]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/perf/core-book3s.c
perf/core: Add a 'flags' parameter to the PMU transactional interfaces
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
b0d436c7 27#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
3925f46b 28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
9de5cb0f
ME
39 /*
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
43 */
44 unsigned long mmcr[4];
a8f90e90
PM
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
50
51 unsigned int group_flag;
fbbe0701 52 unsigned int txn_flags;
8e6d5573 53 int n_txn_start;
3925f46b
AK
54
55 /* BHRB bits */
56 u64 bhrb_filter; /* BHRB HW branch filter */
f0322f7f 57 unsigned int bhrb_users;
3925f46b
AK
58 void *bhrb_context;
59 struct perf_branch_stack bhrb_stack;
60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 61};
3925f46b 62
e51df2c1 63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e 64
e51df2c1 65static struct power_pmu *ppmu;
4574910e 66
d095cd46 67/*
57c0c15b 68 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
73 */
cdd6c482 74static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 75
98fb1807
PM
76/*
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
79 */
80#ifdef CONFIG_PPC32
81
82#define MMCR0_FCHV 0
83#define MMCR0_PMCjCE MMCR0_PMCnCE
7a7a41f9 84#define MMCR0_FC56 0
378a6ee9 85#define MMCR0_PMAO 0
330a1eb7 86#define MMCR0_EBE 0
76cb8a78 87#define MMCR0_BHRBA 0
330a1eb7
ME
88#define MMCR0_PMCC 0
89#define MMCR0_PMCC_U6 0
98fb1807
PM
90
91#define SPRN_MMCRA SPRN_MMCR2
92#define MMCRA_SAMPLE_ENABLE 0
93
94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95{
96 return 0;
97}
98fb1807
PM
98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100{
101 return 0;
102}
75382aa7
AB
103static inline void perf_read_regs(struct pt_regs *regs)
104{
105 regs->result = 0;
106}
98fb1807
PM
107static inline int perf_intr_is_nmi(struct pt_regs *regs)
108{
109 return 0;
110}
111
e6878835 112static inline int siar_valid(struct pt_regs *regs)
113{
114 return 1;
115}
116
330a1eb7
ME
117static bool is_ebb_event(struct perf_event *event) { return false; }
118static int ebb_event_check(struct perf_event *event) { return 0; }
119static void ebb_event_add(struct perf_event *event) { }
120static void ebb_switch_out(unsigned long mmcr0) { }
9de5cb0f 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
330a1eb7 122{
9de5cb0f 123 return cpuhw->mmcr[0];
330a1eb7
ME
124}
125
d52f2dc4
MN
126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
acba3c7e 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
d52f2dc4 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
c2e37a26 130static void pmao_restore_workaround(bool ebb) { }
98fb1807
PM
131#endif /* CONFIG_PPC32 */
132
33904054
ME
133static bool regs_use_siar(struct pt_regs *regs)
134{
72e349f1
AB
135 /*
136 * When we take a performance monitor exception the regs are setup
137 * using perf_read_regs() which overloads some fields, in particular
138 * regs->result to tell us whether to use SIAR.
139 *
140 * However if the regs are from another exception, eg. a syscall, then
141 * they have not been setup using perf_read_regs() and so regs->result
142 * is something random.
143 */
144 return ((TRAP(regs) == 0xf00) && regs->result);
33904054
ME
145}
146
98fb1807
PM
147/*
148 * Things that are specific to 64-bit implementations.
149 */
150#ifdef CONFIG_PPC64
151
152static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
153{
154 unsigned long mmcra = regs->dsisr;
155
7a786832 156 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
157 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
158 if (slot > 1)
159 return 4 * (slot - 1);
160 }
7a786832 161
98fb1807
PM
162 return 0;
163}
164
98fb1807
PM
165/*
166 * The user wants a data address recorded.
167 * If we're not doing instruction sampling, give them the SDAR
168 * (sampled data address). If we are doing instruction sampling, then
169 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
170 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
171 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
172 */
173static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
174{
175 unsigned long mmcra = regs->dsisr;
58a032c3 176 bool sdar_valid;
e6878835 177
58a032c3
ME
178 if (ppmu->flags & PPMU_HAS_SIER)
179 sdar_valid = regs->dar & SIER_SDAR_VALID;
180 else {
181 unsigned long sdsync;
182
183 if (ppmu->flags & PPMU_SIAR_VALID)
184 sdsync = POWER7P_MMCRA_SDAR_VALID;
185 else if (ppmu->flags & PPMU_ALT_SIPR)
186 sdsync = POWER6_MMCRA_SDSYNC;
187 else
188 sdsync = MMCRA_SDSYNC;
189
190 sdar_valid = mmcra & sdsync;
191 }
98fb1807 192
58a032c3 193 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
194 *addrp = mfspr(SPRN_SDAR);
195}
196
5682c460 197static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
198{
199 unsigned long sihv = MMCRA_SIHV;
200
8f61aa32
ME
201 if (ppmu->flags & PPMU_HAS_SIER)
202 return !!(regs->dar & SIER_SIHV);
203
68b30bb9
AB
204 if (ppmu->flags & PPMU_ALT_SIPR)
205 sihv = POWER6_MMCRA_SIHV;
206
5682c460 207 return !!(regs->dsisr & sihv);
68b30bb9
AB
208}
209
5682c460 210static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
211{
212 unsigned long sipr = MMCRA_SIPR;
213
8f61aa32
ME
214 if (ppmu->flags & PPMU_HAS_SIER)
215 return !!(regs->dar & SIER_SIPR);
216
68b30bb9
AB
217 if (ppmu->flags & PPMU_ALT_SIPR)
218 sipr = POWER6_MMCRA_SIPR;
219
5682c460 220 return !!(regs->dsisr & sipr);
68b30bb9
AB
221}
222
1ce447b9
BH
223static inline u32 perf_flags_from_msr(struct pt_regs *regs)
224{
225 if (regs->msr & MSR_PR)
226 return PERF_RECORD_MISC_USER;
227 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
228 return PERF_RECORD_MISC_HYPERVISOR;
229 return PERF_RECORD_MISC_KERNEL;
230}
231
98fb1807
PM
232static inline u32 perf_get_misc_flags(struct pt_regs *regs)
233{
33904054 234 bool use_siar = regs_use_siar(regs);
98fb1807 235
75382aa7 236 if (!use_siar)
1ce447b9
BH
237 return perf_flags_from_msr(regs);
238
239 /*
240 * If we don't have flags in MMCRA, rather than using
241 * the MSR, we intuit the flags from the address in
242 * SIAR which should give slightly more reliable
243 * results
244 */
cbda6aa1 245 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9
BH
246 unsigned long siar = mfspr(SPRN_SIAR);
247 if (siar >= PAGE_OFFSET)
248 return PERF_RECORD_MISC_KERNEL;
249 return PERF_RECORD_MISC_USER;
250 }
98fb1807 251
7abb840b 252 /* PR has priority over HV, so order below is important */
5682c460 253 if (regs_sipr(regs))
7abb840b 254 return PERF_RECORD_MISC_USER;
5682c460
ME
255
256 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 257 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 258
7abb840b 259 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
260}
261
262/*
263 * Overload regs->dsisr to store MMCRA so we only need to read it once
264 * on each interrupt.
8f61aa32 265 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
266 * Overload regs->result to specify whether we should use the MSR (result
267 * is zero) or the SIAR (result is non zero).
98fb1807
PM
268 */
269static inline void perf_read_regs(struct pt_regs *regs)
270{
75382aa7
AB
271 unsigned long mmcra = mfspr(SPRN_MMCRA);
272 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
273 int use_siar;
274
5682c460 275 regs->dsisr = mmcra;
8f61aa32 276
cbda6aa1
ME
277 if (ppmu->flags & PPMU_HAS_SIER)
278 regs->dar = mfspr(SPRN_SIER);
8f61aa32 279
5c093efa
AB
280 /*
281 * If this isn't a PMU exception (eg a software event) the SIAR is
282 * not valid. Use pt_regs.
283 *
284 * If it is a marked event use the SIAR.
285 *
286 * If the PMU doesn't update the SIAR for non marked events use
287 * pt_regs.
288 *
289 * If the PMU has HV/PR flags then check to see if they
290 * place the exception in userspace. If so, use pt_regs. In
291 * continuous sampling mode the SIAR and the PMU exception are
292 * not synchronised, so they may be many instructions apart.
293 * This can result in confusing backtraces. We still want
294 * hypervisor samples as well as samples in the kernel with
295 * interrupts off hence the userspace check.
296 */
75382aa7
AB
297 if (TRAP(regs) != 0xf00)
298 use_siar = 0;
5c093efa
AB
299 else if (marked)
300 use_siar = 1;
301 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
302 use_siar = 0;
cbda6aa1 303 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
304 use_siar = 0;
305 else
306 use_siar = 1;
307
cbda6aa1 308 regs->result = use_siar;
98fb1807
PM
309}
310
311/*
312 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
313 * it as an NMI.
314 */
315static inline int perf_intr_is_nmi(struct pt_regs *regs)
316{
317 return !regs->softe;
318}
319
e6878835 320/*
321 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
322 * must be sampled only if the SIAR-valid bit is set.
323 *
324 * For unmarked instructions and for processors that don't have the SIAR-Valid
325 * bit, assume that SIAR is valid.
326 */
327static inline int siar_valid(struct pt_regs *regs)
328{
329 unsigned long mmcra = regs->dsisr;
330 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
331
58a032c3
ME
332 if (marked) {
333 if (ppmu->flags & PPMU_HAS_SIER)
334 return regs->dar & SIER_SIAR_VALID;
335
336 if (ppmu->flags & PPMU_SIAR_VALID)
337 return mmcra & POWER7P_MMCRA_SIAR_VALID;
338 }
e6878835 339
340 return 1;
341}
342
d52f2dc4
MN
343
344/* Reset all possible BHRB entries */
345static void power_pmu_bhrb_reset(void)
346{
347 asm volatile(PPC_CLRBHRB);
348}
349
350static void power_pmu_bhrb_enable(struct perf_event *event)
351{
69111bac 352 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
d52f2dc4
MN
353
354 if (!ppmu->bhrb_nr)
355 return;
356
357 /* Clear BHRB if we changed task context to avoid data leaks */
358 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
359 power_pmu_bhrb_reset();
360 cpuhw->bhrb_context = event->ctx;
361 }
362 cpuhw->bhrb_users++;
acba3c7e 363 perf_sched_cb_inc(event->ctx->pmu);
d52f2dc4
MN
364}
365
366static void power_pmu_bhrb_disable(struct perf_event *event)
367{
69111bac 368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
d52f2dc4
MN
369
370 if (!ppmu->bhrb_nr)
371 return;
372
f0322f7f 373 WARN_ON_ONCE(!cpuhw->bhrb_users);
d52f2dc4 374 cpuhw->bhrb_users--;
acba3c7e 375 perf_sched_cb_dec(event->ctx->pmu);
d52f2dc4
MN
376
377 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
378 /* BHRB cannot be turned off when other
379 * events are active on the PMU.
380 */
381
382 /* avoid stale pointer */
383 cpuhw->bhrb_context = NULL;
384 }
385}
386
387/* Called from ctxsw to prevent one process's branch entries to
388 * mingle with the other process's entries during context switch.
389 */
acba3c7e 390static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d52f2dc4 391{
acba3c7e
PZ
392 if (!ppmu->bhrb_nr)
393 return;
394
395 if (sched_in)
d52f2dc4
MN
396 power_pmu_bhrb_reset();
397}
69123184
MN
398/* Calculate the to address for a branch */
399static __u64 power_pmu_bhrb_to(u64 addr)
400{
401 unsigned int instr;
402 int ret;
403 __u64 target;
404
405 if (is_kernel_addr(addr))
406 return branch_target((unsigned int *)addr);
407
408 /* Userspace: need copy instruction here then translate it */
409 pagefault_disable();
410 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
411 if (ret) {
412 pagefault_enable();
413 return 0;
414 }
415 pagefault_enable();
416
417 target = branch_target(&instr);
418 if ((!target) || (instr & BRANCH_ABSOLUTE))
419 return target;
420
421 /* Translate relative branch target from kernel to user address */
422 return target - (unsigned long)&instr + addr;
423}
d52f2dc4 424
d52f2dc4 425/* Processing BHRB entries */
e51df2c1 426static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
427{
428 u64 val;
429 u64 addr;
506e70d1 430 int r_index, u_index, pred;
d52f2dc4
MN
431
432 r_index = 0;
433 u_index = 0;
434 while (r_index < ppmu->bhrb_nr) {
435 /* Assembly read function */
506e70d1
MN
436 val = read_bhrb(r_index++);
437 if (!val)
438 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 439 break;
506e70d1 440 else {
d52f2dc4
MN
441 addr = val & BHRB_EA;
442 pred = val & BHRB_PREDICTION;
d52f2dc4 443
506e70d1
MN
444 if (!addr)
445 /* invalid entry */
d52f2dc4 446 continue;
d52f2dc4 447
506e70d1
MN
448 /* Branches are read most recent first (ie. mfbhrb 0 is
449 * the most recent branch).
450 * There are two types of valid entries:
451 * 1) a target entry which is the to address of a
452 * computed goto like a blr,bctr,btar. The next
453 * entry read from the bhrb will be branch
454 * corresponding to this target (ie. the actual
455 * blr/bctr/btar instruction).
456 * 2) a from address which is an actual branch. If a
457 * target entry proceeds this, then this is the
458 * matching branch for that target. If this is not
459 * following a target entry, then this is a branch
460 * where the target is given as an immediate field
461 * in the instruction (ie. an i or b form branch).
462 * In this case we need to read the instruction from
463 * memory to determine the target/to address.
464 */
d52f2dc4 465
d52f2dc4 466 if (val & BHRB_TARGET) {
506e70d1
MN
467 /* Target branches use two entries
468 * (ie. computed gotos/XL form)
469 */
470 cpuhw->bhrb_entries[u_index].to = addr;
471 cpuhw->bhrb_entries[u_index].mispred = pred;
472 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 473
506e70d1
MN
474 /* Get from address in next entry */
475 val = read_bhrb(r_index++);
476 addr = val & BHRB_EA;
477 if (val & BHRB_TARGET) {
478 /* Shouldn't have two targets in a
479 row.. Reset index and try again */
480 r_index--;
481 addr = 0;
482 }
483 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 484 } else {
506e70d1
MN
485 /* Branches to immediate field
486 (ie I or B form) */
d52f2dc4 487 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
488 cpuhw->bhrb_entries[u_index].to =
489 power_pmu_bhrb_to(addr);
d52f2dc4
MN
490 cpuhw->bhrb_entries[u_index].mispred = pred;
491 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 492 }
506e70d1
MN
493 u_index++;
494
d52f2dc4
MN
495 }
496 }
497 cpuhw->bhrb_stack.nr = u_index;
498 return;
499}
500
330a1eb7
ME
501static bool is_ebb_event(struct perf_event *event)
502{
503 /*
504 * This could be a per-PMU callback, but we'd rather avoid the cost. We
505 * check that the PMU supports EBB, meaning those that don't can still
506 * use bit 63 of the event code for something else if they wish.
507 */
4d9690dd 508 return (ppmu->flags & PPMU_ARCH_207S) &&
8d7c55d0 509 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
330a1eb7
ME
510}
511
512static int ebb_event_check(struct perf_event *event)
513{
514 struct perf_event *leader = event->group_leader;
515
516 /* Event and group leader must agree on EBB */
517 if (is_ebb_event(leader) != is_ebb_event(event))
518 return -EINVAL;
519
520 if (is_ebb_event(event)) {
521 if (!(event->attach_state & PERF_ATTACH_TASK))
522 return -EINVAL;
523
524 if (!leader->attr.pinned || !leader->attr.exclusive)
525 return -EINVAL;
526
58b5fb00
ME
527 if (event->attr.freq ||
528 event->attr.inherit ||
529 event->attr.sample_type ||
530 event->attr.sample_period ||
531 event->attr.enable_on_exec)
330a1eb7
ME
532 return -EINVAL;
533 }
534
535 return 0;
536}
537
538static void ebb_event_add(struct perf_event *event)
539{
540 if (!is_ebb_event(event) || current->thread.used_ebb)
541 return;
542
543 /*
544 * IFF this is the first time we've added an EBB event, set
545 * PMXE in the user MMCR0 so we can detect when it's cleared by
546 * userspace. We need this so that we can context switch while
547 * userspace is in the EBB handler (where PMXE is 0).
548 */
549 current->thread.used_ebb = 1;
550 current->thread.mmcr0 |= MMCR0_PMXE;
551}
552
553static void ebb_switch_out(unsigned long mmcr0)
554{
555 if (!(mmcr0 & MMCR0_EBE))
556 return;
557
558 current->thread.siar = mfspr(SPRN_SIAR);
559 current->thread.sier = mfspr(SPRN_SIER);
560 current->thread.sdar = mfspr(SPRN_SDAR);
561 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
562 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
563}
564
9de5cb0f 565static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
330a1eb7 566{
9de5cb0f
ME
567 unsigned long mmcr0 = cpuhw->mmcr[0];
568
330a1eb7
ME
569 if (!ebb)
570 goto out;
571
76cb8a78
ME
572 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
573 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
330a1eb7 574
c2e37a26
ME
575 /*
576 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
577 * with pmao_restore_workaround() because we may add PMAO but we never
578 * clear it here.
579 */
330a1eb7
ME
580 mmcr0 |= current->thread.mmcr0;
581
c2e37a26
ME
582 /*
583 * Be careful not to set PMXE if userspace had it cleared. This is also
584 * compatible with pmao_restore_workaround() because it has already
585 * cleared PMXE and we leave PMAO alone.
586 */
330a1eb7
ME
587 if (!(current->thread.mmcr0 & MMCR0_PMXE))
588 mmcr0 &= ~MMCR0_PMXE;
589
590 mtspr(SPRN_SIAR, current->thread.siar);
591 mtspr(SPRN_SIER, current->thread.sier);
592 mtspr(SPRN_SDAR, current->thread.sdar);
9de5cb0f
ME
593
594 /*
595 * Merge the kernel & user values of MMCR2. The semantics we implement
596 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
597 * but not clear bits. If a task wants to be able to clear bits, ie.
598 * unfreeze counters, it should not set exclude_xxx in its events and
599 * instead manage the MMCR2 entirely by itself.
600 */
601 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
330a1eb7
ME
602out:
603 return mmcr0;
604}
c2e37a26
ME
605
606static void pmao_restore_workaround(bool ebb)
607{
608 unsigned pmcs[6];
609
610 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
611 return;
612
613 /*
614 * On POWER8E there is a hardware defect which affects the PMU context
615 * switch logic, ie. power_pmu_disable/enable().
616 *
617 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
618 * by the hardware. Sometime later the actual PMU exception is
619 * delivered.
620 *
621 * If we context switch, or simply disable/enable, the PMU prior to the
622 * exception arriving, the exception will be lost when we clear PMAO.
623 *
624 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
625 * set, and this _should_ generate an exception. However because of the
626 * defect no exception is generated when we write PMAO, and we get
627 * stuck with no counters counting but no exception delivered.
628 *
629 * The workaround is to detect this case and tweak the hardware to
630 * create another pending PMU exception.
631 *
632 * We do that by setting up PMC6 (cycles) for an imminent overflow and
633 * enabling the PMU. That causes a new exception to be generated in the
634 * chip, but we don't take it yet because we have interrupts hard
635 * disabled. We then write back the PMU state as we want it to be seen
636 * by the exception handler. When we reenable interrupts the exception
637 * handler will be called and see the correct state.
638 *
639 * The logic is the same for EBB, except that the exception is gated by
640 * us having interrupts hard disabled as well as the fact that we are
641 * not in userspace. The exception is finally delivered when we return
642 * to userspace.
643 */
644
645 /* Only if PMAO is set and PMAO_SYNC is clear */
646 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
647 return;
648
649 /* If we're doing EBB, only if BESCR[GE] is set */
650 if (ebb && !(current->thread.bescr & BESCR_GE))
651 return;
652
653 /*
654 * We are already soft-disabled in power_pmu_enable(). We need to hard
655 * enable to actually prevent the PMU exception from firing.
656 */
657 hard_irq_disable();
658
659 /*
660 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
661 * Using read/write_pmc() in a for loop adds 12 function calls and
662 * almost doubles our code size.
663 */
664 pmcs[0] = mfspr(SPRN_PMC1);
665 pmcs[1] = mfspr(SPRN_PMC2);
666 pmcs[2] = mfspr(SPRN_PMC3);
667 pmcs[3] = mfspr(SPRN_PMC4);
668 pmcs[4] = mfspr(SPRN_PMC5);
669 pmcs[5] = mfspr(SPRN_PMC6);
670
671 /* Ensure all freeze bits are unset */
672 mtspr(SPRN_MMCR2, 0);
673
674 /* Set up PMC6 to overflow in one cycle */
675 mtspr(SPRN_PMC6, 0x7FFFFFFE);
676
677 /* Enable exceptions and unfreeze PMC6 */
678 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
679
680 /* Now we need to refreeze and restore the PMCs */
681 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
682
683 mtspr(SPRN_PMC1, pmcs[0]);
684 mtspr(SPRN_PMC2, pmcs[1]);
685 mtspr(SPRN_PMC3, pmcs[2]);
686 mtspr(SPRN_PMC4, pmcs[3]);
687 mtspr(SPRN_PMC5, pmcs[4]);
688 mtspr(SPRN_PMC6, pmcs[5]);
689}
98fb1807
PM
690#endif /* CONFIG_PPC64 */
691
cdd6c482 692static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 693
4574910e 694/*
57c0c15b 695 * Read one performance monitor counter (PMC).
4574910e
PM
696 */
697static unsigned long read_pmc(int idx)
698{
699 unsigned long val;
700
701 switch (idx) {
702 case 1:
703 val = mfspr(SPRN_PMC1);
704 break;
705 case 2:
706 val = mfspr(SPRN_PMC2);
707 break;
708 case 3:
709 val = mfspr(SPRN_PMC3);
710 break;
711 case 4:
712 val = mfspr(SPRN_PMC4);
713 break;
714 case 5:
715 val = mfspr(SPRN_PMC5);
716 break;
717 case 6:
718 val = mfspr(SPRN_PMC6);
719 break;
98fb1807 720#ifdef CONFIG_PPC64
4574910e
PM
721 case 7:
722 val = mfspr(SPRN_PMC7);
723 break;
724 case 8:
725 val = mfspr(SPRN_PMC8);
726 break;
98fb1807 727#endif /* CONFIG_PPC64 */
4574910e
PM
728 default:
729 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
730 val = 0;
731 }
732 return val;
733}
734
735/*
736 * Write one PMC.
737 */
738static void write_pmc(int idx, unsigned long val)
739{
740 switch (idx) {
741 case 1:
742 mtspr(SPRN_PMC1, val);
743 break;
744 case 2:
745 mtspr(SPRN_PMC2, val);
746 break;
747 case 3:
748 mtspr(SPRN_PMC3, val);
749 break;
750 case 4:
751 mtspr(SPRN_PMC4, val);
752 break;
753 case 5:
754 mtspr(SPRN_PMC5, val);
755 break;
756 case 6:
757 mtspr(SPRN_PMC6, val);
758 break;
98fb1807 759#ifdef CONFIG_PPC64
4574910e
PM
760 case 7:
761 mtspr(SPRN_PMC7, val);
762 break;
763 case 8:
764 mtspr(SPRN_PMC8, val);
765 break;
98fb1807 766#endif /* CONFIG_PPC64 */
4574910e
PM
767 default:
768 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
769 }
770}
771
5f6d0380
AK
772/* Called from sysrq_handle_showregs() */
773void perf_event_print_debug(void)
774{
775 unsigned long sdar, sier, flags;
776 u32 pmcs[MAX_HWEVENTS];
777 int i;
778
779 if (!ppmu->n_counter)
780 return;
781
782 local_irq_save(flags);
783
784 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
785 smp_processor_id(), ppmu->name, ppmu->n_counter);
786
787 for (i = 0; i < ppmu->n_counter; i++)
788 pmcs[i] = read_pmc(i + 1);
789
790 for (; i < MAX_HWEVENTS; i++)
791 pmcs[i] = 0xdeadbeef;
792
793 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
794 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
795
796 if (ppmu->n_counter > 4)
797 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
798 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
799
800 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
801 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
802
803 sdar = sier = 0;
804#ifdef CONFIG_PPC64
805 sdar = mfspr(SPRN_SDAR);
806
807 if (ppmu->flags & PPMU_HAS_SIER)
808 sier = mfspr(SPRN_SIER);
809
4d9690dd 810 if (ppmu->flags & PPMU_ARCH_207S) {
5f6d0380
AK
811 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
812 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
813 pr_info("EBBRR: %016lx BESCR: %016lx\n",
814 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
815 }
816#endif
817 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
818 mfspr(SPRN_SIAR), sdar, sier);
819
820 local_irq_restore(flags);
821}
822
4574910e
PM
823/*
824 * Check if a set of events can all go on the PMU at once.
825 * If they can't, this will look at alternative codes for the events
826 * and see if any combination of alternative codes is feasible.
cdd6c482 827 * The feasible set is returned in event_id[].
4574910e 828 */
cdd6c482
IM
829static int power_check_constraints(struct cpu_hw_events *cpuhw,
830 u64 event_id[], unsigned int cflags[],
ab7ef2e5 831 int n_ev)
4574910e 832{
448d64f8 833 unsigned long mask, value, nv;
cdd6c482
IM
834 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
835 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 836 int i, j;
448d64f8
PM
837 unsigned long addf = ppmu->add_fields;
838 unsigned long tadd = ppmu->test_adder;
4574910e 839
a8f90e90 840 if (n_ev > ppmu->n_counter)
4574910e
PM
841 return -1;
842
843 /* First see if the events will go on as-is */
844 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 845 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
846 && !ppmu->limited_pmc_event(event_id[i])) {
847 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 848 cpuhw->alternatives[i]);
cdd6c482 849 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 850 }
cdd6c482 851 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 852 &cpuhw->avalues[i][0]))
4574910e 853 return -1;
4574910e
PM
854 }
855 value = mask = 0;
856 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
857 nv = (value | cpuhw->avalues[i][0]) +
858 (value & cpuhw->avalues[i][0] & addf);
4574910e 859 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
860 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
861 cpuhw->amasks[i][0]) != 0)
4574910e
PM
862 break;
863 value = nv;
e51ee31e 864 mask |= cpuhw->amasks[i][0];
4574910e
PM
865 }
866 if (i == n_ev)
867 return 0; /* all OK */
868
869 /* doesn't work, gather alternatives... */
870 if (!ppmu->get_alternatives)
871 return -1;
872 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 873 choice[i] = 0;
cdd6c482 874 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 875 cpuhw->alternatives[i]);
4574910e 876 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
877 ppmu->get_constraint(cpuhw->alternatives[i][j],
878 &cpuhw->amasks[i][j],
879 &cpuhw->avalues[i][j]);
4574910e
PM
880 }
881
882 /* enumerate all possibilities and see if any will work */
883 i = 0;
884 j = -1;
885 value = mask = nv = 0;
886 while (i < n_ev) {
887 if (j >= 0) {
888 /* we're backtracking, restore context */
889 value = svalues[i];
890 mask = smasks[i];
891 j = choice[i];
892 }
893 /*
cdd6c482 894 * See if any alternative k for event_id i,
4574910e
PM
895 * where k > j, will satisfy the constraints.
896 */
897 while (++j < n_alt[i]) {
e51ee31e
PM
898 nv = (value | cpuhw->avalues[i][j]) +
899 (value & cpuhw->avalues[i][j] & addf);
4574910e 900 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
901 (((nv + tadd) ^ cpuhw->avalues[i][j])
902 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
903 break;
904 }
905 if (j >= n_alt[i]) {
906 /*
907 * No feasible alternative, backtrack
cdd6c482 908 * to event_id i-1 and continue enumerating its
4574910e
PM
909 * alternatives from where we got up to.
910 */
911 if (--i < 0)
912 return -1;
913 } else {
914 /*
cdd6c482
IM
915 * Found a feasible alternative for event_id i,
916 * remember where we got up to with this event_id,
917 * go on to the next event_id, and start with
4574910e
PM
918 * the first alternative for it.
919 */
920 choice[i] = j;
921 svalues[i] = value;
922 smasks[i] = mask;
923 value = nv;
e51ee31e 924 mask |= cpuhw->amasks[i][j];
4574910e
PM
925 ++i;
926 j = -1;
927 }
928 }
929
930 /* OK, we have a feasible combination, tell the caller the solution */
931 for (i = 0; i < n_ev; ++i)
cdd6c482 932 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
933 return 0;
934}
935
0475f9ea 936/*
cdd6c482 937 * Check if newly-added events have consistent settings for
0475f9ea 938 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 939 * added events.
0475f9ea 940 */
cdd6c482 941static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 942 int n_prev, int n_new)
0475f9ea 943{
ab7ef2e5
PM
944 int eu = 0, ek = 0, eh = 0;
945 int i, n, first;
cdd6c482 946 struct perf_event *event;
0475f9ea 947
9de5cb0f
ME
948 /*
949 * If the PMU we're on supports per event exclude settings then we
950 * don't need to do any of this logic. NB. This assumes no PMU has both
951 * per event exclude and limited PMCs.
952 */
953 if (ppmu->flags & PPMU_ARCH_207S)
954 return 0;
955
0475f9ea
PM
956 n = n_prev + n_new;
957 if (n <= 1)
958 return 0;
959
ab7ef2e5
PM
960 first = 1;
961 for (i = 0; i < n; ++i) {
962 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
963 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
964 continue;
965 }
cdd6c482 966 event = ctrs[i];
ab7ef2e5 967 if (first) {
cdd6c482
IM
968 eu = event->attr.exclude_user;
969 ek = event->attr.exclude_kernel;
970 eh = event->attr.exclude_hv;
ab7ef2e5 971 first = 0;
cdd6c482
IM
972 } else if (event->attr.exclude_user != eu ||
973 event->attr.exclude_kernel != ek ||
974 event->attr.exclude_hv != eh) {
0475f9ea 975 return -EAGAIN;
ab7ef2e5 976 }
0475f9ea 977 }
ab7ef2e5
PM
978
979 if (eu || ek || eh)
980 for (i = 0; i < n; ++i)
981 if (cflags[i] & PPMU_LIMITED_PMC_OK)
982 cflags[i] |= PPMU_LIMITED_PMC_REQD;
983
0475f9ea
PM
984 return 0;
985}
986
86c74ab3
EM
987static u64 check_and_compute_delta(u64 prev, u64 val)
988{
989 u64 delta = (val - prev) & 0xfffffffful;
990
991 /*
992 * POWER7 can roll back counter values, if the new value is smaller
993 * than the previous value it will cause the delta and the counter to
994 * have bogus values unless we rolled a counter over. If a coutner is
995 * rolled back, it will be smaller, but within 256, which is the maximum
996 * number of events to rollback at once. If we dectect a rollback
997 * return 0. This can lead to a small lack of precision in the
998 * counters.
999 */
1000 if (prev > val && (prev - val) < 256)
1001 delta = 0;
1002
1003 return delta;
1004}
1005
cdd6c482 1006static void power_pmu_read(struct perf_event *event)
4574910e 1007{
98fb1807 1008 s64 val, delta, prev;
4574910e 1009
a4eaf7f1
PZ
1010 if (event->hw.state & PERF_HES_STOPPED)
1011 return;
1012
cdd6c482 1013 if (!event->hw.idx)
4574910e 1014 return;
330a1eb7
ME
1015
1016 if (is_ebb_event(event)) {
1017 val = read_pmc(event->hw.idx);
1018 local64_set(&event->hw.prev_count, val);
1019 return;
1020 }
1021
4574910e
PM
1022 /*
1023 * Performance monitor interrupts come even when interrupts
1024 * are soft-disabled, as long as interrupts are hard-enabled.
1025 * Therefore we treat them like NMIs.
1026 */
1027 do {
e7850595 1028 prev = local64_read(&event->hw.prev_count);
4574910e 1029 barrier();
cdd6c482 1030 val = read_pmc(event->hw.idx);
86c74ab3
EM
1031 delta = check_and_compute_delta(prev, val);
1032 if (!delta)
1033 return;
e7850595 1034 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 1035
e7850595 1036 local64_add(delta, &event->count);
f5602941
AB
1037
1038 /*
1039 * A number of places program the PMC with (0x80000000 - period_left).
1040 * We never want period_left to be less than 1 because we will program
1041 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1042 * roll around to 0 before taking an exception. We have seen this
1043 * on POWER8.
1044 *
1045 * To fix this, clamp the minimum value of period_left to 1.
1046 */
1047 do {
1048 prev = local64_read(&event->hw.period_left);
1049 val = prev - delta;
1050 if (val < 1)
1051 val = 1;
1052 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
4574910e
PM
1053}
1054
ab7ef2e5
PM
1055/*
1056 * On some machines, PMC5 and PMC6 can't be written, don't respect
1057 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 1058 * us if `event' is using such a PMC.
ab7ef2e5
PM
1059 */
1060static int is_limited_pmc(int pmcnum)
1061{
0bbd0d4b
PM
1062 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1063 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
1064}
1065
a8f90e90 1066static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1067 unsigned long pmc5, unsigned long pmc6)
1068{
cdd6c482 1069 struct perf_event *event;
ab7ef2e5
PM
1070 u64 val, prev, delta;
1071 int i;
1072
1073 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1074 event = cpuhw->limited_counter[i];
cdd6c482 1075 if (!event->hw.idx)
ab7ef2e5 1076 continue;
cdd6c482 1077 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 1078 prev = local64_read(&event->hw.prev_count);
cdd6c482 1079 event->hw.idx = 0;
86c74ab3
EM
1080 delta = check_and_compute_delta(prev, val);
1081 if (delta)
1082 local64_add(delta, &event->count);
ab7ef2e5
PM
1083 }
1084}
1085
a8f90e90 1086static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1087 unsigned long pmc5, unsigned long pmc6)
1088{
cdd6c482 1089 struct perf_event *event;
86c74ab3 1090 u64 val, prev;
ab7ef2e5
PM
1091 int i;
1092
1093 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1094 event = cpuhw->limited_counter[i];
cdd6c482
IM
1095 event->hw.idx = cpuhw->limited_hwidx[i];
1096 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
1097 prev = local64_read(&event->hw.prev_count);
1098 if (check_and_compute_delta(prev, val))
1099 local64_set(&event->hw.prev_count, val);
cdd6c482 1100 perf_event_update_userpage(event);
ab7ef2e5
PM
1101 }
1102}
1103
1104/*
cdd6c482 1105 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 1106 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
1107 * other events. We try to keep the values from the limited
1108 * events as consistent as possible by keeping the delay (in
ab7ef2e5 1109 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
1110 * the limited events as small and consistent as possible.
1111 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
1112 * both, and always in the same order, to minimize variability,
1113 * and do it inside the same asm that writes MMCR0.
1114 */
cdd6c482 1115static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
1116{
1117 unsigned long pmc5, pmc6;
1118
1119 if (!cpuhw->n_limited) {
1120 mtspr(SPRN_MMCR0, mmcr0);
1121 return;
1122 }
1123
1124 /*
1125 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
1126 * To ensure we don't get a performance monitor interrupt
1127 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 1128 * events, we first write MMCR0 with the event overflow
dcd945e0 1129 * interrupt enable bits turned off.
ab7ef2e5
PM
1130 */
1131 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1132 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
1133 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1134 "i" (SPRN_MMCR0),
ab7ef2e5
PM
1135 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1136
1137 if (mmcr0 & MMCR0_FC)
a8f90e90 1138 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 1139 else
a8f90e90 1140 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
1141
1142 /*
cdd6c482 1143 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
1144 * enable bits, if necessary.
1145 */
1146 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1147 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
1148}
1149
4574910e 1150/*
cdd6c482
IM
1151 * Disable all events to prevent PMU interrupts and to allow
1152 * events to be added or removed.
4574910e 1153 */
a4eaf7f1 1154static void power_pmu_disable(struct pmu *pmu)
4574910e 1155{
cdd6c482 1156 struct cpu_hw_events *cpuhw;
330a1eb7 1157 unsigned long flags, mmcr0, val;
4574910e 1158
f36a1a13
PM
1159 if (!ppmu)
1160 return;
4574910e 1161 local_irq_save(flags);
69111bac 1162 cpuhw = this_cpu_ptr(&cpu_hw_events);
4574910e 1163
448d64f8 1164 if (!cpuhw->disabled) {
01d0287f
PM
1165 /*
1166 * Check if we ever enabled the PMU on this cpu.
1167 */
1168 if (!cpuhw->pmcs_enabled) {
a6dbf93a 1169 ppc_enable_pmcs();
01d0287f
PM
1170 cpuhw->pmcs_enabled = 1;
1171 }
1172
378a6ee9 1173 /*
76cb8a78 1174 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
378a6ee9 1175 */
330a1eb7 1176 val = mmcr0 = mfspr(SPRN_MMCR0);
378a6ee9 1177 val |= MMCR0_FC;
76cb8a78
ME
1178 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1179 MMCR0_FC56);
378a6ee9
ME
1180
1181 /*
1182 * The barrier is to make sure the mtspr has been
1183 * executed and the PMU has frozen the events etc.
1184 * before we return.
1185 */
1186 write_mmcr0(cpuhw, val);
1187 mb();
1188
f708223d
PM
1189 /*
1190 * Disable instruction sampling if it was enabled
1191 */
1192 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1193 mtspr(SPRN_MMCRA,
1194 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1195 mb();
1196 }
1197
378a6ee9
ME
1198 cpuhw->disabled = 1;
1199 cpuhw->n_added = 0;
330a1eb7
ME
1200
1201 ebb_switch_out(mmcr0);
4574910e 1202 }
330a1eb7 1203
4574910e 1204 local_irq_restore(flags);
4574910e
PM
1205}
1206
1207/*
cdd6c482
IM
1208 * Re-enable all events if disable == 0.
1209 * If we were previously disabled and events were added, then
4574910e
PM
1210 * put the new config on the PMU.
1211 */
a4eaf7f1 1212static void power_pmu_enable(struct pmu *pmu)
4574910e 1213{
cdd6c482
IM
1214 struct perf_event *event;
1215 struct cpu_hw_events *cpuhw;
4574910e
PM
1216 unsigned long flags;
1217 long i;
330a1eb7 1218 unsigned long val, mmcr0;
4574910e 1219 s64 left;
cdd6c482 1220 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
1221 int n_lim;
1222 int idx;
330a1eb7 1223 bool ebb;
4574910e 1224
f36a1a13
PM
1225 if (!ppmu)
1226 return;
4574910e 1227 local_irq_save(flags);
0a48843d 1228
69111bac 1229 cpuhw = this_cpu_ptr(&cpu_hw_events);
0a48843d
ME
1230 if (!cpuhw->disabled)
1231 goto out;
1232
4ea355b5
ME
1233 if (cpuhw->n_events == 0) {
1234 ppc_set_pmu_inuse(0);
1235 goto out;
1236 }
1237
4574910e
PM
1238 cpuhw->disabled = 0;
1239
330a1eb7
ME
1240 /*
1241 * EBB requires an exclusive group and all events must have the EBB
1242 * flag set, or not set, so we can just check a single event. Also we
1243 * know we have at least one event.
1244 */
1245 ebb = is_ebb_event(cpuhw->event[0]);
1246
4574910e 1247 /*
cdd6c482 1248 * If we didn't change anything, or only removed events,
4574910e
PM
1249 * no need to recalculate MMCR* settings and reset the PMCs.
1250 * Just reenable the PMU with the current MMCR* settings
cdd6c482 1251 * (possibly updated for removal of events).
4574910e
PM
1252 */
1253 if (!cpuhw->n_added) {
f708223d 1254 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 1255 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
f708223d 1256 goto out_enable;
4574910e
PM
1257 }
1258
1259 /*
79a4cb28 1260 * Clear all MMCR settings and recompute them for the new set of events.
4574910e 1261 */
79a4cb28
ME
1262 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1263
cdd6c482 1264 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
8abd818f 1265 cpuhw->mmcr, cpuhw->event)) {
4574910e
PM
1266 /* shouldn't ever get here */
1267 printk(KERN_ERR "oops compute_mmcr failed\n");
1268 goto out;
1269 }
1270
9de5cb0f
ME
1271 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1272 /*
1273 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1274 * bits for the first event. We have already checked that all
1275 * events have the same value for these bits as the first event.
1276 */
1277 event = cpuhw->event[0];
1278 if (event->attr.exclude_user)
1279 cpuhw->mmcr[0] |= MMCR0_FCP;
1280 if (event->attr.exclude_kernel)
1281 cpuhw->mmcr[0] |= freeze_events_kernel;
1282 if (event->attr.exclude_hv)
1283 cpuhw->mmcr[0] |= MMCR0_FCHV;
1284 }
0475f9ea 1285
4574910e
PM
1286 /*
1287 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
1288 * bit set and set the hardware events to their initial values.
1289 * Then unfreeze the events.
4574910e 1290 */
a6dbf93a 1291 ppc_set_pmu_inuse(1);
f708223d 1292 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
1293 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1294 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1295 | MMCR0_FC);
9de5cb0f
ME
1296 if (ppmu->flags & PPMU_ARCH_207S)
1297 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
4574910e
PM
1298
1299 /*
cdd6c482 1300 * Read off any pre-existing events that need to move
4574910e
PM
1301 * to another PMC.
1302 */
cdd6c482
IM
1303 for (i = 0; i < cpuhw->n_events; ++i) {
1304 event = cpuhw->event[i];
1305 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1306 power_pmu_read(event);
1307 write_pmc(event->hw.idx, 0);
1308 event->hw.idx = 0;
4574910e
PM
1309 }
1310 }
1311
1312 /*
cdd6c482 1313 * Initialize the PMCs for all the new and moved events.
4574910e 1314 */
ab7ef2e5 1315 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
1316 for (i = 0; i < cpuhw->n_events; ++i) {
1317 event = cpuhw->event[i];
1318 if (event->hw.idx)
4574910e 1319 continue;
ab7ef2e5
PM
1320 idx = hwc_index[i] + 1;
1321 if (is_limited_pmc(idx)) {
a8f90e90 1322 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
1323 cpuhw->limited_hwidx[n_lim] = idx;
1324 ++n_lim;
1325 continue;
1326 }
330a1eb7
ME
1327
1328 if (ebb)
1329 val = local64_read(&event->hw.prev_count);
1330 else {
1331 val = 0;
1332 if (event->hw.sample_period) {
1333 left = local64_read(&event->hw.period_left);
1334 if (left < 0x80000000L)
1335 val = 0x80000000L - left;
1336 }
1337 local64_set(&event->hw.prev_count, val);
4574910e 1338 }
330a1eb7 1339
cdd6c482 1340 event->hw.idx = idx;
a4eaf7f1
PZ
1341 if (event->hw.state & PERF_HES_STOPPED)
1342 val = 0;
ab7ef2e5 1343 write_pmc(idx, val);
330a1eb7 1344
cdd6c482 1345 perf_event_update_userpage(event);
4574910e 1346 }
ab7ef2e5 1347 cpuhw->n_limited = n_lim;
4574910e 1348 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1349
1350 out_enable:
c2e37a26
ME
1351 pmao_restore_workaround(ebb);
1352
9de5cb0f 1353 mmcr0 = ebb_switch_in(ebb, cpuhw);
330a1eb7 1354
f708223d 1355 mb();
b4d6c06c
AK
1356 if (cpuhw->bhrb_users)
1357 ppmu->config_bhrb(cpuhw->bhrb_filter);
1358
330a1eb7 1359 write_mmcr0(cpuhw, mmcr0);
4574910e 1360
f708223d
PM
1361 /*
1362 * Enable instruction sampling if necessary
1363 */
1364 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1365 mb();
1366 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1367 }
1368
4574910e 1369 out:
3925f46b 1370
4574910e
PM
1371 local_irq_restore(flags);
1372}
1373
cdd6c482
IM
1374static int collect_events(struct perf_event *group, int max_count,
1375 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1376 unsigned int *flags)
4574910e
PM
1377{
1378 int n = 0;
cdd6c482 1379 struct perf_event *event;
4574910e 1380
cdd6c482 1381 if (!is_software_event(group)) {
4574910e
PM
1382 if (n >= max_count)
1383 return -1;
1384 ctrs[n] = group;
cdd6c482 1385 flags[n] = group->hw.event_base;
4574910e
PM
1386 events[n++] = group->hw.config;
1387 }
a8f90e90 1388 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1389 if (!is_software_event(event) &&
1390 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1391 if (n >= max_count)
1392 return -1;
cdd6c482
IM
1393 ctrs[n] = event;
1394 flags[n] = event->hw.event_base;
1395 events[n++] = event->hw.config;
4574910e
PM
1396 }
1397 }
1398 return n;
1399}
1400
4574910e 1401/*
cdd6c482
IM
1402 * Add a event to the PMU.
1403 * If all events are not already frozen, then we disable and
9e35ad38 1404 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1405 * actual work of reconfiguring the PMU.
1406 */
a4eaf7f1 1407static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1408{
cdd6c482 1409 struct cpu_hw_events *cpuhw;
4574910e 1410 unsigned long flags;
4574910e
PM
1411 int n0;
1412 int ret = -EAGAIN;
1413
1414 local_irq_save(flags);
33696fc0 1415 perf_pmu_disable(event->pmu);
4574910e
PM
1416
1417 /*
cdd6c482 1418 * Add the event to the list (if there is room)
4574910e
PM
1419 * and check whether the total set is still feasible.
1420 */
69111bac 1421 cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1422 n0 = cpuhw->n_events;
a8f90e90 1423 if (n0 >= ppmu->n_counter)
4574910e 1424 goto out;
cdd6c482
IM
1425 cpuhw->event[n0] = event;
1426 cpuhw->events[n0] = event->hw.config;
1427 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1428
f53d168c 1429 /*
1430 * This event may have been disabled/stopped in record_and_restart()
1431 * because we exceeded the ->event_limit. If re-starting the event,
1432 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1433 * notification is re-enabled.
1434 */
a4eaf7f1
PZ
1435 if (!(ef_flags & PERF_EF_START))
1436 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1437 else
1438 event->hw.state = 0;
a4eaf7f1 1439
8e6d5573
LM
1440 /*
1441 * If group events scheduling transaction was started,
25985edc 1442 * skip the schedulability test here, it will be performed
8e6d5573
LM
1443 * at commit time(->commit_txn) as a whole
1444 */
8d2cacbb 1445 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1446 goto nocheck;
1447
cdd6c482 1448 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1449 goto out;
e51ee31e 1450 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1451 goto out;
cdd6c482 1452 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1453
1454nocheck:
330a1eb7
ME
1455 ebb_event_add(event);
1456
cdd6c482 1457 ++cpuhw->n_events;
4574910e
PM
1458 ++cpuhw->n_added;
1459
1460 ret = 0;
1461 out:
ff3d79dc 1462 if (has_branch_stack(event)) {
3925f46b 1463 power_pmu_bhrb_enable(event);
ff3d79dc
AK
1464 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1465 event->attr.branch_sample_type);
1466 }
3925f46b 1467
33696fc0 1468 perf_pmu_enable(event->pmu);
4574910e
PM
1469 local_irq_restore(flags);
1470 return ret;
1471}
1472
1473/*
cdd6c482 1474 * Remove a event from the PMU.
4574910e 1475 */
a4eaf7f1 1476static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1477{
cdd6c482 1478 struct cpu_hw_events *cpuhw;
4574910e 1479 long i;
4574910e
PM
1480 unsigned long flags;
1481
1482 local_irq_save(flags);
33696fc0 1483 perf_pmu_disable(event->pmu);
4574910e 1484
cdd6c482
IM
1485 power_pmu_read(event);
1486
69111bac 1487 cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482
IM
1488 for (i = 0; i < cpuhw->n_events; ++i) {
1489 if (event == cpuhw->event[i]) {
219a92a4 1490 while (++i < cpuhw->n_events) {
cdd6c482 1491 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1492 cpuhw->events[i-1] = cpuhw->events[i];
1493 cpuhw->flags[i-1] = cpuhw->flags[i];
1494 }
cdd6c482
IM
1495 --cpuhw->n_events;
1496 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1497 if (event->hw.idx) {
1498 write_pmc(event->hw.idx, 0);
1499 event->hw.idx = 0;
ab7ef2e5 1500 }
cdd6c482 1501 perf_event_update_userpage(event);
4574910e
PM
1502 break;
1503 }
1504 }
ab7ef2e5 1505 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1506 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1507 break;
1508 if (i < cpuhw->n_limited) {
1509 while (++i < cpuhw->n_limited) {
a8f90e90 1510 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1511 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1512 }
1513 --cpuhw->n_limited;
1514 }
cdd6c482
IM
1515 if (cpuhw->n_events == 0) {
1516 /* disable exceptions if no events are running */
4574910e
PM
1517 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1518 }
1519
3925f46b
AK
1520 if (has_branch_stack(event))
1521 power_pmu_bhrb_disable(event);
1522
33696fc0 1523 perf_pmu_enable(event->pmu);
4574910e
PM
1524 local_irq_restore(flags);
1525}
1526
8a7b8cb9 1527/*
a4eaf7f1
PZ
1528 * POWER-PMU does not support disabling individual counters, hence
1529 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1530 */
a4eaf7f1
PZ
1531
1532static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1533{
8a7b8cb9 1534 unsigned long flags;
a4eaf7f1 1535 s64 left;
9a45a940 1536 unsigned long val;
8a7b8cb9 1537
cdd6c482 1538 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1539 return;
a4eaf7f1
PZ
1540
1541 if (!(event->hw.state & PERF_HES_STOPPED))
1542 return;
1543
1544 if (ef_flags & PERF_EF_RELOAD)
1545 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1546
1547 local_irq_save(flags);
1548 perf_pmu_disable(event->pmu);
1549
1550 event->hw.state = 0;
1551 left = local64_read(&event->hw.period_left);
9a45a940
AB
1552
1553 val = 0;
1554 if (left < 0x80000000L)
1555 val = 0x80000000L - left;
1556
1557 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1558
1559 perf_event_update_userpage(event);
1560 perf_pmu_enable(event->pmu);
1561 local_irq_restore(flags);
1562}
1563
1564static void power_pmu_stop(struct perf_event *event, int ef_flags)
1565{
1566 unsigned long flags;
1567
1568 if (!event->hw.idx || !event->hw.sample_period)
1569 return;
1570
1571 if (event->hw.state & PERF_HES_STOPPED)
1572 return;
1573
8a7b8cb9 1574 local_irq_save(flags);
33696fc0 1575 perf_pmu_disable(event->pmu);
a4eaf7f1 1576
cdd6c482 1577 power_pmu_read(event);
a4eaf7f1
PZ
1578 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1579 write_pmc(event->hw.idx, 0);
1580
cdd6c482 1581 perf_event_update_userpage(event);
33696fc0 1582 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1583 local_irq_restore(flags);
1584}
1585
8e6d5573
LM
1586/*
1587 * Start group events scheduling transaction
1588 * Set the flag to make pmu::enable() not perform the
1589 * schedulability test, it will be performed at commit time
fbbe0701
SB
1590 *
1591 * We only support PERF_PMU_TXN_ADD transactions. Save the
1592 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1593 * transactions.
8e6d5573 1594 */
fbbe0701 1595static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
8e6d5573 1596{
69111bac 1597 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
8e6d5573 1598
fbbe0701
SB
1599 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1600
1601 cpuhw->txn_flags = txn_flags;
1602 if (txn_flags & ~PERF_PMU_TXN_ADD)
1603 return;
1604
33696fc0 1605 perf_pmu_disable(pmu);
8d2cacbb 1606 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1607 cpuhw->n_txn_start = cpuhw->n_events;
1608}
1609
1610/*
1611 * Stop group events scheduling transaction
1612 * Clear the flag and pmu::enable() will perform the
1613 * schedulability test.
1614 */
e51df2c1 1615static void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573 1616{
69111bac 1617 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
fbbe0701
SB
1618 unsigned int txn_flags;
1619
1620 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1621
1622 txn_flags = cpuhw->txn_flags;
1623 cpuhw->txn_flags = 0;
1624 if (txn_flags & ~PERF_PMU_TXN_ADD)
1625 return;
8e6d5573 1626
8d2cacbb 1627 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1628 perf_pmu_enable(pmu);
8e6d5573
LM
1629}
1630
1631/*
1632 * Commit group events scheduling transaction
1633 * Perform the group schedulability test as a whole
1634 * Return 0 if success
1635 */
e51df2c1 1636static int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1637{
1638 struct cpu_hw_events *cpuhw;
1639 long i, n;
1640
1641 if (!ppmu)
1642 return -EAGAIN;
fbbe0701 1643
69111bac 1644 cpuhw = this_cpu_ptr(&cpu_hw_events);
fbbe0701
SB
1645 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1646
1647 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1648 cpuhw->txn_flags = 0;
1649 return 0;
1650 }
1651
8e6d5573
LM
1652 n = cpuhw->n_events;
1653 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1654 return -EAGAIN;
1655 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1656 if (i < 0)
1657 return -EAGAIN;
1658
1659 for (i = cpuhw->n_txn_start; i < n; ++i)
1660 cpuhw->event[i]->hw.config = cpuhw->events[i];
1661
8d2cacbb 1662 cpuhw->group_flag &= ~PERF_EVENT_TXN;
fbbe0701 1663 cpuhw->txn_flags = 0;
33696fc0 1664 perf_pmu_enable(pmu);
8e6d5573
LM
1665 return 0;
1666}
1667
ab7ef2e5 1668/*
cdd6c482 1669 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1670 * or 0 if not.
cdd6c482 1671 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1672 * that a limited PMC can count, doesn't require interrupts, and
1673 * doesn't exclude any processor mode.
1674 */
cdd6c482 1675static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1676 unsigned int flags)
1677{
1678 int n;
ef923214 1679 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1680
cdd6c482
IM
1681 if (event->attr.exclude_user
1682 || event->attr.exclude_kernel
1683 || event->attr.exclude_hv
1684 || event->attr.sample_period)
ab7ef2e5
PM
1685 return 0;
1686
1687 if (ppmu->limited_pmc_event(ev))
1688 return 1;
1689
1690 /*
cdd6c482 1691 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1692 * see if any alternative code goes on a limited PMC.
1693 */
1694 if (!ppmu->get_alternatives)
1695 return 0;
1696
1697 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1698 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1699
ef923214 1700 return n > 0;
ab7ef2e5
PM
1701}
1702
1703/*
cdd6c482
IM
1704 * Find an alternative event_id that goes on a normal PMC, if possible,
1705 * and return the event_id code, or 0 if there is no such alternative.
1706 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1707 */
ef923214 1708static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1709{
ef923214 1710 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1711 int n;
1712
1713 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1714 n = ppmu->get_alternatives(ev, flags, alt);
1715 if (!n)
1716 return 0;
1717 return alt[0];
1718}
1719
cdd6c482
IM
1720/* Number of perf_events counting hardware events */
1721static atomic_t num_events;
7595d63b
PM
1722/* Used to avoid races in calling reserve/release_pmc_hardware */
1723static DEFINE_MUTEX(pmc_reserve_mutex);
1724
1725/*
cdd6c482 1726 * Release the PMU if this is the last perf_event.
7595d63b 1727 */
cdd6c482 1728static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1729{
cdd6c482 1730 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1731 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1732 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1733 release_pmc_hardware();
1734 mutex_unlock(&pmc_reserve_mutex);
1735 }
1736}
1737
106b506c 1738/*
cdd6c482 1739 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1740 */
1741static int hw_perf_cache_event(u64 config, u64 *eventp)
1742{
1743 unsigned long type, op, result;
1744 int ev;
1745
1746 if (!ppmu->cache_events)
1747 return -EINVAL;
1748
1749 /* unpack config */
1750 type = config & 0xff;
1751 op = (config >> 8) & 0xff;
1752 result = (config >> 16) & 0xff;
1753
1754 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1755 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1756 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1757 return -EINVAL;
1758
1759 ev = (*ppmu->cache_events)[type][op][result];
1760 if (ev == 0)
1761 return -EOPNOTSUPP;
1762 if (ev == -1)
1763 return -EINVAL;
1764 *eventp = ev;
1765 return 0;
1766}
1767
b0a873eb 1768static int power_pmu_event_init(struct perf_event *event)
4574910e 1769{
ef923214
PM
1770 u64 ev;
1771 unsigned long flags;
cdd6c482
IM
1772 struct perf_event *ctrs[MAX_HWEVENTS];
1773 u64 events[MAX_HWEVENTS];
1774 unsigned int cflags[MAX_HWEVENTS];
4574910e 1775 int n;
7595d63b 1776 int err;
cdd6c482 1777 struct cpu_hw_events *cpuhw;
4574910e
PM
1778
1779 if (!ppmu)
b0a873eb
PZ
1780 return -ENOENT;
1781
3925f46b
AK
1782 if (has_branch_stack(event)) {
1783 /* PMU has BHRB enabled */
4d9690dd 1784 if (!(ppmu->flags & PPMU_ARCH_207S))
3925f46b
AK
1785 return -EOPNOTSUPP;
1786 }
2481c5fa 1787
cdd6c482 1788 switch (event->attr.type) {
106b506c 1789 case PERF_TYPE_HARDWARE:
cdd6c482 1790 ev = event->attr.config;
9aaa131a 1791 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1792 return -EOPNOTSUPP;
4574910e 1793 ev = ppmu->generic_events[ev];
106b506c
PM
1794 break;
1795 case PERF_TYPE_HW_CACHE:
cdd6c482 1796 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1797 if (err)
b0a873eb 1798 return err;
106b506c
PM
1799 break;
1800 case PERF_TYPE_RAW:
cdd6c482 1801 ev = event->attr.config;
106b506c 1802 break;
90c8f954 1803 default:
b0a873eb 1804 return -ENOENT;
4574910e 1805 }
b0a873eb 1806
cdd6c482
IM
1807 event->hw.config_base = ev;
1808 event->hw.idx = 0;
4574910e 1809
0475f9ea
PM
1810 /*
1811 * If we are not running on a hypervisor, force the
1812 * exclude_hv bit to 0 so that we don't care what
d095cd46 1813 * the user set it to.
0475f9ea
PM
1814 */
1815 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1816 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1817
1818 /*
cdd6c482 1819 * If this is a per-task event, then we can use
ab7ef2e5
PM
1820 * PM_RUN_* events interchangeably with their non RUN_*
1821 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1822 * XXX we should check if the task is an idle task.
1823 */
1824 flags = 0;
57fa7214 1825 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1826 flags |= PPMU_ONLY_COUNT_RUN;
1827
1828 /*
cdd6c482
IM
1829 * If this machine has limited events, check whether this
1830 * event_id could go on a limited event.
ab7ef2e5 1831 */
0bbd0d4b 1832 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1833 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1834 flags |= PPMU_LIMITED_PMC_OK;
1835 } else if (ppmu->limited_pmc_event(ev)) {
1836 /*
cdd6c482 1837 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1838 * but we can't use a limited PMC; see if any
1839 * alternative goes on a normal PMC.
1840 */
1841 ev = normal_pmc_alternative(ev, flags);
1842 if (!ev)
b0a873eb 1843 return -EINVAL;
ab7ef2e5
PM
1844 }
1845 }
1846
330a1eb7
ME
1847 /* Extra checks for EBB */
1848 err = ebb_event_check(event);
1849 if (err)
1850 return err;
1851
4574910e
PM
1852 /*
1853 * If this is in a group, check if it can go on with all the
cdd6c482 1854 * other hardware events in the group. We assume the event
4574910e
PM
1855 * hasn't been linked into its leader's sibling list at this point.
1856 */
1857 n = 0;
cdd6c482 1858 if (event->group_leader != event) {
a8f90e90 1859 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1860 ctrs, events, cflags);
4574910e 1861 if (n < 0)
b0a873eb 1862 return -EINVAL;
4574910e 1863 }
0475f9ea 1864 events[n] = ev;
cdd6c482 1865 ctrs[n] = event;
ab7ef2e5
PM
1866 cflags[n] = flags;
1867 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1868 return -EINVAL;
e51ee31e 1869
cdd6c482 1870 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1871 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1872
1873 if (has_branch_stack(event)) {
1874 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1875 event->attr.branch_sample_type);
1876
68de8867
JS
1877 if (cpuhw->bhrb_filter == -1) {
1878 put_cpu_var(cpu_hw_events);
3925f46b 1879 return -EOPNOTSUPP;
68de8867 1880 }
3925f46b
AK
1881 }
1882
cdd6c482 1883 put_cpu_var(cpu_hw_events);
e51ee31e 1884 if (err)
b0a873eb 1885 return -EINVAL;
4574910e 1886
cdd6c482
IM
1887 event->hw.config = events[n];
1888 event->hw.event_base = cflags[n];
1889 event->hw.last_period = event->hw.sample_period;
e7850595 1890 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b 1891
330a1eb7
ME
1892 /*
1893 * For EBB events we just context switch the PMC value, we don't do any
1894 * of the sample_period logic. We use hw.prev_count for this.
1895 */
1896 if (is_ebb_event(event))
1897 local64_set(&event->hw.prev_count, 0);
1898
7595d63b
PM
1899 /*
1900 * See if we need to reserve the PMU.
cdd6c482 1901 * If no events are currently in use, then we have to take a
7595d63b
PM
1902 * mutex to ensure that we don't race with another task doing
1903 * reserve_pmc_hardware or release_pmc_hardware.
1904 */
1905 err = 0;
cdd6c482 1906 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1907 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1908 if (atomic_read(&num_events) == 0 &&
1909 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1910 err = -EBUSY;
1911 else
cdd6c482 1912 atomic_inc(&num_events);
7595d63b
PM
1913 mutex_unlock(&pmc_reserve_mutex);
1914 }
cdd6c482 1915 event->destroy = hw_perf_event_destroy;
7595d63b 1916
b0a873eb 1917 return err;
4574910e
PM
1918}
1919
35edc2a5
PZ
1920static int power_pmu_event_idx(struct perf_event *event)
1921{
1922 return event->hw.idx;
1923}
1924
1c53a270
SB
1925ssize_t power_events_sysfs_show(struct device *dev,
1926 struct device_attribute *attr, char *page)
1927{
1928 struct perf_pmu_events_attr *pmu_attr;
1929
1930 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1931
1932 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1933}
1934
e51df2c1 1935static struct pmu power_pmu = {
a4eaf7f1
PZ
1936 .pmu_enable = power_pmu_enable,
1937 .pmu_disable = power_pmu_disable,
b0a873eb 1938 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1939 .add = power_pmu_add,
1940 .del = power_pmu_del,
1941 .start = power_pmu_start,
1942 .stop = power_pmu_stop,
b0a873eb 1943 .read = power_pmu_read,
b0a873eb
PZ
1944 .start_txn = power_pmu_start_txn,
1945 .cancel_txn = power_pmu_cancel_txn,
1946 .commit_txn = power_pmu_commit_txn,
35edc2a5 1947 .event_idx = power_pmu_event_idx,
acba3c7e 1948 .sched_task = power_pmu_sched_task,
b0a873eb
PZ
1949};
1950
4574910e 1951/*
57c0c15b 1952 * A counter has overflowed; update its count and record
4574910e
PM
1953 * things if requested. Note that interrupts are hard-disabled
1954 * here so there is no possibility of being interrupted.
1955 */
cdd6c482 1956static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1957 struct pt_regs *regs)
4574910e 1958{
cdd6c482 1959 u64 period = event->hw.sample_period;
4574910e
PM
1960 s64 prev, delta, left;
1961 int record = 0;
1962
a4eaf7f1
PZ
1963 if (event->hw.state & PERF_HES_STOPPED) {
1964 write_pmc(event->hw.idx, 0);
1965 return;
1966 }
1967
4574910e 1968 /* we don't have to worry about interrupts here */
e7850595 1969 prev = local64_read(&event->hw.prev_count);
86c74ab3 1970 delta = check_and_compute_delta(prev, val);
e7850595 1971 local64_add(delta, &event->count);
4574910e
PM
1972
1973 /*
cdd6c482 1974 * See if the total period for this event has expired,
4574910e
PM
1975 * and update for the next period.
1976 */
1977 val = 0;
e7850595 1978 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1979 if (delta == 0)
1980 left++;
60db5e09 1981 if (period) {
4574910e 1982 if (left <= 0) {
60db5e09 1983 left += period;
4574910e 1984 if (left <= 0)
60db5e09 1985 left = period;
e6878835 1986 record = siar_valid(regs);
4bca770e 1987 event->hw.last_period = event->hw.sample_period;
4574910e 1988 }
98fb1807
PM
1989 if (left < 0x80000000LL)
1990 val = 0x80000000LL - left;
4574910e 1991 }
4574910e 1992
a4eaf7f1
PZ
1993 write_pmc(event->hw.idx, val);
1994 local64_set(&event->hw.prev_count, val);
1995 local64_set(&event->hw.period_left, left);
1996 perf_event_update_userpage(event);
1997
4574910e
PM
1998 /*
1999 * Finally record data if requested.
2000 */
0bbd0d4b 2001 if (record) {
dc1d628a
PZ
2002 struct perf_sample_data data;
2003
fd0d000b 2004 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 2005
cdd6c482 2006 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
2007 perf_get_data_addr(regs, &data.addr);
2008
3925f46b
AK
2009 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2010 struct cpu_hw_events *cpuhw;
69111bac 2011 cpuhw = this_cpu_ptr(&cpu_hw_events);
3925f46b
AK
2012 power_pmu_bhrb_read(cpuhw);
2013 data.br_stack = &cpuhw->bhrb_stack;
2014 }
2015
a8b0ca17 2016 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 2017 power_pmu_stop(event, 0);
0bbd0d4b
PM
2018 }
2019}
2020
2021/*
2022 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 2023 * for an event_id.
0bbd0d4b
PM
2024 */
2025unsigned long perf_misc_flags(struct pt_regs *regs)
2026{
98fb1807 2027 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 2028
98fb1807
PM
2029 if (flags)
2030 return flags;
cdd6c482
IM
2031 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2032 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
2033}
2034
2035/*
2036 * Called from generic code to get the instruction pointer
cdd6c482 2037 * for an event_id.
0bbd0d4b
PM
2038 */
2039unsigned long perf_instruction_pointer(struct pt_regs *regs)
2040{
33904054 2041 bool use_siar = regs_use_siar(regs);
0bbd0d4b 2042
e6878835 2043 if (use_siar && siar_valid(regs))
75382aa7 2044 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 2045 else if (use_siar)
2046 return 0; // no valid instruction pointer
75382aa7 2047 else
1ce447b9 2048 return regs->nip;
4574910e
PM
2049}
2050
bc09c219 2051static bool pmc_overflow_power7(unsigned long val)
0837e324 2052{
0837e324
AB
2053 /*
2054 * Events on POWER7 can roll back if a speculative event doesn't
2055 * eventually complete. Unfortunately in some rare cases they will
2056 * raise a performance monitor exception. We need to catch this to
2057 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2058 * cycles from overflow.
2059 *
2060 * We only do this if the first pass fails to find any overflowing
2061 * PMCs because a user might set a period of less than 256 and we
2062 * don't want to mistakenly reset them.
2063 */
bc09c219
MN
2064 if ((0x80000000 - val) <= 256)
2065 return true;
2066
2067 return false;
2068}
2069
2070static bool pmc_overflow(unsigned long val)
2071{
2072 if ((int)val < 0)
0837e324
AB
2073 return true;
2074
2075 return false;
2076}
2077
4574910e
PM
2078/*
2079 * Performance monitor interrupt stuff
2080 */
cdd6c482 2081static void perf_event_interrupt(struct pt_regs *regs)
4574910e 2082{
bc09c219 2083 int i, j;
69111bac 2084 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482 2085 struct perf_event *event;
bc09c219
MN
2086 unsigned long val[8];
2087 int found, active;
ca8f2d7f
PM
2088 int nmi;
2089
ab7ef2e5 2090 if (cpuhw->n_limited)
a8f90e90 2091 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
2092 mfspr(SPRN_PMC6));
2093
98fb1807 2094 perf_read_regs(regs);
0bbd0d4b 2095
98fb1807 2096 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
2097 if (nmi)
2098 nmi_enter();
2099 else
2100 irq_enter();
4574910e 2101
bc09c219
MN
2102 /* Read all the PMCs since we'll need them a bunch of times */
2103 for (i = 0; i < ppmu->n_counter; ++i)
2104 val[i] = read_pmc(i + 1);
2105
2106 /* Try to find what caused the IRQ */
2107 found = 0;
2108 for (i = 0; i < ppmu->n_counter; ++i) {
2109 if (!pmc_overflow(val[i]))
ab7ef2e5 2110 continue;
bc09c219
MN
2111 if (is_limited_pmc(i + 1))
2112 continue; /* these won't generate IRQs */
2113 /*
2114 * We've found one that's overflowed. For active
2115 * counters we need to log this. For inactive
2116 * counters, we need to reset it anyway
2117 */
2118 found = 1;
2119 active = 0;
2120 for (j = 0; j < cpuhw->n_events; ++j) {
2121 event = cpuhw->event[j];
2122 if (event->hw.idx == (i + 1)) {
2123 active = 1;
2124 record_and_restart(event, val[i], regs);
2125 break;
2126 }
4574910e 2127 }
bc09c219
MN
2128 if (!active)
2129 /* reset non active counters that have overflowed */
2130 write_pmc(i + 1, 0);
4574910e 2131 }
bc09c219
MN
2132 if (!found && pvr_version_is(PVR_POWER7)) {
2133 /* check active counters for special buggy p7 overflow */
2134 for (i = 0; i < cpuhw->n_events; ++i) {
2135 event = cpuhw->event[i];
2136 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 2137 continue;
bc09c219
MN
2138 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2139 /* event has overflowed in a buggy way*/
2140 found = 1;
2141 record_and_restart(event,
2142 val[event->hw.idx - 1],
2143 regs);
2144 }
4574910e
PM
2145 }
2146 }
6772faa1 2147 if (!found && !nmi && printk_ratelimit())
bc09c219 2148 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
2149
2150 /*
2151 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 2152 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 2153 * and thus allow interrupts to occur again.
cdd6c482 2154 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
2155 * we get back out of this interrupt.
2156 */
ab7ef2e5 2157 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 2158
ca8f2d7f
PM
2159 if (nmi)
2160 nmi_exit();
2161 else
db4fb5ac 2162 irq_exit();
4574910e
PM
2163}
2164
3f6da390 2165static void power_pmu_setup(int cpu)
01d0287f 2166{
cdd6c482 2167 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 2168
f36a1a13
PM
2169 if (!ppmu)
2170 return;
01d0287f
PM
2171 memset(cpuhw, 0, sizeof(*cpuhw));
2172 cpuhw->mmcr[0] = MMCR0_FC;
2173}
2174
061d19f2 2175static int
85cfabbc 2176power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
2177{
2178 unsigned int cpu = (long)hcpu;
2179
2180 switch (action & ~CPU_TASKS_FROZEN) {
2181 case CPU_UP_PREPARE:
2182 power_pmu_setup(cpu);
2183 break;
2184
2185 default:
2186 break;
2187 }
2188
2189 return NOTIFY_OK;
2190}
2191
061d19f2 2192int register_power_pmu(struct power_pmu *pmu)
4574910e 2193{
079b3c56
PM
2194 if (ppmu)
2195 return -EBUSY; /* something's already registered */
2196
2197 ppmu = pmu;
2198 pr_info("%s performance monitor hardware support registered\n",
2199 pmu->name);
d095cd46 2200
1c53a270
SB
2201 power_pmu.attr_groups = ppmu->attr_groups;
2202
98fb1807 2203#ifdef MSR_HV
d095cd46
PM
2204 /*
2205 * Use FCHV to ignore kernel events if MSR.HV is set.
2206 */
2207 if (mfmsr() & MSR_HV)
cdd6c482 2208 freeze_events_kernel = MMCR0_FCHV;
98fb1807 2209#endif /* CONFIG_PPC64 */
d095cd46 2210
2e80a82a 2211 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
2212 perf_cpu_notifier(power_pmu_notifier);
2213
4574910e
PM
2214 return 0;
2215}