]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/oprofile/op_model_cell.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / oprofile / op_model_cell.c
CommitLineData
18f2190d
MJ
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
1474855d
BN
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
18f2190d
MJ
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/cpufreq.h>
18#include <linux/delay.h>
18f2190d
MJ
19#include <linux/jiffies.h>
20#include <linux/kthread.h>
21#include <linux/oprofile.h>
22#include <linux/percpu.h>
23#include <linux/smp.h>
24#include <linux/spinlock.h>
25#include <linux/timer.h>
26#include <asm/cell-pmu.h>
27#include <asm/cputable.h>
28#include <asm/firmware.h>
29#include <asm/io.h>
30#include <asm/oprofile_impl.h>
31#include <asm/processor.h>
32#include <asm/prom.h>
33#include <asm/ptrace.h>
34#include <asm/reg.h>
35#include <asm/rtas.h>
eef686a0 36#include <asm/cell-regs.h>
18f2190d
MJ
37
38#include "../platforms/cell/interrupt.h"
1474855d
BN
39#include "cell/pr_util.h"
40
9b93418e
CL
41#define PPU_PROFILING 0
42#define SPU_PROFILING_CYCLES 1
43#define SPU_PROFILING_EVENTS 2
1474855d 44
88382329
CL
45#define SPU_EVENT_NUM_START 4100
46#define SPU_EVENT_NUM_STOP 4399
47#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
48#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
49#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
50
1474855d
BN
51#define NUM_SPUS_PER_NODE 8
52#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
18f2190d
MJ
53
54#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
1474855d
BN
55#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
56 * PPU_CYCLES event
57 */
58#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
18f2190d 59
bcb63e25
CL
60#define NUM_THREADS 2 /* number of physical threads in
61 * physical processor
62 */
a1ef4849 63#define NUM_DEBUG_BUS_WORDS 4
bcb63e25
CL
64#define NUM_INPUT_BUS_WORDS 2
65
1474855d 66#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
18f2190d 67
25985edc 68/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
88382329
CL
69 * To configure counter to send value every N cycles set counter to
70 * 2^32 - 1 - N.
71 */
72#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
73
9b93418e
CL
74/*
75 * spu_cycle_reset is the number of cycles between samples.
76 * This variable is used for SPU profiling and should ONLY be set
77 * at the beginning of cell_reg_setup; otherwise, it's read-only.
78 */
79static unsigned int spu_cycle_reset;
80static unsigned int profiling_mode;
88382329 81static int spu_evnt_phys_spu_indx;
9b93418e 82
18f2190d
MJ
83struct pmc_cntrl_data {
84 unsigned long vcntr;
85 unsigned long evnts;
86 unsigned long masks;
87 unsigned long enabled;
88};
89
90/*
91 * ibm,cbe-perftools rtas parameters
92 */
18f2190d
MJ
93struct pm_signal {
94 u16 cpu; /* Processor to modify */
1474855d
BN
95 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
96 short int signal_group; /* Signal Group to Enable/Disable */
18f2190d
MJ
97 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
98 * Bus Word(s) (bitmask)
99 */
100 u8 bit; /* Trigger/Event bit (if applicable) */
101};
102
103/*
104 * rtas call arguments
105 */
106enum {
107 SUBFUNC_RESET = 1,
108 SUBFUNC_ACTIVATE = 2,
109 SUBFUNC_DEACTIVATE = 3,
110
111 PASSTHRU_IGNORE = 0,
112 PASSTHRU_ENABLE = 1,
113 PASSTHRU_DISABLE = 2,
114};
115
116struct pm_cntrl {
117 u16 enable;
118 u16 stop_at_max;
119 u16 trace_mode;
120 u16 freeze;
121 u16 count_mode;
88382329
CL
122 u16 spu_addr_trace;
123 u8 trace_buf_ovflw;
18f2190d
MJ
124};
125
126static struct {
127 u32 group_control;
128 u32 debug_bus_control;
129 struct pm_cntrl pm_cntrl;
130 u32 pm07_cntrl[NR_PHYS_CTRS];
131} pm_regs;
132
18f2190d
MJ
133#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137#define GET_COUNT_CYCLES(x) (x & 0x00000001)
138#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139
18f2190d 140static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
88382329 141static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
18f2190d
MJ
142static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143
1474855d
BN
144/*
145 * The CELL profiling code makes rtas calls to setup the debug bus to
146 * route the performance signals. Additionally, SPU profiling requires
147 * a second rtas call to setup the hardware to capture the SPU PCs.
148 * The EIO error value is returned if the token lookups or the rtas
149 * call fail. The EIO error number is the best choice of the existing
150 * error numbers. The probability of rtas related error is very low. But
151 * by returning EIO and printing additional information to dmsg the user
152 * will know that OProfile did not start and dmesg will tell them why.
153 * OProfile does not support returning errors on Stop. Not a huge issue
154 * since failure to reset the debug bus or stop the SPU PC collection is
155 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
156 * either.
157 */
158
159/*
160 * Interpetation of hdw_thread:
18f2190d
MJ
161 * 0 - even virtual cpus 0, 2, 4,...
162 * 1 - odd virtual cpus 1, 3, 5, ...
1474855d
BN
163 *
164 * FIXME: this is strictly wrong, we need to clean this up in a number
165 * of places. It works for now. -arnd
18f2190d
MJ
166 */
167static u32 hdw_thread;
168
169static u32 virt_cntr_inter_mask;
170static struct timer_list timer_virt_cntr;
88382329 171static struct timer_list timer_spu_event_swap;
18f2190d 172
1474855d
BN
173/*
174 * pm_signal needs to be global since it is initialized in
18f2190d
MJ
175 * cell_reg_setup at the time when the necessary information
176 * is available.
177 */
178static struct pm_signal pm_signal[NR_PHYS_CTRS];
1474855d
BN
179static int pm_rtas_token; /* token for debug bus setup call */
180static int spu_rtas_token; /* token for SPU cycle profiling */
18f2190d
MJ
181
182static u32 reset_value[NR_PHYS_CTRS];
183static int num_counters;
184static int oprofile_running;
9b93418e 185static DEFINE_SPINLOCK(cntr_lock);
18f2190d
MJ
186
187static u32 ctr_enabled;
188
bcb63e25 189static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
18f2190d
MJ
190
191/*
192 * Firmware interface functions
193 */
194static int
195rtas_ibm_cbe_perftools(int subfunc, int passthru,
196 void *address, unsigned long length)
197{
198 u64 paddr = __pa(address);
199
1474855d
BN
200 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201 passthru, paddr >> 32, paddr & 0xffffffff, length);
18f2190d
MJ
202}
203
204static void pm_rtas_reset_signals(u32 node)
205{
206 int ret;
207 struct pm_signal pm_signal_local;
208
1474855d
BN
209 /*
210 * The debug bus is being set to the passthru disable state.
446957ba 211 * However, the FW still expects at least one legal signal routing
1474855d
BN
212 * entry or it will return an error on the arguments. If we don't
213 * supply a valid entry, we must ignore all return values. Ignoring
214 * all return values means we might miss an error we should be
215 * concerned about.
18f2190d
MJ
216 */
217
218 /* fw expects physical cpu #. */
219 pm_signal_local.cpu = node;
220 pm_signal_local.signal_group = 21;
221 pm_signal_local.bus_word = 1;
222 pm_signal_local.sub_unit = 0;
223 pm_signal_local.bit = 0;
224
225 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226 &pm_signal_local,
227 sizeof(struct pm_signal));
228
1474855d
BN
229 if (unlikely(ret))
230 /*
231 * Not a fatal error. For Oprofile stop, the oprofile
232 * functions do not support returning an error for
233 * failure to stop OProfile.
234 */
18f2190d 235 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 236 __func__, ret);
18f2190d
MJ
237}
238
1474855d 239static int pm_rtas_activate_signals(u32 node, u32 count)
18f2190d
MJ
240{
241 int ret;
c7eb7347 242 int i, j;
18f2190d
MJ
243 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244
1474855d
BN
245 /*
246 * There is no debug setup required for the cycles event.
c7eb7347
MJ
247 * Note that only events in the same group can be used.
248 * Otherwise, there will be conflicts in correctly routing
06fe9fb4 249 * the signals on the debug bus. It is the responsibility
c7eb7347
MJ
250 * of the OProfile user tool to check the events are in
251 * the same group.
252 */
253 i = 0;
18f2190d 254 for (j = 0; j < count; j++) {
c7eb7347
MJ
255 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256
257 /* fw expects physical cpu # */
258 pm_signal_local[i].cpu = node;
259 pm_signal_local[i].signal_group
260 = pm_signal[j].signal_group;
261 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263 pm_signal_local[i].bit = pm_signal[j].bit;
264 i++;
265 }
18f2190d
MJ
266 }
267
c7eb7347
MJ
268 if (i != 0) {
269 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270 pm_signal_local,
271 i * sizeof(struct pm_signal));
18f2190d 272
1474855d 273 if (unlikely(ret)) {
c7eb7347 274 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 275 __func__, ret);
1474855d
BN
276 return -EIO;
277 }
c7eb7347 278 }
1474855d
BN
279
280 return 0;
18f2190d
MJ
281}
282
283/*
284 * PM Signal functions
285 */
286static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287{
288 struct pm_signal *p;
289 u32 signal_bit;
290 u32 bus_word, bus_type, count_cycles, polarity, input_control;
291 int j, i;
292
293 if (event == PPU_CYCLES_EVENT_NUM) {
294 /* Special Event: Count all cpu cycles */
295 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296 p = &(pm_signal[ctr]);
c7eb7347 297 p->signal_group = PPU_CYCLES_GRP_NUM;
18f2190d
MJ
298 p->bus_word = 1;
299 p->sub_unit = 0;
300 p->bit = 0;
301 goto out;
302 } else {
303 pm_regs.pm07_cntrl[ctr] = 0;
304 }
305
306 bus_word = GET_BUS_WORD(unit_mask);
307 bus_type = GET_BUS_TYPE(unit_mask);
308 count_cycles = GET_COUNT_CYCLES(unit_mask);
309 polarity = GET_POLARITY(unit_mask);
310 input_control = GET_INPUT_CONTROL(unit_mask);
311 signal_bit = (event % 100);
312
313 p = &(pm_signal[ctr]);
314
315 p->signal_group = event / 100;
316 p->bus_word = bus_word;
a1ef4849 317 p->sub_unit = GET_SUB_UNIT(unit_mask);
18f2190d
MJ
318
319 pm_regs.pm07_cntrl[ctr] = 0;
320 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323
1474855d
BN
324 /*
325 * Some of the islands signal selection is based on 64 bit words.
bcb63e25
CL
326 * The debug bus words are 32 bits, the input words to the performance
327 * counters are defined as 32 bits. Need to convert the 64 bit island
328 * specification to the appropriate 32 input bit and bus word for the
1474855d 329 * performance counter event selection. See the CELL Performance
bcb63e25
CL
330 * monitoring signals manual and the Perf cntr hardware descriptions
331 * for the details.
332 */
18f2190d
MJ
333 if (input_control == 0) {
334 if (signal_bit > 31) {
335 signal_bit -= 32;
336 if (bus_word == 0x3)
337 bus_word = 0x2;
338 else if (bus_word == 0xc)
339 bus_word = 0x8;
340 }
341
342 if ((bus_type == 0) && p->signal_group >= 60)
343 bus_type = 2;
344 if ((bus_type == 1) && p->signal_group >= 50)
345 bus_type = 0;
346
347 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348 } else {
349 pm_regs.pm07_cntrl[ctr] = 0;
350 p->bit = signal_bit;
351 }
352
a1ef4849 353 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
18f2190d
MJ
354 if (bus_word & (1 << i)) {
355 pm_regs.debug_bus_control |=
25006644 356 (bus_type << (30 - (2 * i)));
18f2190d 357
bcb63e25 358 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
18f2190d
MJ
359 if (input_bus[j] == 0xff) {
360 input_bus[j] = i;
361 pm_regs.group_control |=
25006644 362 (i << (30 - (2 * j)));
1474855d 363
18f2190d
MJ
364 break;
365 }
366 }
367 }
368 }
369out:
370 ;
371}
372
bcb63e25 373static void write_pm_cntrl(int cpu)
18f2190d 374{
1474855d
BN
375 /*
376 * Oprofile will use 32 bit counters, set bits 7:10 to 0
bcb63e25
CL
377 * pmregs.pm_cntrl is a global
378 */
379
18f2190d 380 u32 val = 0;
bcb63e25 381 if (pm_regs.pm_cntrl.enable == 1)
18f2190d
MJ
382 val |= CBE_PM_ENABLE_PERF_MON;
383
bcb63e25 384 if (pm_regs.pm_cntrl.stop_at_max == 1)
18f2190d
MJ
385 val |= CBE_PM_STOP_AT_MAX;
386
9b93418e 387 if (pm_regs.pm_cntrl.trace_mode != 0)
bcb63e25 388 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
18f2190d 389
88382329
CL
390 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
bcb63e25 392 if (pm_regs.pm_cntrl.freeze == 1)
18f2190d
MJ
393 val |= CBE_PM_FREEZE_ALL_CTRS;
394
88382329
CL
395 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396
1474855d
BN
397 /*
398 * Routine set_count_mode must be called previously to set
18f2190d
MJ
399 * the count mode based on the user selection of user and kernel.
400 */
bcb63e25 401 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
18f2190d
MJ
402 cbe_write_pm(cpu, pm_control, val);
403}
404
405static inline void
bcb63e25 406set_count_mode(u32 kernel, u32 user)
18f2190d 407{
1474855d
BN
408 /*
409 * The user must specify user and kernel if they want them. If
bcb63e25
CL
410 * neither is specified, OProfile will count in hypervisor mode.
411 * pm_regs.pm_cntrl is a global
18f2190d
MJ
412 */
413 if (kernel) {
414 if (user)
bcb63e25 415 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
18f2190d 416 else
bcb63e25
CL
417 pm_regs.pm_cntrl.count_mode =
418 CBE_COUNT_SUPERVISOR_MODE;
18f2190d
MJ
419 } else {
420 if (user)
bcb63e25 421 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
18f2190d 422 else
bcb63e25
CL
423 pm_regs.pm_cntrl.count_mode =
424 CBE_COUNT_HYPERVISOR_MODE;
18f2190d
MJ
425 }
426}
427
25ad2913 428static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
18f2190d
MJ
429{
430
bcb63e25 431 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
18f2190d
MJ
432 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433}
434
435/*
436 * Oprofile is expected to collect data on all CPUs simultaneously.
1474855d 437 * However, there is one set of performance counters per node. There are
18f2190d
MJ
438 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
439 * multiplex in time the performance counter collection on the two virtual
440 * CPUs. The multiplexing of the performance counters is done by this
441 * virtual counter routine.
442 *
443 * The pmc_values used below is defined as 'per-cpu' but its use is
444 * more akin to 'per-node'. We need to store two sets of counter
445 * values per node -- one for the previous run and one for the next.
446 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
447 * pair of per-cpu arrays is used for storing the previous and next
448 * pmc values for a given node.
449 * NOTE: We use the per-cpu variable to improve cache performance.
1474855d
BN
450 *
451 * This routine will alternate loading the virtual counters for
452 * virtual CPUs
18f2190d 453 */
e99e88a9 454static void cell_virtual_cntr(struct timer_list *unused)
18f2190d 455{
18f2190d
MJ
456 int i, prev_hdw_thread, next_hdw_thread;
457 u32 cpu;
458 unsigned long flags;
459
1474855d
BN
460 /*
461 * Make sure that the interrupt_hander and the virt counter are
462 * not both playing with the counters on the same node.
18f2190d
MJ
463 */
464
9b93418e 465 spin_lock_irqsave(&cntr_lock, flags);
18f2190d
MJ
466
467 prev_hdw_thread = hdw_thread;
468
469 /* switch the cpu handling the interrupts */
470 hdw_thread = 1 ^ hdw_thread;
471 next_hdw_thread = hdw_thread;
472
a1ef4849
BN
473 pm_regs.group_control = 0;
474 pm_regs.debug_bus_control = 0;
475
476 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477 input_bus[i] = 0xff;
478
1474855d
BN
479 /*
480 * There are some per thread events. Must do the
bcb63e25
CL
481 * set event, for the thread that is being started
482 */
1474855d 483 for (i = 0; i < num_counters; i++)
bcb63e25
CL
484 set_pm_event(i,
485 pmc_cntrl[next_hdw_thread][i].evnts,
486 pmc_cntrl[next_hdw_thread][i].masks);
487
1474855d
BN
488 /*
489 * The following is done only once per each node, but
18f2190d
MJ
490 * we need cpu #, not node #, to pass to the cbe_xxx functions.
491 */
492 for_each_online_cpu(cpu) {
493 if (cbe_get_hw_thread_id(cpu))
494 continue;
495
1474855d
BN
496 /*
497 * stop counters, save counter values, restore counts
18f2190d
MJ
498 * for previous thread
499 */
500 cbe_disable_pm(cpu);
501 cbe_disable_pm_interrupts(cpu);
502 for (i = 0; i < num_counters; i++) {
503 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
25006644 504 = cbe_read_ctr(cpu, i);
18f2190d
MJ
505
506 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507 == 0xFFFFFFFF)
508 /* If the cntr value is 0xffffffff, we must
509 * reset that to 0xfffffff0 when the current
1474855d 510 * thread is restarted. This will generate a
bcb63e25
CL
511 * new interrupt and make sure that we never
512 * restore the counters to the max value. If
513 * the counters were restored to the max value,
514 * they do not increment and no interrupts are
515 * generated. Hence no more samples will be
516 * collected on that cpu.
18f2190d
MJ
517 */
518 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519 else
520 cbe_write_ctr(cpu, i,
521 per_cpu(pmc_values,
522 cpu +
523 next_hdw_thread)[i]);
524 }
525
1474855d
BN
526 /*
527 * Switch to the other thread. Change the interrupt
18f2190d
MJ
528 * and control regs to be scheduled on the CPU
529 * corresponding to the thread to execute.
530 */
531 for (i = 0; i < num_counters; i++) {
532 if (pmc_cntrl[next_hdw_thread][i].enabled) {
1474855d
BN
533 /*
534 * There are some per thread events.
18f2190d
MJ
535 * Must do the set event, enable_cntr
536 * for each cpu.
537 */
18f2190d
MJ
538 enable_ctr(cpu, i,
539 pm_regs.pm07_cntrl);
540 } else {
541 cbe_write_pm07_control(cpu, i, 0);
542 }
543 }
544
545 /* Enable interrupts on the CPU thread that is starting */
546 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547 virt_cntr_inter_mask);
548 cbe_enable_pm(cpu);
549 }
550
9b93418e 551 spin_unlock_irqrestore(&cntr_lock, flags);
18f2190d
MJ
552
553 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554}
555
556static void start_virt_cntrs(void)
557{
e99e88a9 558 timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
18f2190d
MJ
559 timer_virt_cntr.expires = jiffies + HZ / 10;
560 add_timer(&timer_virt_cntr);
561}
562
9b93418e 563static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
1474855d 564 struct op_system_config *sys, int num_ctrs)
18f2190d 565{
9b93418e 566 spu_cycle_reset = ctr[0].count;
1474855d
BN
567
568 /*
9b93418e
CL
569 * Each node will need to make the rtas call to start
570 * and stop SPU profiling. Get the token once and store it.
1474855d 571 */
9b93418e
CL
572 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
573
574 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
1474855d 575 printk(KERN_ERR
9b93418e 576 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
e48b1b45 577 __func__);
1474855d 578 return -EIO;
18f2190d 579 }
9b93418e
CL
580 return 0;
581}
582
88382329
CL
583/* Unfortunately, the hardware will only support event profiling
584 * on one SPU per node at a time. Therefore, we must time slice
585 * the profiling across all SPUs in the node. Note, we do this
586 * in parallel for each node. The following routine is called
587 * periodically based on kernel timer to switch which SPU is
588 * being monitored in a round robbin fashion.
589 */
e99e88a9 590static void spu_evnt_swap(struct timer_list *unused)
88382329
CL
591{
592 int node;
593 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
594 unsigned long flags;
595 int cpu;
596 int ret;
597 u32 interrupt_mask;
598
599
600 /* enable interrupts on cntr 0 */
601 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
602
603 hdw_thread = 0;
604
605 /* Make sure spu event interrupt handler and spu event swap
606 * don't access the counters simultaneously.
607 */
608 spin_lock_irqsave(&cntr_lock, flags);
609
610 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
611
612 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
613 spu_evnt_phys_spu_indx = 0;
614
615 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
616 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
617 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
618
619 /* switch the SPU being profiled on each node */
620 for_each_online_cpu(cpu) {
621 if (cbe_get_hw_thread_id(cpu))
622 continue;
623
624 node = cbe_cpu_to_node(cpu);
625 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
626 + cur_spu_evnt_phys_spu_indx;
627 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
628 + spu_evnt_phys_spu_indx;
629
630 /*
631 * stop counters, save counter values, restore counts
632 * for previous physical SPU
633 */
634 cbe_disable_pm(cpu);
635 cbe_disable_pm_interrupts(cpu);
636
637 spu_pm_cnt[cur_phys_spu]
25006644 638 = cbe_read_ctr(cpu, 0);
88382329
CL
639
640 /* restore previous count for the next spu to sample */
641 /* NOTE, hardware issue, counter will not start if the
642 * counter value is at max (0xFFFFFFFF).
643 */
644 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
645 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
646 else
647 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
648
649 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
650
651 /* setup the debug bus measure the one event and
652 * the two events to route the next SPU's PC on
653 * the debug bus
654 */
655 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
656 if (ret)
25006644
RR
657 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
658 "SPU event swap\n", __func__);
88382329
CL
659
660 /* clear the trace buffer, don't want to take PC for
661 * previous SPU*/
662 cbe_write_pm(cpu, trace_address, 0);
663
664 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
665
666 /* Enable interrupts on the CPU thread that is starting */
667 cbe_enable_pm_interrupts(cpu, hdw_thread,
668 interrupt_mask);
669 cbe_enable_pm(cpu);
670 }
671
672 spin_unlock_irqrestore(&cntr_lock, flags);
673
674 /* swap approximately every 0.1 seconds */
675 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
676}
677
678static void start_spu_event_swap(void)
679{
e99e88a9 680 timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
88382329
CL
681 timer_spu_event_swap.expires = jiffies + HZ / 25;
682 add_timer(&timer_spu_event_swap);
683}
684
685static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
686 struct op_system_config *sys, int num_ctrs)
687{
688 int i;
689
690 /* routine is called once for all nodes */
691
692 spu_evnt_phys_spu_indx = 0;
693 /*
694 * For all events except PPU CYCLEs, each node will need to make
695 * the rtas cbe-perftools call to setup and reset the debug bus.
696 * Make the token lookup call once and store it in the global
697 * variable pm_rtas_token.
698 */
699 pm_rtas_token = rtas_token("ibm,cbe-perftools");
700
701 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
702 printk(KERN_ERR
703 "%s: rtas token ibm,cbe-perftools unknown\n",
704 __func__);
705 return -EIO;
706 }
707
708 /* setup the pm_control register settings,
709 * settings will be written per node by the
710 * cell_cpu_setup() function.
711 */
712 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
713
714 /* Use the occurrence trace mode to have SPU PC saved
715 * to the trace buffer. Occurrence data in trace buffer
716 * is not used. Bit 2 must be set to store SPU addresses.
717 */
718 pm_regs.pm_cntrl.trace_mode = 2;
719
720 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
721 event 2 & 3 */
722
723 /* setup the debug bus event array with the SPU PC routing events.
724 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
725 */
726 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
727 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
728 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
729 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
730
731 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
733 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
734 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
735
736 /* Set the user selected spu event to profile on,
737 * note, only one SPU profiling event is supported
738 */
739 num_counters = 1; /* Only support one SPU event at a time */
740 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
741
742 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
743
744 /* global, used by cell_cpu_setup */
745 ctr_enabled |= 1;
746
747 /* Initialize the count for each SPU to the reset value */
748 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
749 spu_pm_cnt[i] = reset_value[0];
750
751 return 0;
752}
753
9b93418e
CL
754static int cell_reg_setup_ppu(struct op_counter_config *ctr,
755 struct op_system_config *sys, int num_ctrs)
756{
88382329 757 /* routine is called once for all nodes */
9b93418e 758 int i, j, cpu;
18f2190d
MJ
759
760 num_counters = num_ctrs;
761
210434d7
CL
762 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
763 printk(KERN_ERR
764 "%s: Oprofile, number of specified events " \
765 "exceeds number of physical counters\n",
766 __func__);
767 return -EIO;
768 }
18f2190d 769
bcb63e25 770 set_count_mode(sys->enable_kernel, sys->enable_user);
18f2190d
MJ
771
772 /* Setup the thread 0 events */
773 for (i = 0; i < num_ctrs; ++i) {
774
775 pmc_cntrl[0][i].evnts = ctr[i].event;
776 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
777 pmc_cntrl[0][i].enabled = ctr[i].enabled;
778 pmc_cntrl[0][i].vcntr = i;
779
780 for_each_possible_cpu(j)
781 per_cpu(pmc_values, j)[i] = 0;
782 }
783
1474855d
BN
784 /*
785 * Setup the thread 1 events, map the thread 0 event to the
18f2190d
MJ
786 * equivalent thread 1 event.
787 */
788 for (i = 0; i < num_ctrs; ++i) {
789 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
790 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
791 else if (ctr[i].event == 2203)
792 pmc_cntrl[1][i].evnts = ctr[i].event;
793 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
794 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
795 else
796 pmc_cntrl[1][i].evnts = ctr[i].event;
797
798 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
799 pmc_cntrl[1][i].enabled = ctr[i].enabled;
800 pmc_cntrl[1][i].vcntr = i;
801 }
802
bcb63e25 803 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
18f2190d
MJ
804 input_bus[i] = 0xff;
805
1474855d
BN
806 /*
807 * Our counters count up, and "count" refers to
18f2190d 808 * how much before the next interrupt, and we interrupt
1474855d 809 * on overflow. So we calculate the starting value
18f2190d
MJ
810 * which will give us "count" until overflow.
811 * Then we set the events on the enabled counters.
812 */
813 for (i = 0; i < num_counters; ++i) {
814 /* start with virtual counter set 0 */
815 if (pmc_cntrl[0][i].enabled) {
816 /* Using 32bit counters, reset max - count */
817 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
818 set_pm_event(i,
819 pmc_cntrl[0][i].evnts,
820 pmc_cntrl[0][i].masks);
821
822 /* global, used by cell_cpu_setup */
823 ctr_enabled |= (1 << i);
824 }
825 }
826
827 /* initialize the previous counts for the virtual cntrs */
828 for_each_online_cpu(cpu)
829 for (i = 0; i < num_counters; ++i) {
830 per_cpu(pmc_values, cpu)[i] = reset_value[i];
831 }
1474855d
BN
832
833 return 0;
18f2190d
MJ
834}
835
1474855d 836
9b93418e
CL
837/* This function is called once for all cpus combined */
838static int cell_reg_setup(struct op_counter_config *ctr,
839 struct op_system_config *sys, int num_ctrs)
840{
88382329 841 int ret=0;
9b93418e
CL
842 spu_cycle_reset = 0;
843
88382329
CL
844 /* initialize the spu_arr_trace value, will be reset if
845 * doing spu event profiling.
846 */
847 pm_regs.group_control = 0;
848 pm_regs.debug_bus_control = 0;
849 pm_regs.pm_cntrl.stop_at_max = 1;
850 pm_regs.pm_cntrl.trace_mode = 0;
851 pm_regs.pm_cntrl.freeze = 1;
852 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
853 pm_regs.pm_cntrl.spu_addr_trace = 0;
854
9b93418e
CL
855 /*
856 * For all events except PPU CYCLEs, each node will need to make
857 * the rtas cbe-perftools call to setup and reset the debug bus.
858 * Make the token lookup call once and store it in the global
859 * variable pm_rtas_token.
860 */
861 pm_rtas_token = rtas_token("ibm,cbe-perftools");
862
863 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
864 printk(KERN_ERR
865 "%s: rtas token ibm,cbe-perftools unknown\n",
866 __func__);
867 return -EIO;
868 }
869
870 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
871 profiling_mode = SPU_PROFILING_CYCLES;
872 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
88382329
CL
873 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
874 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
875 profiling_mode = SPU_PROFILING_EVENTS;
876 spu_cycle_reset = ctr[0].count;
877
878 /* for SPU event profiling, need to setup the
879 * pm_signal array with the events to route the
880 * SPU PC before making the FW call. Note, only
881 * one SPU event for profiling can be specified
882 * at a time.
883 */
884 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
9b93418e
CL
885 } else {
886 profiling_mode = PPU_PROFILING;
887 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
888 }
889
890 return ret;
891}
892
893
1474855d 894
18f2190d 895/* This function is called once for each cpu */
1474855d 896static int cell_cpu_setup(struct op_counter_config *cntr)
18f2190d
MJ
897{
898 u32 cpu = smp_processor_id();
899 u32 num_enabled = 0;
900 int i;
88382329 901 int ret;
18f2190d 902
9b93418e
CL
903 /* Cycle based SPU profiling does not use the performance
904 * counters. The trace array is configured to collect
905 * the data.
906 */
907 if (profiling_mode == SPU_PROFILING_CYCLES)
1474855d
BN
908 return 0;
909
18f2190d
MJ
910 /* There is one performance monitor per processor chip (i.e. node),
911 * so we only need to perform this function once per node.
912 */
913 if (cbe_get_hw_thread_id(cpu))
1474855d 914 return 0;
18f2190d
MJ
915
916 /* Stop all counters */
917 cbe_disable_pm(cpu);
918 cbe_disable_pm_interrupts(cpu);
919
18f2190d
MJ
920 cbe_write_pm(cpu, pm_start_stop, 0);
921 cbe_write_pm(cpu, group_control, pm_regs.group_control);
922 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
bcb63e25 923 write_pm_cntrl(cpu);
18f2190d
MJ
924
925 for (i = 0; i < num_counters; ++i) {
926 if (ctr_enabled & (1 << i)) {
927 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
928 num_enabled++;
929 }
930 }
931
1474855d
BN
932 /*
933 * The pm_rtas_activate_signals will return -EIO if the FW
934 * call failed.
935 */
88382329
CL
936 if (profiling_mode == SPU_PROFILING_EVENTS) {
937 /* For SPU event profiling also need to setup the
938 * pm interval timer
939 */
940 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
941 num_enabled+2);
942 /* store PC from debug bus to Trace buffer as often
943 * as possible (every 10 cycles)
944 */
945 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
946 return ret;
947 } else
948 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
949 num_enabled);
1474855d
BN
950}
951
952#define ENTRIES 303
953#define MAXLFSR 0xFFFFFF
954
955/* precomputed table of 24 bit LFSR values */
956static int initial_lfsr[] = {
957 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
958 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
959 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
960 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
961 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
962 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
963 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
964 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
965 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
966 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
967 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
968 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
969 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
970 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
971 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
972 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
973 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
974 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
975 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
976 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
977 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
978 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
979 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
980 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
981 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
982 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
983 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
984 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
985 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
986 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
987 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
988 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
989 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
990 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
991 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
992 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
993 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
994 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
995};
996
997/*
998 * The hardware uses an LFSR counting sequence to determine when to capture
999 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1000 * where each number occurs once in the sequence but the sequence is not in
1001 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1002 * the last value in the sequence. Hence the user specified value N
1003 * corresponds to the LFSR number that is N from the end of the sequence.
1004 *
1005 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1006 * LFSR sequence is broken into four ranges. The spacing of the precomputed
446957ba 1007 * values is adjusted in each range so the error between the user specified
1474855d
BN
1008 * number (N) of events between samples and the actual number of events based
1009 * on the precomputed value will be les then about 6.2%. Note, if the user
1010 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1011 * This is to prevent the loss of samples because the trace buffer is full.
1012 *
1013 * User specified N Step between Index in
1014 * precomputed values precomputed
1015 * table
1016 * 0 to 2^16-1 ---- 0
1017 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1018 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1019 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1020 *
1021 *
1022 * For example, the LFSR values in the second range are computed for 2^16,
1023 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1024 * 1, 2,..., 127, 128.
1025 *
1026 * The 24 bit LFSR value for the nth number in the sequence can be
1027 * calculated using the following code:
1028 *
1029 * #define size 24
1030 * int calculate_lfsr(int n)
1031 * {
1032 * int i;
1033 * unsigned int newlfsr0;
1034 * unsigned int lfsr = 0xFFFFFF;
1035 * unsigned int howmany = n;
1036 *
1037 * for (i = 2; i < howmany + 2; i++) {
1038 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1039 * ((lfsr >> (size - 1 - 1)) & 1) ^
1040 * (((lfsr >> (size - 1 - 6)) & 1) ^
1041 * ((lfsr >> (size - 1 - 23)) & 1)));
1042 *
1043 * lfsr >>= 1;
1044 * lfsr = lfsr | (newlfsr0 << (size - 1));
1045 * }
1046 * return lfsr;
1047 * }
1048 */
1049
1050#define V2_16 (0x1 << 16)
1051#define V2_19 (0x1 << 19)
1052#define V2_22 (0x1 << 22)
1053
1054static int calculate_lfsr(int n)
1055{
1056 /*
1057 * The ranges and steps are in powers of 2 so the calculations
1058 * can be done using shifts rather then divide.
1059 */
1060 int index;
1061
1062 if ((n >> 16) == 0)
1063 index = 0;
1064 else if (((n - V2_16) >> 19) == 0)
1065 index = ((n - V2_16) >> 12) + 1;
1066 else if (((n - V2_16 - V2_19) >> 22) == 0)
1067 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1068 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1069 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1070 else
1071 index = ENTRIES-1;
1072
1073 /* make sure index is valid */
238c1a78 1074 if ((index >= ENTRIES) || (index < 0))
1474855d
BN
1075 index = ENTRIES-1;
1076
1077 return initial_lfsr[index];
1078}
1079
1080static int pm_rtas_activate_spu_profiling(u32 node)
1081{
1082 int ret, i;
210434d7 1083 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1474855d
BN
1084
1085 /*
1086 * Set up the rtas call to configure the debug bus to
1087 * route the SPU PCs. Setup the pm_signal for each SPU
1088 */
210434d7 1089 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1474855d
BN
1090 pm_signal_local[i].cpu = node;
1091 pm_signal_local[i].signal_group = 41;
1092 /* spu i on word (i/2) */
1093 pm_signal_local[i].bus_word = 1 << i / 2;
1094 /* spu i */
1095 pm_signal_local[i].sub_unit = i;
1096 pm_signal_local[i].bit = 63;
1097 }
1098
1099 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1100 PASSTHRU_ENABLE, pm_signal_local,
210434d7 1101 (ARRAY_SIZE(pm_signal_local)
1474855d
BN
1102 * sizeof(struct pm_signal)));
1103
1104 if (unlikely(ret)) {
1105 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 1106 __func__, ret);
1474855d
BN
1107 return -EIO;
1108 }
1109
1110 return 0;
1111}
1112
1113#ifdef CONFIG_CPU_FREQ
1114static int
1115oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1116{
1117 int ret = 0;
1118 struct cpufreq_freqs *frq = data;
1119 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
0b443ead 1120 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1474855d
BN
1121 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1122 return ret;
1123}
1124
1125static struct notifier_block cpu_freq_notifier_block = {
1126 .notifier_call = oprof_cpufreq_notify
1127};
1128#endif
1129
9b93418e
CL
1130/*
1131 * Note the generic OProfile stop calls do not support returning
1132 * an error on stop. Hence, will not return an error if the FW
1133 * calls fail on stop. Failure to reset the debug bus is not an issue.
1134 * Failure to disable the SPU profiling is not an issue. The FW calls
1135 * to enable the performance counters and debug bus will work even if
1136 * the hardware was not cleanly reset.
1137 */
1138static void cell_global_stop_spu_cycles(void)
1139{
1140 int subfunc, rtn_value;
1141 unsigned int lfsr_value;
1142 int cpu;
1143
1144 oprofile_running = 0;
88382329 1145 smp_wmb();
9b93418e
CL
1146
1147#ifdef CONFIG_CPU_FREQ
1148 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1149 CPUFREQ_TRANSITION_NOTIFIER);
1150#endif
1151
1152 for_each_online_cpu(cpu) {
1153 if (cbe_get_hw_thread_id(cpu))
1154 continue;
1155
1156 subfunc = 3; /*
1157 * 2 - activate SPU tracing,
1158 * 3 - deactivate
1159 */
1160 lfsr_value = 0x8f100000;
1161
1162 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1163 subfunc, cbe_cpu_to_node(cpu),
1164 lfsr_value);
1165
1166 if (unlikely(rtn_value != 0)) {
1167 printk(KERN_ERR
1168 "%s: rtas call ibm,cbe-spu-perftools " \
1169 "failed, return = %d\n",
1170 __func__, rtn_value);
1171 }
1172
1173 /* Deactivate the signals */
1174 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1175 }
1176
88382329
CL
1177 stop_spu_profiling_cycles();
1178}
1179
1180static void cell_global_stop_spu_events(void)
1181{
1182 int cpu;
1183 oprofile_running = 0;
1184
1185 stop_spu_profiling_events();
1186 smp_wmb();
1187
1188 for_each_online_cpu(cpu) {
1189 if (cbe_get_hw_thread_id(cpu))
1190 continue;
1191
1192 cbe_sync_irq(cbe_cpu_to_node(cpu));
1193 /* Stop the counters */
1194 cbe_disable_pm(cpu);
1195 cbe_write_pm07_control(cpu, 0, 0);
1196
1197 /* Deactivate the signals */
1198 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1199
1200 /* Deactivate interrupts */
1201 cbe_disable_pm_interrupts(cpu);
1202 }
1203 del_timer_sync(&timer_spu_event_swap);
9b93418e
CL
1204}
1205
1206static void cell_global_stop_ppu(void)
1207{
1208 int cpu;
1209
1210 /*
1211 * This routine will be called once for the system.
1212 * There is one performance monitor per node, so we
1213 * only need to perform this function once per node.
1214 */
1215 del_timer_sync(&timer_virt_cntr);
1216 oprofile_running = 0;
1217 smp_wmb();
1218
1219 for_each_online_cpu(cpu) {
1220 if (cbe_get_hw_thread_id(cpu))
1221 continue;
1222
1223 cbe_sync_irq(cbe_cpu_to_node(cpu));
1224 /* Stop the counters */
1225 cbe_disable_pm(cpu);
1226
1227 /* Deactivate the signals */
1228 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1229
1230 /* Deactivate interrupts */
1231 cbe_disable_pm_interrupts(cpu);
1232 }
1233}
1234
1235static void cell_global_stop(void)
1236{
1237 if (profiling_mode == PPU_PROFILING)
1238 cell_global_stop_ppu();
88382329
CL
1239 else if (profiling_mode == SPU_PROFILING_EVENTS)
1240 cell_global_stop_spu_events();
9b93418e
CL
1241 else
1242 cell_global_stop_spu_cycles();
1243}
1244
1245static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1474855d
BN
1246{
1247 int subfunc;
1248 unsigned int lfsr_value;
1249 int cpu;
1250 int ret;
1251 int rtas_error;
1252 unsigned int cpu_khzfreq = 0;
1253
1254 /* The SPU profiling uses time-based profiling based on
1255 * cpu frequency, so if configured with the CPU_FREQ
1256 * option, we should detect frequency changes and react
1257 * accordingly.
1258 */
1259#ifdef CONFIG_CPU_FREQ
1260 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1261 CPUFREQ_TRANSITION_NOTIFIER);
1262 if (ret < 0)
1263 /* this is not a fatal error */
1264 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1265 ret);
1266
1267 else
1268 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1269#endif
1270
1271 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1272
1273 for_each_online_cpu(cpu) {
1274 if (cbe_get_hw_thread_id(cpu))
1275 continue;
1276
1277 /*
1278 * Setup SPU cycle-based profiling.
1279 * Set perf_mon_control bit 0 to a zero before
1280 * enabling spu collection hardware.
1281 */
1282 cbe_write_pm(cpu, pm_control, 0);
1283
1284 if (spu_cycle_reset > MAX_SPU_COUNT)
1285 /* use largest possible value */
1286 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1287 else
1288 lfsr_value = calculate_lfsr(spu_cycle_reset);
1289
1290 /* must use a non zero value. Zero disables data collection. */
1291 if (lfsr_value == 0)
1292 lfsr_value = calculate_lfsr(1);
1293
1294 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1295 * register location
1296 */
1297
1298 /* debug bus setup */
1299 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1300
1301 if (unlikely(ret)) {
1302 rtas_error = ret;
1303 goto out;
1304 }
1305
1306
1307 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1308
1309 /* start profiling */
1310 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
25006644 1311 cbe_cpu_to_node(cpu), lfsr_value);
1474855d
BN
1312
1313 if (unlikely(ret != 0)) {
1314 printk(KERN_ERR
9b93418e
CL
1315 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1316 "return = %d\n", __func__, ret);
1474855d
BN
1317 rtas_error = -EIO;
1318 goto out;
1319 }
1320 }
1321
9b93418e 1322 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1474855d
BN
1323 if (rtas_error)
1324 goto out_stop;
1325
1326 oprofile_running = 1;
1327 return 0;
1328
1329out_stop:
9b93418e 1330 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
18f2190d 1331out:
1474855d 1332 return rtas_error;
18f2190d
MJ
1333}
1334
88382329
CL
1335static int cell_global_start_spu_events(struct op_counter_config *ctr)
1336{
1337 int cpu;
1338 u32 interrupt_mask = 0;
1339 int rtn = 0;
1340
1341 hdw_thread = 0;
1342
1343 /* spu event profiling, uses the performance counters to generate
1344 * an interrupt. The hardware is setup to store the SPU program
1345 * counter into the trace array. The occurrence mode is used to
1346 * enable storing data to the trace buffer. The bits are set
1347 * to send/store the SPU address in the trace buffer. The debug
1348 * bus must be setup to route the SPU program counter onto the
1349 * debug bus. The occurrence data in the trace buffer is not used.
1350 */
1351
1352 /* This routine gets called once for the system.
1353 * There is one performance monitor per node, so we
1354 * only need to perform this function once per node.
1355 */
1356
1357 for_each_online_cpu(cpu) {
1358 if (cbe_get_hw_thread_id(cpu))
1359 continue;
1360
1361 /*
1362 * Setup SPU event-based profiling.
1363 * Set perf_mon_control bit 0 to a zero before
1364 * enabling spu collection hardware.
1365 *
1366 * Only support one SPU event on one SPU per node.
1367 */
1368 if (ctr_enabled & 1) {
1369 cbe_write_ctr(cpu, 0, reset_value[0]);
1370 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1371 interrupt_mask |=
1372 CBE_PM_CTR_OVERFLOW_INTR(0);
1373 } else {
1374 /* Disable counter */
1375 cbe_write_pm07_control(cpu, 0, 0);
1376 }
1377
1378 cbe_get_and_clear_pm_interrupts(cpu);
1379 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1380 cbe_enable_pm(cpu);
1381
1382 /* clear the trace buffer */
1383 cbe_write_pm(cpu, trace_address, 0);
1384 }
1385
1386 /* Start the timer to time slice collecting the event profile
1387 * on each of the SPUs. Note, can collect profile on one SPU
1388 * per node at a time.
1389 */
1390 start_spu_event_swap();
1391 start_spu_profiling_events();
25006644 1392 oprofile_running = 1;
88382329
CL
1393 smp_wmb();
1394
1395 return rtn;
1396}
1397
1474855d 1398static int cell_global_start_ppu(struct op_counter_config *ctr)
18f2190d 1399{
1474855d 1400 u32 cpu, i;
18f2190d 1401 u32 interrupt_mask = 0;
18f2190d
MJ
1402
1403 /* This routine gets called once for the system.
1404 * There is one performance monitor per node, so we
1405 * only need to perform this function once per node.
1406 */
1407 for_each_online_cpu(cpu) {
1408 if (cbe_get_hw_thread_id(cpu))
1409 continue;
1410
1411 interrupt_mask = 0;
1412
1413 for (i = 0; i < num_counters; ++i) {
1414 if (ctr_enabled & (1 << i)) {
1415 cbe_write_ctr(cpu, i, reset_value[i]);
1416 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
25006644 1417 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
18f2190d
MJ
1418 } else {
1419 /* Disable counter */
1420 cbe_write_pm07_control(cpu, i, 0);
1421 }
1422 }
1423
bcb63e25 1424 cbe_get_and_clear_pm_interrupts(cpu);
18f2190d
MJ
1425 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1426 cbe_enable_pm(cpu);
1427 }
1428
1429 virt_cntr_inter_mask = interrupt_mask;
1430 oprofile_running = 1;
1431 smp_wmb();
1432
1474855d
BN
1433 /*
1434 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1435 * executed which manipulates the PMU. We start the "virtual counter"
18f2190d
MJ
1436 * here so that we do not need to synchronize access to the PMU in
1437 * the above for-loop.
1438 */
1439 start_virt_cntrs();
1474855d
BN
1440
1441 return 0;
18f2190d
MJ
1442}
1443
1474855d
BN
1444static int cell_global_start(struct op_counter_config *ctr)
1445{
9b93418e
CL
1446 if (profiling_mode == SPU_PROFILING_CYCLES)
1447 return cell_global_start_spu_cycles(ctr);
88382329
CL
1448 else if (profiling_mode == SPU_PROFILING_EVENTS)
1449 return cell_global_start_spu_events(ctr);
1474855d
BN
1450 else
1451 return cell_global_start_ppu(ctr);
1452}
1453
1474855d 1454
88382329
CL
1455/* The SPU interrupt handler
1456 *
1457 * SPU event profiling works as follows:
1458 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1459 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1460 * pm_signal[2] contain the necessary events to route the SPU program
1461 * counter for the selected SPU onto the debug bus using words 2 and 3.
1462 * The pm_interval register is setup to write the SPU PC value into the
1463 * trace buffer at the maximum rate possible. The trace buffer is configured
1464 * to store the PCs, wrapping when it is full. The performance counter is
b595076a 1465 * initialized to the max hardware count minus the number of events, N, between
25985edc 1466 * samples. Once the N events have occurred, a HW counter overflow occurs
88382329
CL
1467 * causing the generation of a HW counter interrupt which also stops the
1468 * writing of the SPU PC values to the trace buffer. Hence the last PC
1469 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1470 * we have to read from the beginning of the trace buffer to get to the
1471 * last value written. We just hope the PPU has nothing better to do then
1472 * service this interrupt. The PC for the specific SPU being profiled is
1473 * extracted from the trace buffer processed and stored. The trace buffer
1474 * is cleared, interrupts are cleared, the counter is reset to max - N.
1475 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1476 * to switch to the next physical SPU in the node to profile in round robbin
1477 * order. This way data is collected for all SPUs on the node. It does mean
1478 * that we need to use a relatively small value of N to ensure enough samples
1479 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1480 * It may also be necessary to use a longer sample collection period.
1481 */
1482static void cell_handle_interrupt_spu(struct pt_regs *regs,
1483 struct op_counter_config *ctr)
1484{
1485 u32 cpu, cpu_tmp;
1486 u64 trace_entry;
1487 u32 interrupt_mask;
1488 u64 trace_buffer[2];
1489 u64 last_trace_buffer;
1490 u32 sample;
1491 u32 trace_addr;
1492 unsigned long sample_array_lock_flags;
1493 int spu_num;
1494 unsigned long flags;
1495
1496 /* Make sure spu event interrupt handler and spu event swap
1497 * don't access the counters simultaneously.
1498 */
1499 cpu = smp_processor_id();
1500 spin_lock_irqsave(&cntr_lock, flags);
1501
1502 cpu_tmp = cpu;
1503 cbe_disable_pm(cpu);
1504
1505 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1506
1507 sample = 0xABCDEF;
1508 trace_entry = 0xfedcba;
1509 last_trace_buffer = 0xdeadbeaf;
1510
25006644 1511 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
88382329
CL
1512 /* disable writes to trace buff */
1513 cbe_write_pm(cpu, pm_interval, 0);
1514
1515 /* only have one perf cntr being used, cntr 0 */
1516 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
25006644 1517 && ctr[0].enabled)
88382329
CL
1518 /* The SPU PC values will be read
1519 * from the trace buffer, reset counter
1520 */
1521
1522 cbe_write_ctr(cpu, 0, reset_value[0]);
1523
1524 trace_addr = cbe_read_pm(cpu, trace_address);
1525
1526 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1527 /* There is data in the trace buffer to process
1528 * Read the buffer until you get to the last
1529 * entry. This is the value we want.
1530 */
1531
1532 cbe_read_trace_buffer(cpu, trace_buffer);
1533 trace_addr = cbe_read_pm(cpu, trace_address);
1534 }
1535
1536 /* SPU Address 16 bit count format for 128 bit
1537 * HW trace buffer is used for the SPU PC storage
1538 * HDR bits 0:15
1539 * SPU Addr 0 bits 16:31
1540 * SPU Addr 1 bits 32:47
1541 * unused bits 48:127
1542 *
1543 * HDR: bit4 = 1 SPU Address 0 valid
1544 * HDR: bit5 = 1 SPU Address 1 valid
1545 * - unfortunately, the valid bits don't seem to work
1546 *
1547 * Note trace_buffer[0] holds bits 0:63 of the HW
1548 * trace buffer, trace_buffer[1] holds bits 64:127
1549 */
1550
1551 trace_entry = trace_buffer[0]
1552 & 0x00000000FFFF0000;
1553
1554 /* only top 16 of the 18 bit SPU PC address
1555 * is stored in trace buffer, hence shift right
1556 * by 16 -2 bits */
1557 sample = trace_entry >> 14;
1558 last_trace_buffer = trace_buffer[0];
1559
1560 spu_num = spu_evnt_phys_spu_indx
1561 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1562
1563 /* make sure only one process at a time is calling
1564 * spu_sync_buffer()
1565 */
1566 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1567 sample_array_lock_flags);
1568 spu_sync_buffer(spu_num, &sample, 1);
1569 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1570 sample_array_lock_flags);
1571
1572 smp_wmb(); /* insure spu event buffer updates are written
1573 * don't want events intermingled... */
1574
1575 /* The counters were frozen by the interrupt.
1576 * Reenable the interrupt and restart the counters.
1577 */
1578 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1579 cbe_enable_pm_interrupts(cpu, hdw_thread,
1580 virt_cntr_inter_mask);
1581
1582 /* clear the trace buffer, re-enable writes to trace buff */
1583 cbe_write_pm(cpu, trace_address, 0);
1584 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585
1586 /* The writes to the various performance counters only writes
1587 * to a latch. The new values (interrupt setting bits, reset
1588 * counter value etc.) are not copied to the actual registers
1589 * until the performance monitor is enabled. In order to get
af901ca1 1590 * this to work as desired, the performance monitor needs to
88382329
CL
1591 * be disabled while writing to the latches. This is a
1592 * HW design issue.
1593 */
1594 write_pm_cntrl(cpu);
1595 cbe_enable_pm(cpu);
1596 }
1597 spin_unlock_irqrestore(&cntr_lock, flags);
1598}
1599
9b93418e
CL
1600static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1601 struct op_counter_config *ctr)
18f2190d
MJ
1602{
1603 u32 cpu;
1604 u64 pc;
1605 int is_kernel;
1606 unsigned long flags = 0;
1607 u32 interrupt_mask;
1608 int i;
1609
1610 cpu = smp_processor_id();
1611
1474855d
BN
1612 /*
1613 * Need to make sure the interrupt handler and the virt counter
18f2190d
MJ
1614 * routine are not running at the same time. See the
1615 * cell_virtual_cntr() routine for additional comments.
1616 */
9b93418e 1617 spin_lock_irqsave(&cntr_lock, flags);
18f2190d 1618
1474855d
BN
1619 /*
1620 * Need to disable and reenable the performance counters
18f2190d
MJ
1621 * to get the desired behavior from the hardware. This
1622 * is hardware specific.
1623 */
1624
1625 cbe_disable_pm(cpu);
1626
bcb63e25 1627 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
18f2190d 1628
1474855d
BN
1629 /*
1630 * If the interrupt mask has been cleared, then the virt cntr
18f2190d
MJ
1631 * has cleared the interrupt. When the thread that generated
1632 * the interrupt is restored, the data count will be restored to
1633 * 0xffffff0 to cause the interrupt to be regenerated.
1634 */
1635
1636 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1637 pc = regs->nip;
1638 is_kernel = is_kernel_addr(pc);
1639
1640 for (i = 0; i < num_counters; ++i) {
1641 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1642 && ctr[i].enabled) {
101fd46a 1643 oprofile_add_ext_sample(pc, regs, i, is_kernel);
18f2190d
MJ
1644 cbe_write_ctr(cpu, i, reset_value[i]);
1645 }
1646 }
1647
1474855d
BN
1648 /*
1649 * The counters were frozen by the interrupt.
18f2190d
MJ
1650 * Reenable the interrupt and restart the counters.
1651 * If there was a race between the interrupt handler and
25985edc 1652 * the virtual counter routine. The virtual counter
18f2190d
MJ
1653 * routine may have cleared the interrupts. Hence must
1654 * use the virt_cntr_inter_mask to re-enable the interrupts.
1655 */
1656 cbe_enable_pm_interrupts(cpu, hdw_thread,
1657 virt_cntr_inter_mask);
1658
1474855d
BN
1659 /*
1660 * The writes to the various performance counters only writes
1661 * to a latch. The new values (interrupt setting bits, reset
18f2190d
MJ
1662 * counter value etc.) are not copied to the actual registers
1663 * until the performance monitor is enabled. In order to get
af901ca1 1664 * this to work as desired, the performance monitor needs to
beb7dd86 1665 * be disabled while writing to the latches. This is a
18f2190d
MJ
1666 * HW design issue.
1667 */
1668 cbe_enable_pm(cpu);
1669 }
9b93418e
CL
1670 spin_unlock_irqrestore(&cntr_lock, flags);
1671}
1672
1673static void cell_handle_interrupt(struct pt_regs *regs,
1674 struct op_counter_config *ctr)
1675{
1676 if (profiling_mode == PPU_PROFILING)
1677 cell_handle_interrupt_ppu(regs, ctr);
88382329
CL
1678 else
1679 cell_handle_interrupt_spu(regs, ctr);
18f2190d
MJ
1680}
1681
1474855d
BN
1682/*
1683 * This function is called from the generic OProfile
1684 * driver. When profiling PPUs, we need to do the
1685 * generic sync start; otherwise, do spu_sync_start.
1686 */
1687static int cell_sync_start(void)
1688{
9b93418e
CL
1689 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1690 (profiling_mode == SPU_PROFILING_EVENTS))
1474855d
BN
1691 return spu_sync_start();
1692 else
1693 return DO_GENERIC_SYNC;
1694}
1695
1696static int cell_sync_stop(void)
1697{
9b93418e
CL
1698 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1699 (profiling_mode == SPU_PROFILING_EVENTS))
1474855d
BN
1700 return spu_sync_stop();
1701 else
1702 return 1;
1703}
1704
18f2190d
MJ
1705struct op_powerpc_model op_model_cell = {
1706 .reg_setup = cell_reg_setup,
1707 .cpu_setup = cell_cpu_setup,
1708 .global_start = cell_global_start,
1709 .global_stop = cell_global_stop,
1474855d
BN
1710 .sync_start = cell_sync_start,
1711 .sync_stop = cell_sync_stop,
18f2190d
MJ
1712 .handle_interrupt = cell_handle_interrupt,
1713};