]>
Commit | Line | Data |
---|---|---|
2874c5fd | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
18f2190d MJ |
2 | /* |
3 | * Cell Broadband Engine OProfile Support | |
4 | * | |
5 | * (C) Copyright IBM Corporation 2006 | |
6 | * | |
7 | * Author: David Erb (djerb@us.ibm.com) | |
8 | * Modifications: | |
1474855d BN |
9 | * Carl Love <carll@us.ibm.com> |
10 | * Maynard Johnson <maynardj@us.ibm.com> | |
18f2190d MJ |
11 | */ |
12 | ||
13 | #include <linux/cpufreq.h> | |
14 | #include <linux/delay.h> | |
18f2190d MJ |
15 | #include <linux/jiffies.h> |
16 | #include <linux/kthread.h> | |
17 | #include <linux/oprofile.h> | |
18 | #include <linux/percpu.h> | |
19 | #include <linux/smp.h> | |
20 | #include <linux/spinlock.h> | |
21 | #include <linux/timer.h> | |
22 | #include <asm/cell-pmu.h> | |
23 | #include <asm/cputable.h> | |
24 | #include <asm/firmware.h> | |
25 | #include <asm/io.h> | |
26 | #include <asm/oprofile_impl.h> | |
27 | #include <asm/processor.h> | |
28 | #include <asm/prom.h> | |
29 | #include <asm/ptrace.h> | |
30 | #include <asm/reg.h> | |
31 | #include <asm/rtas.h> | |
eef686a0 | 32 | #include <asm/cell-regs.h> |
18f2190d MJ |
33 | |
34 | #include "../platforms/cell/interrupt.h" | |
1474855d BN |
35 | #include "cell/pr_util.h" |
36 | ||
9b93418e CL |
37 | #define PPU_PROFILING 0 |
38 | #define SPU_PROFILING_CYCLES 1 | |
39 | #define SPU_PROFILING_EVENTS 2 | |
1474855d | 40 | |
88382329 CL |
41 | #define SPU_EVENT_NUM_START 4100 |
42 | #define SPU_EVENT_NUM_STOP 4399 | |
43 | #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */ | |
44 | #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */ | |
45 | #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */ | |
46 | ||
1474855d BN |
47 | #define NUM_SPUS_PER_NODE 8 |
48 | #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */ | |
18f2190d MJ |
49 | |
50 | #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */ | |
1474855d BN |
51 | #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying |
52 | * PPU_CYCLES event | |
53 | */ | |
54 | #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */ | |
18f2190d | 55 | |
bcb63e25 CL |
56 | #define NUM_THREADS 2 /* number of physical threads in |
57 | * physical processor | |
58 | */ | |
a1ef4849 | 59 | #define NUM_DEBUG_BUS_WORDS 4 |
bcb63e25 CL |
60 | #define NUM_INPUT_BUS_WORDS 2 |
61 | ||
1474855d | 62 | #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */ |
18f2190d | 63 | |
25985edc | 64 | /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle. |
88382329 CL |
65 | * To configure counter to send value every N cycles set counter to |
66 | * 2^32 - 1 - N. | |
67 | */ | |
68 | #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10 | |
69 | ||
9b93418e CL |
70 | /* |
71 | * spu_cycle_reset is the number of cycles between samples. | |
72 | * This variable is used for SPU profiling and should ONLY be set | |
73 | * at the beginning of cell_reg_setup; otherwise, it's read-only. | |
74 | */ | |
75 | static unsigned int spu_cycle_reset; | |
76 | static unsigned int profiling_mode; | |
88382329 | 77 | static int spu_evnt_phys_spu_indx; |
9b93418e | 78 | |
18f2190d MJ |
79 | struct pmc_cntrl_data { |
80 | unsigned long vcntr; | |
81 | unsigned long evnts; | |
82 | unsigned long masks; | |
83 | unsigned long enabled; | |
84 | }; | |
85 | ||
86 | /* | |
87 | * ibm,cbe-perftools rtas parameters | |
88 | */ | |
18f2190d MJ |
89 | struct pm_signal { |
90 | u16 cpu; /* Processor to modify */ | |
1474855d BN |
91 | u16 sub_unit; /* hw subunit this applies to (if applicable)*/ |
92 | short int signal_group; /* Signal Group to Enable/Disable */ | |
18f2190d MJ |
93 | u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event |
94 | * Bus Word(s) (bitmask) | |
95 | */ | |
96 | u8 bit; /* Trigger/Event bit (if applicable) */ | |
97 | }; | |
98 | ||
99 | /* | |
100 | * rtas call arguments | |
101 | */ | |
102 | enum { | |
103 | SUBFUNC_RESET = 1, | |
104 | SUBFUNC_ACTIVATE = 2, | |
105 | SUBFUNC_DEACTIVATE = 3, | |
106 | ||
107 | PASSTHRU_IGNORE = 0, | |
108 | PASSTHRU_ENABLE = 1, | |
109 | PASSTHRU_DISABLE = 2, | |
110 | }; | |
111 | ||
112 | struct pm_cntrl { | |
113 | u16 enable; | |
114 | u16 stop_at_max; | |
115 | u16 trace_mode; | |
116 | u16 freeze; | |
117 | u16 count_mode; | |
88382329 CL |
118 | u16 spu_addr_trace; |
119 | u8 trace_buf_ovflw; | |
18f2190d MJ |
120 | }; |
121 | ||
122 | static struct { | |
123 | u32 group_control; | |
124 | u32 debug_bus_control; | |
125 | struct pm_cntrl pm_cntrl; | |
126 | u32 pm07_cntrl[NR_PHYS_CTRS]; | |
127 | } pm_regs; | |
128 | ||
18f2190d MJ |
129 | #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12) |
130 | #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4) | |
131 | #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8) | |
132 | #define GET_POLARITY(x) ((x & 0x00000002) >> 1) | |
133 | #define GET_COUNT_CYCLES(x) (x & 0x00000001) | |
134 | #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) | |
135 | ||
18f2190d | 136 | static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); |
88382329 | 137 | static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE]; |
18f2190d MJ |
138 | static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; |
139 | ||
1474855d BN |
140 | /* |
141 | * The CELL profiling code makes rtas calls to setup the debug bus to | |
142 | * route the performance signals. Additionally, SPU profiling requires | |
143 | * a second rtas call to setup the hardware to capture the SPU PCs. | |
144 | * The EIO error value is returned if the token lookups or the rtas | |
145 | * call fail. The EIO error number is the best choice of the existing | |
146 | * error numbers. The probability of rtas related error is very low. But | |
147 | * by returning EIO and printing additional information to dmsg the user | |
148 | * will know that OProfile did not start and dmesg will tell them why. | |
149 | * OProfile does not support returning errors on Stop. Not a huge issue | |
150 | * since failure to reset the debug bus or stop the SPU PC collection is | |
151 | * not a fatel issue. Chances are if the Stop failed, Start doesn't work | |
152 | * either. | |
153 | */ | |
154 | ||
155 | /* | |
156 | * Interpetation of hdw_thread: | |
18f2190d MJ |
157 | * 0 - even virtual cpus 0, 2, 4,... |
158 | * 1 - odd virtual cpus 1, 3, 5, ... | |
1474855d BN |
159 | * |
160 | * FIXME: this is strictly wrong, we need to clean this up in a number | |
161 | * of places. It works for now. -arnd | |
18f2190d MJ |
162 | */ |
163 | static u32 hdw_thread; | |
164 | ||
165 | static u32 virt_cntr_inter_mask; | |
166 | static struct timer_list timer_virt_cntr; | |
88382329 | 167 | static struct timer_list timer_spu_event_swap; |
18f2190d | 168 | |
1474855d BN |
169 | /* |
170 | * pm_signal needs to be global since it is initialized in | |
18f2190d MJ |
171 | * cell_reg_setup at the time when the necessary information |
172 | * is available. | |
173 | */ | |
174 | static struct pm_signal pm_signal[NR_PHYS_CTRS]; | |
1474855d BN |
175 | static int pm_rtas_token; /* token for debug bus setup call */ |
176 | static int spu_rtas_token; /* token for SPU cycle profiling */ | |
18f2190d MJ |
177 | |
178 | static u32 reset_value[NR_PHYS_CTRS]; | |
179 | static int num_counters; | |
180 | static int oprofile_running; | |
9b93418e | 181 | static DEFINE_SPINLOCK(cntr_lock); |
18f2190d MJ |
182 | |
183 | static u32 ctr_enabled; | |
184 | ||
bcb63e25 | 185 | static unsigned char input_bus[NUM_INPUT_BUS_WORDS]; |
18f2190d MJ |
186 | |
187 | /* | |
188 | * Firmware interface functions | |
189 | */ | |
190 | static int | |
191 | rtas_ibm_cbe_perftools(int subfunc, int passthru, | |
192 | void *address, unsigned long length) | |
193 | { | |
194 | u64 paddr = __pa(address); | |
195 | ||
1474855d BN |
196 | return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, |
197 | passthru, paddr >> 32, paddr & 0xffffffff, length); | |
18f2190d MJ |
198 | } |
199 | ||
200 | static void pm_rtas_reset_signals(u32 node) | |
201 | { | |
202 | int ret; | |
203 | struct pm_signal pm_signal_local; | |
204 | ||
1474855d BN |
205 | /* |
206 | * The debug bus is being set to the passthru disable state. | |
446957ba | 207 | * However, the FW still expects at least one legal signal routing |
1474855d BN |
208 | * entry or it will return an error on the arguments. If we don't |
209 | * supply a valid entry, we must ignore all return values. Ignoring | |
210 | * all return values means we might miss an error we should be | |
211 | * concerned about. | |
18f2190d MJ |
212 | */ |
213 | ||
214 | /* fw expects physical cpu #. */ | |
215 | pm_signal_local.cpu = node; | |
216 | pm_signal_local.signal_group = 21; | |
217 | pm_signal_local.bus_word = 1; | |
218 | pm_signal_local.sub_unit = 0; | |
219 | pm_signal_local.bit = 0; | |
220 | ||
221 | ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE, | |
222 | &pm_signal_local, | |
223 | sizeof(struct pm_signal)); | |
224 | ||
1474855d BN |
225 | if (unlikely(ret)) |
226 | /* | |
227 | * Not a fatal error. For Oprofile stop, the oprofile | |
228 | * functions do not support returning an error for | |
229 | * failure to stop OProfile. | |
230 | */ | |
18f2190d | 231 | printk(KERN_WARNING "%s: rtas returned: %d\n", |
e48b1b45 | 232 | __func__, ret); |
18f2190d MJ |
233 | } |
234 | ||
1474855d | 235 | static int pm_rtas_activate_signals(u32 node, u32 count) |
18f2190d MJ |
236 | { |
237 | int ret; | |
c7eb7347 | 238 | int i, j; |
18f2190d MJ |
239 | struct pm_signal pm_signal_local[NR_PHYS_CTRS]; |
240 | ||
1474855d BN |
241 | /* |
242 | * There is no debug setup required for the cycles event. | |
c7eb7347 MJ |
243 | * Note that only events in the same group can be used. |
244 | * Otherwise, there will be conflicts in correctly routing | |
06fe9fb4 | 245 | * the signals on the debug bus. It is the responsibility |
c7eb7347 MJ |
246 | * of the OProfile user tool to check the events are in |
247 | * the same group. | |
248 | */ | |
249 | i = 0; | |
18f2190d | 250 | for (j = 0; j < count; j++) { |
c7eb7347 MJ |
251 | if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) { |
252 | ||
253 | /* fw expects physical cpu # */ | |
254 | pm_signal_local[i].cpu = node; | |
255 | pm_signal_local[i].signal_group | |
256 | = pm_signal[j].signal_group; | |
257 | pm_signal_local[i].bus_word = pm_signal[j].bus_word; | |
258 | pm_signal_local[i].sub_unit = pm_signal[j].sub_unit; | |
259 | pm_signal_local[i].bit = pm_signal[j].bit; | |
260 | i++; | |
261 | } | |
18f2190d MJ |
262 | } |
263 | ||
c7eb7347 MJ |
264 | if (i != 0) { |
265 | ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE, | |
266 | pm_signal_local, | |
267 | i * sizeof(struct pm_signal)); | |
18f2190d | 268 | |
1474855d | 269 | if (unlikely(ret)) { |
c7eb7347 | 270 | printk(KERN_WARNING "%s: rtas returned: %d\n", |
e48b1b45 | 271 | __func__, ret); |
1474855d BN |
272 | return -EIO; |
273 | } | |
c7eb7347 | 274 | } |
1474855d BN |
275 | |
276 | return 0; | |
18f2190d MJ |
277 | } |
278 | ||
279 | /* | |
280 | * PM Signal functions | |
281 | */ | |
282 | static void set_pm_event(u32 ctr, int event, u32 unit_mask) | |
283 | { | |
284 | struct pm_signal *p; | |
285 | u32 signal_bit; | |
286 | u32 bus_word, bus_type, count_cycles, polarity, input_control; | |
287 | int j, i; | |
288 | ||
289 | if (event == PPU_CYCLES_EVENT_NUM) { | |
290 | /* Special Event: Count all cpu cycles */ | |
291 | pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES; | |
292 | p = &(pm_signal[ctr]); | |
c7eb7347 | 293 | p->signal_group = PPU_CYCLES_GRP_NUM; |
18f2190d MJ |
294 | p->bus_word = 1; |
295 | p->sub_unit = 0; | |
296 | p->bit = 0; | |
297 | goto out; | |
298 | } else { | |
299 | pm_regs.pm07_cntrl[ctr] = 0; | |
300 | } | |
301 | ||
302 | bus_word = GET_BUS_WORD(unit_mask); | |
303 | bus_type = GET_BUS_TYPE(unit_mask); | |
304 | count_cycles = GET_COUNT_CYCLES(unit_mask); | |
305 | polarity = GET_POLARITY(unit_mask); | |
306 | input_control = GET_INPUT_CONTROL(unit_mask); | |
307 | signal_bit = (event % 100); | |
308 | ||
309 | p = &(pm_signal[ctr]); | |
310 | ||
311 | p->signal_group = event / 100; | |
312 | p->bus_word = bus_word; | |
a1ef4849 | 313 | p->sub_unit = GET_SUB_UNIT(unit_mask); |
18f2190d MJ |
314 | |
315 | pm_regs.pm07_cntrl[ctr] = 0; | |
316 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles); | |
317 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity); | |
318 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control); | |
319 | ||
1474855d BN |
320 | /* |
321 | * Some of the islands signal selection is based on 64 bit words. | |
bcb63e25 CL |
322 | * The debug bus words are 32 bits, the input words to the performance |
323 | * counters are defined as 32 bits. Need to convert the 64 bit island | |
324 | * specification to the appropriate 32 input bit and bus word for the | |
1474855d | 325 | * performance counter event selection. See the CELL Performance |
bcb63e25 CL |
326 | * monitoring signals manual and the Perf cntr hardware descriptions |
327 | * for the details. | |
328 | */ | |
18f2190d MJ |
329 | if (input_control == 0) { |
330 | if (signal_bit > 31) { | |
331 | signal_bit -= 32; | |
332 | if (bus_word == 0x3) | |
333 | bus_word = 0x2; | |
334 | else if (bus_word == 0xc) | |
335 | bus_word = 0x8; | |
336 | } | |
337 | ||
338 | if ((bus_type == 0) && p->signal_group >= 60) | |
339 | bus_type = 2; | |
340 | if ((bus_type == 1) && p->signal_group >= 50) | |
341 | bus_type = 0; | |
342 | ||
343 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit); | |
344 | } else { | |
345 | pm_regs.pm07_cntrl[ctr] = 0; | |
346 | p->bit = signal_bit; | |
347 | } | |
348 | ||
a1ef4849 | 349 | for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) { |
18f2190d MJ |
350 | if (bus_word & (1 << i)) { |
351 | pm_regs.debug_bus_control |= | |
25006644 | 352 | (bus_type << (30 - (2 * i))); |
18f2190d | 353 | |
bcb63e25 | 354 | for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) { |
18f2190d MJ |
355 | if (input_bus[j] == 0xff) { |
356 | input_bus[j] = i; | |
357 | pm_regs.group_control |= | |
25006644 | 358 | (i << (30 - (2 * j))); |
1474855d | 359 | |
18f2190d MJ |
360 | break; |
361 | } | |
362 | } | |
363 | } | |
364 | } | |
365 | out: | |
366 | ; | |
367 | } | |
368 | ||
bcb63e25 | 369 | static void write_pm_cntrl(int cpu) |
18f2190d | 370 | { |
1474855d BN |
371 | /* |
372 | * Oprofile will use 32 bit counters, set bits 7:10 to 0 | |
bcb63e25 CL |
373 | * pmregs.pm_cntrl is a global |
374 | */ | |
375 | ||
18f2190d | 376 | u32 val = 0; |
bcb63e25 | 377 | if (pm_regs.pm_cntrl.enable == 1) |
18f2190d MJ |
378 | val |= CBE_PM_ENABLE_PERF_MON; |
379 | ||
bcb63e25 | 380 | if (pm_regs.pm_cntrl.stop_at_max == 1) |
18f2190d MJ |
381 | val |= CBE_PM_STOP_AT_MAX; |
382 | ||
9b93418e | 383 | if (pm_regs.pm_cntrl.trace_mode != 0) |
bcb63e25 | 384 | val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode); |
18f2190d | 385 | |
88382329 CL |
386 | if (pm_regs.pm_cntrl.trace_buf_ovflw == 1) |
387 | val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw); | |
bcb63e25 | 388 | if (pm_regs.pm_cntrl.freeze == 1) |
18f2190d MJ |
389 | val |= CBE_PM_FREEZE_ALL_CTRS; |
390 | ||
88382329 CL |
391 | val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace); |
392 | ||
1474855d BN |
393 | /* |
394 | * Routine set_count_mode must be called previously to set | |
18f2190d MJ |
395 | * the count mode based on the user selection of user and kernel. |
396 | */ | |
bcb63e25 | 397 | val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode); |
18f2190d MJ |
398 | cbe_write_pm(cpu, pm_control, val); |
399 | } | |
400 | ||
401 | static inline void | |
bcb63e25 | 402 | set_count_mode(u32 kernel, u32 user) |
18f2190d | 403 | { |
1474855d BN |
404 | /* |
405 | * The user must specify user and kernel if they want them. If | |
bcb63e25 CL |
406 | * neither is specified, OProfile will count in hypervisor mode. |
407 | * pm_regs.pm_cntrl is a global | |
18f2190d MJ |
408 | */ |
409 | if (kernel) { | |
410 | if (user) | |
bcb63e25 | 411 | pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES; |
18f2190d | 412 | else |
bcb63e25 CL |
413 | pm_regs.pm_cntrl.count_mode = |
414 | CBE_COUNT_SUPERVISOR_MODE; | |
18f2190d MJ |
415 | } else { |
416 | if (user) | |
bcb63e25 | 417 | pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE; |
18f2190d | 418 | else |
bcb63e25 CL |
419 | pm_regs.pm_cntrl.count_mode = |
420 | CBE_COUNT_HYPERVISOR_MODE; | |
18f2190d MJ |
421 | } |
422 | } | |
423 | ||
25ad2913 | 424 | static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl) |
18f2190d MJ |
425 | { |
426 | ||
bcb63e25 | 427 | pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE; |
18f2190d MJ |
428 | cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]); |
429 | } | |
430 | ||
431 | /* | |
432 | * Oprofile is expected to collect data on all CPUs simultaneously. | |
1474855d | 433 | * However, there is one set of performance counters per node. There are |
18f2190d MJ |
434 | * two hardware threads or virtual CPUs on each node. Hence, OProfile must |
435 | * multiplex in time the performance counter collection on the two virtual | |
436 | * CPUs. The multiplexing of the performance counters is done by this | |
437 | * virtual counter routine. | |
438 | * | |
439 | * The pmc_values used below is defined as 'per-cpu' but its use is | |
440 | * more akin to 'per-node'. We need to store two sets of counter | |
441 | * values per node -- one for the previous run and one for the next. | |
442 | * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even | |
443 | * pair of per-cpu arrays is used for storing the previous and next | |
444 | * pmc values for a given node. | |
445 | * NOTE: We use the per-cpu variable to improve cache performance. | |
1474855d BN |
446 | * |
447 | * This routine will alternate loading the virtual counters for | |
448 | * virtual CPUs | |
18f2190d | 449 | */ |
e99e88a9 | 450 | static void cell_virtual_cntr(struct timer_list *unused) |
18f2190d | 451 | { |
18f2190d MJ |
452 | int i, prev_hdw_thread, next_hdw_thread; |
453 | u32 cpu; | |
454 | unsigned long flags; | |
455 | ||
1474855d BN |
456 | /* |
457 | * Make sure that the interrupt_hander and the virt counter are | |
458 | * not both playing with the counters on the same node. | |
18f2190d MJ |
459 | */ |
460 | ||
9b93418e | 461 | spin_lock_irqsave(&cntr_lock, flags); |
18f2190d MJ |
462 | |
463 | prev_hdw_thread = hdw_thread; | |
464 | ||
465 | /* switch the cpu handling the interrupts */ | |
466 | hdw_thread = 1 ^ hdw_thread; | |
467 | next_hdw_thread = hdw_thread; | |
468 | ||
a1ef4849 BN |
469 | pm_regs.group_control = 0; |
470 | pm_regs.debug_bus_control = 0; | |
471 | ||
472 | for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) | |
473 | input_bus[i] = 0xff; | |
474 | ||
1474855d BN |
475 | /* |
476 | * There are some per thread events. Must do the | |
bcb63e25 CL |
477 | * set event, for the thread that is being started |
478 | */ | |
1474855d | 479 | for (i = 0; i < num_counters; i++) |
bcb63e25 CL |
480 | set_pm_event(i, |
481 | pmc_cntrl[next_hdw_thread][i].evnts, | |
482 | pmc_cntrl[next_hdw_thread][i].masks); | |
483 | ||
1474855d BN |
484 | /* |
485 | * The following is done only once per each node, but | |
18f2190d MJ |
486 | * we need cpu #, not node #, to pass to the cbe_xxx functions. |
487 | */ | |
488 | for_each_online_cpu(cpu) { | |
489 | if (cbe_get_hw_thread_id(cpu)) | |
490 | continue; | |
491 | ||
1474855d BN |
492 | /* |
493 | * stop counters, save counter values, restore counts | |
18f2190d MJ |
494 | * for previous thread |
495 | */ | |
496 | cbe_disable_pm(cpu); | |
497 | cbe_disable_pm_interrupts(cpu); | |
498 | for (i = 0; i < num_counters; i++) { | |
499 | per_cpu(pmc_values, cpu + prev_hdw_thread)[i] | |
25006644 | 500 | = cbe_read_ctr(cpu, i); |
18f2190d MJ |
501 | |
502 | if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] | |
503 | == 0xFFFFFFFF) | |
504 | /* If the cntr value is 0xffffffff, we must | |
505 | * reset that to 0xfffffff0 when the current | |
1474855d | 506 | * thread is restarted. This will generate a |
bcb63e25 CL |
507 | * new interrupt and make sure that we never |
508 | * restore the counters to the max value. If | |
509 | * the counters were restored to the max value, | |
510 | * they do not increment and no interrupts are | |
511 | * generated. Hence no more samples will be | |
512 | * collected on that cpu. | |
18f2190d MJ |
513 | */ |
514 | cbe_write_ctr(cpu, i, 0xFFFFFFF0); | |
515 | else | |
516 | cbe_write_ctr(cpu, i, | |
517 | per_cpu(pmc_values, | |
518 | cpu + | |
519 | next_hdw_thread)[i]); | |
520 | } | |
521 | ||
1474855d BN |
522 | /* |
523 | * Switch to the other thread. Change the interrupt | |
18f2190d MJ |
524 | * and control regs to be scheduled on the CPU |
525 | * corresponding to the thread to execute. | |
526 | */ | |
527 | for (i = 0; i < num_counters; i++) { | |
528 | if (pmc_cntrl[next_hdw_thread][i].enabled) { | |
1474855d BN |
529 | /* |
530 | * There are some per thread events. | |
18f2190d MJ |
531 | * Must do the set event, enable_cntr |
532 | * for each cpu. | |
533 | */ | |
18f2190d MJ |
534 | enable_ctr(cpu, i, |
535 | pm_regs.pm07_cntrl); | |
536 | } else { | |
537 | cbe_write_pm07_control(cpu, i, 0); | |
538 | } | |
539 | } | |
540 | ||
541 | /* Enable interrupts on the CPU thread that is starting */ | |
542 | cbe_enable_pm_interrupts(cpu, next_hdw_thread, | |
543 | virt_cntr_inter_mask); | |
544 | cbe_enable_pm(cpu); | |
545 | } | |
546 | ||
9b93418e | 547 | spin_unlock_irqrestore(&cntr_lock, flags); |
18f2190d MJ |
548 | |
549 | mod_timer(&timer_virt_cntr, jiffies + HZ / 10); | |
550 | } | |
551 | ||
552 | static void start_virt_cntrs(void) | |
553 | { | |
e99e88a9 | 554 | timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0); |
18f2190d MJ |
555 | timer_virt_cntr.expires = jiffies + HZ / 10; |
556 | add_timer(&timer_virt_cntr); | |
557 | } | |
558 | ||
9b93418e | 559 | static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr, |
1474855d | 560 | struct op_system_config *sys, int num_ctrs) |
18f2190d | 561 | { |
9b93418e | 562 | spu_cycle_reset = ctr[0].count; |
1474855d BN |
563 | |
564 | /* | |
9b93418e CL |
565 | * Each node will need to make the rtas call to start |
566 | * and stop SPU profiling. Get the token once and store it. | |
1474855d | 567 | */ |
9b93418e CL |
568 | spu_rtas_token = rtas_token("ibm,cbe-spu-perftools"); |
569 | ||
570 | if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) { | |
1474855d | 571 | printk(KERN_ERR |
9b93418e | 572 | "%s: rtas token ibm,cbe-spu-perftools unknown\n", |
e48b1b45 | 573 | __func__); |
1474855d | 574 | return -EIO; |
18f2190d | 575 | } |
9b93418e CL |
576 | return 0; |
577 | } | |
578 | ||
88382329 CL |
579 | /* Unfortunately, the hardware will only support event profiling |
580 | * on one SPU per node at a time. Therefore, we must time slice | |
581 | * the profiling across all SPUs in the node. Note, we do this | |
582 | * in parallel for each node. The following routine is called | |
583 | * periodically based on kernel timer to switch which SPU is | |
584 | * being monitored in a round robbin fashion. | |
585 | */ | |
e99e88a9 | 586 | static void spu_evnt_swap(struct timer_list *unused) |
88382329 CL |
587 | { |
588 | int node; | |
589 | int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx; | |
590 | unsigned long flags; | |
591 | int cpu; | |
592 | int ret; | |
593 | u32 interrupt_mask; | |
594 | ||
595 | ||
596 | /* enable interrupts on cntr 0 */ | |
597 | interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0); | |
598 | ||
599 | hdw_thread = 0; | |
600 | ||
601 | /* Make sure spu event interrupt handler and spu event swap | |
602 | * don't access the counters simultaneously. | |
603 | */ | |
604 | spin_lock_irqsave(&cntr_lock, flags); | |
605 | ||
606 | cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx; | |
607 | ||
608 | if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE) | |
609 | spu_evnt_phys_spu_indx = 0; | |
610 | ||
611 | pm_signal[0].sub_unit = spu_evnt_phys_spu_indx; | |
612 | pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; | |
613 | pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; | |
614 | ||
615 | /* switch the SPU being profiled on each node */ | |
616 | for_each_online_cpu(cpu) { | |
617 | if (cbe_get_hw_thread_id(cpu)) | |
618 | continue; | |
619 | ||
620 | node = cbe_cpu_to_node(cpu); | |
621 | cur_phys_spu = (node * NUM_SPUS_PER_NODE) | |
622 | + cur_spu_evnt_phys_spu_indx; | |
623 | nxt_phys_spu = (node * NUM_SPUS_PER_NODE) | |
624 | + spu_evnt_phys_spu_indx; | |
625 | ||
626 | /* | |
627 | * stop counters, save counter values, restore counts | |
628 | * for previous physical SPU | |
629 | */ | |
630 | cbe_disable_pm(cpu); | |
631 | cbe_disable_pm_interrupts(cpu); | |
632 | ||
633 | spu_pm_cnt[cur_phys_spu] | |
25006644 | 634 | = cbe_read_ctr(cpu, 0); |
88382329 CL |
635 | |
636 | /* restore previous count for the next spu to sample */ | |
637 | /* NOTE, hardware issue, counter will not start if the | |
638 | * counter value is at max (0xFFFFFFFF). | |
639 | */ | |
640 | if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF) | |
641 | cbe_write_ctr(cpu, 0, 0xFFFFFFF0); | |
642 | else | |
643 | cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]); | |
644 | ||
645 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | |
646 | ||
647 | /* setup the debug bus measure the one event and | |
648 | * the two events to route the next SPU's PC on | |
649 | * the debug bus | |
650 | */ | |
651 | ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3); | |
652 | if (ret) | |
25006644 RR |
653 | printk(KERN_ERR "%s: pm_rtas_activate_signals failed, " |
654 | "SPU event swap\n", __func__); | |
88382329 CL |
655 | |
656 | /* clear the trace buffer, don't want to take PC for | |
657 | * previous SPU*/ | |
658 | cbe_write_pm(cpu, trace_address, 0); | |
659 | ||
660 | enable_ctr(cpu, 0, pm_regs.pm07_cntrl); | |
661 | ||
662 | /* Enable interrupts on the CPU thread that is starting */ | |
663 | cbe_enable_pm_interrupts(cpu, hdw_thread, | |
664 | interrupt_mask); | |
665 | cbe_enable_pm(cpu); | |
666 | } | |
667 | ||
668 | spin_unlock_irqrestore(&cntr_lock, flags); | |
669 | ||
670 | /* swap approximately every 0.1 seconds */ | |
671 | mod_timer(&timer_spu_event_swap, jiffies + HZ / 25); | |
672 | } | |
673 | ||
674 | static void start_spu_event_swap(void) | |
675 | { | |
e99e88a9 | 676 | timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0); |
88382329 CL |
677 | timer_spu_event_swap.expires = jiffies + HZ / 25; |
678 | add_timer(&timer_spu_event_swap); | |
679 | } | |
680 | ||
681 | static int cell_reg_setup_spu_events(struct op_counter_config *ctr, | |
682 | struct op_system_config *sys, int num_ctrs) | |
683 | { | |
684 | int i; | |
685 | ||
686 | /* routine is called once for all nodes */ | |
687 | ||
688 | spu_evnt_phys_spu_indx = 0; | |
689 | /* | |
690 | * For all events except PPU CYCLEs, each node will need to make | |
691 | * the rtas cbe-perftools call to setup and reset the debug bus. | |
692 | * Make the token lookup call once and store it in the global | |
693 | * variable pm_rtas_token. | |
694 | */ | |
695 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); | |
696 | ||
697 | if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { | |
698 | printk(KERN_ERR | |
699 | "%s: rtas token ibm,cbe-perftools unknown\n", | |
700 | __func__); | |
701 | return -EIO; | |
702 | } | |
703 | ||
704 | /* setup the pm_control register settings, | |
705 | * settings will be written per node by the | |
706 | * cell_cpu_setup() function. | |
707 | */ | |
708 | pm_regs.pm_cntrl.trace_buf_ovflw = 1; | |
709 | ||
710 | /* Use the occurrence trace mode to have SPU PC saved | |
711 | * to the trace buffer. Occurrence data in trace buffer | |
712 | * is not used. Bit 2 must be set to store SPU addresses. | |
713 | */ | |
714 | pm_regs.pm_cntrl.trace_mode = 2; | |
715 | ||
716 | pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus | |
717 | event 2 & 3 */ | |
718 | ||
719 | /* setup the debug bus event array with the SPU PC routing events. | |
720 | * Note, pm_signal[0] will be filled in by set_pm_event() call below. | |
721 | */ | |
722 | pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100; | |
723 | pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A); | |
724 | pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100; | |
725 | pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; | |
726 | ||
727 | pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100; | |
728 | pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B); | |
729 | pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100; | |
730 | pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; | |
731 | ||
732 | /* Set the user selected spu event to profile on, | |
733 | * note, only one SPU profiling event is supported | |
734 | */ | |
735 | num_counters = 1; /* Only support one SPU event at a time */ | |
736 | set_pm_event(0, ctr[0].event, ctr[0].unit_mask); | |
737 | ||
738 | reset_value[0] = 0xFFFFFFFF - ctr[0].count; | |
739 | ||
740 | /* global, used by cell_cpu_setup */ | |
741 | ctr_enabled |= 1; | |
742 | ||
743 | /* Initialize the count for each SPU to the reset value */ | |
744 | for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++) | |
745 | spu_pm_cnt[i] = reset_value[0]; | |
746 | ||
747 | return 0; | |
748 | } | |
749 | ||
9b93418e CL |
750 | static int cell_reg_setup_ppu(struct op_counter_config *ctr, |
751 | struct op_system_config *sys, int num_ctrs) | |
752 | { | |
88382329 | 753 | /* routine is called once for all nodes */ |
9b93418e | 754 | int i, j, cpu; |
18f2190d MJ |
755 | |
756 | num_counters = num_ctrs; | |
757 | ||
210434d7 CL |
758 | if (unlikely(num_ctrs > NR_PHYS_CTRS)) { |
759 | printk(KERN_ERR | |
760 | "%s: Oprofile, number of specified events " \ | |
761 | "exceeds number of physical counters\n", | |
762 | __func__); | |
763 | return -EIO; | |
764 | } | |
18f2190d | 765 | |
bcb63e25 | 766 | set_count_mode(sys->enable_kernel, sys->enable_user); |
18f2190d MJ |
767 | |
768 | /* Setup the thread 0 events */ | |
769 | for (i = 0; i < num_ctrs; ++i) { | |
770 | ||
771 | pmc_cntrl[0][i].evnts = ctr[i].event; | |
772 | pmc_cntrl[0][i].masks = ctr[i].unit_mask; | |
773 | pmc_cntrl[0][i].enabled = ctr[i].enabled; | |
774 | pmc_cntrl[0][i].vcntr = i; | |
775 | ||
776 | for_each_possible_cpu(j) | |
777 | per_cpu(pmc_values, j)[i] = 0; | |
778 | } | |
779 | ||
1474855d BN |
780 | /* |
781 | * Setup the thread 1 events, map the thread 0 event to the | |
18f2190d MJ |
782 | * equivalent thread 1 event. |
783 | */ | |
784 | for (i = 0; i < num_ctrs; ++i) { | |
785 | if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111)) | |
786 | pmc_cntrl[1][i].evnts = ctr[i].event + 19; | |
787 | else if (ctr[i].event == 2203) | |
788 | pmc_cntrl[1][i].evnts = ctr[i].event; | |
789 | else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215)) | |
790 | pmc_cntrl[1][i].evnts = ctr[i].event + 16; | |
791 | else | |
792 | pmc_cntrl[1][i].evnts = ctr[i].event; | |
793 | ||
794 | pmc_cntrl[1][i].masks = ctr[i].unit_mask; | |
795 | pmc_cntrl[1][i].enabled = ctr[i].enabled; | |
796 | pmc_cntrl[1][i].vcntr = i; | |
797 | } | |
798 | ||
bcb63e25 | 799 | for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) |
18f2190d MJ |
800 | input_bus[i] = 0xff; |
801 | ||
1474855d BN |
802 | /* |
803 | * Our counters count up, and "count" refers to | |
18f2190d | 804 | * how much before the next interrupt, and we interrupt |
1474855d | 805 | * on overflow. So we calculate the starting value |
18f2190d MJ |
806 | * which will give us "count" until overflow. |
807 | * Then we set the events on the enabled counters. | |
808 | */ | |
809 | for (i = 0; i < num_counters; ++i) { | |
810 | /* start with virtual counter set 0 */ | |
811 | if (pmc_cntrl[0][i].enabled) { | |
812 | /* Using 32bit counters, reset max - count */ | |
813 | reset_value[i] = 0xFFFFFFFF - ctr[i].count; | |
814 | set_pm_event(i, | |
815 | pmc_cntrl[0][i].evnts, | |
816 | pmc_cntrl[0][i].masks); | |
817 | ||
818 | /* global, used by cell_cpu_setup */ | |
819 | ctr_enabled |= (1 << i); | |
820 | } | |
821 | } | |
822 | ||
823 | /* initialize the previous counts for the virtual cntrs */ | |
824 | for_each_online_cpu(cpu) | |
825 | for (i = 0; i < num_counters; ++i) { | |
826 | per_cpu(pmc_values, cpu)[i] = reset_value[i]; | |
827 | } | |
1474855d BN |
828 | |
829 | return 0; | |
18f2190d MJ |
830 | } |
831 | ||
1474855d | 832 | |
9b93418e CL |
833 | /* This function is called once for all cpus combined */ |
834 | static int cell_reg_setup(struct op_counter_config *ctr, | |
835 | struct op_system_config *sys, int num_ctrs) | |
836 | { | |
88382329 | 837 | int ret=0; |
9b93418e CL |
838 | spu_cycle_reset = 0; |
839 | ||
88382329 CL |
840 | /* initialize the spu_arr_trace value, will be reset if |
841 | * doing spu event profiling. | |
842 | */ | |
843 | pm_regs.group_control = 0; | |
844 | pm_regs.debug_bus_control = 0; | |
845 | pm_regs.pm_cntrl.stop_at_max = 1; | |
846 | pm_regs.pm_cntrl.trace_mode = 0; | |
847 | pm_regs.pm_cntrl.freeze = 1; | |
848 | pm_regs.pm_cntrl.trace_buf_ovflw = 0; | |
849 | pm_regs.pm_cntrl.spu_addr_trace = 0; | |
850 | ||
9b93418e CL |
851 | /* |
852 | * For all events except PPU CYCLEs, each node will need to make | |
853 | * the rtas cbe-perftools call to setup and reset the debug bus. | |
854 | * Make the token lookup call once and store it in the global | |
855 | * variable pm_rtas_token. | |
856 | */ | |
857 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); | |
858 | ||
859 | if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { | |
860 | printk(KERN_ERR | |
861 | "%s: rtas token ibm,cbe-perftools unknown\n", | |
862 | __func__); | |
863 | return -EIO; | |
864 | } | |
865 | ||
866 | if (ctr[0].event == SPU_CYCLES_EVENT_NUM) { | |
867 | profiling_mode = SPU_PROFILING_CYCLES; | |
868 | ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs); | |
88382329 CL |
869 | } else if ((ctr[0].event >= SPU_EVENT_NUM_START) && |
870 | (ctr[0].event <= SPU_EVENT_NUM_STOP)) { | |
871 | profiling_mode = SPU_PROFILING_EVENTS; | |
872 | spu_cycle_reset = ctr[0].count; | |
873 | ||
874 | /* for SPU event profiling, need to setup the | |
875 | * pm_signal array with the events to route the | |
876 | * SPU PC before making the FW call. Note, only | |
877 | * one SPU event for profiling can be specified | |
878 | * at a time. | |
879 | */ | |
880 | cell_reg_setup_spu_events(ctr, sys, num_ctrs); | |
9b93418e CL |
881 | } else { |
882 | profiling_mode = PPU_PROFILING; | |
883 | ret = cell_reg_setup_ppu(ctr, sys, num_ctrs); | |
884 | } | |
885 | ||
886 | return ret; | |
887 | } | |
888 | ||
889 | ||
1474855d | 890 | |
18f2190d | 891 | /* This function is called once for each cpu */ |
1474855d | 892 | static int cell_cpu_setup(struct op_counter_config *cntr) |
18f2190d MJ |
893 | { |
894 | u32 cpu = smp_processor_id(); | |
895 | u32 num_enabled = 0; | |
896 | int i; | |
88382329 | 897 | int ret; |
18f2190d | 898 | |
9b93418e CL |
899 | /* Cycle based SPU profiling does not use the performance |
900 | * counters. The trace array is configured to collect | |
901 | * the data. | |
902 | */ | |
903 | if (profiling_mode == SPU_PROFILING_CYCLES) | |
1474855d BN |
904 | return 0; |
905 | ||
18f2190d MJ |
906 | /* There is one performance monitor per processor chip (i.e. node), |
907 | * so we only need to perform this function once per node. | |
908 | */ | |
909 | if (cbe_get_hw_thread_id(cpu)) | |
1474855d | 910 | return 0; |
18f2190d MJ |
911 | |
912 | /* Stop all counters */ | |
913 | cbe_disable_pm(cpu); | |
914 | cbe_disable_pm_interrupts(cpu); | |
915 | ||
18f2190d MJ |
916 | cbe_write_pm(cpu, pm_start_stop, 0); |
917 | cbe_write_pm(cpu, group_control, pm_regs.group_control); | |
918 | cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); | |
bcb63e25 | 919 | write_pm_cntrl(cpu); |
18f2190d MJ |
920 | |
921 | for (i = 0; i < num_counters; ++i) { | |
922 | if (ctr_enabled & (1 << i)) { | |
923 | pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu); | |
924 | num_enabled++; | |
925 | } | |
926 | } | |
927 | ||
1474855d BN |
928 | /* |
929 | * The pm_rtas_activate_signals will return -EIO if the FW | |
930 | * call failed. | |
931 | */ | |
88382329 CL |
932 | if (profiling_mode == SPU_PROFILING_EVENTS) { |
933 | /* For SPU event profiling also need to setup the | |
934 | * pm interval timer | |
935 | */ | |
936 | ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), | |
937 | num_enabled+2); | |
938 | /* store PC from debug bus to Trace buffer as often | |
939 | * as possible (every 10 cycles) | |
940 | */ | |
941 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); | |
942 | return ret; | |
943 | } else | |
944 | return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), | |
945 | num_enabled); | |
1474855d BN |
946 | } |
947 | ||
948 | #define ENTRIES 303 | |
949 | #define MAXLFSR 0xFFFFFF | |
950 | ||
951 | /* precomputed table of 24 bit LFSR values */ | |
952 | static int initial_lfsr[] = { | |
953 | 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424, | |
954 | 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716, | |
955 | 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547, | |
956 | 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392, | |
957 | 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026, | |
958 | 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556, | |
959 | 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769, | |
960 | 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893, | |
961 | 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017, | |
962 | 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756, | |
963 | 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558, | |
964 | 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401, | |
965 | 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720, | |
966 | 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042, | |
967 | 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955, | |
968 | 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934, | |
969 | 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783, | |
970 | 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278, | |
971 | 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051, | |
972 | 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741, | |
973 | 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972, | |
974 | 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302, | |
975 | 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384, | |
976 | 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469, | |
977 | 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697, | |
978 | 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398, | |
979 | 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140, | |
980 | 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214, | |
981 | 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386, | |
982 | 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087, | |
983 | 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130, | |
984 | 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300, | |
985 | 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475, | |
986 | 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950, | |
987 | 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003, | |
988 | 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375, | |
989 | 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426, | |
990 | 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607 | |
991 | }; | |
992 | ||
993 | /* | |
994 | * The hardware uses an LFSR counting sequence to determine when to capture | |
995 | * the SPU PCs. An LFSR sequence is like a puesdo random number sequence | |
996 | * where each number occurs once in the sequence but the sequence is not in | |
997 | * numerical order. The SPU PC capture is done when the LFSR sequence reaches | |
998 | * the last value in the sequence. Hence the user specified value N | |
999 | * corresponds to the LFSR number that is N from the end of the sequence. | |
1000 | * | |
1001 | * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit | |
1002 | * LFSR sequence is broken into four ranges. The spacing of the precomputed | |
446957ba | 1003 | * values is adjusted in each range so the error between the user specified |
1474855d BN |
1004 | * number (N) of events between samples and the actual number of events based |
1005 | * on the precomputed value will be les then about 6.2%. Note, if the user | |
1006 | * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used. | |
1007 | * This is to prevent the loss of samples because the trace buffer is full. | |
1008 | * | |
1009 | * User specified N Step between Index in | |
1010 | * precomputed values precomputed | |
1011 | * table | |
1012 | * 0 to 2^16-1 ---- 0 | |
1013 | * 2^16 to 2^16+2^19-1 2^12 1 to 128 | |
1014 | * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256 | |
1015 | * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302 | |
1016 | * | |
1017 | * | |
1018 | * For example, the LFSR values in the second range are computed for 2^16, | |
1019 | * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies | |
1020 | * 1, 2,..., 127, 128. | |
1021 | * | |
1022 | * The 24 bit LFSR value for the nth number in the sequence can be | |
1023 | * calculated using the following code: | |
1024 | * | |
1025 | * #define size 24 | |
1026 | * int calculate_lfsr(int n) | |
1027 | * { | |
1028 | * int i; | |
1029 | * unsigned int newlfsr0; | |
1030 | * unsigned int lfsr = 0xFFFFFF; | |
1031 | * unsigned int howmany = n; | |
1032 | * | |
1033 | * for (i = 2; i < howmany + 2; i++) { | |
1034 | * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^ | |
1035 | * ((lfsr >> (size - 1 - 1)) & 1) ^ | |
1036 | * (((lfsr >> (size - 1 - 6)) & 1) ^ | |
1037 | * ((lfsr >> (size - 1 - 23)) & 1))); | |
1038 | * | |
1039 | * lfsr >>= 1; | |
1040 | * lfsr = lfsr | (newlfsr0 << (size - 1)); | |
1041 | * } | |
1042 | * return lfsr; | |
1043 | * } | |
1044 | */ | |
1045 | ||
1046 | #define V2_16 (0x1 << 16) | |
1047 | #define V2_19 (0x1 << 19) | |
1048 | #define V2_22 (0x1 << 22) | |
1049 | ||
1050 | static int calculate_lfsr(int n) | |
1051 | { | |
1052 | /* | |
1053 | * The ranges and steps are in powers of 2 so the calculations | |
1054 | * can be done using shifts rather then divide. | |
1055 | */ | |
1056 | int index; | |
1057 | ||
1058 | if ((n >> 16) == 0) | |
1059 | index = 0; | |
1060 | else if (((n - V2_16) >> 19) == 0) | |
1061 | index = ((n - V2_16) >> 12) + 1; | |
1062 | else if (((n - V2_16 - V2_19) >> 22) == 0) | |
1063 | index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128; | |
1064 | else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0) | |
1065 | index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256; | |
1066 | else | |
1067 | index = ENTRIES-1; | |
1068 | ||
1069 | /* make sure index is valid */ | |
238c1a78 | 1070 | if ((index >= ENTRIES) || (index < 0)) |
1474855d BN |
1071 | index = ENTRIES-1; |
1072 | ||
1073 | return initial_lfsr[index]; | |
1074 | } | |
1075 | ||
1076 | static int pm_rtas_activate_spu_profiling(u32 node) | |
1077 | { | |
1078 | int ret, i; | |
210434d7 | 1079 | struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE]; |
1474855d BN |
1080 | |
1081 | /* | |
1082 | * Set up the rtas call to configure the debug bus to | |
1083 | * route the SPU PCs. Setup the pm_signal for each SPU | |
1084 | */ | |
210434d7 | 1085 | for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) { |
1474855d BN |
1086 | pm_signal_local[i].cpu = node; |
1087 | pm_signal_local[i].signal_group = 41; | |
1088 | /* spu i on word (i/2) */ | |
1089 | pm_signal_local[i].bus_word = 1 << i / 2; | |
1090 | /* spu i */ | |
1091 | pm_signal_local[i].sub_unit = i; | |
1092 | pm_signal_local[i].bit = 63; | |
1093 | } | |
1094 | ||
1095 | ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, | |
1096 | PASSTHRU_ENABLE, pm_signal_local, | |
210434d7 | 1097 | (ARRAY_SIZE(pm_signal_local) |
1474855d BN |
1098 | * sizeof(struct pm_signal))); |
1099 | ||
1100 | if (unlikely(ret)) { | |
1101 | printk(KERN_WARNING "%s: rtas returned: %d\n", | |
e48b1b45 | 1102 | __func__, ret); |
1474855d BN |
1103 | return -EIO; |
1104 | } | |
1105 | ||
1106 | return 0; | |
1107 | } | |
1108 | ||
1109 | #ifdef CONFIG_CPU_FREQ | |
1110 | static int | |
1111 | oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data) | |
1112 | { | |
1113 | int ret = 0; | |
1114 | struct cpufreq_freqs *frq = data; | |
1115 | if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) || | |
0b443ead | 1116 | (val == CPUFREQ_POSTCHANGE && frq->old > frq->new)) |
1474855d BN |
1117 | set_spu_profiling_frequency(frq->new, spu_cycle_reset); |
1118 | return ret; | |
1119 | } | |
1120 | ||
1121 | static struct notifier_block cpu_freq_notifier_block = { | |
1122 | .notifier_call = oprof_cpufreq_notify | |
1123 | }; | |
1124 | #endif | |
1125 | ||
9b93418e CL |
1126 | /* |
1127 | * Note the generic OProfile stop calls do not support returning | |
1128 | * an error on stop. Hence, will not return an error if the FW | |
1129 | * calls fail on stop. Failure to reset the debug bus is not an issue. | |
1130 | * Failure to disable the SPU profiling is not an issue. The FW calls | |
1131 | * to enable the performance counters and debug bus will work even if | |
1132 | * the hardware was not cleanly reset. | |
1133 | */ | |
1134 | static void cell_global_stop_spu_cycles(void) | |
1135 | { | |
1136 | int subfunc, rtn_value; | |
1137 | unsigned int lfsr_value; | |
1138 | int cpu; | |
1139 | ||
1140 | oprofile_running = 0; | |
88382329 | 1141 | smp_wmb(); |
9b93418e CL |
1142 | |
1143 | #ifdef CONFIG_CPU_FREQ | |
1144 | cpufreq_unregister_notifier(&cpu_freq_notifier_block, | |
1145 | CPUFREQ_TRANSITION_NOTIFIER); | |
1146 | #endif | |
1147 | ||
1148 | for_each_online_cpu(cpu) { | |
1149 | if (cbe_get_hw_thread_id(cpu)) | |
1150 | continue; | |
1151 | ||
1152 | subfunc = 3; /* | |
1153 | * 2 - activate SPU tracing, | |
1154 | * 3 - deactivate | |
1155 | */ | |
1156 | lfsr_value = 0x8f100000; | |
1157 | ||
1158 | rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL, | |
1159 | subfunc, cbe_cpu_to_node(cpu), | |
1160 | lfsr_value); | |
1161 | ||
1162 | if (unlikely(rtn_value != 0)) { | |
1163 | printk(KERN_ERR | |
1164 | "%s: rtas call ibm,cbe-spu-perftools " \ | |
1165 | "failed, return = %d\n", | |
1166 | __func__, rtn_value); | |
1167 | } | |
1168 | ||
1169 | /* Deactivate the signals */ | |
1170 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | |
1171 | } | |
1172 | ||
88382329 CL |
1173 | stop_spu_profiling_cycles(); |
1174 | } | |
1175 | ||
1176 | static void cell_global_stop_spu_events(void) | |
1177 | { | |
1178 | int cpu; | |
1179 | oprofile_running = 0; | |
1180 | ||
1181 | stop_spu_profiling_events(); | |
1182 | smp_wmb(); | |
1183 | ||
1184 | for_each_online_cpu(cpu) { | |
1185 | if (cbe_get_hw_thread_id(cpu)) | |
1186 | continue; | |
1187 | ||
1188 | cbe_sync_irq(cbe_cpu_to_node(cpu)); | |
1189 | /* Stop the counters */ | |
1190 | cbe_disable_pm(cpu); | |
1191 | cbe_write_pm07_control(cpu, 0, 0); | |
1192 | ||
1193 | /* Deactivate the signals */ | |
1194 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | |
1195 | ||
1196 | /* Deactivate interrupts */ | |
1197 | cbe_disable_pm_interrupts(cpu); | |
1198 | } | |
1199 | del_timer_sync(&timer_spu_event_swap); | |
9b93418e CL |
1200 | } |
1201 | ||
1202 | static void cell_global_stop_ppu(void) | |
1203 | { | |
1204 | int cpu; | |
1205 | ||
1206 | /* | |
1207 | * This routine will be called once for the system. | |
1208 | * There is one performance monitor per node, so we | |
1209 | * only need to perform this function once per node. | |
1210 | */ | |
1211 | del_timer_sync(&timer_virt_cntr); | |
1212 | oprofile_running = 0; | |
1213 | smp_wmb(); | |
1214 | ||
1215 | for_each_online_cpu(cpu) { | |
1216 | if (cbe_get_hw_thread_id(cpu)) | |
1217 | continue; | |
1218 | ||
1219 | cbe_sync_irq(cbe_cpu_to_node(cpu)); | |
1220 | /* Stop the counters */ | |
1221 | cbe_disable_pm(cpu); | |
1222 | ||
1223 | /* Deactivate the signals */ | |
1224 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | |
1225 | ||
1226 | /* Deactivate interrupts */ | |
1227 | cbe_disable_pm_interrupts(cpu); | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | static void cell_global_stop(void) | |
1232 | { | |
1233 | if (profiling_mode == PPU_PROFILING) | |
1234 | cell_global_stop_ppu(); | |
88382329 CL |
1235 | else if (profiling_mode == SPU_PROFILING_EVENTS) |
1236 | cell_global_stop_spu_events(); | |
9b93418e CL |
1237 | else |
1238 | cell_global_stop_spu_cycles(); | |
1239 | } | |
1240 | ||
1241 | static int cell_global_start_spu_cycles(struct op_counter_config *ctr) | |
1474855d BN |
1242 | { |
1243 | int subfunc; | |
1244 | unsigned int lfsr_value; | |
1245 | int cpu; | |
1246 | int ret; | |
1247 | int rtas_error; | |
1248 | unsigned int cpu_khzfreq = 0; | |
1249 | ||
1250 | /* The SPU profiling uses time-based profiling based on | |
1251 | * cpu frequency, so if configured with the CPU_FREQ | |
1252 | * option, we should detect frequency changes and react | |
1253 | * accordingly. | |
1254 | */ | |
1255 | #ifdef CONFIG_CPU_FREQ | |
1256 | ret = cpufreq_register_notifier(&cpu_freq_notifier_block, | |
1257 | CPUFREQ_TRANSITION_NOTIFIER); | |
1258 | if (ret < 0) | |
1259 | /* this is not a fatal error */ | |
1260 | printk(KERN_ERR "CPU freq change registration failed: %d\n", | |
1261 | ret); | |
1262 | ||
1263 | else | |
1264 | cpu_khzfreq = cpufreq_quick_get(smp_processor_id()); | |
1265 | #endif | |
1266 | ||
1267 | set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset); | |
1268 | ||
1269 | for_each_online_cpu(cpu) { | |
1270 | if (cbe_get_hw_thread_id(cpu)) | |
1271 | continue; | |
1272 | ||
1273 | /* | |
1274 | * Setup SPU cycle-based profiling. | |
1275 | * Set perf_mon_control bit 0 to a zero before | |
1276 | * enabling spu collection hardware. | |
1277 | */ | |
1278 | cbe_write_pm(cpu, pm_control, 0); | |
1279 | ||
1280 | if (spu_cycle_reset > MAX_SPU_COUNT) | |
1281 | /* use largest possible value */ | |
1282 | lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1); | |
1283 | else | |
1284 | lfsr_value = calculate_lfsr(spu_cycle_reset); | |
1285 | ||
1286 | /* must use a non zero value. Zero disables data collection. */ | |
1287 | if (lfsr_value == 0) | |
1288 | lfsr_value = calculate_lfsr(1); | |
1289 | ||
1290 | lfsr_value = lfsr_value << 8; /* shift lfsr to correct | |
1291 | * register location | |
1292 | */ | |
1293 | ||
1294 | /* debug bus setup */ | |
1295 | ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu)); | |
1296 | ||
1297 | if (unlikely(ret)) { | |
1298 | rtas_error = ret; | |
1299 | goto out; | |
1300 | } | |
1301 | ||
1302 | ||
1303 | subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */ | |
1304 | ||
1305 | /* start profiling */ | |
1306 | ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc, | |
25006644 | 1307 | cbe_cpu_to_node(cpu), lfsr_value); |
1474855d BN |
1308 | |
1309 | if (unlikely(ret != 0)) { | |
1310 | printk(KERN_ERR | |
9b93418e CL |
1311 | "%s: rtas call ibm,cbe-spu-perftools failed, " \ |
1312 | "return = %d\n", __func__, ret); | |
1474855d BN |
1313 | rtas_error = -EIO; |
1314 | goto out; | |
1315 | } | |
1316 | } | |
1317 | ||
9b93418e | 1318 | rtas_error = start_spu_profiling_cycles(spu_cycle_reset); |
1474855d BN |
1319 | if (rtas_error) |
1320 | goto out_stop; | |
1321 | ||
1322 | oprofile_running = 1; | |
1323 | return 0; | |
1324 | ||
1325 | out_stop: | |
9b93418e | 1326 | cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */ |
18f2190d | 1327 | out: |
1474855d | 1328 | return rtas_error; |
18f2190d MJ |
1329 | } |
1330 | ||
88382329 CL |
1331 | static int cell_global_start_spu_events(struct op_counter_config *ctr) |
1332 | { | |
1333 | int cpu; | |
1334 | u32 interrupt_mask = 0; | |
1335 | int rtn = 0; | |
1336 | ||
1337 | hdw_thread = 0; | |
1338 | ||
1339 | /* spu event profiling, uses the performance counters to generate | |
1340 | * an interrupt. The hardware is setup to store the SPU program | |
1341 | * counter into the trace array. The occurrence mode is used to | |
1342 | * enable storing data to the trace buffer. The bits are set | |
1343 | * to send/store the SPU address in the trace buffer. The debug | |
1344 | * bus must be setup to route the SPU program counter onto the | |
1345 | * debug bus. The occurrence data in the trace buffer is not used. | |
1346 | */ | |
1347 | ||
1348 | /* This routine gets called once for the system. | |
1349 | * There is one performance monitor per node, so we | |
1350 | * only need to perform this function once per node. | |
1351 | */ | |
1352 | ||
1353 | for_each_online_cpu(cpu) { | |
1354 | if (cbe_get_hw_thread_id(cpu)) | |
1355 | continue; | |
1356 | ||
1357 | /* | |
1358 | * Setup SPU event-based profiling. | |
1359 | * Set perf_mon_control bit 0 to a zero before | |
1360 | * enabling spu collection hardware. | |
1361 | * | |
1362 | * Only support one SPU event on one SPU per node. | |
1363 | */ | |
1364 | if (ctr_enabled & 1) { | |
1365 | cbe_write_ctr(cpu, 0, reset_value[0]); | |
1366 | enable_ctr(cpu, 0, pm_regs.pm07_cntrl); | |
1367 | interrupt_mask |= | |
1368 | CBE_PM_CTR_OVERFLOW_INTR(0); | |
1369 | } else { | |
1370 | /* Disable counter */ | |
1371 | cbe_write_pm07_control(cpu, 0, 0); | |
1372 | } | |
1373 | ||
1374 | cbe_get_and_clear_pm_interrupts(cpu); | |
1375 | cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); | |
1376 | cbe_enable_pm(cpu); | |
1377 | ||
1378 | /* clear the trace buffer */ | |
1379 | cbe_write_pm(cpu, trace_address, 0); | |
1380 | } | |
1381 | ||
1382 | /* Start the timer to time slice collecting the event profile | |
1383 | * on each of the SPUs. Note, can collect profile on one SPU | |
1384 | * per node at a time. | |
1385 | */ | |
1386 | start_spu_event_swap(); | |
1387 | start_spu_profiling_events(); | |
25006644 | 1388 | oprofile_running = 1; |
88382329 CL |
1389 | smp_wmb(); |
1390 | ||
1391 | return rtn; | |
1392 | } | |
1393 | ||
1474855d | 1394 | static int cell_global_start_ppu(struct op_counter_config *ctr) |
18f2190d | 1395 | { |
1474855d | 1396 | u32 cpu, i; |
18f2190d | 1397 | u32 interrupt_mask = 0; |
18f2190d MJ |
1398 | |
1399 | /* This routine gets called once for the system. | |
1400 | * There is one performance monitor per node, so we | |
1401 | * only need to perform this function once per node. | |
1402 | */ | |
1403 | for_each_online_cpu(cpu) { | |
1404 | if (cbe_get_hw_thread_id(cpu)) | |
1405 | continue; | |
1406 | ||
1407 | interrupt_mask = 0; | |
1408 | ||
1409 | for (i = 0; i < num_counters; ++i) { | |
1410 | if (ctr_enabled & (1 << i)) { | |
1411 | cbe_write_ctr(cpu, i, reset_value[i]); | |
1412 | enable_ctr(cpu, i, pm_regs.pm07_cntrl); | |
25006644 | 1413 | interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i); |
18f2190d MJ |
1414 | } else { |
1415 | /* Disable counter */ | |
1416 | cbe_write_pm07_control(cpu, i, 0); | |
1417 | } | |
1418 | } | |
1419 | ||
bcb63e25 | 1420 | cbe_get_and_clear_pm_interrupts(cpu); |
18f2190d MJ |
1421 | cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); |
1422 | cbe_enable_pm(cpu); | |
1423 | } | |
1424 | ||
1425 | virt_cntr_inter_mask = interrupt_mask; | |
1426 | oprofile_running = 1; | |
1427 | smp_wmb(); | |
1428 | ||
1474855d BN |
1429 | /* |
1430 | * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being | |
1431 | * executed which manipulates the PMU. We start the "virtual counter" | |
18f2190d MJ |
1432 | * here so that we do not need to synchronize access to the PMU in |
1433 | * the above for-loop. | |
1434 | */ | |
1435 | start_virt_cntrs(); | |
1474855d BN |
1436 | |
1437 | return 0; | |
18f2190d MJ |
1438 | } |
1439 | ||
1474855d BN |
1440 | static int cell_global_start(struct op_counter_config *ctr) |
1441 | { | |
9b93418e CL |
1442 | if (profiling_mode == SPU_PROFILING_CYCLES) |
1443 | return cell_global_start_spu_cycles(ctr); | |
88382329 CL |
1444 | else if (profiling_mode == SPU_PROFILING_EVENTS) |
1445 | return cell_global_start_spu_events(ctr); | |
1474855d BN |
1446 | else |
1447 | return cell_global_start_ppu(ctr); | |
1448 | } | |
1449 | ||
1474855d | 1450 | |
88382329 CL |
1451 | /* The SPU interrupt handler |
1452 | * | |
1453 | * SPU event profiling works as follows: | |
1454 | * The pm_signal[0] holds the one SPU event to be measured. It is routed on | |
1455 | * the debug bus using word 0 or 1. The value of pm_signal[1] and | |
1456 | * pm_signal[2] contain the necessary events to route the SPU program | |
1457 | * counter for the selected SPU onto the debug bus using words 2 and 3. | |
1458 | * The pm_interval register is setup to write the SPU PC value into the | |
1459 | * trace buffer at the maximum rate possible. The trace buffer is configured | |
1460 | * to store the PCs, wrapping when it is full. The performance counter is | |
b595076a | 1461 | * initialized to the max hardware count minus the number of events, N, between |
25985edc | 1462 | * samples. Once the N events have occurred, a HW counter overflow occurs |
88382329 CL |
1463 | * causing the generation of a HW counter interrupt which also stops the |
1464 | * writing of the SPU PC values to the trace buffer. Hence the last PC | |
1465 | * written to the trace buffer is the SPU PC that we want. Unfortunately, | |
1466 | * we have to read from the beginning of the trace buffer to get to the | |
1467 | * last value written. We just hope the PPU has nothing better to do then | |
1468 | * service this interrupt. The PC for the specific SPU being profiled is | |
1469 | * extracted from the trace buffer processed and stored. The trace buffer | |
1470 | * is cleared, interrupts are cleared, the counter is reset to max - N. | |
1471 | * A kernel timer is used to periodically call the routine spu_evnt_swap() | |
1472 | * to switch to the next physical SPU in the node to profile in round robbin | |
1473 | * order. This way data is collected for all SPUs on the node. It does mean | |
1474 | * that we need to use a relatively small value of N to ensure enough samples | |
1475 | * on each SPU are collected each SPU is being profiled 1/8 of the time. | |
1476 | * It may also be necessary to use a longer sample collection period. | |
1477 | */ | |
1478 | static void cell_handle_interrupt_spu(struct pt_regs *regs, | |
1479 | struct op_counter_config *ctr) | |
1480 | { | |
1481 | u32 cpu, cpu_tmp; | |
1482 | u64 trace_entry; | |
1483 | u32 interrupt_mask; | |
1484 | u64 trace_buffer[2]; | |
1485 | u64 last_trace_buffer; | |
1486 | u32 sample; | |
1487 | u32 trace_addr; | |
1488 | unsigned long sample_array_lock_flags; | |
1489 | int spu_num; | |
1490 | unsigned long flags; | |
1491 | ||
1492 | /* Make sure spu event interrupt handler and spu event swap | |
1493 | * don't access the counters simultaneously. | |
1494 | */ | |
1495 | cpu = smp_processor_id(); | |
1496 | spin_lock_irqsave(&cntr_lock, flags); | |
1497 | ||
1498 | cpu_tmp = cpu; | |
1499 | cbe_disable_pm(cpu); | |
1500 | ||
1501 | interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); | |
1502 | ||
1503 | sample = 0xABCDEF; | |
1504 | trace_entry = 0xfedcba; | |
1505 | last_trace_buffer = 0xdeadbeaf; | |
1506 | ||
25006644 | 1507 | if ((oprofile_running == 1) && (interrupt_mask != 0)) { |
88382329 CL |
1508 | /* disable writes to trace buff */ |
1509 | cbe_write_pm(cpu, pm_interval, 0); | |
1510 | ||
1511 | /* only have one perf cntr being used, cntr 0 */ | |
1512 | if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0)) | |
25006644 | 1513 | && ctr[0].enabled) |
88382329 CL |
1514 | /* The SPU PC values will be read |
1515 | * from the trace buffer, reset counter | |
1516 | */ | |
1517 | ||
1518 | cbe_write_ctr(cpu, 0, reset_value[0]); | |
1519 | ||
1520 | trace_addr = cbe_read_pm(cpu, trace_address); | |
1521 | ||
1522 | while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { | |
1523 | /* There is data in the trace buffer to process | |
1524 | * Read the buffer until you get to the last | |
1525 | * entry. This is the value we want. | |
1526 | */ | |
1527 | ||
1528 | cbe_read_trace_buffer(cpu, trace_buffer); | |
1529 | trace_addr = cbe_read_pm(cpu, trace_address); | |
1530 | } | |
1531 | ||
1532 | /* SPU Address 16 bit count format for 128 bit | |
1533 | * HW trace buffer is used for the SPU PC storage | |
1534 | * HDR bits 0:15 | |
1535 | * SPU Addr 0 bits 16:31 | |
1536 | * SPU Addr 1 bits 32:47 | |
1537 | * unused bits 48:127 | |
1538 | * | |
1539 | * HDR: bit4 = 1 SPU Address 0 valid | |
1540 | * HDR: bit5 = 1 SPU Address 1 valid | |
1541 | * - unfortunately, the valid bits don't seem to work | |
1542 | * | |
1543 | * Note trace_buffer[0] holds bits 0:63 of the HW | |
1544 | * trace buffer, trace_buffer[1] holds bits 64:127 | |
1545 | */ | |
1546 | ||
1547 | trace_entry = trace_buffer[0] | |
1548 | & 0x00000000FFFF0000; | |
1549 | ||
1550 | /* only top 16 of the 18 bit SPU PC address | |
1551 | * is stored in trace buffer, hence shift right | |
1552 | * by 16 -2 bits */ | |
1553 | sample = trace_entry >> 14; | |
1554 | last_trace_buffer = trace_buffer[0]; | |
1555 | ||
1556 | spu_num = spu_evnt_phys_spu_indx | |
1557 | + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE); | |
1558 | ||
1559 | /* make sure only one process at a time is calling | |
1560 | * spu_sync_buffer() | |
1561 | */ | |
1562 | spin_lock_irqsave(&oprof_spu_smpl_arry_lck, | |
1563 | sample_array_lock_flags); | |
1564 | spu_sync_buffer(spu_num, &sample, 1); | |
1565 | spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, | |
1566 | sample_array_lock_flags); | |
1567 | ||
1568 | smp_wmb(); /* insure spu event buffer updates are written | |
1569 | * don't want events intermingled... */ | |
1570 | ||
1571 | /* The counters were frozen by the interrupt. | |
1572 | * Reenable the interrupt and restart the counters. | |
1573 | */ | |
1574 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); | |
1575 | cbe_enable_pm_interrupts(cpu, hdw_thread, | |
1576 | virt_cntr_inter_mask); | |
1577 | ||
1578 | /* clear the trace buffer, re-enable writes to trace buff */ | |
1579 | cbe_write_pm(cpu, trace_address, 0); | |
1580 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); | |
1581 | ||
1582 | /* The writes to the various performance counters only writes | |
1583 | * to a latch. The new values (interrupt setting bits, reset | |
1584 | * counter value etc.) are not copied to the actual registers | |
1585 | * until the performance monitor is enabled. In order to get | |
af901ca1 | 1586 | * this to work as desired, the performance monitor needs to |
88382329 CL |
1587 | * be disabled while writing to the latches. This is a |
1588 | * HW design issue. | |
1589 | */ | |
1590 | write_pm_cntrl(cpu); | |
1591 | cbe_enable_pm(cpu); | |
1592 | } | |
1593 | spin_unlock_irqrestore(&cntr_lock, flags); | |
1594 | } | |
1595 | ||
9b93418e CL |
1596 | static void cell_handle_interrupt_ppu(struct pt_regs *regs, |
1597 | struct op_counter_config *ctr) | |
18f2190d MJ |
1598 | { |
1599 | u32 cpu; | |
1600 | u64 pc; | |
1601 | int is_kernel; | |
1602 | unsigned long flags = 0; | |
1603 | u32 interrupt_mask; | |
1604 | int i; | |
1605 | ||
1606 | cpu = smp_processor_id(); | |
1607 | ||
1474855d BN |
1608 | /* |
1609 | * Need to make sure the interrupt handler and the virt counter | |
18f2190d MJ |
1610 | * routine are not running at the same time. See the |
1611 | * cell_virtual_cntr() routine for additional comments. | |
1612 | */ | |
9b93418e | 1613 | spin_lock_irqsave(&cntr_lock, flags); |
18f2190d | 1614 | |
1474855d BN |
1615 | /* |
1616 | * Need to disable and reenable the performance counters | |
18f2190d MJ |
1617 | * to get the desired behavior from the hardware. This |
1618 | * is hardware specific. | |
1619 | */ | |
1620 | ||
1621 | cbe_disable_pm(cpu); | |
1622 | ||
bcb63e25 | 1623 | interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); |
18f2190d | 1624 | |
1474855d BN |
1625 | /* |
1626 | * If the interrupt mask has been cleared, then the virt cntr | |
18f2190d MJ |
1627 | * has cleared the interrupt. When the thread that generated |
1628 | * the interrupt is restored, the data count will be restored to | |
1629 | * 0xffffff0 to cause the interrupt to be regenerated. | |
1630 | */ | |
1631 | ||
1632 | if ((oprofile_running == 1) && (interrupt_mask != 0)) { | |
1633 | pc = regs->nip; | |
1634 | is_kernel = is_kernel_addr(pc); | |
1635 | ||
1636 | for (i = 0; i < num_counters; ++i) { | |
1637 | if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i)) | |
1638 | && ctr[i].enabled) { | |
101fd46a | 1639 | oprofile_add_ext_sample(pc, regs, i, is_kernel); |
18f2190d MJ |
1640 | cbe_write_ctr(cpu, i, reset_value[i]); |
1641 | } | |
1642 | } | |
1643 | ||
1474855d BN |
1644 | /* |
1645 | * The counters were frozen by the interrupt. | |
18f2190d MJ |
1646 | * Reenable the interrupt and restart the counters. |
1647 | * If there was a race between the interrupt handler and | |
25985edc | 1648 | * the virtual counter routine. The virtual counter |
18f2190d MJ |
1649 | * routine may have cleared the interrupts. Hence must |
1650 | * use the virt_cntr_inter_mask to re-enable the interrupts. | |
1651 | */ | |
1652 | cbe_enable_pm_interrupts(cpu, hdw_thread, | |
1653 | virt_cntr_inter_mask); | |
1654 | ||
1474855d BN |
1655 | /* |
1656 | * The writes to the various performance counters only writes | |
1657 | * to a latch. The new values (interrupt setting bits, reset | |
18f2190d MJ |
1658 | * counter value etc.) are not copied to the actual registers |
1659 | * until the performance monitor is enabled. In order to get | |
af901ca1 | 1660 | * this to work as desired, the performance monitor needs to |
beb7dd86 | 1661 | * be disabled while writing to the latches. This is a |
18f2190d MJ |
1662 | * HW design issue. |
1663 | */ | |
1664 | cbe_enable_pm(cpu); | |
1665 | } | |
9b93418e CL |
1666 | spin_unlock_irqrestore(&cntr_lock, flags); |
1667 | } | |
1668 | ||
1669 | static void cell_handle_interrupt(struct pt_regs *regs, | |
1670 | struct op_counter_config *ctr) | |
1671 | { | |
1672 | if (profiling_mode == PPU_PROFILING) | |
1673 | cell_handle_interrupt_ppu(regs, ctr); | |
88382329 CL |
1674 | else |
1675 | cell_handle_interrupt_spu(regs, ctr); | |
18f2190d MJ |
1676 | } |
1677 | ||
1474855d BN |
1678 | /* |
1679 | * This function is called from the generic OProfile | |
1680 | * driver. When profiling PPUs, we need to do the | |
1681 | * generic sync start; otherwise, do spu_sync_start. | |
1682 | */ | |
1683 | static int cell_sync_start(void) | |
1684 | { | |
9b93418e CL |
1685 | if ((profiling_mode == SPU_PROFILING_CYCLES) || |
1686 | (profiling_mode == SPU_PROFILING_EVENTS)) | |
1474855d BN |
1687 | return spu_sync_start(); |
1688 | else | |
1689 | return DO_GENERIC_SYNC; | |
1690 | } | |
1691 | ||
1692 | static int cell_sync_stop(void) | |
1693 | { | |
9b93418e CL |
1694 | if ((profiling_mode == SPU_PROFILING_CYCLES) || |
1695 | (profiling_mode == SPU_PROFILING_EVENTS)) | |
1474855d BN |
1696 | return spu_sync_stop(); |
1697 | else | |
1698 | return 1; | |
1699 | } | |
1700 | ||
18f2190d MJ |
1701 | struct op_powerpc_model op_model_cell = { |
1702 | .reg_setup = cell_reg_setup, | |
1703 | .cpu_setup = cell_cpu_setup, | |
1704 | .global_start = cell_global_start, | |
1705 | .global_stop = cell_global_stop, | |
1474855d BN |
1706 | .sync_start = cell_sync_start, |
1707 | .sync_stop = cell_sync_stop, | |
18f2190d MJ |
1708 | .handle_interrupt = cell_handle_interrupt, |
1709 | }; |