]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/mm/numa.c
mm/vmalloc.c: eliminate extra loop in pcpu_get_vm_areas error path
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
45fb6cea 25#include <asm/sparsemem.h>
d9b2b2a2 26#include <asm/prom.h>
cf00a8d1 27#include <asm/system.h>
2249ca9d 28#include <asm/smp.h>
9eff1a38
JL
29#include <asm/firmware.h>
30#include <asm/paca.h>
39bf990e 31#include <asm/hvcall.h>
1da177e4
LT
32
33static int numa_enabled = 1;
34
1daa6d08
BS
35static char *cmdline __initdata;
36
1da177e4
LT
37static int numa_debug;
38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39
45fb6cea 40int numa_cpu_lookup_table[NR_CPUS];
25863de0 41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 42struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
43
44EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 45EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
46EXPORT_SYMBOL(node_data);
47
1da177e4 48static int min_common_depth;
237a0989 49static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
50static int form1_affinity;
51
52#define MAX_DISTANCE_REF_POINTS 4
53static int distance_ref_points_depth;
54static const unsigned int *distance_ref_points;
55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 56
25863de0
AB
57/*
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
60 *
61 * Note: node_to_cpumask() is not valid until after this is done.
62 */
63static void __init setup_node_to_cpumask_map(void)
64{
65 unsigned int node, num = 0;
66
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
72 }
73
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80}
81
1daa6d08
BS
82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 unsigned int *nid)
84{
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
89
90 /*
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
93 */
94 if (fake_nid)
95 *nid = fake_nid;
96 /*
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
100 */
101 if (!p)
102 return 0;
103
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
107
108 if (mem < curr_boundary)
109 return 0;
110
111 curr_boundary = mem;
112
113 if ((end_pfn << PAGE_SHIFT) > mem) {
114 /*
115 * Skip commas and spaces
116 */
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
119
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
125 }
126 return 0;
127}
128
8f64e1f2 129/*
5dfe8660 130 * get_node_active_region - Return active region containing pfn
e8170372 131 * Active range returned is empty if none found.
5dfe8660
TH
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 134 */
5dfe8660
TH
135static void __init get_node_active_region(unsigned long pfn,
136 struct node_active_region *node_ar)
8f64e1f2 137{
5dfe8660
TH
138 unsigned long start_pfn, end_pfn;
139 int i, nid;
140
141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 if (pfn >= start_pfn && pfn < end_pfn) {
143 node_ar->nid = nid;
144 node_ar->start_pfn = start_pfn;
145 node_ar->end_pfn = end_pfn;
146 break;
147 }
148 }
8f64e1f2
JT
149}
150
39bf990e 151static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
152{
153 numa_cpu_lookup_table[cpu] = node;
45fb6cea 154
bf4b85b0
NL
155 dbg("adding cpu %d to node %d\n", cpu, node);
156
25863de0
AB
157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
159}
160
39bf990e 161#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
162static void unmap_cpu_from_node(unsigned long cpu)
163{
164 int node = numa_cpu_lookup_table[cpu];
165
166 dbg("removing cpu %lu from node %d\n", cpu, node);
167
25863de0 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
170 } else {
171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 cpu, node);
173 }
174}
39bf990e 175#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 176
1da177e4 177/* must hold reference to node during call */
a7f67bdf 178static const int *of_get_associativity(struct device_node *dev)
1da177e4 179{
e2eb6392 180 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
181}
182
cf00085d
C
183/*
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
187 */
188static const u32 *of_get_usable_memory(struct device_node *memory)
189{
190 const u32 *prop;
191 u32 len;
192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 if (!prop || len < sizeof(unsigned int))
194 return 0;
195 return prop;
196}
197
41eab6f8
AB
198int __node_distance(int a, int b)
199{
200 int i;
201 int distance = LOCAL_DISTANCE;
202
203 if (!form1_affinity)
204 return distance;
205
206 for (i = 0; i < distance_ref_points_depth; i++) {
207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 break;
209
210 /* Double the distance for each NUMA level */
211 distance *= 2;
212 }
213
214 return distance;
215}
216
217static void initialize_distance_lookup_table(int nid,
218 const unsigned int *associativity)
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 distance_lookup_table[nid][i] =
227 associativity[distance_ref_points[i]];
228 }
229}
230
482ec7c4
NL
231/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232 * info is found.
233 */
9eff1a38 234static int associativity_to_nid(const unsigned int *associativity)
1da177e4 235{
482ec7c4 236 int nid = -1;
1da177e4
LT
237
238 if (min_common_depth == -1)
482ec7c4 239 goto out;
1da177e4 240
9eff1a38
JL
241 if (associativity[0] >= min_common_depth)
242 nid = associativity[min_common_depth];
bc16a759
NL
243
244 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
245 if (nid == 0xffff || nid >= MAX_NUMNODES)
246 nid = -1;
41eab6f8 247
9eff1a38
JL
248 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 initialize_distance_lookup_table(nid, associativity);
41eab6f8 250
482ec7c4 251out:
cf950b7a 252 return nid;
1da177e4
LT
253}
254
9eff1a38
JL
255/* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
257 */
258static int of_node_to_nid_single(struct device_node *device)
259{
260 int nid = -1;
261 const unsigned int *tmp;
262
263 tmp = of_get_associativity(device);
264 if (tmp)
265 nid = associativity_to_nid(tmp);
266 return nid;
267}
268
953039c8
JK
269/* Walk the device tree upwards, looking for an associativity id */
270int of_node_to_nid(struct device_node *device)
271{
272 struct device_node *tmp;
273 int nid = -1;
274
275 of_node_get(device);
276 while (device) {
277 nid = of_node_to_nid_single(device);
278 if (nid != -1)
279 break;
280
281 tmp = device;
282 device = of_get_parent(tmp);
283 of_node_put(tmp);
284 }
285 of_node_put(device);
286
287 return nid;
288}
289EXPORT_SYMBOL_GPL(of_node_to_nid);
290
1da177e4
LT
291static int __init find_min_common_depth(void)
292{
41eab6f8 293 int depth;
bc8449cc 294 struct device_node *chosen;
e70606eb 295 struct device_node *root;
bc8449cc 296 const char *vec5;
1da177e4 297
1c8ee733
DS
298 if (firmware_has_feature(FW_FEATURE_OPAL))
299 root = of_find_node_by_path("/ibm,opal");
300 else
301 root = of_find_node_by_path("/rtas");
e70606eb
ME
302 if (!root)
303 root = of_find_node_by_path("/");
1da177e4
LT
304
305 /*
41eab6f8
AB
306 * This property is a set of 32-bit integers, each representing
307 * an index into the ibm,associativity nodes.
308 *
309 * With form 0 affinity the first integer is for an SMP configuration
310 * (should be all 0's) and the second is for a normal NUMA
311 * configuration. We have only one level of NUMA.
312 *
313 * With form 1 affinity the first integer is the most significant
314 * NUMA boundary and the following are progressively less significant
315 * boundaries. There can be more than one level of NUMA.
1da177e4 316 */
e70606eb 317 distance_ref_points = of_get_property(root,
41eab6f8
AB
318 "ibm,associativity-reference-points",
319 &distance_ref_points_depth);
320
321 if (!distance_ref_points) {
322 dbg("NUMA: ibm,associativity-reference-points not found.\n");
323 goto err;
324 }
325
326 distance_ref_points_depth /= sizeof(int);
1da177e4 327
bc8449cc
AB
328#define VEC5_AFFINITY_BYTE 5
329#define VEC5_AFFINITY 0x80
1c8ee733
DS
330
331 if (firmware_has_feature(FW_FEATURE_OPAL))
332 form1_affinity = 1;
333 else {
334 chosen = of_find_node_by_path("/chosen");
335 if (chosen) {
336 vec5 = of_get_property(chosen,
337 "ibm,architecture-vec-5", NULL);
338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
339 VEC5_AFFINITY)) {
340 dbg("Using form 1 affinity\n");
341 form1_affinity = 1;
342 }
bc8449cc 343 }
4b83c330
AB
344 }
345
41eab6f8
AB
346 if (form1_affinity) {
347 depth = distance_ref_points[0];
1da177e4 348 } else {
41eab6f8
AB
349 if (distance_ref_points_depth < 2) {
350 printk(KERN_WARNING "NUMA: "
351 "short ibm,associativity-reference-points\n");
352 goto err;
353 }
354
355 depth = distance_ref_points[1];
1da177e4 356 }
1da177e4 357
41eab6f8
AB
358 /*
359 * Warn and cap if the hardware supports more than
360 * MAX_DISTANCE_REF_POINTS domains.
361 */
362 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
363 printk(KERN_WARNING "NUMA: distance array capped at "
364 "%d entries\n", MAX_DISTANCE_REF_POINTS);
365 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
366 }
367
e70606eb 368 of_node_put(root);
1da177e4 369 return depth;
41eab6f8
AB
370
371err:
e70606eb 372 of_node_put(root);
41eab6f8 373 return -1;
1da177e4
LT
374}
375
84c9fdd1 376static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
377{
378 struct device_node *memory = NULL;
1da177e4
LT
379
380 memory = of_find_node_by_type(memory, "memory");
54c23310 381 if (!memory)
84c9fdd1 382 panic("numa.c: No memory nodes found!");
54c23310 383
a8bda5dd 384 *n_addr_cells = of_n_addr_cells(memory);
9213feea 385 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 386 of_node_put(memory);
1da177e4
LT
387}
388
2011b1d0 389static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
390{
391 unsigned long result = 0;
392
393 while (n--) {
394 result = (result << 32) | **buf;
395 (*buf)++;
396 }
397 return result;
398}
399
8342681d
NF
400struct of_drconf_cell {
401 u64 base_addr;
402 u32 drc_index;
403 u32 reserved;
404 u32 aa_index;
405 u32 flags;
406};
407
408#define DRCONF_MEM_ASSIGNED 0x00000008
409#define DRCONF_MEM_AI_INVALID 0x00000040
410#define DRCONF_MEM_RESERVED 0x00000080
411
412/*
95f72d1e 413 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
414 * and return the information in the provided of_drconf_cell structure.
415 */
416static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
417{
418 const u32 *cp;
419
420 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
421
422 cp = *cellp;
423 drmem->drc_index = cp[0];
424 drmem->reserved = cp[1];
425 drmem->aa_index = cp[2];
426 drmem->flags = cp[3];
427
428 *cellp = cp + 4;
429}
430
431/*
25985edc 432 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 433 *
95f72d1e
YL
434 * The layout of the ibm,dynamic-memory property is a number N of memblock
435 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 436 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
437 */
438static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
439{
440 const u32 *prop;
441 u32 len, entries;
442
443 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
444 if (!prop || len < sizeof(unsigned int))
445 return 0;
446
447 entries = *prop++;
448
449 /* Now that we know the number of entries, revalidate the size
450 * of the property read in to ensure we have everything
451 */
452 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
453 return 0;
454
455 *dm = prop;
456 return entries;
457}
458
459/*
25985edc 460 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
461 * from the device tree.
462 */
3fdfd990 463static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
464{
465 const u32 *prop;
466 u32 len;
467
3fdfd990 468 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
469 if (!prop || len < sizeof(unsigned int))
470 return 0;
471
472 return read_n_cells(n_mem_size_cells, &prop);
473}
474
475struct assoc_arrays {
476 u32 n_arrays;
477 u32 array_sz;
478 const u32 *arrays;
479};
480
481/*
25985edc 482 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
483 * memory from the ibm,associativity-lookup-arrays property of the
484 * device tree..
485 *
486 * The layout of the ibm,associativity-lookup-arrays property is a number N
487 * indicating the number of associativity arrays, followed by a number M
488 * indicating the size of each associativity array, followed by a list
489 * of N associativity arrays.
490 */
491static int of_get_assoc_arrays(struct device_node *memory,
492 struct assoc_arrays *aa)
493{
494 const u32 *prop;
495 u32 len;
496
497 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
498 if (!prop || len < 2 * sizeof(unsigned int))
499 return -1;
500
501 aa->n_arrays = *prop++;
502 aa->array_sz = *prop++;
503
42b2aa86 504 /* Now that we know the number of arrays and size of each array,
8342681d
NF
505 * revalidate the size of the property read in.
506 */
507 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
508 return -1;
509
510 aa->arrays = prop;
511 return 0;
512}
513
514/*
515 * This is like of_node_to_nid_single() for memory represented in the
516 * ibm,dynamic-reconfiguration-memory node.
517 */
518static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
519 struct assoc_arrays *aa)
520{
521 int default_nid = 0;
522 int nid = default_nid;
523 int index;
524
525 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
526 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
527 drmem->aa_index < aa->n_arrays) {
528 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
529 nid = aa->arrays[index];
530
531 if (nid == 0xffff || nid >= MAX_NUMNODES)
532 nid = default_nid;
533 }
534
535 return nid;
536}
537
1da177e4
LT
538/*
539 * Figure out to which domain a cpu belongs and stick it there.
540 * Return the id of the domain used.
541 */
2e5ce39d 542static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 543{
cf950b7a 544 int nid = 0;
8b16cd23 545 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
546
547 if (!cpu) {
548 WARN_ON(1);
549 goto out;
550 }
551
953039c8 552 nid = of_node_to_nid_single(cpu);
1da177e4 553
482ec7c4 554 if (nid < 0 || !node_online(nid))
72c33688 555 nid = first_online_node;
1da177e4 556out:
cf950b7a 557 map_cpu_to_node(lcpu, nid);
1da177e4
LT
558
559 of_node_put(cpu);
560
cf950b7a 561 return nid;
1da177e4
LT
562}
563
74b85f37 564static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
565 unsigned long action,
566 void *hcpu)
567{
568 unsigned long lcpu = (unsigned long)hcpu;
569 int ret = NOTIFY_DONE;
570
571 switch (action) {
572 case CPU_UP_PREPARE:
8bb78442 573 case CPU_UP_PREPARE_FROZEN:
2b261227 574 numa_setup_cpu(lcpu);
1da177e4
LT
575 ret = NOTIFY_OK;
576 break;
577#ifdef CONFIG_HOTPLUG_CPU
578 case CPU_DEAD:
8bb78442 579 case CPU_DEAD_FROZEN:
1da177e4 580 case CPU_UP_CANCELED:
8bb78442 581 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
582 unmap_cpu_from_node(lcpu);
583 break;
584 ret = NOTIFY_OK;
585#endif
586 }
587 return ret;
588}
589
590/*
591 * Check and possibly modify a memory region to enforce the memory limit.
592 *
593 * Returns the size the region should have to enforce the memory limit.
594 * This will either be the original value of size, a truncated value,
595 * or zero. If the returned value of size is 0 the region should be
25985edc 596 * discarded as it lies wholly above the memory limit.
1da177e4 597 */
45fb6cea
AB
598static unsigned long __init numa_enforce_memory_limit(unsigned long start,
599 unsigned long size)
1da177e4
LT
600{
601 /*
95f72d1e 602 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 603 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
604 * having memory holes below the limit. Also, in the case of
605 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 606 */
1da177e4 607
95f72d1e 608 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
609 return size;
610
95f72d1e 611 if (start >= memblock_end_of_DRAM())
1da177e4
LT
612 return 0;
613
95f72d1e 614 return memblock_end_of_DRAM() - start;
1da177e4
LT
615}
616
cf00085d
C
617/*
618 * Reads the counter for a given entry in
619 * linux,drconf-usable-memory property
620 */
621static inline int __init read_usm_ranges(const u32 **usm)
622{
623 /*
3fdfd990 624 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
625 * entry in linux,drconf-usable-memory property contains
626 * a counter followed by that many (base, size) duple.
627 * read the counter from linux,drconf-usable-memory
628 */
629 return read_n_cells(n_mem_size_cells, usm);
630}
631
0204568a
PM
632/*
633 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
634 * node. This assumes n_mem_{addr,size}_cells have been set.
635 */
636static void __init parse_drconf_memory(struct device_node *memory)
637{
cf00085d
C
638 const u32 *dm, *usm;
639 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 640 unsigned long lmb_size, base, size, sz;
8342681d
NF
641 int nid;
642 struct assoc_arrays aa;
643
644 n = of_get_drconf_memory(memory, &dm);
645 if (!n)
0204568a
PM
646 return;
647
3fdfd990
BH
648 lmb_size = of_get_lmb_size(memory);
649 if (!lmb_size)
8342681d
NF
650 return;
651
652 rc = of_get_assoc_arrays(memory, &aa);
653 if (rc)
0204568a
PM
654 return;
655
cf00085d
C
656 /* check if this is a kexec/kdump kernel */
657 usm = of_get_usable_memory(memory);
658 if (usm != NULL)
659 is_kexec_kdump = 1;
660
0204568a 661 for (; n != 0; --n) {
8342681d
NF
662 struct of_drconf_cell drmem;
663
664 read_drconf_cell(&drmem, &dm);
665
666 /* skip this block if the reserved bit is set in flags (0x80)
667 or if the block is not assigned to this partition (0x8) */
668 if ((drmem.flags & DRCONF_MEM_RESERVED)
669 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 670 continue;
1daa6d08 671
cf00085d 672 base = drmem.base_addr;
3fdfd990 673 size = lmb_size;
cf00085d 674 ranges = 1;
8342681d 675
cf00085d
C
676 if (is_kexec_kdump) {
677 ranges = read_usm_ranges(&usm);
678 if (!ranges) /* there are no (base, size) duple */
679 continue;
680 }
681 do {
682 if (is_kexec_kdump) {
683 base = read_n_cells(n_mem_addr_cells, &usm);
684 size = read_n_cells(n_mem_size_cells, &usm);
685 }
686 nid = of_drconf_to_nid_single(&drmem, &aa);
687 fake_numa_create_new_node(
688 ((base + size) >> PAGE_SHIFT),
8342681d 689 &nid);
cf00085d
C
690 node_set_online(nid);
691 sz = numa_enforce_memory_limit(base, size);
692 if (sz)
1d7cfe18 693 memblock_set_node(base, sz, nid);
cf00085d 694 } while (--ranges);
0204568a
PM
695 }
696}
697
1da177e4
LT
698static int __init parse_numa_properties(void)
699{
94db7c5e 700 struct device_node *memory;
482ec7c4 701 int default_nid = 0;
1da177e4
LT
702 unsigned long i;
703
704 if (numa_enabled == 0) {
705 printk(KERN_WARNING "NUMA disabled by user\n");
706 return -1;
707 }
708
1da177e4
LT
709 min_common_depth = find_min_common_depth();
710
1da177e4
LT
711 if (min_common_depth < 0)
712 return min_common_depth;
713
bf4b85b0
NL
714 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
715
1da177e4 716 /*
482ec7c4
NL
717 * Even though we connect cpus to numa domains later in SMP
718 * init, we need to know the node ids now. This is because
719 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 720 */
482ec7c4 721 for_each_present_cpu(i) {
dfbe93a2 722 struct device_node *cpu;
cf950b7a 723 int nid;
1da177e4 724
8b16cd23 725 cpu = of_get_cpu_node(i, NULL);
482ec7c4 726 BUG_ON(!cpu);
953039c8 727 nid = of_node_to_nid_single(cpu);
482ec7c4 728 of_node_put(cpu);
1da177e4 729
482ec7c4
NL
730 /*
731 * Don't fall back to default_nid yet -- we will plug
732 * cpus into nodes once the memory scan has discovered
733 * the topology.
734 */
735 if (nid < 0)
736 continue;
737 node_set_online(nid);
1da177e4
LT
738 }
739
237a0989 740 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
741
742 for_each_node_by_type(memory, "memory") {
1da177e4
LT
743 unsigned long start;
744 unsigned long size;
cf950b7a 745 int nid;
1da177e4 746 int ranges;
a7f67bdf 747 const unsigned int *memcell_buf;
1da177e4
LT
748 unsigned int len;
749
e2eb6392 750 memcell_buf = of_get_property(memory,
ba759485
ME
751 "linux,usable-memory", &len);
752 if (!memcell_buf || len <= 0)
e2eb6392 753 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
754 if (!memcell_buf || len <= 0)
755 continue;
756
cc5d0189
BH
757 /* ranges in cell */
758 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
759new_range:
760 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
761 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
762 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 763
482ec7c4
NL
764 /*
765 * Assumption: either all memory nodes or none will
766 * have associativity properties. If none, then
767 * everything goes to default_nid.
768 */
953039c8 769 nid = of_node_to_nid_single(memory);
482ec7c4
NL
770 if (nid < 0)
771 nid = default_nid;
1daa6d08
BS
772
773 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 774 node_set_online(nid);
1da177e4 775
45fb6cea 776 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
777 if (--ranges)
778 goto new_range;
779 else
780 continue;
781 }
782
1d7cfe18 783 memblock_set_node(start, size, nid);
1da177e4
LT
784
785 if (--ranges)
786 goto new_range;
787 }
788
0204568a 789 /*
dfbe93a2
AB
790 * Now do the same thing for each MEMBLOCK listed in the
791 * ibm,dynamic-memory property in the
792 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
793 */
794 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
795 if (memory)
796 parse_drconf_memory(memory);
797
1da177e4
LT
798 return 0;
799}
800
801static void __init setup_nonnuma(void)
802{
95f72d1e
YL
803 unsigned long top_of_ram = memblock_end_of_DRAM();
804 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 805 unsigned long start_pfn, end_pfn;
28be7072
BH
806 unsigned int nid = 0;
807 struct memblock_region *reg;
1da177e4 808
e110b281 809 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 810 top_of_ram, total_ram);
e110b281 811 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
812 (top_of_ram - total_ram) >> 20);
813
28be7072 814 for_each_memblock(memory, reg) {
c7fc2de0
YL
815 start_pfn = memblock_region_memory_base_pfn(reg);
816 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
817
818 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
819 memblock_set_node(PFN_PHYS(start_pfn),
820 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 821 node_set_online(nid);
c67c3cb4 822 }
1da177e4
LT
823}
824
4b703a23
AB
825void __init dump_numa_cpu_topology(void)
826{
827 unsigned int node;
828 unsigned int cpu, count;
829
830 if (min_common_depth == -1 || !numa_enabled)
831 return;
832
833 for_each_online_node(node) {
e110b281 834 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
835
836 count = 0;
837 /*
838 * If we used a CPU iterator here we would miss printing
839 * the holes in the cpumap.
840 */
25863de0
AB
841 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
842 if (cpumask_test_cpu(cpu,
843 node_to_cpumask_map[node])) {
4b703a23
AB
844 if (count == 0)
845 printk(" %u", cpu);
846 ++count;
847 } else {
848 if (count > 1)
849 printk("-%u", cpu - 1);
850 count = 0;
851 }
852 }
853
854 if (count > 1)
25863de0 855 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
856 printk("\n");
857 }
858}
859
860static void __init dump_numa_memory_topology(void)
1da177e4
LT
861{
862 unsigned int node;
863 unsigned int count;
864
865 if (min_common_depth == -1 || !numa_enabled)
866 return;
867
868 for_each_online_node(node) {
869 unsigned long i;
870
e110b281 871 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
872
873 count = 0;
874
95f72d1e 875 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
876 i += (1 << SECTION_SIZE_BITS)) {
877 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
878 if (count == 0)
879 printk(" 0x%lx", i);
880 ++count;
881 } else {
882 if (count > 0)
883 printk("-0x%lx", i);
884 count = 0;
885 }
886 }
887
888 if (count > 0)
889 printk("-0x%lx", i);
890 printk("\n");
891 }
1da177e4
LT
892}
893
894/*
95f72d1e 895 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
896 * required. nid is the preferred node and end is the physical address of
897 * the highest address in the node.
898 *
0be210fd 899 * Returns the virtual address of the memory.
1da177e4 900 */
893473df 901static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
902 unsigned long align,
903 unsigned long end_pfn)
1da177e4 904{
0be210fd 905 void *ret;
45fb6cea 906 int new_nid;
0be210fd
DH
907 unsigned long ret_paddr;
908
95f72d1e 909 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
910
911 /* retry over all memory */
0be210fd 912 if (!ret_paddr)
95f72d1e 913 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 914
0be210fd 915 if (!ret_paddr)
5d21ea2b 916 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
917 size, nid);
918
0be210fd
DH
919 ret = __va(ret_paddr);
920
1da177e4 921 /*
c555e520 922 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 923 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
924 * bootmem allocator. If this function is called for
925 * node 5, then we know that all nodes <5 are using the
95f72d1e 926 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
927 *
928 * So, check the nid from which this allocation came
929 * and double check to see if we need to use bootmem
95f72d1e 930 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 931 * since it would be useless.
1da177e4 932 */
0be210fd 933 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 934 if (new_nid < nid) {
0be210fd 935 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
936 size, align, 0);
937
0be210fd 938 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
939 }
940
893473df 941 memset(ret, 0, size);
0be210fd 942 return ret;
1da177e4
LT
943}
944
74b85f37
CS
945static struct notifier_block __cpuinitdata ppc64_numa_nb = {
946 .notifier_call = cpu_numa_callback,
947 .priority = 1 /* Must run before sched domains notifier. */
948};
949
28e86bdb 950static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
951{
952 struct pglist_data *node = NODE_DATA(nid);
28be7072 953 struct memblock_region *reg;
4a618669 954
28be7072
BH
955 for_each_memblock(reserved, reg) {
956 unsigned long physbase = reg->base;
957 unsigned long size = reg->size;
4a618669 958 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 959 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
960 struct node_active_region node_ar;
961 unsigned long node_end_pfn = node->node_start_pfn +
962 node->node_spanned_pages;
963
964 /*
95f72d1e 965 * Check to make sure that this memblock.reserved area is
4a618669
DH
966 * within the bounds of the node that we care about.
967 * Checking the nid of the start and end points is not
968 * sufficient because the reserved area could span the
969 * entire node.
970 */
971 if (end_pfn <= node->node_start_pfn ||
972 start_pfn >= node_end_pfn)
973 continue;
974
975 get_node_active_region(start_pfn, &node_ar);
976 while (start_pfn < end_pfn &&
977 node_ar.start_pfn < node_ar.end_pfn) {
978 unsigned long reserve_size = size;
979 /*
980 * if reserved region extends past active region
981 * then trim size to active region
982 */
983 if (end_pfn > node_ar.end_pfn)
984 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 985 - physbase;
a4c74ddd
DH
986 /*
987 * Only worry about *this* node, others may not
988 * yet have valid NODE_DATA().
989 */
990 if (node_ar.nid == nid) {
991 dbg("reserve_bootmem %lx %lx nid=%d\n",
992 physbase, reserve_size, node_ar.nid);
993 reserve_bootmem_node(NODE_DATA(node_ar.nid),
994 physbase, reserve_size,
995 BOOTMEM_DEFAULT);
996 }
4a618669
DH
997 /*
998 * if reserved region is contained in the active region
999 * then done.
1000 */
1001 if (end_pfn <= node_ar.end_pfn)
1002 break;
1003
1004 /*
1005 * reserved region extends past the active region
1006 * get next active region that contains this
1007 * reserved region
1008 */
1009 start_pfn = node_ar.end_pfn;
1010 physbase = start_pfn << PAGE_SHIFT;
1011 size = size - reserve_size;
1012 get_node_active_region(start_pfn, &node_ar);
1013 }
1014 }
1015}
1016
1017
1da177e4
LT
1018void __init do_init_bootmem(void)
1019{
1020 int nid;
1da177e4
LT
1021
1022 min_low_pfn = 0;
95f72d1e 1023 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1024 max_pfn = max_low_pfn;
1025
1026 if (parse_numa_properties())
1027 setup_nonnuma();
1028 else
4b703a23 1029 dump_numa_memory_topology();
1da177e4 1030
1da177e4 1031 for_each_online_node(nid) {
c67c3cb4 1032 unsigned long start_pfn, end_pfn;
0be210fd 1033 void *bootmem_vaddr;
1da177e4
LT
1034 unsigned long bootmap_pages;
1035
c67c3cb4 1036 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1037
4a618669
DH
1038 /*
1039 * Allocate the node structure node local if possible
1040 *
1041 * Be careful moving this around, as it relies on all
1042 * previous nodes' bootmem to be initialized and have
1043 * all reserved areas marked.
1044 */
893473df 1045 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1046 sizeof(struct pglist_data),
45fb6cea 1047 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1048
1049 dbg("node %d\n", nid);
1050 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1051
b61bfa3c 1052 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1053 NODE_DATA(nid)->node_start_pfn = start_pfn;
1054 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1055
1056 if (NODE_DATA(nid)->node_spanned_pages == 0)
1057 continue;
1058
45fb6cea
AB
1059 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1060 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1061
45fb6cea 1062 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1063 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1064 bootmap_pages << PAGE_SHIFT,
1065 PAGE_SIZE, end_pfn);
1da177e4 1066
0be210fd 1067 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1068
0be210fd
DH
1069 init_bootmem_node(NODE_DATA(nid),
1070 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1071 start_pfn, end_pfn);
1da177e4 1072
c67c3cb4 1073 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1074 /*
1075 * Be very careful about moving this around. Future
893473df 1076 * calls to careful_zallocation() depend on this getting
4a618669
DH
1077 * done correctly.
1078 */
1079 mark_reserved_regions_for_nid(nid);
8f64e1f2 1080 sparse_memory_present_with_active_regions(nid);
4a618669 1081 }
d3f6204a
BH
1082
1083 init_bootmem_done = 1;
25863de0
AB
1084
1085 /*
1086 * Now bootmem is initialised we can create the node to cpumask
1087 * lookup tables and setup the cpu callback to populate them.
1088 */
1089 setup_node_to_cpumask_map();
1090
1091 register_cpu_notifier(&ppc64_numa_nb);
1092 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1093 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1094}
1095
1096void __init paging_init(void)
1097{
6391af17
MG
1098 unsigned long max_zone_pfns[MAX_NR_ZONES];
1099 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1100 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1101 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1102}
1103
1104static int __init early_numa(char *p)
1105{
1106 if (!p)
1107 return 0;
1108
1109 if (strstr(p, "off"))
1110 numa_enabled = 0;
1111
1112 if (strstr(p, "debug"))
1113 numa_debug = 1;
1114
1daa6d08
BS
1115 p = strstr(p, "fake=");
1116 if (p)
1117 cmdline = p + strlen("fake=");
1118
1da177e4
LT
1119 return 0;
1120}
1121early_param("numa", early_numa);
237a0989
MK
1122
1123#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1124/*
0f16ef7f
NF
1125 * Find the node associated with a hot added memory section for
1126 * memory represented in the device tree by the property
1127 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1128 */
1129static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1130 unsigned long scn_addr)
1131{
1132 const u32 *dm;
0f16ef7f 1133 unsigned int drconf_cell_cnt, rc;
3fdfd990 1134 unsigned long lmb_size;
0db9360a 1135 struct assoc_arrays aa;
0f16ef7f 1136 int nid = -1;
0db9360a 1137
0f16ef7f
NF
1138 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1139 if (!drconf_cell_cnt)
1140 return -1;
0db9360a 1141
3fdfd990
BH
1142 lmb_size = of_get_lmb_size(memory);
1143 if (!lmb_size)
0f16ef7f 1144 return -1;
0db9360a
NF
1145
1146 rc = of_get_assoc_arrays(memory, &aa);
1147 if (rc)
0f16ef7f 1148 return -1;
0db9360a 1149
0f16ef7f 1150 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1151 struct of_drconf_cell drmem;
1152
1153 read_drconf_cell(&drmem, &dm);
1154
1155 /* skip this block if it is reserved or not assigned to
1156 * this partition */
1157 if ((drmem.flags & DRCONF_MEM_RESERVED)
1158 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1159 continue;
1160
0f16ef7f 1161 if ((scn_addr < drmem.base_addr)
3fdfd990 1162 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1163 continue;
1164
0db9360a 1165 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1166 break;
1167 }
1168
1169 return nid;
1170}
1171
1172/*
1173 * Find the node associated with a hot added memory section for memory
1174 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1175 * each memblock.
0f16ef7f
NF
1176 */
1177int hot_add_node_scn_to_nid(unsigned long scn_addr)
1178{
94db7c5e 1179 struct device_node *memory;
0f16ef7f
NF
1180 int nid = -1;
1181
94db7c5e 1182 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1183 unsigned long start, size;
1184 int ranges;
1185 const unsigned int *memcell_buf;
1186 unsigned int len;
1187
1188 memcell_buf = of_get_property(memory, "reg", &len);
1189 if (!memcell_buf || len <= 0)
1190 continue;
1191
1192 /* ranges in cell */
1193 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1194
1195 while (ranges--) {
1196 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1197 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1198
1199 if ((scn_addr < start) || (scn_addr >= (start + size)))
1200 continue;
1201
1202 nid = of_node_to_nid_single(memory);
1203 break;
1204 }
0db9360a 1205
0f16ef7f
NF
1206 if (nid >= 0)
1207 break;
0db9360a
NF
1208 }
1209
60831842
AB
1210 of_node_put(memory);
1211
0f16ef7f 1212 return nid;
0db9360a
NF
1213}
1214
237a0989
MK
1215/*
1216 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1217 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1218 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1219 */
1220int hot_add_scn_to_nid(unsigned long scn_addr)
1221{
1222 struct device_node *memory = NULL;
0f16ef7f 1223 int nid, found = 0;
237a0989
MK
1224
1225 if (!numa_enabled || (min_common_depth < 0))
72c33688 1226 return first_online_node;
0db9360a
NF
1227
1228 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1229 if (memory) {
1230 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1231 of_node_put(memory);
0f16ef7f
NF
1232 } else {
1233 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1234 }
237a0989 1235
0f16ef7f 1236 if (nid < 0 || !node_online(nid))
72c33688 1237 nid = first_online_node;
237a0989 1238
0f16ef7f
NF
1239 if (NODE_DATA(nid)->node_spanned_pages)
1240 return nid;
237a0989 1241
0f16ef7f
NF
1242 for_each_online_node(nid) {
1243 if (NODE_DATA(nid)->node_spanned_pages) {
1244 found = 1;
1245 break;
237a0989 1246 }
237a0989 1247 }
0f16ef7f
NF
1248
1249 BUG_ON(!found);
1250 return nid;
237a0989 1251}
0f16ef7f 1252
cd34206e
NA
1253static u64 hot_add_drconf_memory_max(void)
1254{
1255 struct device_node *memory = NULL;
1256 unsigned int drconf_cell_cnt = 0;
1257 u64 lmb_size = 0;
1258 const u32 *dm = 0;
1259
1260 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1261 if (memory) {
1262 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1263 lmb_size = of_get_lmb_size(memory);
1264 of_node_put(memory);
1265 }
1266 return lmb_size * drconf_cell_cnt;
1267}
1268
1269/*
1270 * memory_hotplug_max - return max address of memory that may be added
1271 *
1272 * This is currently only used on systems that support drconfig memory
1273 * hotplug.
1274 */
1275u64 memory_hotplug_max(void)
1276{
1277 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1278}
237a0989 1279#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1280
bd03403a 1281/* Virtual Processor Home Node (VPHN) support */
39bf990e 1282#ifdef CONFIG_PPC_SPLPAR
5de16699 1283static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1284static cpumask_t cpu_associativity_changes_mask;
1285static int vphn_enabled;
1286static void set_topology_timer(void);
9eff1a38
JL
1287
1288/*
1289 * Store the current values of the associativity change counters in the
1290 * hypervisor.
1291 */
1292static void setup_cpu_associativity_change_counters(void)
1293{
cd9d6cc7 1294 int cpu;
9eff1a38 1295
5de16699
AB
1296 /* The VPHN feature supports a maximum of 8 reference points */
1297 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1298
9eff1a38 1299 for_each_possible_cpu(cpu) {
cd9d6cc7 1300 int i;
9eff1a38
JL
1301 u8 *counts = vphn_cpu_change_counts[cpu];
1302 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1303
5de16699 1304 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1305 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1306 }
1307}
1308
1309/*
1310 * The hypervisor maintains a set of 8 associativity change counters in
1311 * the VPA of each cpu that correspond to the associativity levels in the
1312 * ibm,associativity-reference-points property. When an associativity
1313 * level changes, the corresponding counter is incremented.
1314 *
1315 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1316 * node associativity levels have changed.
1317 *
1318 * Returns the number of cpus with unhandled associativity changes.
1319 */
1320static int update_cpu_associativity_changes_mask(void)
1321{
cd9d6cc7 1322 int cpu, nr_cpus = 0;
9eff1a38
JL
1323 cpumask_t *changes = &cpu_associativity_changes_mask;
1324
1325 cpumask_clear(changes);
1326
1327 for_each_possible_cpu(cpu) {
1328 int i, changed = 0;
1329 u8 *counts = vphn_cpu_change_counts[cpu];
1330 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1331
5de16699 1332 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1333 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1334 counts[i] = hypervisor_counts[i];
1335 changed = 1;
1336 }
1337 }
1338 if (changed) {
1339 cpumask_set_cpu(cpu, changes);
1340 nr_cpus++;
1341 }
1342 }
1343
1344 return nr_cpus;
1345}
1346
c0e5e46f
AB
1347/*
1348 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1349 * the complete property we have to add the length in the first cell.
1350 */
1351#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1352
1353/*
1354 * Convert the associativity domain numbers returned from the hypervisor
1355 * to the sequence they would appear in the ibm,associativity property.
1356 */
1357static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1358{
cd9d6cc7 1359 int i, nr_assoc_doms = 0;
9eff1a38
JL
1360 const u16 *field = (const u16*) packed;
1361
1362#define VPHN_FIELD_UNUSED (0xffff)
1363#define VPHN_FIELD_MSB (0x8000)
1364#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1365
c0e5e46f 1366 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1367 if (*field == VPHN_FIELD_UNUSED) {
1368 /* All significant fields processed, and remaining
1369 * fields contain the reserved value of all 1's.
1370 * Just store them.
1371 */
1372 unpacked[i] = *((u32*)field);
1373 field += 2;
7639adaa 1374 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1375 /* Data is in the lower 15 bits of this field */
1376 unpacked[i] = *field & VPHN_FIELD_MASK;
1377 field++;
1378 nr_assoc_doms++;
7639adaa 1379 } else {
9eff1a38
JL
1380 /* Data is in the lower 15 bits of this field
1381 * concatenated with the next 16 bit field
1382 */
1383 unpacked[i] = *((u32*)field);
1384 field += 2;
1385 nr_assoc_doms++;
1386 }
1387 }
1388
c0e5e46f
AB
1389 /* The first cell contains the length of the property */
1390 unpacked[0] = nr_assoc_doms;
1391
9eff1a38
JL
1392 return nr_assoc_doms;
1393}
1394
1395/*
1396 * Retrieve the new associativity information for a virtual processor's
1397 * home node.
1398 */
1399static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1400{
cd9d6cc7 1401 long rc;
9eff1a38
JL
1402 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1403 u64 flags = 1;
1404 int hwcpu = get_hard_smp_processor_id(cpu);
1405
1406 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1407 vphn_unpack_associativity(retbuf, associativity);
1408
1409 return rc;
1410}
1411
1412static long vphn_get_associativity(unsigned long cpu,
1413 unsigned int *associativity)
1414{
cd9d6cc7 1415 long rc;
9eff1a38
JL
1416
1417 rc = hcall_vphn(cpu, associativity);
1418
1419 switch (rc) {
1420 case H_FUNCTION:
1421 printk(KERN_INFO
1422 "VPHN is not supported. Disabling polling...\n");
1423 stop_topology_update();
1424 break;
1425 case H_HARDWARE:
1426 printk(KERN_ERR
1427 "hcall_vphn() experienced a hardware fault "
1428 "preventing VPHN. Disabling polling...\n");
1429 stop_topology_update();
1430 }
1431
1432 return rc;
1433}
1434
1435/*
1436 * Update the node maps and sysfs entries for each cpu whose home node
1437 * has changed.
1438 */
1439int arch_update_cpu_topology(void)
1440{
cd9d6cc7 1441 int cpu, nid, old_nid;
9eff1a38 1442 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
8a25a2fd 1443 struct device *dev;
9eff1a38 1444
104699c0 1445 for_each_cpu(cpu,&cpu_associativity_changes_mask) {
9eff1a38
JL
1446 vphn_get_associativity(cpu, associativity);
1447 nid = associativity_to_nid(associativity);
1448
1449 if (nid < 0 || !node_online(nid))
1450 nid = first_online_node;
1451
1452 old_nid = numa_cpu_lookup_table[cpu];
1453
1454 /* Disable hotplug while we update the cpu
1455 * masks and sysfs.
1456 */
1457 get_online_cpus();
1458 unregister_cpu_under_node(cpu, old_nid);
1459 unmap_cpu_from_node(cpu);
1460 map_cpu_to_node(cpu, nid);
1461 register_cpu_under_node(cpu, nid);
1462 put_online_cpus();
1463
8a25a2fd
KS
1464 dev = get_cpu_device(cpu);
1465 if (dev)
1466 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
9eff1a38
JL
1467 }
1468
1469 return 1;
1470}
1471
1472static void topology_work_fn(struct work_struct *work)
1473{
1474 rebuild_sched_domains();
1475}
1476static DECLARE_WORK(topology_work, topology_work_fn);
1477
1478void topology_schedule_update(void)
1479{
1480 schedule_work(&topology_work);
1481}
1482
1483static void topology_timer_fn(unsigned long ignored)
1484{
1485 if (!vphn_enabled)
1486 return;
1487 if (update_cpu_associativity_changes_mask() > 0)
1488 topology_schedule_update();
1489 set_topology_timer();
1490}
1491static struct timer_list topology_timer =
1492 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1493
1494static void set_topology_timer(void)
1495{
1496 topology_timer.data = 0;
1497 topology_timer.expires = jiffies + 60 * HZ;
1498 add_timer(&topology_timer);
1499}
1500
1501/*
1502 * Start polling for VPHN associativity changes.
1503 */
1504int start_topology_update(void)
1505{
1506 int rc = 0;
1507
36e8695c
BH
1508 /* Disabled until races with load balancing are fixed */
1509 if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
fe5cfd63 1510 get_lppaca()->shared_proc) {
9eff1a38
JL
1511 vphn_enabled = 1;
1512 setup_cpu_associativity_change_counters();
1513 init_timer_deferrable(&topology_timer);
1514 set_topology_timer();
1515 rc = 1;
1516 }
1517
1518 return rc;
1519}
1520__initcall(start_topology_update);
1521
1522/*
1523 * Disable polling for VPHN associativity changes.
1524 */
1525int stop_topology_update(void)
1526{
1527 vphn_enabled = 0;
1528 return del_timer_sync(&topology_timer);
1529}
39bf990e 1530#endif /* CONFIG_PPC_SPLPAR */