cpu_sibling_mask(cpu),
1565 &cpu_associativity_changes_mask)) {
1566 pr_info("Sibling bits not set for associativity "
1567 "change, cpu%d\n", cpu);
1568 cpumask_or(&cpu_associativity_changes_mask,
1569 &cpu_associativity_changes_mask,
1570 cpu_sibling_mask(cpu));
1571 cpu = cpu_last_thread_sibling(cpu);
1572 continue;
1573 }
9eff1a38 1574
3be7db6a
RJ
1575 /* Use associativity from first thread for all siblings */
1576 vphn_get_associativity(cpu, associativity);
1577 new_nid = associativity_to_nid(associativity);
1578 if (new_nid < 0 || !node_online(new_nid))
1579 new_nid = first_online_node;
1580
1581 if (new_nid == numa_cpu_lookup_table[cpu]) {
1582 cpumask_andnot(&cpu_associativity_changes_mask,
1583 &cpu_associativity_changes_mask,
1584 cpu_sibling_mask(cpu));
1585 cpu = cpu_last_thread_sibling(cpu);
1586 continue;
1587 }
9eff1a38 1588
3be7db6a
RJ
1589 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1590 ud = &updates[i++];
1591 ud->cpu = sibling;
1592 ud->new_nid = new_nid;
1593 ud->old_nid = numa_cpu_lookup_table[sibling];
1594 cpumask_set_cpu(sibling, &updated_cpus);
1595 if (i < weight)
1596 ud->next = &updates[i];
1597 }
1598 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1599 }
1600
9a013361
MW
1601 /*
1602 * In cases where we have nothing to update (because the updates list
1603 * is too short or because the new topology is same as the old one),
1604 * skip invoking update_cpu_topology() via stop-machine(). This is
1605 * necessary (and not just a fast-path optimization) since stop-machine
1606 * can end up electing a random CPU to run update_cpu_topology(), and
1607 * thus trick us into setting up incorrect cpu-node mappings (since
1608 * 'updates' is kzalloc()'ed).
1609 *
1610 * And for the similar reason, we will skip all the following updating.
1611 */
1612 if (!cpumask_weight(&updated_cpus))
1613 goto out;
1614
176bbf14 1615 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350 1616
d4edc5b6
SB
1617 /*
1618 * Update the numa-cpu lookup table with the new mappings, even for
1619 * offline CPUs. It is best to perform this update from the stop-
1620 * machine context.
1621 */
1622 stop_machine(update_lookup_table, &updates[0],
1623 cpumask_of(raw_smp_processor_id()));
1624
30c05350 1625 for (ud = &updates[0]; ud; ud = ud->next) {
dd023217
NF
1626 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1627 register_cpu_under_node(ud->cpu, ud->new_nid);
1628
30c05350 1629 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1630 if (dev)
1631 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1632 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1633 changed = 1;
9eff1a38
JL
1634 }
1635
9a013361 1636out:
30c05350 1637 kfree(updates);
79c5fceb 1638 return changed;
9eff1a38
JL
1639}
1640
1641static void topology_work_fn(struct work_struct *work)
1642{
1643 rebuild_sched_domains();
1644}
1645static DECLARE_WORK(topology_work, topology_work_fn);
1646
ec32dd66 1647static void topology_schedule_update(void)
9eff1a38
JL
1648{
1649 schedule_work(&topology_work);
1650}
1651
1652static void topology_timer_fn(unsigned long ignored)
1653{
5d88aa85 1654 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1655 topology_schedule_update();
5d88aa85
JL
1656 else if (vphn_enabled) {
1657 if (update_cpu_associativity_changes_mask() > 0)
1658 topology_schedule_update();
1659 reset_topology_timer();
1660 }
9eff1a38
JL
1661}
1662static struct timer_list topology_timer =
1663 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1664
5d88aa85 1665static void reset_topology_timer(void)
9eff1a38
JL
1666{
1667 topology_timer.data = 0;
1668 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1669 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1670}
1671
601abdc3
NF
1672#ifdef CONFIG_SMP
1673
5d88aa85
JL
1674static void stage_topology_update(int core_id)
1675{
1676 cpumask_or(&cpu_associativity_changes_mask,
1677 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1678 reset_topology_timer();
1679}
1680
1681static int dt_update_callback(struct notifier_block *nb,
1682 unsigned long action, void *data)
1683{
1684 struct of_prop_reconfig *update;
1685 int rc = NOTIFY_DONE;
1686
1687 switch (action) {
5d88aa85
JL
1688 case OF_RECONFIG_UPDATE_PROPERTY:
1689 update = (struct of_prop_reconfig *)data;
30c05350
NF
1690 if (!of_prop_cmp(update->dn->type, "cpu") &&
1691 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1692 u32 core_id;
1693 of_property_read_u32(update->dn, "reg", &core_id);
1694 stage_topology_update(core_id);
1695 rc = NOTIFY_OK;
1696 }
1697 break;
1698 }
1699
1700 return rc;
9eff1a38
JL
1701}
1702
5d88aa85
JL
1703static struct notifier_block dt_update_nb = {
1704 .notifier_call = dt_update_callback,
1705};
1706
601abdc3
NF
1707#endif
1708
9eff1a38 1709/*
5d88aa85 1710 * Start polling for associativity changes.
9eff1a38
JL
1711 */
1712int start_topology_update(void)
1713{
1714 int rc = 0;
1715
5d88aa85
JL
1716 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1717 if (!prrn_enabled) {
1718 prrn_enabled = 1;
1719 vphn_enabled = 0;
601abdc3 1720#ifdef CONFIG_SMP
5d88aa85 1721 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1722#endif
5d88aa85 1723 }
b7abef04 1724 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
f13c13a0 1725 lppaca_shared_proc(get_lppaca())) {
5d88aa85
JL
1726 if (!vphn_enabled) {
1727 prrn_enabled = 0;
1728 vphn_enabled = 1;
1729 setup_cpu_associativity_change_counters();
1730 init_timer_deferrable(&topology_timer);
1731 reset_topology_timer();
1732 }
9eff1a38
JL
1733 }
1734
1735 return rc;
1736}
9eff1a38
JL
1737
1738/*
1739 * Disable polling for VPHN associativity changes.
1740 */
1741int stop_topology_update(void)
1742{
5d88aa85
JL
1743 int rc = 0;
1744
1745 if (prrn_enabled) {
1746 prrn_enabled = 0;
601abdc3 1747#ifdef CONFIG_SMP
5d88aa85 1748 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1749#endif
5d88aa85
JL
1750 } else if (vphn_enabled) {
1751 vphn_enabled = 0;
1752 rc = del_timer_sync(&topology_timer);
1753 }
1754
1755 return rc;
9eff1a38 1756}
e04fa612
NF
1757
1758int prrn_is_enabled(void)
1759{
1760 return prrn_enabled;
1761}
1762
1763static int topology_read(struct seq_file *file, void *v)
1764{
1765 if (vphn_enabled || prrn_enabled)
1766 seq_puts(file, "on\n");
1767 else
1768 seq_puts(file, "off\n");
1769
1770 return 0;
1771}
1772
1773static int topology_open(struct inode *inode, struct file *file)
1774{
1775 return single_open(file, topology_read, NULL);
1776}
1777
1778static ssize_t topology_write(struct file *file, const char __user *buf,
1779 size_t count, loff_t *off)
1780{
1781 char kbuf[4]; /* "on" or "off" plus null. */
1782 int read_len;
1783
1784 read_len = count < 3 ? count : 3;
1785 if (copy_from_user(kbuf, buf, read_len))
1786 return -EINVAL;
1787
1788 kbuf[read_len] = '\0';
1789
1790 if (!strncmp(kbuf, "on", 2))
1791 start_topology_update();
1792 else if (!strncmp(kbuf, "off", 3))
1793 stop_topology_update();
1794 else
1795 return -EINVAL;
1796
1797 return count;
1798}
1799
1800static const struct file_operations topology_ops = {
1801 .read = seq_read,
1802 .write = topology_write,
1803 .open = topology_open,
1804 .release = single_release
1805};
1806
1807static int topology_update_init(void)
1808{
1809 start_topology_update();
316d7188 1810 proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops);
e04fa612
NF
1811
1812 return 0;
9eff1a38 1813}
e04fa612 1814device_initcall(topology_update_init);
39bf990e 1815#endif /* CONFIG_PPC_SPLPAR */