]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/perf/core-book3s.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
b0d436c7 27#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
3925f46b 28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
9de5cb0f
ME
39 /*
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
43 */
44 unsigned long mmcr[4];
a8f90e90
PM
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573 50
fbbe0701 51 unsigned int txn_flags;
8e6d5573 52 int n_txn_start;
3925f46b
AK
53
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
f0322f7f 56 unsigned int bhrb_users;
3925f46b
AK
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
356d8ce3 60 u64 ic_init;
4574910e 61};
3925f46b 62
e51df2c1 63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e 64
e51df2c1 65static struct power_pmu *ppmu;
4574910e 66
d095cd46 67/*
57c0c15b 68 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
73 */
cdd6c482 74static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 75
98fb1807
PM
76/*
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
79 */
80#ifdef CONFIG_PPC32
81
82#define MMCR0_FCHV 0
83#define MMCR0_PMCjCE MMCR0_PMCnCE
7a7a41f9 84#define MMCR0_FC56 0
378a6ee9 85#define MMCR0_PMAO 0
330a1eb7 86#define MMCR0_EBE 0
76cb8a78 87#define MMCR0_BHRBA 0
330a1eb7
ME
88#define MMCR0_PMCC 0
89#define MMCR0_PMCC_U6 0
98fb1807
PM
90
91#define SPRN_MMCRA SPRN_MMCR2
92#define MMCRA_SAMPLE_ENABLE 0
93
94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95{
96 return 0;
97}
98fb1807
PM
98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100{
101 return 0;
102}
75382aa7
AB
103static inline void perf_read_regs(struct pt_regs *regs)
104{
105 regs->result = 0;
106}
98fb1807
PM
107static inline int perf_intr_is_nmi(struct pt_regs *regs)
108{
109 return 0;
110}
111
e6878835 112static inline int siar_valid(struct pt_regs *regs)
113{
114 return 1;
115}
116
330a1eb7
ME
117static bool is_ebb_event(struct perf_event *event) { return false; }
118static int ebb_event_check(struct perf_event *event) { return 0; }
119static void ebb_event_add(struct perf_event *event) { }
120static void ebb_switch_out(unsigned long mmcr0) { }
9de5cb0f 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
330a1eb7 122{
9de5cb0f 123 return cpuhw->mmcr[0];
330a1eb7
ME
124}
125
d52f2dc4
MN
126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
acba3c7e 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
d52f2dc4 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
c2e37a26 130static void pmao_restore_workaround(bool ebb) { }
356d8ce3
MS
131static bool use_ic(u64 event)
132{
133 return false;
134}
98fb1807
PM
135#endif /* CONFIG_PPC32 */
136
33904054
ME
137static bool regs_use_siar(struct pt_regs *regs)
138{
72e349f1
AB
139 /*
140 * When we take a performance monitor exception the regs are setup
141 * using perf_read_regs() which overloads some fields, in particular
142 * regs->result to tell us whether to use SIAR.
143 *
144 * However if the regs are from another exception, eg. a syscall, then
145 * they have not been setup using perf_read_regs() and so regs->result
146 * is something random.
147 */
148 return ((TRAP(regs) == 0xf00) && regs->result);
33904054
ME
149}
150
98fb1807
PM
151/*
152 * Things that are specific to 64-bit implementations.
153 */
154#ifdef CONFIG_PPC64
155
156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
157{
158 unsigned long mmcra = regs->dsisr;
159
7a786832 160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 if (slot > 1)
163 return 4 * (slot - 1);
164 }
7a786832 165
98fb1807
PM
166 return 0;
167}
168
98fb1807
PM
169/*
170 * The user wants a data address recorded.
171 * If we're not doing instruction sampling, give them the SDAR
172 * (sampled data address). If we are doing instruction sampling, then
173 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
176 */
177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
178{
179 unsigned long mmcra = regs->dsisr;
58a032c3 180 bool sdar_valid;
e6878835 181
58a032c3
ME
182 if (ppmu->flags & PPMU_HAS_SIER)
183 sdar_valid = regs->dar & SIER_SDAR_VALID;
184 else {
185 unsigned long sdsync;
186
187 if (ppmu->flags & PPMU_SIAR_VALID)
188 sdsync = POWER7P_MMCRA_SDAR_VALID;
189 else if (ppmu->flags & PPMU_ALT_SIPR)
190 sdsync = POWER6_MMCRA_SDSYNC;
f04d1080
MS
191 else if (ppmu->flags & PPMU_NO_SIAR)
192 sdsync = MMCRA_SAMPLE_ENABLE;
58a032c3
ME
193 else
194 sdsync = MMCRA_SDSYNC;
195
196 sdar_valid = mmcra & sdsync;
197 }
98fb1807 198
58a032c3 199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
200 *addrp = mfspr(SPRN_SDAR);
201}
202
5682c460 203static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
204{
205 unsigned long sihv = MMCRA_SIHV;
206
8f61aa32
ME
207 if (ppmu->flags & PPMU_HAS_SIER)
208 return !!(regs->dar & SIER_SIHV);
209
68b30bb9
AB
210 if (ppmu->flags & PPMU_ALT_SIPR)
211 sihv = POWER6_MMCRA_SIHV;
212
5682c460 213 return !!(regs->dsisr & sihv);
68b30bb9
AB
214}
215
5682c460 216static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
217{
218 unsigned long sipr = MMCRA_SIPR;
219
8f61aa32
ME
220 if (ppmu->flags & PPMU_HAS_SIER)
221 return !!(regs->dar & SIER_SIPR);
222
68b30bb9
AB
223 if (ppmu->flags & PPMU_ALT_SIPR)
224 sipr = POWER6_MMCRA_SIPR;
225
5682c460 226 return !!(regs->dsisr & sipr);
68b30bb9
AB
227}
228
1ce447b9
BH
229static inline u32 perf_flags_from_msr(struct pt_regs *regs)
230{
231 if (regs->msr & MSR_PR)
232 return PERF_RECORD_MISC_USER;
233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 return PERF_RECORD_MISC_HYPERVISOR;
235 return PERF_RECORD_MISC_KERNEL;
236}
237
98fb1807
PM
238static inline u32 perf_get_misc_flags(struct pt_regs *regs)
239{
33904054 240 bool use_siar = regs_use_siar(regs);
98fb1807 241
75382aa7 242 if (!use_siar)
1ce447b9
BH
243 return perf_flags_from_msr(regs);
244
245 /*
246 * If we don't have flags in MMCRA, rather than using
247 * the MSR, we intuit the flags from the address in
248 * SIAR which should give slightly more reliable
249 * results
250 */
cbda6aa1 251 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9 252 unsigned long siar = mfspr(SPRN_SIAR);
a2391b35 253 if (is_kernel_addr(siar))
1ce447b9
BH
254 return PERF_RECORD_MISC_KERNEL;
255 return PERF_RECORD_MISC_USER;
256 }
98fb1807 257
7abb840b 258 /* PR has priority over HV, so order below is important */
5682c460 259 if (regs_sipr(regs))
7abb840b 260 return PERF_RECORD_MISC_USER;
5682c460
ME
261
262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 263 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 264
7abb840b 265 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
266}
267
268/*
269 * Overload regs->dsisr to store MMCRA so we only need to read it once
270 * on each interrupt.
8f61aa32 271 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
272 * Overload regs->result to specify whether we should use the MSR (result
273 * is zero) or the SIAR (result is non zero).
98fb1807
PM
274 */
275static inline void perf_read_regs(struct pt_regs *regs)
276{
75382aa7
AB
277 unsigned long mmcra = mfspr(SPRN_MMCRA);
278 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
279 int use_siar;
280
5682c460 281 regs->dsisr = mmcra;
8f61aa32 282
cbda6aa1
ME
283 if (ppmu->flags & PPMU_HAS_SIER)
284 regs->dar = mfspr(SPRN_SIER);
8f61aa32 285
5c093efa
AB
286 /*
287 * If this isn't a PMU exception (eg a software event) the SIAR is
288 * not valid. Use pt_regs.
289 *
290 * If it is a marked event use the SIAR.
291 *
292 * If the PMU doesn't update the SIAR for non marked events use
293 * pt_regs.
294 *
295 * If the PMU has HV/PR flags then check to see if they
296 * place the exception in userspace. If so, use pt_regs. In
297 * continuous sampling mode the SIAR and the PMU exception are
298 * not synchronised, so they may be many instructions apart.
299 * This can result in confusing backtraces. We still want
300 * hypervisor samples as well as samples in the kernel with
301 * interrupts off hence the userspace check.
302 */
75382aa7
AB
303 if (TRAP(regs) != 0xf00)
304 use_siar = 0;
27593d72
MS
305 else if ((ppmu->flags & PPMU_NO_SIAR))
306 use_siar = 0;
5c093efa
AB
307 else if (marked)
308 use_siar = 1;
309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
310 use_siar = 0;
cbda6aa1 311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
312 use_siar = 0;
313 else
314 use_siar = 1;
315
cbda6aa1 316 regs->result = use_siar;
98fb1807
PM
317}
318
319/*
320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
321 * it as an NMI.
322 */
323static inline int perf_intr_is_nmi(struct pt_regs *regs)
324{
325 return !regs->softe;
326}
327
e6878835 328/*
329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330 * must be sampled only if the SIAR-valid bit is set.
331 *
332 * For unmarked instructions and for processors that don't have the SIAR-Valid
333 * bit, assume that SIAR is valid.
334 */
335static inline int siar_valid(struct pt_regs *regs)
336{
337 unsigned long mmcra = regs->dsisr;
338 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
339
58a032c3
ME
340 if (marked) {
341 if (ppmu->flags & PPMU_HAS_SIER)
342 return regs->dar & SIER_SIAR_VALID;
343
344 if (ppmu->flags & PPMU_SIAR_VALID)
345 return mmcra & POWER7P_MMCRA_SIAR_VALID;
346 }
e6878835 347
348 return 1;
349}
350
d52f2dc4
MN
351
352/* Reset all possible BHRB entries */
353static void power_pmu_bhrb_reset(void)
354{
355 asm volatile(PPC_CLRBHRB);
356}
357
358static void power_pmu_bhrb_enable(struct perf_event *event)
359{
69111bac 360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
d52f2dc4
MN
361
362 if (!ppmu->bhrb_nr)
363 return;
364
365 /* Clear BHRB if we changed task context to avoid data leaks */
366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 power_pmu_bhrb_reset();
368 cpuhw->bhrb_context = event->ctx;
369 }
370 cpuhw->bhrb_users++;
acba3c7e 371 perf_sched_cb_inc(event->ctx->pmu);
d52f2dc4
MN
372}
373
374static void power_pmu_bhrb_disable(struct perf_event *event)
375{
69111bac 376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
d52f2dc4
MN
377
378 if (!ppmu->bhrb_nr)
379 return;
380
f0322f7f 381 WARN_ON_ONCE(!cpuhw->bhrb_users);
d52f2dc4 382 cpuhw->bhrb_users--;
acba3c7e 383 perf_sched_cb_dec(event->ctx->pmu);
d52f2dc4
MN
384
385 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 /* BHRB cannot be turned off when other
387 * events are active on the PMU.
388 */
389
390 /* avoid stale pointer */
391 cpuhw->bhrb_context = NULL;
392 }
393}
394
395/* Called from ctxsw to prevent one process's branch entries to
396 * mingle with the other process's entries during context switch.
397 */
acba3c7e 398static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d52f2dc4 399{
acba3c7e
PZ
400 if (!ppmu->bhrb_nr)
401 return;
402
403 if (sched_in)
d52f2dc4
MN
404 power_pmu_bhrb_reset();
405}
69123184
MN
406/* Calculate the to address for a branch */
407static __u64 power_pmu_bhrb_to(u64 addr)
408{
409 unsigned int instr;
410 int ret;
411 __u64 target;
412
f41d84dd
RB
413 if (is_kernel_addr(addr)) {
414 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
415 return 0;
416
417 return branch_target(&instr);
418 }
69123184
MN
419
420 /* Userspace: need copy instruction here then translate it */
421 pagefault_disable();
422 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
423 if (ret) {
424 pagefault_enable();
425 return 0;
426 }
427 pagefault_enable();
428
429 target = branch_target(&instr);
430 if ((!target) || (instr & BRANCH_ABSOLUTE))
431 return target;
432
433 /* Translate relative branch target from kernel to user address */
434 return target - (unsigned long)&instr + addr;
435}
d52f2dc4 436
d52f2dc4 437/* Processing BHRB entries */
e51df2c1 438static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
439{
440 u64 val;
441 u64 addr;
506e70d1 442 int r_index, u_index, pred;
d52f2dc4
MN
443
444 r_index = 0;
445 u_index = 0;
446 while (r_index < ppmu->bhrb_nr) {
447 /* Assembly read function */
506e70d1
MN
448 val = read_bhrb(r_index++);
449 if (!val)
450 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 451 break;
506e70d1 452 else {
d52f2dc4
MN
453 addr = val & BHRB_EA;
454 pred = val & BHRB_PREDICTION;
d52f2dc4 455
506e70d1
MN
456 if (!addr)
457 /* invalid entry */
d52f2dc4 458 continue;
d52f2dc4 459
2c3eab47
MS
460 /*
461 * BHRB rolling buffer could very much contain the kernel
462 * addresses at this point. Check the privileges before
463 * exporting it to userspace (avoid exposure of regions
464 * where we could have speculative execution)
465 */
466 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
467 is_kernel_addr(addr))
468 continue;
469
506e70d1
MN
470 /* Branches are read most recent first (ie. mfbhrb 0 is
471 * the most recent branch).
472 * There are two types of valid entries:
473 * 1) a target entry which is the to address of a
474 * computed goto like a blr,bctr,btar. The next
475 * entry read from the bhrb will be branch
476 * corresponding to this target (ie. the actual
477 * blr/bctr/btar instruction).
478 * 2) a from address which is an actual branch. If a
479 * target entry proceeds this, then this is the
480 * matching branch for that target. If this is not
481 * following a target entry, then this is a branch
482 * where the target is given as an immediate field
483 * in the instruction (ie. an i or b form branch).
484 * In this case we need to read the instruction from
485 * memory to determine the target/to address.
486 */
d52f2dc4 487
d52f2dc4 488 if (val & BHRB_TARGET) {
506e70d1
MN
489 /* Target branches use two entries
490 * (ie. computed gotos/XL form)
491 */
492 cpuhw->bhrb_entries[u_index].to = addr;
493 cpuhw->bhrb_entries[u_index].mispred = pred;
494 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 495
506e70d1
MN
496 /* Get from address in next entry */
497 val = read_bhrb(r_index++);
498 addr = val & BHRB_EA;
499 if (val & BHRB_TARGET) {
500 /* Shouldn't have two targets in a
501 row.. Reset index and try again */
502 r_index--;
503 addr = 0;
504 }
505 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 506 } else {
506e70d1
MN
507 /* Branches to immediate field
508 (ie I or B form) */
d52f2dc4 509 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
510 cpuhw->bhrb_entries[u_index].to =
511 power_pmu_bhrb_to(addr);
d52f2dc4
MN
512 cpuhw->bhrb_entries[u_index].mispred = pred;
513 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 514 }
506e70d1
MN
515 u_index++;
516
d52f2dc4
MN
517 }
518 }
519 cpuhw->bhrb_stack.nr = u_index;
520 return;
521}
522
330a1eb7
ME
523static bool is_ebb_event(struct perf_event *event)
524{
525 /*
526 * This could be a per-PMU callback, but we'd rather avoid the cost. We
527 * check that the PMU supports EBB, meaning those that don't can still
528 * use bit 63 of the event code for something else if they wish.
529 */
4d9690dd 530 return (ppmu->flags & PPMU_ARCH_207S) &&
8d7c55d0 531 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
330a1eb7
ME
532}
533
534static int ebb_event_check(struct perf_event *event)
535{
536 struct perf_event *leader = event->group_leader;
537
538 /* Event and group leader must agree on EBB */
539 if (is_ebb_event(leader) != is_ebb_event(event))
540 return -EINVAL;
541
542 if (is_ebb_event(event)) {
543 if (!(event->attach_state & PERF_ATTACH_TASK))
544 return -EINVAL;
545
546 if (!leader->attr.pinned || !leader->attr.exclusive)
547 return -EINVAL;
548
58b5fb00
ME
549 if (event->attr.freq ||
550 event->attr.inherit ||
551 event->attr.sample_type ||
552 event->attr.sample_period ||
553 event->attr.enable_on_exec)
330a1eb7
ME
554 return -EINVAL;
555 }
556
557 return 0;
558}
559
560static void ebb_event_add(struct perf_event *event)
561{
562 if (!is_ebb_event(event) || current->thread.used_ebb)
563 return;
564
565 /*
566 * IFF this is the first time we've added an EBB event, set
567 * PMXE in the user MMCR0 so we can detect when it's cleared by
568 * userspace. We need this so that we can context switch while
569 * userspace is in the EBB handler (where PMXE is 0).
570 */
571 current->thread.used_ebb = 1;
572 current->thread.mmcr0 |= MMCR0_PMXE;
573}
574
575static void ebb_switch_out(unsigned long mmcr0)
576{
577 if (!(mmcr0 & MMCR0_EBE))
578 return;
579
580 current->thread.siar = mfspr(SPRN_SIAR);
581 current->thread.sier = mfspr(SPRN_SIER);
582 current->thread.sdar = mfspr(SPRN_SDAR);
583 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
584 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
585}
586
9de5cb0f 587static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
330a1eb7 588{
9de5cb0f
ME
589 unsigned long mmcr0 = cpuhw->mmcr[0];
590
330a1eb7
ME
591 if (!ebb)
592 goto out;
593
76cb8a78
ME
594 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
595 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
330a1eb7 596
c2e37a26
ME
597 /*
598 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
599 * with pmao_restore_workaround() because we may add PMAO but we never
600 * clear it here.
601 */
330a1eb7
ME
602 mmcr0 |= current->thread.mmcr0;
603
c2e37a26
ME
604 /*
605 * Be careful not to set PMXE if userspace had it cleared. This is also
606 * compatible with pmao_restore_workaround() because it has already
607 * cleared PMXE and we leave PMAO alone.
608 */
330a1eb7
ME
609 if (!(current->thread.mmcr0 & MMCR0_PMXE))
610 mmcr0 &= ~MMCR0_PMXE;
611
612 mtspr(SPRN_SIAR, current->thread.siar);
613 mtspr(SPRN_SIER, current->thread.sier);
614 mtspr(SPRN_SDAR, current->thread.sdar);
9de5cb0f
ME
615
616 /*
617 * Merge the kernel & user values of MMCR2. The semantics we implement
618 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
619 * but not clear bits. If a task wants to be able to clear bits, ie.
620 * unfreeze counters, it should not set exclude_xxx in its events and
621 * instead manage the MMCR2 entirely by itself.
622 */
623 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
330a1eb7
ME
624out:
625 return mmcr0;
626}
c2e37a26
ME
627
628static void pmao_restore_workaround(bool ebb)
629{
630 unsigned pmcs[6];
631
632 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
633 return;
634
635 /*
636 * On POWER8E there is a hardware defect which affects the PMU context
637 * switch logic, ie. power_pmu_disable/enable().
638 *
639 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
640 * by the hardware. Sometime later the actual PMU exception is
641 * delivered.
642 *
643 * If we context switch, or simply disable/enable, the PMU prior to the
644 * exception arriving, the exception will be lost when we clear PMAO.
645 *
646 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
647 * set, and this _should_ generate an exception. However because of the
648 * defect no exception is generated when we write PMAO, and we get
649 * stuck with no counters counting but no exception delivered.
650 *
651 * The workaround is to detect this case and tweak the hardware to
652 * create another pending PMU exception.
653 *
654 * We do that by setting up PMC6 (cycles) for an imminent overflow and
655 * enabling the PMU. That causes a new exception to be generated in the
656 * chip, but we don't take it yet because we have interrupts hard
657 * disabled. We then write back the PMU state as we want it to be seen
658 * by the exception handler. When we reenable interrupts the exception
659 * handler will be called and see the correct state.
660 *
661 * The logic is the same for EBB, except that the exception is gated by
662 * us having interrupts hard disabled as well as the fact that we are
663 * not in userspace. The exception is finally delivered when we return
664 * to userspace.
665 */
666
667 /* Only if PMAO is set and PMAO_SYNC is clear */
668 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
669 return;
670
671 /* If we're doing EBB, only if BESCR[GE] is set */
672 if (ebb && !(current->thread.bescr & BESCR_GE))
673 return;
674
675 /*
676 * We are already soft-disabled in power_pmu_enable(). We need to hard
58bffb5b 677 * disable to actually prevent the PMU exception from firing.
c2e37a26
ME
678 */
679 hard_irq_disable();
680
681 /*
682 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
683 * Using read/write_pmc() in a for loop adds 12 function calls and
684 * almost doubles our code size.
685 */
686 pmcs[0] = mfspr(SPRN_PMC1);
687 pmcs[1] = mfspr(SPRN_PMC2);
688 pmcs[2] = mfspr(SPRN_PMC3);
689 pmcs[3] = mfspr(SPRN_PMC4);
690 pmcs[4] = mfspr(SPRN_PMC5);
691 pmcs[5] = mfspr(SPRN_PMC6);
692
693 /* Ensure all freeze bits are unset */
694 mtspr(SPRN_MMCR2, 0);
695
696 /* Set up PMC6 to overflow in one cycle */
697 mtspr(SPRN_PMC6, 0x7FFFFFFE);
698
699 /* Enable exceptions and unfreeze PMC6 */
700 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
701
702 /* Now we need to refreeze and restore the PMCs */
703 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
704
705 mtspr(SPRN_PMC1, pmcs[0]);
706 mtspr(SPRN_PMC2, pmcs[1]);
707 mtspr(SPRN_PMC3, pmcs[2]);
708 mtspr(SPRN_PMC4, pmcs[3]);
709 mtspr(SPRN_PMC5, pmcs[4]);
710 mtspr(SPRN_PMC6, pmcs[5]);
711}
356d8ce3
MS
712
713static bool use_ic(u64 event)
714{
715 if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
716 (event == 0x200f2 || event == 0x300f2))
717 return true;
718
719 return false;
720}
98fb1807
PM
721#endif /* CONFIG_PPC64 */
722
cdd6c482 723static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 724
4574910e 725/*
57c0c15b 726 * Read one performance monitor counter (PMC).
4574910e
PM
727 */
728static unsigned long read_pmc(int idx)
729{
730 unsigned long val;
731
732 switch (idx) {
733 case 1:
734 val = mfspr(SPRN_PMC1);
735 break;
736 case 2:
737 val = mfspr(SPRN_PMC2);
738 break;
739 case 3:
740 val = mfspr(SPRN_PMC3);
741 break;
742 case 4:
743 val = mfspr(SPRN_PMC4);
744 break;
745 case 5:
746 val = mfspr(SPRN_PMC5);
747 break;
748 case 6:
749 val = mfspr(SPRN_PMC6);
750 break;
98fb1807 751#ifdef CONFIG_PPC64
4574910e
PM
752 case 7:
753 val = mfspr(SPRN_PMC7);
754 break;
755 case 8:
756 val = mfspr(SPRN_PMC8);
757 break;
98fb1807 758#endif /* CONFIG_PPC64 */
4574910e
PM
759 default:
760 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
761 val = 0;
762 }
763 return val;
764}
765
766/*
767 * Write one PMC.
768 */
769static void write_pmc(int idx, unsigned long val)
770{
771 switch (idx) {
772 case 1:
773 mtspr(SPRN_PMC1, val);
774 break;
775 case 2:
776 mtspr(SPRN_PMC2, val);
777 break;
778 case 3:
779 mtspr(SPRN_PMC3, val);
780 break;
781 case 4:
782 mtspr(SPRN_PMC4, val);
783 break;
784 case 5:
785 mtspr(SPRN_PMC5, val);
786 break;
787 case 6:
788 mtspr(SPRN_PMC6, val);
789 break;
98fb1807 790#ifdef CONFIG_PPC64
4574910e
PM
791 case 7:
792 mtspr(SPRN_PMC7, val);
793 break;
794 case 8:
795 mtspr(SPRN_PMC8, val);
796 break;
98fb1807 797#endif /* CONFIG_PPC64 */
4574910e
PM
798 default:
799 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
800 }
801}
802
5f6d0380
AK
803/* Called from sysrq_handle_showregs() */
804void perf_event_print_debug(void)
805{
806 unsigned long sdar, sier, flags;
807 u32 pmcs[MAX_HWEVENTS];
808 int i;
809
4917fcb5
RB
810 if (!ppmu) {
811 pr_info("Performance monitor hardware not registered.\n");
812 return;
813 }
814
5f6d0380
AK
815 if (!ppmu->n_counter)
816 return;
817
818 local_irq_save(flags);
819
820 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
821 smp_processor_id(), ppmu->name, ppmu->n_counter);
822
823 for (i = 0; i < ppmu->n_counter; i++)
824 pmcs[i] = read_pmc(i + 1);
825
826 for (; i < MAX_HWEVENTS; i++)
827 pmcs[i] = 0xdeadbeef;
828
829 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
830 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
831
832 if (ppmu->n_counter > 4)
833 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
834 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
835
836 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
837 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
838
839 sdar = sier = 0;
840#ifdef CONFIG_PPC64
841 sdar = mfspr(SPRN_SDAR);
842
843 if (ppmu->flags & PPMU_HAS_SIER)
844 sier = mfspr(SPRN_SIER);
845
4d9690dd 846 if (ppmu->flags & PPMU_ARCH_207S) {
5f6d0380
AK
847 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
848 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
849 pr_info("EBBRR: %016lx BESCR: %016lx\n",
850 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
851 }
852#endif
853 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
854 mfspr(SPRN_SIAR), sdar, sier);
855
856 local_irq_restore(flags);
857}
858
4574910e
PM
859/*
860 * Check if a set of events can all go on the PMU at once.
861 * If they can't, this will look at alternative codes for the events
862 * and see if any combination of alternative codes is feasible.
cdd6c482 863 * The feasible set is returned in event_id[].
4574910e 864 */
cdd6c482
IM
865static int power_check_constraints(struct cpu_hw_events *cpuhw,
866 u64 event_id[], unsigned int cflags[],
ab7ef2e5 867 int n_ev)
4574910e 868{
448d64f8 869 unsigned long mask, value, nv;
cdd6c482
IM
870 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
871 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 872 int i, j;
448d64f8
PM
873 unsigned long addf = ppmu->add_fields;
874 unsigned long tadd = ppmu->test_adder;
4574910e 875
a8f90e90 876 if (n_ev > ppmu->n_counter)
4574910e
PM
877 return -1;
878
879 /* First see if the events will go on as-is */
880 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 881 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
882 && !ppmu->limited_pmc_event(event_id[i])) {
883 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 884 cpuhw->alternatives[i]);
cdd6c482 885 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 886 }
cdd6c482 887 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 888 &cpuhw->avalues[i][0]))
4574910e 889 return -1;
4574910e
PM
890 }
891 value = mask = 0;
892 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
893 nv = (value | cpuhw->avalues[i][0]) +
894 (value & cpuhw->avalues[i][0] & addf);
4574910e 895 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
896 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
897 cpuhw->amasks[i][0]) != 0)
4574910e
PM
898 break;
899 value = nv;
e51ee31e 900 mask |= cpuhw->amasks[i][0];
4574910e
PM
901 }
902 if (i == n_ev)
903 return 0; /* all OK */
904
905 /* doesn't work, gather alternatives... */
906 if (!ppmu->get_alternatives)
907 return -1;
908 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 909 choice[i] = 0;
cdd6c482 910 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 911 cpuhw->alternatives[i]);
4574910e 912 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
913 ppmu->get_constraint(cpuhw->alternatives[i][j],
914 &cpuhw->amasks[i][j],
915 &cpuhw->avalues[i][j]);
4574910e
PM
916 }
917
918 /* enumerate all possibilities and see if any will work */
919 i = 0;
920 j = -1;
921 value = mask = nv = 0;
922 while (i < n_ev) {
923 if (j >= 0) {
924 /* we're backtracking, restore context */
925 value = svalues[i];
926 mask = smasks[i];
927 j = choice[i];
928 }
929 /*
cdd6c482 930 * See if any alternative k for event_id i,
4574910e
PM
931 * where k > j, will satisfy the constraints.
932 */
933 while (++j < n_alt[i]) {
e51ee31e
PM
934 nv = (value | cpuhw->avalues[i][j]) +
935 (value & cpuhw->avalues[i][j] & addf);
4574910e 936 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
937 (((nv + tadd) ^ cpuhw->avalues[i][j])
938 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
939 break;
940 }
941 if (j >= n_alt[i]) {
942 /*
943 * No feasible alternative, backtrack
cdd6c482 944 * to event_id i-1 and continue enumerating its
4574910e
PM
945 * alternatives from where we got up to.
946 */
947 if (--i < 0)
948 return -1;
949 } else {
950 /*
cdd6c482
IM
951 * Found a feasible alternative for event_id i,
952 * remember where we got up to with this event_id,
953 * go on to the next event_id, and start with
4574910e
PM
954 * the first alternative for it.
955 */
956 choice[i] = j;
957 svalues[i] = value;
958 smasks[i] = mask;
959 value = nv;
e51ee31e 960 mask |= cpuhw->amasks[i][j];
4574910e
PM
961 ++i;
962 j = -1;
963 }
964 }
965
966 /* OK, we have a feasible combination, tell the caller the solution */
967 for (i = 0; i < n_ev; ++i)
cdd6c482 968 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
969 return 0;
970}
971
0475f9ea 972/*
cdd6c482 973 * Check if newly-added events have consistent settings for
0475f9ea 974 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 975 * added events.
0475f9ea 976 */
cdd6c482 977static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 978 int n_prev, int n_new)
0475f9ea 979{
ab7ef2e5
PM
980 int eu = 0, ek = 0, eh = 0;
981 int i, n, first;
cdd6c482 982 struct perf_event *event;
0475f9ea 983
9de5cb0f
ME
984 /*
985 * If the PMU we're on supports per event exclude settings then we
986 * don't need to do any of this logic. NB. This assumes no PMU has both
987 * per event exclude and limited PMCs.
988 */
989 if (ppmu->flags & PPMU_ARCH_207S)
990 return 0;
991
0475f9ea
PM
992 n = n_prev + n_new;
993 if (n <= 1)
994 return 0;
995
ab7ef2e5
PM
996 first = 1;
997 for (i = 0; i < n; ++i) {
998 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
999 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1000 continue;
1001 }
cdd6c482 1002 event = ctrs[i];
ab7ef2e5 1003 if (first) {
cdd6c482
IM
1004 eu = event->attr.exclude_user;
1005 ek = event->attr.exclude_kernel;
1006 eh = event->attr.exclude_hv;
ab7ef2e5 1007 first = 0;
cdd6c482
IM
1008 } else if (event->attr.exclude_user != eu ||
1009 event->attr.exclude_kernel != ek ||
1010 event->attr.exclude_hv != eh) {
0475f9ea 1011 return -EAGAIN;
ab7ef2e5 1012 }
0475f9ea 1013 }
ab7ef2e5
PM
1014
1015 if (eu || ek || eh)
1016 for (i = 0; i < n; ++i)
1017 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1018 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1019
0475f9ea
PM
1020 return 0;
1021}
1022
86c74ab3
EM
1023static u64 check_and_compute_delta(u64 prev, u64 val)
1024{
1025 u64 delta = (val - prev) & 0xfffffffful;
1026
1027 /*
1028 * POWER7 can roll back counter values, if the new value is smaller
1029 * than the previous value it will cause the delta and the counter to
1030 * have bogus values unless we rolled a counter over. If a coutner is
1031 * rolled back, it will be smaller, but within 256, which is the maximum
027dfac6 1032 * number of events to rollback at once. If we detect a rollback
86c74ab3
EM
1033 * return 0. This can lead to a small lack of precision in the
1034 * counters.
1035 */
1036 if (prev > val && (prev - val) < 256)
1037 delta = 0;
1038
1039 return delta;
1040}
1041
cdd6c482 1042static void power_pmu_read(struct perf_event *event)
4574910e 1043{
98fb1807 1044 s64 val, delta, prev;
356d8ce3 1045 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
4574910e 1046
a4eaf7f1
PZ
1047 if (event->hw.state & PERF_HES_STOPPED)
1048 return;
1049
cdd6c482 1050 if (!event->hw.idx)
4574910e 1051 return;
330a1eb7
ME
1052
1053 if (is_ebb_event(event)) {
1054 val = read_pmc(event->hw.idx);
356d8ce3
MS
1055 if (use_ic(event->attr.config)) {
1056 val = mfspr(SPRN_IC);
1057 if (val > cpuhw->ic_init)
1058 val = val - cpuhw->ic_init;
1059 else
1060 val = val + (0 - cpuhw->ic_init);
1061 }
330a1eb7
ME
1062 local64_set(&event->hw.prev_count, val);
1063 return;
1064 }
1065
4574910e
PM
1066 /*
1067 * Performance monitor interrupts come even when interrupts
1068 * are soft-disabled, as long as interrupts are hard-enabled.
1069 * Therefore we treat them like NMIs.
1070 */
1071 do {
e7850595 1072 prev = local64_read(&event->hw.prev_count);
4574910e 1073 barrier();
cdd6c482 1074 val = read_pmc(event->hw.idx);
356d8ce3
MS
1075 if (use_ic(event->attr.config)) {
1076 val = mfspr(SPRN_IC);
1077 if (val > cpuhw->ic_init)
1078 val = val - cpuhw->ic_init;
1079 else
1080 val = val + (0 - cpuhw->ic_init);
1081 }
86c74ab3
EM
1082 delta = check_and_compute_delta(prev, val);
1083 if (!delta)
1084 return;
e7850595 1085 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 1086
e7850595 1087 local64_add(delta, &event->count);
f5602941
AB
1088
1089 /*
1090 * A number of places program the PMC with (0x80000000 - period_left).
1091 * We never want period_left to be less than 1 because we will program
1092 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1093 * roll around to 0 before taking an exception. We have seen this
1094 * on POWER8.
1095 *
1096 * To fix this, clamp the minimum value of period_left to 1.
1097 */
1098 do {
1099 prev = local64_read(&event->hw.period_left);
1100 val = prev - delta;
1101 if (val < 1)
1102 val = 1;
1103 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
4574910e
PM
1104}
1105
ab7ef2e5
PM
1106/*
1107 * On some machines, PMC5 and PMC6 can't be written, don't respect
1108 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 1109 * us if `event' is using such a PMC.
ab7ef2e5
PM
1110 */
1111static int is_limited_pmc(int pmcnum)
1112{
0bbd0d4b
PM
1113 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1114 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
1115}
1116
a8f90e90 1117static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1118 unsigned long pmc5, unsigned long pmc6)
1119{
cdd6c482 1120 struct perf_event *event;
ab7ef2e5
PM
1121 u64 val, prev, delta;
1122 int i;
1123
1124 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1125 event = cpuhw->limited_counter[i];
cdd6c482 1126 if (!event->hw.idx)
ab7ef2e5 1127 continue;
cdd6c482 1128 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 1129 prev = local64_read(&event->hw.prev_count);
cdd6c482 1130 event->hw.idx = 0;
86c74ab3
EM
1131 delta = check_and_compute_delta(prev, val);
1132 if (delta)
1133 local64_add(delta, &event->count);
ab7ef2e5
PM
1134 }
1135}
1136
a8f90e90 1137static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1138 unsigned long pmc5, unsigned long pmc6)
1139{
cdd6c482 1140 struct perf_event *event;
86c74ab3 1141 u64 val, prev;
ab7ef2e5
PM
1142 int i;
1143
1144 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1145 event = cpuhw->limited_counter[i];
cdd6c482
IM
1146 event->hw.idx = cpuhw->limited_hwidx[i];
1147 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
1148 prev = local64_read(&event->hw.prev_count);
1149 if (check_and_compute_delta(prev, val))
1150 local64_set(&event->hw.prev_count, val);
cdd6c482 1151 perf_event_update_userpage(event);
ab7ef2e5
PM
1152 }
1153}
1154
1155/*
cdd6c482 1156 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 1157 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
1158 * other events. We try to keep the values from the limited
1159 * events as consistent as possible by keeping the delay (in
ab7ef2e5 1160 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
1161 * the limited events as small and consistent as possible.
1162 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
1163 * both, and always in the same order, to minimize variability,
1164 * and do it inside the same asm that writes MMCR0.
1165 */
cdd6c482 1166static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
1167{
1168 unsigned long pmc5, pmc6;
1169
1170 if (!cpuhw->n_limited) {
1171 mtspr(SPRN_MMCR0, mmcr0);
1172 return;
1173 }
1174
1175 /*
1176 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
1177 * To ensure we don't get a performance monitor interrupt
1178 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 1179 * events, we first write MMCR0 with the event overflow
dcd945e0 1180 * interrupt enable bits turned off.
ab7ef2e5
PM
1181 */
1182 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1183 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
1184 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1185 "i" (SPRN_MMCR0),
ab7ef2e5
PM
1186 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1187
1188 if (mmcr0 & MMCR0_FC)
a8f90e90 1189 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 1190 else
a8f90e90 1191 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
1192
1193 /*
cdd6c482 1194 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
1195 * enable bits, if necessary.
1196 */
1197 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1198 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
1199}
1200
4574910e 1201/*
cdd6c482
IM
1202 * Disable all events to prevent PMU interrupts and to allow
1203 * events to be added or removed.
4574910e 1204 */
a4eaf7f1 1205static void power_pmu_disable(struct pmu *pmu)
4574910e 1206{
cdd6c482 1207 struct cpu_hw_events *cpuhw;
330a1eb7 1208 unsigned long flags, mmcr0, val;
4574910e 1209
f36a1a13
PM
1210 if (!ppmu)
1211 return;
4574910e 1212 local_irq_save(flags);
69111bac 1213 cpuhw = this_cpu_ptr(&cpu_hw_events);
4574910e 1214
448d64f8 1215 if (!cpuhw->disabled) {
01d0287f
PM
1216 /*
1217 * Check if we ever enabled the PMU on this cpu.
1218 */
1219 if (!cpuhw->pmcs_enabled) {
a6dbf93a 1220 ppc_enable_pmcs();
01d0287f
PM
1221 cpuhw->pmcs_enabled = 1;
1222 }
1223
378a6ee9 1224 /*
76cb8a78 1225 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
378a6ee9 1226 */
330a1eb7 1227 val = mmcr0 = mfspr(SPRN_MMCR0);
378a6ee9 1228 val |= MMCR0_FC;
76cb8a78
ME
1229 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1230 MMCR0_FC56);
378a6ee9
ME
1231
1232 /*
1233 * The barrier is to make sure the mtspr has been
1234 * executed and the PMU has frozen the events etc.
1235 * before we return.
1236 */
1237 write_mmcr0(cpuhw, val);
1238 mb();
04099570 1239 isync();
378a6ee9 1240
f708223d
PM
1241 /*
1242 * Disable instruction sampling if it was enabled
1243 */
1244 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1245 mtspr(SPRN_MMCRA,
1246 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1247 mb();
04099570 1248 isync();
f708223d
PM
1249 }
1250
378a6ee9
ME
1251 cpuhw->disabled = 1;
1252 cpuhw->n_added = 0;
330a1eb7
ME
1253
1254 ebb_switch_out(mmcr0);
04099570
ME
1255
1256#ifdef CONFIG_PPC64
1257 /*
1258 * These are readable by userspace, may contain kernel
1259 * addresses and are not switched by context switch, so clear
1260 * them now to avoid leaking anything to userspace in general
1261 * including to another process.
1262 */
1263 if (ppmu->flags & PPMU_ARCH_207S) {
1264 mtspr(SPRN_SDAR, 0);
1265 mtspr(SPRN_SIAR, 0);
1266 }
1267#endif
4574910e 1268 }
330a1eb7 1269
4574910e 1270 local_irq_restore(flags);
4574910e
PM
1271}
1272
1273/*
cdd6c482
IM
1274 * Re-enable all events if disable == 0.
1275 * If we were previously disabled and events were added, then
4574910e
PM
1276 * put the new config on the PMU.
1277 */
a4eaf7f1 1278static void power_pmu_enable(struct pmu *pmu)
4574910e 1279{
cdd6c482
IM
1280 struct perf_event *event;
1281 struct cpu_hw_events *cpuhw;
4574910e
PM
1282 unsigned long flags;
1283 long i;
330a1eb7 1284 unsigned long val, mmcr0;
4574910e 1285 s64 left;
cdd6c482 1286 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
1287 int n_lim;
1288 int idx;
330a1eb7 1289 bool ebb;
4574910e 1290
f36a1a13
PM
1291 if (!ppmu)
1292 return;
4574910e 1293 local_irq_save(flags);
0a48843d 1294
69111bac 1295 cpuhw = this_cpu_ptr(&cpu_hw_events);
0a48843d
ME
1296 if (!cpuhw->disabled)
1297 goto out;
1298
4ea355b5
ME
1299 if (cpuhw->n_events == 0) {
1300 ppc_set_pmu_inuse(0);
1301 goto out;
1302 }
1303
4574910e
PM
1304 cpuhw->disabled = 0;
1305
330a1eb7
ME
1306 /*
1307 * EBB requires an exclusive group and all events must have the EBB
1308 * flag set, or not set, so we can just check a single event. Also we
1309 * know we have at least one event.
1310 */
1311 ebb = is_ebb_event(cpuhw->event[0]);
1312
4574910e 1313 /*
cdd6c482 1314 * If we didn't change anything, or only removed events,
4574910e
PM
1315 * no need to recalculate MMCR* settings and reset the PMCs.
1316 * Just reenable the PMU with the current MMCR* settings
cdd6c482 1317 * (possibly updated for removal of events).
4574910e
PM
1318 */
1319 if (!cpuhw->n_added) {
f708223d 1320 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 1321 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
f708223d 1322 goto out_enable;
4574910e
PM
1323 }
1324
1325 /*
79a4cb28 1326 * Clear all MMCR settings and recompute them for the new set of events.
4574910e 1327 */
79a4cb28
ME
1328 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1329
cdd6c482 1330 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
8abd818f 1331 cpuhw->mmcr, cpuhw->event)) {
4574910e
PM
1332 /* shouldn't ever get here */
1333 printk(KERN_ERR "oops compute_mmcr failed\n");
1334 goto out;
1335 }
1336
9de5cb0f
ME
1337 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1338 /*
1339 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1340 * bits for the first event. We have already checked that all
1341 * events have the same value for these bits as the first event.
1342 */
1343 event = cpuhw->event[0];
1344 if (event->attr.exclude_user)
1345 cpuhw->mmcr[0] |= MMCR0_FCP;
1346 if (event->attr.exclude_kernel)
1347 cpuhw->mmcr[0] |= freeze_events_kernel;
1348 if (event->attr.exclude_hv)
1349 cpuhw->mmcr[0] |= MMCR0_FCHV;
1350 }
0475f9ea 1351
4574910e
PM
1352 /*
1353 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
1354 * bit set and set the hardware events to their initial values.
1355 * Then unfreeze the events.
4574910e 1356 */
a6dbf93a 1357 ppc_set_pmu_inuse(1);
f708223d 1358 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
1359 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1360 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1361 | MMCR0_FC);
9de5cb0f
ME
1362 if (ppmu->flags & PPMU_ARCH_207S)
1363 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
4574910e
PM
1364
1365 /*
cdd6c482 1366 * Read off any pre-existing events that need to move
4574910e
PM
1367 * to another PMC.
1368 */
cdd6c482
IM
1369 for (i = 0; i < cpuhw->n_events; ++i) {
1370 event = cpuhw->event[i];
1371 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1372 power_pmu_read(event);
1373 write_pmc(event->hw.idx, 0);
1374 event->hw.idx = 0;
4574910e
PM
1375 }
1376 }
1377
1378 /*
cdd6c482 1379 * Initialize the PMCs for all the new and moved events.
4574910e 1380 */
ab7ef2e5 1381 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
1382 for (i = 0; i < cpuhw->n_events; ++i) {
1383 event = cpuhw->event[i];
1384 if (event->hw.idx)
4574910e 1385 continue;
ab7ef2e5
PM
1386 idx = hwc_index[i] + 1;
1387 if (is_limited_pmc(idx)) {
a8f90e90 1388 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
1389 cpuhw->limited_hwidx[n_lim] = idx;
1390 ++n_lim;
1391 continue;
1392 }
330a1eb7
ME
1393
1394 if (ebb)
1395 val = local64_read(&event->hw.prev_count);
1396 else {
1397 val = 0;
1398 if (event->hw.sample_period) {
1399 left = local64_read(&event->hw.period_left);
1400 if (left < 0x80000000L)
1401 val = 0x80000000L - left;
1402 }
1403 local64_set(&event->hw.prev_count, val);
4574910e 1404 }
330a1eb7 1405
cdd6c482 1406 event->hw.idx = idx;
a4eaf7f1
PZ
1407 if (event->hw.state & PERF_HES_STOPPED)
1408 val = 0;
ab7ef2e5 1409 write_pmc(idx, val);
330a1eb7 1410
cdd6c482 1411 perf_event_update_userpage(event);
4574910e 1412 }
ab7ef2e5 1413 cpuhw->n_limited = n_lim;
4574910e 1414 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1415
1416 out_enable:
c2e37a26
ME
1417 pmao_restore_workaround(ebb);
1418
9de5cb0f 1419 mmcr0 = ebb_switch_in(ebb, cpuhw);
330a1eb7 1420
f708223d 1421 mb();
b4d6c06c
AK
1422 if (cpuhw->bhrb_users)
1423 ppmu->config_bhrb(cpuhw->bhrb_filter);
1424
330a1eb7 1425 write_mmcr0(cpuhw, mmcr0);
4574910e 1426
f708223d
PM
1427 /*
1428 * Enable instruction sampling if necessary
1429 */
1430 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1431 mb();
1432 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1433 }
1434
4574910e 1435 out:
3925f46b 1436
4574910e
PM
1437 local_irq_restore(flags);
1438}
1439
cdd6c482
IM
1440static int collect_events(struct perf_event *group, int max_count,
1441 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1442 unsigned int *flags)
4574910e
PM
1443{
1444 int n = 0;
cdd6c482 1445 struct perf_event *event;
4574910e 1446
5aa04b3e 1447 if (group->pmu->task_ctx_nr == perf_hw_context) {
4574910e
PM
1448 if (n >= max_count)
1449 return -1;
1450 ctrs[n] = group;
cdd6c482 1451 flags[n] = group->hw.event_base;
4574910e
PM
1452 events[n++] = group->hw.config;
1453 }
a8f90e90 1454 list_for_each_entry(event, &group->sibling_list, group_entry) {
5aa04b3e 1455 if (event->pmu->task_ctx_nr == perf_hw_context &&
cdd6c482 1456 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1457 if (n >= max_count)
1458 return -1;
cdd6c482
IM
1459 ctrs[n] = event;
1460 flags[n] = event->hw.event_base;
1461 events[n++] = event->hw.config;
4574910e
PM
1462 }
1463 }
1464 return n;
1465}
1466
4574910e 1467/*
cdd6c482
IM
1468 * Add a event to the PMU.
1469 * If all events are not already frozen, then we disable and
9e35ad38 1470 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1471 * actual work of reconfiguring the PMU.
1472 */
a4eaf7f1 1473static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1474{
cdd6c482 1475 struct cpu_hw_events *cpuhw;
4574910e 1476 unsigned long flags;
4574910e
PM
1477 int n0;
1478 int ret = -EAGAIN;
1479
1480 local_irq_save(flags);
33696fc0 1481 perf_pmu_disable(event->pmu);
4574910e
PM
1482
1483 /*
cdd6c482 1484 * Add the event to the list (if there is room)
4574910e
PM
1485 * and check whether the total set is still feasible.
1486 */
69111bac 1487 cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1488 n0 = cpuhw->n_events;
a8f90e90 1489 if (n0 >= ppmu->n_counter)
4574910e 1490 goto out;
cdd6c482
IM
1491 cpuhw->event[n0] = event;
1492 cpuhw->events[n0] = event->hw.config;
1493 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1494
f53d168c 1495 /*
1496 * This event may have been disabled/stopped in record_and_restart()
1497 * because we exceeded the ->event_limit. If re-starting the event,
1498 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1499 * notification is re-enabled.
1500 */
a4eaf7f1
PZ
1501 if (!(ef_flags & PERF_EF_START))
1502 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1503 else
1504 event->hw.state = 0;
a4eaf7f1 1505
8e6d5573
LM
1506 /*
1507 * If group events scheduling transaction was started,
25985edc 1508 * skip the schedulability test here, it will be performed
8e6d5573
LM
1509 * at commit time(->commit_txn) as a whole
1510 */
8f3e5684 1511 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
8e6d5573
LM
1512 goto nocheck;
1513
cdd6c482 1514 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1515 goto out;
e51ee31e 1516 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1517 goto out;
cdd6c482 1518 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1519
1520nocheck:
330a1eb7
ME
1521 ebb_event_add(event);
1522
cdd6c482 1523 ++cpuhw->n_events;
4574910e
PM
1524 ++cpuhw->n_added;
1525
1526 ret = 0;
1527 out:
ff3d79dc 1528 if (has_branch_stack(event)) {
3925f46b 1529 power_pmu_bhrb_enable(event);
ff3d79dc
AK
1530 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1531 event->attr.branch_sample_type);
1532 }
3925f46b 1533
356d8ce3
MS
1534 /*
1535 * Workaround for POWER9 DD1 to use the Instruction Counter
1536 * register value for instruction counting
1537 */
1538 if (use_ic(event->attr.config))
1539 cpuhw->ic_init = mfspr(SPRN_IC);
1540
33696fc0 1541 perf_pmu_enable(event->pmu);
4574910e
PM
1542 local_irq_restore(flags);
1543 return ret;
1544}
1545
1546/*
cdd6c482 1547 * Remove a event from the PMU.
4574910e 1548 */
a4eaf7f1 1549static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1550{
cdd6c482 1551 struct cpu_hw_events *cpuhw;
4574910e 1552 long i;
4574910e
PM
1553 unsigned long flags;
1554
1555 local_irq_save(flags);
33696fc0 1556 perf_pmu_disable(event->pmu);
4574910e 1557
cdd6c482
IM
1558 power_pmu_read(event);
1559
69111bac 1560 cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482
IM
1561 for (i = 0; i < cpuhw->n_events; ++i) {
1562 if (event == cpuhw->event[i]) {
219a92a4 1563 while (++i < cpuhw->n_events) {
cdd6c482 1564 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1565 cpuhw->events[i-1] = cpuhw->events[i];
1566 cpuhw->flags[i-1] = cpuhw->flags[i];
1567 }
cdd6c482
IM
1568 --cpuhw->n_events;
1569 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1570 if (event->hw.idx) {
1571 write_pmc(event->hw.idx, 0);
1572 event->hw.idx = 0;
ab7ef2e5 1573 }
cdd6c482 1574 perf_event_update_userpage(event);
4574910e
PM
1575 break;
1576 }
1577 }
ab7ef2e5 1578 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1579 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1580 break;
1581 if (i < cpuhw->n_limited) {
1582 while (++i < cpuhw->n_limited) {
a8f90e90 1583 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1584 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1585 }
1586 --cpuhw->n_limited;
1587 }
cdd6c482
IM
1588 if (cpuhw->n_events == 0) {
1589 /* disable exceptions if no events are running */
4574910e
PM
1590 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1591 }
1592
3925f46b
AK
1593 if (has_branch_stack(event))
1594 power_pmu_bhrb_disable(event);
1595
33696fc0 1596 perf_pmu_enable(event->pmu);
4574910e
PM
1597 local_irq_restore(flags);
1598}
1599
8a7b8cb9 1600/*
a4eaf7f1
PZ
1601 * POWER-PMU does not support disabling individual counters, hence
1602 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1603 */
a4eaf7f1
PZ
1604
1605static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1606{
8a7b8cb9 1607 unsigned long flags;
a4eaf7f1 1608 s64 left;
9a45a940 1609 unsigned long val;
8a7b8cb9 1610
cdd6c482 1611 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1612 return;
a4eaf7f1
PZ
1613
1614 if (!(event->hw.state & PERF_HES_STOPPED))
1615 return;
1616
1617 if (ef_flags & PERF_EF_RELOAD)
1618 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1619
1620 local_irq_save(flags);
1621 perf_pmu_disable(event->pmu);
1622
1623 event->hw.state = 0;
1624 left = local64_read(&event->hw.period_left);
9a45a940
AB
1625
1626 val = 0;
1627 if (left < 0x80000000L)
1628 val = 0x80000000L - left;
1629
1630 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1631
1632 perf_event_update_userpage(event);
1633 perf_pmu_enable(event->pmu);
1634 local_irq_restore(flags);
1635}
1636
1637static void power_pmu_stop(struct perf_event *event, int ef_flags)
1638{
1639 unsigned long flags;
1640
1641 if (!event->hw.idx || !event->hw.sample_period)
1642 return;
1643
1644 if (event->hw.state & PERF_HES_STOPPED)
1645 return;
1646
8a7b8cb9 1647 local_irq_save(flags);
33696fc0 1648 perf_pmu_disable(event->pmu);
a4eaf7f1 1649
cdd6c482 1650 power_pmu_read(event);
a4eaf7f1
PZ
1651 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1652 write_pmc(event->hw.idx, 0);
1653
cdd6c482 1654 perf_event_update_userpage(event);
33696fc0 1655 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1656 local_irq_restore(flags);
1657}
1658
8e6d5573
LM
1659/*
1660 * Start group events scheduling transaction
1661 * Set the flag to make pmu::enable() not perform the
1662 * schedulability test, it will be performed at commit time
fbbe0701
SB
1663 *
1664 * We only support PERF_PMU_TXN_ADD transactions. Save the
1665 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1666 * transactions.
8e6d5573 1667 */
fbbe0701 1668static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
8e6d5573 1669{
69111bac 1670 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
8e6d5573 1671
fbbe0701
SB
1672 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1673
1674 cpuhw->txn_flags = txn_flags;
1675 if (txn_flags & ~PERF_PMU_TXN_ADD)
1676 return;
1677
33696fc0 1678 perf_pmu_disable(pmu);
8e6d5573
LM
1679 cpuhw->n_txn_start = cpuhw->n_events;
1680}
1681
1682/*
1683 * Stop group events scheduling transaction
1684 * Clear the flag and pmu::enable() will perform the
1685 * schedulability test.
1686 */
e51df2c1 1687static void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573 1688{
69111bac 1689 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
fbbe0701
SB
1690 unsigned int txn_flags;
1691
1692 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1693
1694 txn_flags = cpuhw->txn_flags;
1695 cpuhw->txn_flags = 0;
1696 if (txn_flags & ~PERF_PMU_TXN_ADD)
1697 return;
8e6d5573 1698
33696fc0 1699 perf_pmu_enable(pmu);
8e6d5573
LM
1700}
1701
1702/*
1703 * Commit group events scheduling transaction
1704 * Perform the group schedulability test as a whole
1705 * Return 0 if success
1706 */
e51df2c1 1707static int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1708{
1709 struct cpu_hw_events *cpuhw;
1710 long i, n;
1711
1712 if (!ppmu)
1713 return -EAGAIN;
fbbe0701 1714
69111bac 1715 cpuhw = this_cpu_ptr(&cpu_hw_events);
fbbe0701
SB
1716 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1717
1718 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1719 cpuhw->txn_flags = 0;
1720 return 0;
1721 }
1722
8e6d5573
LM
1723 n = cpuhw->n_events;
1724 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1725 return -EAGAIN;
1726 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1727 if (i < 0)
1728 return -EAGAIN;
1729
1730 for (i = cpuhw->n_txn_start; i < n; ++i)
1731 cpuhw->event[i]->hw.config = cpuhw->events[i];
1732
fbbe0701 1733 cpuhw->txn_flags = 0;
33696fc0 1734 perf_pmu_enable(pmu);
8e6d5573
LM
1735 return 0;
1736}
1737
ab7ef2e5 1738/*
cdd6c482 1739 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1740 * or 0 if not.
cdd6c482 1741 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1742 * that a limited PMC can count, doesn't require interrupts, and
1743 * doesn't exclude any processor mode.
1744 */
cdd6c482 1745static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1746 unsigned int flags)
1747{
1748 int n;
ef923214 1749 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1750
cdd6c482
IM
1751 if (event->attr.exclude_user
1752 || event->attr.exclude_kernel
1753 || event->attr.exclude_hv
1754 || event->attr.sample_period)
ab7ef2e5
PM
1755 return 0;
1756
1757 if (ppmu->limited_pmc_event(ev))
1758 return 1;
1759
1760 /*
cdd6c482 1761 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1762 * see if any alternative code goes on a limited PMC.
1763 */
1764 if (!ppmu->get_alternatives)
1765 return 0;
1766
1767 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1768 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1769
ef923214 1770 return n > 0;
ab7ef2e5
PM
1771}
1772
1773/*
cdd6c482
IM
1774 * Find an alternative event_id that goes on a normal PMC, if possible,
1775 * and return the event_id code, or 0 if there is no such alternative.
1776 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1777 */
ef923214 1778static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1779{
ef923214 1780 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1781 int n;
1782
1783 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1784 n = ppmu->get_alternatives(ev, flags, alt);
1785 if (!n)
1786 return 0;
1787 return alt[0];
1788}
1789
cdd6c482
IM
1790/* Number of perf_events counting hardware events */
1791static atomic_t num_events;
7595d63b
PM
1792/* Used to avoid races in calling reserve/release_pmc_hardware */
1793static DEFINE_MUTEX(pmc_reserve_mutex);
1794
1795/*
cdd6c482 1796 * Release the PMU if this is the last perf_event.
7595d63b 1797 */
cdd6c482 1798static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1799{
cdd6c482 1800 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1801 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1802 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1803 release_pmc_hardware();
1804 mutex_unlock(&pmc_reserve_mutex);
1805 }
1806}
1807
106b506c 1808/*
cdd6c482 1809 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1810 */
1811static int hw_perf_cache_event(u64 config, u64 *eventp)
1812{
1813 unsigned long type, op, result;
1814 int ev;
1815
1816 if (!ppmu->cache_events)
1817 return -EINVAL;
1818
1819 /* unpack config */
1820 type = config & 0xff;
1821 op = (config >> 8) & 0xff;
1822 result = (config >> 16) & 0xff;
1823
1824 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1825 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1826 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1827 return -EINVAL;
1828
1829 ev = (*ppmu->cache_events)[type][op][result];
1830 if (ev == 0)
1831 return -EOPNOTSUPP;
1832 if (ev == -1)
1833 return -EINVAL;
1834 *eventp = ev;
1835 return 0;
1836}
1837
b0a873eb 1838static int power_pmu_event_init(struct perf_event *event)
4574910e 1839{
ef923214
PM
1840 u64 ev;
1841 unsigned long flags;
cdd6c482
IM
1842 struct perf_event *ctrs[MAX_HWEVENTS];
1843 u64 events[MAX_HWEVENTS];
1844 unsigned int cflags[MAX_HWEVENTS];
4574910e 1845 int n;
7595d63b 1846 int err;
cdd6c482 1847 struct cpu_hw_events *cpuhw;
65fa6e17 1848 u64 bhrb_filter;
4574910e
PM
1849
1850 if (!ppmu)
b0a873eb
PZ
1851 return -ENOENT;
1852
3925f46b
AK
1853 if (has_branch_stack(event)) {
1854 /* PMU has BHRB enabled */
4d9690dd 1855 if (!(ppmu->flags & PPMU_ARCH_207S))
3925f46b
AK
1856 return -EOPNOTSUPP;
1857 }
2481c5fa 1858
cdd6c482 1859 switch (event->attr.type) {
106b506c 1860 case PERF_TYPE_HARDWARE:
cdd6c482 1861 ev = event->attr.config;
9aaa131a 1862 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1863 return -EOPNOTSUPP;
4574910e 1864 ev = ppmu->generic_events[ev];
106b506c
PM
1865 break;
1866 case PERF_TYPE_HW_CACHE:
cdd6c482 1867 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1868 if (err)
b0a873eb 1869 return err;
106b506c
PM
1870 break;
1871 case PERF_TYPE_RAW:
cdd6c482 1872 ev = event->attr.config;
106b506c 1873 break;
90c8f954 1874 default:
b0a873eb 1875 return -ENOENT;
4574910e 1876 }
b0a873eb 1877
cdd6c482
IM
1878 event->hw.config_base = ev;
1879 event->hw.idx = 0;
4574910e 1880
0475f9ea
PM
1881 /*
1882 * If we are not running on a hypervisor, force the
1883 * exclude_hv bit to 0 so that we don't care what
d095cd46 1884 * the user set it to.
0475f9ea
PM
1885 */
1886 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1887 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1888
1889 /*
cdd6c482 1890 * If this is a per-task event, then we can use
ab7ef2e5
PM
1891 * PM_RUN_* events interchangeably with their non RUN_*
1892 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1893 * XXX we should check if the task is an idle task.
1894 */
1895 flags = 0;
57fa7214 1896 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1897 flags |= PPMU_ONLY_COUNT_RUN;
1898
1899 /*
cdd6c482
IM
1900 * If this machine has limited events, check whether this
1901 * event_id could go on a limited event.
ab7ef2e5 1902 */
0bbd0d4b 1903 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1904 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1905 flags |= PPMU_LIMITED_PMC_OK;
1906 } else if (ppmu->limited_pmc_event(ev)) {
1907 /*
cdd6c482 1908 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1909 * but we can't use a limited PMC; see if any
1910 * alternative goes on a normal PMC.
1911 */
1912 ev = normal_pmc_alternative(ev, flags);
1913 if (!ev)
b0a873eb 1914 return -EINVAL;
ab7ef2e5
PM
1915 }
1916 }
1917
330a1eb7
ME
1918 /* Extra checks for EBB */
1919 err = ebb_event_check(event);
1920 if (err)
1921 return err;
1922
4574910e
PM
1923 /*
1924 * If this is in a group, check if it can go on with all the
cdd6c482 1925 * other hardware events in the group. We assume the event
4574910e
PM
1926 * hasn't been linked into its leader's sibling list at this point.
1927 */
1928 n = 0;
cdd6c482 1929 if (event->group_leader != event) {
a8f90e90 1930 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1931 ctrs, events, cflags);
4574910e 1932 if (n < 0)
b0a873eb 1933 return -EINVAL;
4574910e 1934 }
0475f9ea 1935 events[n] = ev;
cdd6c482 1936 ctrs[n] = event;
ab7ef2e5
PM
1937 cflags[n] = flags;
1938 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1939 return -EINVAL;
e51ee31e 1940
cdd6c482 1941 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1942 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1943
1944 if (has_branch_stack(event)) {
65fa6e17 1945 bhrb_filter = ppmu->bhrb_filter_map(
3925f46b
AK
1946 event->attr.branch_sample_type);
1947
65fa6e17 1948 if (bhrb_filter == -1) {
68de8867 1949 put_cpu_var(cpu_hw_events);
3925f46b 1950 return -EOPNOTSUPP;
68de8867 1951 }
65fa6e17 1952 cpuhw->bhrb_filter = bhrb_filter;
3925f46b
AK
1953 }
1954
cdd6c482 1955 put_cpu_var(cpu_hw_events);
e51ee31e 1956 if (err)
b0a873eb 1957 return -EINVAL;
4574910e 1958
cdd6c482
IM
1959 event->hw.config = events[n];
1960 event->hw.event_base = cflags[n];
1961 event->hw.last_period = event->hw.sample_period;
e7850595 1962 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b 1963
330a1eb7
ME
1964 /*
1965 * For EBB events we just context switch the PMC value, we don't do any
1966 * of the sample_period logic. We use hw.prev_count for this.
1967 */
1968 if (is_ebb_event(event))
1969 local64_set(&event->hw.prev_count, 0);
1970
7595d63b
PM
1971 /*
1972 * See if we need to reserve the PMU.
cdd6c482 1973 * If no events are currently in use, then we have to take a
7595d63b
PM
1974 * mutex to ensure that we don't race with another task doing
1975 * reserve_pmc_hardware or release_pmc_hardware.
1976 */
1977 err = 0;
cdd6c482 1978 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1979 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1980 if (atomic_read(&num_events) == 0 &&
1981 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1982 err = -EBUSY;
1983 else
cdd6c482 1984 atomic_inc(&num_events);
7595d63b
PM
1985 mutex_unlock(&pmc_reserve_mutex);
1986 }
cdd6c482 1987 event->destroy = hw_perf_event_destroy;
7595d63b 1988
b0a873eb 1989 return err;
4574910e
PM
1990}
1991
35edc2a5
PZ
1992static int power_pmu_event_idx(struct perf_event *event)
1993{
1994 return event->hw.idx;
1995}
1996
1c53a270
SB
1997ssize_t power_events_sysfs_show(struct device *dev,
1998 struct device_attribute *attr, char *page)
1999{
2000 struct perf_pmu_events_attr *pmu_attr;
2001
2002 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2003
2004 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2005}
2006
e51df2c1 2007static struct pmu power_pmu = {
a4eaf7f1
PZ
2008 .pmu_enable = power_pmu_enable,
2009 .pmu_disable = power_pmu_disable,
b0a873eb 2010 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
2011 .add = power_pmu_add,
2012 .del = power_pmu_del,
2013 .start = power_pmu_start,
2014 .stop = power_pmu_stop,
b0a873eb 2015 .read = power_pmu_read,
b0a873eb
PZ
2016 .start_txn = power_pmu_start_txn,
2017 .cancel_txn = power_pmu_cancel_txn,
2018 .commit_txn = power_pmu_commit_txn,
35edc2a5 2019 .event_idx = power_pmu_event_idx,
acba3c7e 2020 .sched_task = power_pmu_sched_task,
b0a873eb
PZ
2021};
2022
4574910e 2023/*
57c0c15b 2024 * A counter has overflowed; update its count and record
4574910e
PM
2025 * things if requested. Note that interrupts are hard-disabled
2026 * here so there is no possibility of being interrupted.
2027 */
cdd6c482 2028static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 2029 struct pt_regs *regs)
4574910e 2030{
cdd6c482 2031 u64 period = event->hw.sample_period;
4574910e
PM
2032 s64 prev, delta, left;
2033 int record = 0;
2034
a4eaf7f1
PZ
2035 if (event->hw.state & PERF_HES_STOPPED) {
2036 write_pmc(event->hw.idx, 0);
2037 return;
2038 }
2039
4574910e 2040 /* we don't have to worry about interrupts here */
e7850595 2041 prev = local64_read(&event->hw.prev_count);
86c74ab3 2042 delta = check_and_compute_delta(prev, val);
e7850595 2043 local64_add(delta, &event->count);
4574910e
PM
2044
2045 /*
cdd6c482 2046 * See if the total period for this event has expired,
4574910e
PM
2047 * and update for the next period.
2048 */
2049 val = 0;
e7850595 2050 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
2051 if (delta == 0)
2052 left++;
60db5e09 2053 if (period) {
4574910e 2054 if (left <= 0) {
60db5e09 2055 left += period;
4574910e 2056 if (left <= 0)
60db5e09 2057 left = period;
e6878835 2058 record = siar_valid(regs);
4bca770e 2059 event->hw.last_period = event->hw.sample_period;
4574910e 2060 }
98fb1807
PM
2061 if (left < 0x80000000LL)
2062 val = 0x80000000LL - left;
4574910e 2063 }
4574910e 2064
a4eaf7f1
PZ
2065 write_pmc(event->hw.idx, val);
2066 local64_set(&event->hw.prev_count, val);
2067 local64_set(&event->hw.period_left, left);
2068 perf_event_update_userpage(event);
2069
4574910e
PM
2070 /*
2071 * Finally record data if requested.
2072 */
0bbd0d4b 2073 if (record) {
dc1d628a
PZ
2074 struct perf_sample_data data;
2075
fd0d000b 2076 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 2077
fc7ce9c7
KL
2078 if (event->attr.sample_type &
2079 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
98fb1807
PM
2080 perf_get_data_addr(regs, &data.addr);
2081
3925f46b
AK
2082 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2083 struct cpu_hw_events *cpuhw;
69111bac 2084 cpuhw = this_cpu_ptr(&cpu_hw_events);
3925f46b
AK
2085 power_pmu_bhrb_read(cpuhw);
2086 data.br_stack = &cpuhw->bhrb_stack;
2087 }
2088
79e96f8f
MS
2089 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2090 ppmu->get_mem_data_src)
2091 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2092
170a315f
MS
2093 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2094 ppmu->get_mem_weight)
2095 ppmu->get_mem_weight(&data.weight);
2096
a8b0ca17 2097 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 2098 power_pmu_stop(event, 0);
0bbd0d4b
PM
2099 }
2100}
2101
2102/*
2103 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 2104 * for an event_id.
0bbd0d4b
PM
2105 */
2106unsigned long perf_misc_flags(struct pt_regs *regs)
2107{
98fb1807 2108 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 2109
98fb1807
PM
2110 if (flags)
2111 return flags;
cdd6c482
IM
2112 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2113 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
2114}
2115
2116/*
2117 * Called from generic code to get the instruction pointer
cdd6c482 2118 * for an event_id.
0bbd0d4b
PM
2119 */
2120unsigned long perf_instruction_pointer(struct pt_regs *regs)
2121{
33904054 2122 bool use_siar = regs_use_siar(regs);
0bbd0d4b 2123
e6878835 2124 if (use_siar && siar_valid(regs))
75382aa7 2125 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 2126 else if (use_siar)
2127 return 0; // no valid instruction pointer
75382aa7 2128 else
1ce447b9 2129 return regs->nip;
4574910e
PM
2130}
2131
bc09c219 2132static bool pmc_overflow_power7(unsigned long val)
0837e324 2133{
0837e324
AB
2134 /*
2135 * Events on POWER7 can roll back if a speculative event doesn't
2136 * eventually complete. Unfortunately in some rare cases they will
2137 * raise a performance monitor exception. We need to catch this to
2138 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2139 * cycles from overflow.
2140 *
2141 * We only do this if the first pass fails to find any overflowing
2142 * PMCs because a user might set a period of less than 256 and we
2143 * don't want to mistakenly reset them.
2144 */
bc09c219
MN
2145 if ((0x80000000 - val) <= 256)
2146 return true;
2147
2148 return false;
2149}
2150
2151static bool pmc_overflow(unsigned long val)
2152{
2153 if ((int)val < 0)
0837e324
AB
2154 return true;
2155
2156 return false;
2157}
2158
4574910e
PM
2159/*
2160 * Performance monitor interrupt stuff
2161 */
cdd6c482 2162static void perf_event_interrupt(struct pt_regs *regs)
4574910e 2163{
bc09c219 2164 int i, j;
69111bac 2165 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
cdd6c482 2166 struct perf_event *event;
bc09c219
MN
2167 unsigned long val[8];
2168 int found, active;
ca8f2d7f
PM
2169 int nmi;
2170
ab7ef2e5 2171 if (cpuhw->n_limited)
a8f90e90 2172 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
2173 mfspr(SPRN_PMC6));
2174
98fb1807 2175 perf_read_regs(regs);
0bbd0d4b 2176
98fb1807 2177 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
2178 if (nmi)
2179 nmi_enter();
2180 else
2181 irq_enter();
4574910e 2182
bc09c219
MN
2183 /* Read all the PMCs since we'll need them a bunch of times */
2184 for (i = 0; i < ppmu->n_counter; ++i)
2185 val[i] = read_pmc(i + 1);
2186
2187 /* Try to find what caused the IRQ */
2188 found = 0;
2189 for (i = 0; i < ppmu->n_counter; ++i) {
2190 if (!pmc_overflow(val[i]))
ab7ef2e5 2191 continue;
bc09c219
MN
2192 if (is_limited_pmc(i + 1))
2193 continue; /* these won't generate IRQs */
2194 /*
2195 * We've found one that's overflowed. For active
2196 * counters we need to log this. For inactive
2197 * counters, we need to reset it anyway
2198 */
2199 found = 1;
2200 active = 0;
2201 for (j = 0; j < cpuhw->n_events; ++j) {
2202 event = cpuhw->event[j];
2203 if (event->hw.idx == (i + 1)) {
2204 active = 1;
2205 record_and_restart(event, val[i], regs);
2206 break;
2207 }
4574910e 2208 }
bc09c219
MN
2209 if (!active)
2210 /* reset non active counters that have overflowed */
2211 write_pmc(i + 1, 0);
4574910e 2212 }
bc09c219
MN
2213 if (!found && pvr_version_is(PVR_POWER7)) {
2214 /* check active counters for special buggy p7 overflow */
2215 for (i = 0; i < cpuhw->n_events; ++i) {
2216 event = cpuhw->event[i];
2217 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 2218 continue;
bc09c219
MN
2219 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2220 /* event has overflowed in a buggy way*/
2221 found = 1;
2222 record_and_restart(event,
2223 val[event->hw.idx - 1],
2224 regs);
2225 }
4574910e
PM
2226 }
2227 }
6772faa1 2228 if (!found && !nmi && printk_ratelimit())
bc09c219 2229 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
2230
2231 /*
2232 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 2233 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 2234 * and thus allow interrupts to occur again.
cdd6c482 2235 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
2236 * we get back out of this interrupt.
2237 */
ab7ef2e5 2238 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 2239
ca8f2d7f
PM
2240 if (nmi)
2241 nmi_exit();
2242 else
db4fb5ac 2243 irq_exit();
4574910e
PM
2244}
2245
7c98bd72 2246static int power_pmu_prepare_cpu(unsigned int cpu)
01d0287f 2247{
cdd6c482 2248 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 2249
57ecde42
TG
2250 if (ppmu) {
2251 memset(cpuhw, 0, sizeof(*cpuhw));
2252 cpuhw->mmcr[0] = MMCR0_FC;
3f6da390 2253 }
57ecde42 2254 return 0;
3f6da390
PZ
2255}
2256
061d19f2 2257int register_power_pmu(struct power_pmu *pmu)
4574910e 2258{
079b3c56
PM
2259 if (ppmu)
2260 return -EBUSY; /* something's already registered */
2261
2262 ppmu = pmu;
2263 pr_info("%s performance monitor hardware support registered\n",
2264 pmu->name);
d095cd46 2265
1c53a270
SB
2266 power_pmu.attr_groups = ppmu->attr_groups;
2267
98fb1807 2268#ifdef MSR_HV
d095cd46
PM
2269 /*
2270 * Use FCHV to ignore kernel events if MSR.HV is set.
2271 */
2272 if (mfmsr() & MSR_HV)
cdd6c482 2273 freeze_events_kernel = MMCR0_FCHV;
98fb1807 2274#endif /* CONFIG_PPC64 */
d095cd46 2275
2e80a82a 2276 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
73c1b41e 2277 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
57ecde42 2278 power_pmu_prepare_cpu, NULL);
4574910e
PM
2279 return 0;
2280}