]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/perf/imc-pmu.c
powerpc/perf: Fix IMC_MAX_PMU macro
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / perf / imc-pmu.c
CommitLineData
885dcd70
AS
1/*
2 * In-Memory Collection (IMC) Performance Monitor counter support.
3 *
4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5 * (C) 2017 Anju T Sudhakar, IBM Corporation.
6 * (C) 2017 Hemant K Shaw, IBM Corporation.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or later version.
12 */
13#include <linux/perf_event.h>
14#include <linux/slab.h>
15#include <asm/opal.h>
16#include <asm/imc-pmu.h>
17#include <asm/cputhreads.h>
18#include <asm/smp.h>
19#include <linux/string.h>
20
21/* Nest IMC data structures and variables */
22
23/*
24 * Used to avoid races in counting the nest-pmu units during hotplug
25 * register and unregister
26 */
27static DEFINE_MUTEX(nest_init_lock);
28static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
73ce9aec 29static struct imc_pmu **per_nest_pmu_arr;
885dcd70
AS
30static cpumask_t nest_imc_cpumask;
31struct imc_pmu_ref *nest_imc_refc;
32static int nest_pmus;
33
39a846db
AS
34/* Core IMC data structures and variables */
35
36static cpumask_t core_imc_cpumask;
37struct imc_pmu_ref *core_imc_refc;
38static struct imc_pmu *core_imc_pmu;
39
f74c89bd
AS
40/* Thread IMC data structures and variables */
41
42static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43static struct imc_pmu *thread_imc_pmu;
44static int thread_imc_mem_size;
45
885dcd70
AS
46struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47{
48 return container_of(event->pmu, struct imc_pmu, pmu);
49}
50
51PMU_FORMAT_ATTR(event, "config:0-40");
52PMU_FORMAT_ATTR(offset, "config:0-31");
53PMU_FORMAT_ATTR(rvalue, "config:32");
54PMU_FORMAT_ATTR(mode, "config:33-40");
55static struct attribute *imc_format_attrs[] = {
56 &format_attr_event.attr,
57 &format_attr_offset.attr,
58 &format_attr_rvalue.attr,
59 &format_attr_mode.attr,
60 NULL,
61};
62
63static struct attribute_group imc_format_group = {
64 .name = "format",
65 .attrs = imc_format_attrs,
66};
67
68/* Get the cpumask printed to a buffer "buf" */
69static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 struct device_attribute *attr,
71 char *buf)
72{
73 struct pmu *pmu = dev_get_drvdata(dev);
74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 cpumask_t *active_mask;
76
885dcd70
AS
77 switch(imc_pmu->domain){
78 case IMC_DOMAIN_NEST:
79 active_mask = &nest_imc_cpumask;
80 break;
39a846db
AS
81 case IMC_DOMAIN_CORE:
82 active_mask = &core_imc_cpumask;
83 break;
885dcd70
AS
84 default:
85 return 0;
86 }
87
88 return cpumap_print_to_pagebuf(true, buf, active_mask);
89}
90
91static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93static struct attribute *imc_pmu_cpumask_attrs[] = {
94 &dev_attr_cpumask.attr,
95 NULL,
96};
97
98static struct attribute_group imc_pmu_cpumask_attr_group = {
99 .attrs = imc_pmu_cpumask_attrs,
100};
101
102/* device_str_attr_create : Populate event "name" and string "str" in attribute */
103static struct attribute *device_str_attr_create(const char *name, const char *str)
104{
105 struct perf_pmu_events_attr *attr;
106
107 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 if (!attr)
109 return NULL;
110 sysfs_attr_init(&attr->attr.attr);
111
112 attr->event_str = str;
113 attr->attr.attr.name = name;
114 attr->attr.attr.mode = 0444;
115 attr->attr.show = perf_event_sysfs_show;
116
117 return &attr->attr.attr;
118}
119
120struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121 const char *unit, const char *prefix, u32 base)
122{
123 struct imc_events *event;
124 const char *s;
125 u32 reg;
126
127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128 if (!event)
129 return NULL;
130
131 if (of_property_read_u32(np, "reg", &reg))
132 goto error;
133 /* Add the base_reg value to the "reg" */
134 event->value = base + reg;
135
136 if (of_property_read_string(np, "event-name", &s))
137 goto error;
138
139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140 if (!event->name)
141 goto error;
142
143 if (of_property_read_string(np, "scale", &s))
144 s = scale;
145
146 if (s) {
147 event->scale = kstrdup(s, GFP_KERNEL);
148 if (!event->scale)
149 goto error;
150 }
151
152 if (of_property_read_string(np, "unit", &s))
153 s = unit;
154
155 if (s) {
156 event->unit = kstrdup(s, GFP_KERNEL);
157 if (!event->unit)
158 goto error;
159 }
160
161 return event;
162error:
163 kfree(event->unit);
164 kfree(event->scale);
165 kfree(event->name);
166 kfree(event);
167
168 return NULL;
169}
170
171/*
172 * update_events_in_group: Update the "events" information in an attr_group
173 * and assign the attr_group to the pmu "pmu".
174 */
175static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176{
177 struct attribute_group *attr_group;
178 struct attribute **attrs, *dev_str;
179 struct device_node *np, *pmu_events;
180 struct imc_events *ev;
181 u32 handle, base_reg;
182 int i=0, j=0, ct;
183 const char *prefix, *g_scale, *g_unit;
184 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185
186 if (!of_property_read_u32(node, "events", &handle))
187 pmu_events = of_find_node_by_phandle(handle);
188 else
189 return 0;
190
191 /* Did not find any node with a given phandle */
192 if (!pmu_events)
193 return 0;
194
195 /* Get a count of number of child nodes */
196 ct = of_get_child_count(pmu_events);
197
198 /* Get the event prefix */
199 if (of_property_read_string(node, "events-prefix", &prefix))
200 return 0;
201
202 /* Get a global unit and scale data if available */
203 if (of_property_read_string(node, "scale", &g_scale))
204 g_scale = NULL;
205
206 if (of_property_read_string(node, "unit", &g_unit))
207 g_unit = NULL;
208
209 /* "reg" property gives out the base offset of the counters data */
210 of_property_read_u32(node, "reg", &base_reg);
211
212 /* Allocate memory for the events */
213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214 if (!pmu->events)
215 return -ENOMEM;
216
217 ct = 0;
218 /* Parse the events and update the struct */
219 for_each_child_of_node(pmu_events, np) {
220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221 if (ev)
222 pmu->events[ct++] = ev;
223 }
224
225 /* Allocate memory for attribute group */
226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227 if (!attr_group)
228 return -ENOMEM;
229
230 /*
231 * Allocate memory for attributes.
232 * Since we have count of events for this pmu, we also allocate
233 * memory for the scale and unit attribute for now.
234 * "ct" has the total event structs added from the events-parent node.
235 * So allocate three times the "ct" (this includes event, event_scale and
236 * event_unit).
237 */
238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239 if (!attrs) {
240 kfree(attr_group);
241 kfree(pmu->events);
242 return -ENOMEM;
243 }
244
245 attr_group->name = "events";
246 attr_group->attrs = attrs;
247 do {
248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250 if (!dev_str)
251 continue;
252
253 attrs[j++] = dev_str;
254 if (pmu->events[i]->scale) {
255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257 if (!dev_str)
258 continue;
259
260 attrs[j++] = dev_str;
261 }
262
263 if (pmu->events[i]->unit) {
264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266 if (!dev_str)
267 continue;
268
269 attrs[j++] = dev_str;
270 }
271 } while (++i < ct);
272
273 /* Save the event attribute */
274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275
276 kfree(pmu->events);
277 return 0;
278}
279
280/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282{
283 return per_cpu(local_nest_imc_refc, cpu);
284}
285
286static void nest_change_cpu_context(int old_cpu, int new_cpu)
287{
288 struct imc_pmu **pn = per_nest_pmu_arr;
885dcd70
AS
289
290 if (old_cpu < 0 || new_cpu < 0)
291 return;
292
73ce9aec 293 while (*pn) {
885dcd70 294 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
73ce9aec
MS
295 pn++;
296 }
885dcd70
AS
297}
298
299static int ppc_nest_imc_cpu_offline(unsigned int cpu)
300{
301 int nid, target = -1;
302 const struct cpumask *l_cpumask;
303 struct imc_pmu_ref *ref;
304
305 /*
306 * Check in the designated list for this cpu. Dont bother
307 * if not one of them.
308 */
309 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
310 return 0;
311
312 /*
313 * Now that this cpu is one of the designated,
314 * find a next cpu a) which is online and b) in same chip.
315 */
316 nid = cpu_to_node(cpu);
317 l_cpumask = cpumask_of_node(nid);
318 target = cpumask_any_but(l_cpumask, cpu);
319
320 /*
321 * Update the cpumask with the target cpu and
322 * migrate the context if needed
323 */
324 if (target >= 0 && target < nr_cpu_ids) {
325 cpumask_set_cpu(target, &nest_imc_cpumask);
326 nest_change_cpu_context(cpu, target);
327 } else {
328 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
329 get_hard_smp_processor_id(cpu));
330 /*
331 * If this is the last cpu in this chip then, skip the reference
332 * count mutex lock and make the reference count on this chip zero.
333 */
334 ref = get_nest_pmu_ref(cpu);
335 if (!ref)
336 return -EINVAL;
337
338 ref->refc = 0;
339 }
340 return 0;
341}
342
343static int ppc_nest_imc_cpu_online(unsigned int cpu)
344{
345 const struct cpumask *l_cpumask;
346 static struct cpumask tmp_mask;
347 int res;
348
349 /* Get the cpumask of this node */
350 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
351
352 /*
353 * If this is not the first online CPU on this node, then
354 * just return.
355 */
356 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
357 return 0;
358
359 /*
360 * If this is the first online cpu on this node
361 * disable the nest counters by making an OPAL call.
362 */
363 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
364 get_hard_smp_processor_id(cpu));
365 if (res)
366 return res;
367
368 /* Make this CPU the designated target for counter collection */
369 cpumask_set_cpu(cpu, &nest_imc_cpumask);
370 return 0;
371}
372
373static int nest_pmu_cpumask_init(void)
374{
375 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
376 "perf/powerpc/imc:online",
377 ppc_nest_imc_cpu_online,
378 ppc_nest_imc_cpu_offline);
379}
380
381static void nest_imc_counters_release(struct perf_event *event)
382{
383 int rc, node_id;
384 struct imc_pmu_ref *ref;
385
386 if (event->cpu < 0)
387 return;
388
389 node_id = cpu_to_node(event->cpu);
390
391 /*
392 * See if we need to disable the nest PMU.
393 * If no events are currently in use, then we have to take a
394 * mutex to ensure that we don't race with another task doing
395 * enable or disable the nest counters.
396 */
397 ref = get_nest_pmu_ref(event->cpu);
398 if (!ref)
399 return;
400
401 /* Take the mutex lock for this node and then decrement the reference count */
402 mutex_lock(&ref->lock);
0d923820
AS
403 if (ref->refc == 0) {
404 /*
405 * The scenario where this is true is, when perf session is
406 * started, followed by offlining of all cpus in a given node.
407 *
408 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
409 * function set the ref->count to zero, if the cpu which is
410 * about to offline is the last cpu in a given node and make
411 * an OPAL call to disable the engine in that node.
412 *
413 */
414 mutex_unlock(&ref->lock);
415 return;
416 }
885dcd70
AS
417 ref->refc--;
418 if (ref->refc == 0) {
419 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
420 get_hard_smp_processor_id(event->cpu));
421 if (rc) {
711bd207 422 mutex_unlock(&ref->lock);
885dcd70
AS
423 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
424 return;
425 }
426 } else if (ref->refc < 0) {
427 WARN(1, "nest-imc: Invalid event reference count\n");
428 ref->refc = 0;
429 }
430 mutex_unlock(&ref->lock);
431}
432
433static int nest_imc_event_init(struct perf_event *event)
434{
435 int chip_id, rc, node_id;
436 u32 l_config, config = event->attr.config;
437 struct imc_mem_info *pcni;
438 struct imc_pmu *pmu;
439 struct imc_pmu_ref *ref;
440 bool flag = false;
441
442 if (event->attr.type != event->pmu->type)
443 return -ENOENT;
444
445 /* Sampling not supported */
446 if (event->hw.sample_period)
447 return -EINVAL;
448
449 /* unsupported modes and filters */
450 if (event->attr.exclude_user ||
451 event->attr.exclude_kernel ||
452 event->attr.exclude_hv ||
453 event->attr.exclude_idle ||
454 event->attr.exclude_host ||
455 event->attr.exclude_guest)
456 return -EINVAL;
457
458 if (event->cpu < 0)
459 return -EINVAL;
460
461 pmu = imc_event_to_pmu(event);
462
463 /* Sanity check for config (event offset) */
464 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
465 return -EINVAL;
466
467 /*
468 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
469 * Get the base memory addresss for this cpu.
470 */
f3f1dfd6 471 chip_id = cpu_to_chip_id(event->cpu);
885dcd70
AS
472 pcni = pmu->mem_info;
473 do {
474 if (pcni->id == chip_id) {
475 flag = true;
476 break;
477 }
478 pcni++;
479 } while (pcni);
480
481 if (!flag)
482 return -ENODEV;
483
484 /*
485 * Add the event offset to the base address.
486 */
487 l_config = config & IMC_EVENT_OFFSET_MASK;
488 event->hw.event_base = (u64)pcni->vbase + l_config;
489 node_id = cpu_to_node(event->cpu);
490
491 /*
492 * Get the imc_pmu_ref struct for this node.
493 * Take the mutex lock and then increment the count of nest pmu events
494 * inited.
495 */
496 ref = get_nest_pmu_ref(event->cpu);
497 if (!ref)
498 return -EINVAL;
499
500 mutex_lock(&ref->lock);
501 if (ref->refc == 0) {
502 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
503 get_hard_smp_processor_id(event->cpu));
504 if (rc) {
711bd207 505 mutex_unlock(&ref->lock);
885dcd70
AS
506 pr_err("nest-imc: Unable to start the counters for node %d\n",
507 node_id);
508 return rc;
509 }
510 }
511 ++ref->refc;
512 mutex_unlock(&ref->lock);
513
514 event->destroy = nest_imc_counters_release;
515 return 0;
516}
517
39a846db
AS
518/*
519 * core_imc_mem_init : Initializes memory for the current core.
520 *
521 * Uses alloc_pages_node() and uses the returned address as an argument to
522 * an opal call to configure the pdbar. The address sent as an argument is
523 * converted to physical address before the opal call is made. This is the
524 * base address at which the core imc counters are populated.
525 */
526static int core_imc_mem_init(int cpu, int size)
527{
f3f1dfd6 528 int nid, rc = 0, core_id = (cpu / threads_per_core);
39a846db
AS
529 struct imc_mem_info *mem_info;
530
531 /*
532 * alloc_pages_node() will allocate memory for core in the
533 * local node only.
534 */
f3f1dfd6 535 nid = cpu_to_node(cpu);
39a846db
AS
536 mem_info = &core_imc_pmu->mem_info[core_id];
537 mem_info->id = core_id;
538
539 /* We need only vbase for core counters */
f3f1dfd6 540 mem_info->vbase = page_address(alloc_pages_node(nid,
cd4f2b30
AS
541 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
542 __GFP_NOWARN, get_order(size)));
39a846db
AS
543 if (!mem_info->vbase)
544 return -ENOMEM;
545
546 /* Init the mutex */
547 core_imc_refc[core_id].id = core_id;
548 mutex_init(&core_imc_refc[core_id].lock);
549
550 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
551 __pa((void *)mem_info->vbase),
552 get_hard_smp_processor_id(cpu));
553 if (rc) {
554 free_pages((u64)mem_info->vbase, get_order(size));
555 mem_info->vbase = NULL;
556 }
557
558 return rc;
559}
560
561static bool is_core_imc_mem_inited(int cpu)
562{
563 struct imc_mem_info *mem_info;
564 int core_id = (cpu / threads_per_core);
565
566 mem_info = &core_imc_pmu->mem_info[core_id];
567 if (!mem_info->vbase)
568 return false;
569
570 return true;
571}
572
573static int ppc_core_imc_cpu_online(unsigned int cpu)
574{
575 const struct cpumask *l_cpumask;
576 static struct cpumask tmp_mask;
577 int ret = 0;
578
579 /* Get the cpumask for this core */
580 l_cpumask = cpu_sibling_mask(cpu);
581
582 /* If a cpu for this core is already set, then, don't do anything */
583 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
584 return 0;
585
586 if (!is_core_imc_mem_inited(cpu)) {
587 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
588 if (ret) {
589 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
590 return ret;
591 }
592 }
593
594 /* set the cpu in the mask */
595 cpumask_set_cpu(cpu, &core_imc_cpumask);
596 return 0;
597}
598
599static int ppc_core_imc_cpu_offline(unsigned int cpu)
600{
601 unsigned int ncpu, core_id;
602 struct imc_pmu_ref *ref;
603
604 /*
605 * clear this cpu out of the mask, if not present in the mask,
606 * don't bother doing anything.
607 */
608 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
609 return 0;
610
7ecb37f6
MS
611 /*
612 * Check whether core_imc is registered. We could end up here
613 * if the cpuhotplug callback registration fails. i.e, callback
614 * invokes the offline path for all sucessfully registered cpus.
615 * At this stage, core_imc pmu will not be registered and we
616 * should return here.
617 *
618 * We return with a zero since this is not an offline failure.
619 * And cpuhp_setup_state() returns the actual failure reason
620 * to the caller, which inturn will call the cleanup routine.
621 */
622 if (!core_imc_pmu->pmu.event_init)
623 return 0;
624
39a846db
AS
625 /* Find any online cpu in that core except the current "cpu" */
626 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
627
628 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
629 cpumask_set_cpu(ncpu, &core_imc_cpumask);
630 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
631 } else {
632 /*
633 * If this is the last cpu in this core then, skip taking refernce
634 * count mutex lock for this core and directly zero "refc" for
635 * this core.
636 */
637 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
638 get_hard_smp_processor_id(cpu));
639 core_id = cpu / threads_per_core;
640 ref = &core_imc_refc[core_id];
641 if (!ref)
642 return -EINVAL;
643
644 ref->refc = 0;
645 }
646 return 0;
647}
648
649static int core_imc_pmu_cpumask_init(void)
650{
651 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
652 "perf/powerpc/imc_core:online",
653 ppc_core_imc_cpu_online,
654 ppc_core_imc_cpu_offline);
655}
656
657static void core_imc_counters_release(struct perf_event *event)
658{
659 int rc, core_id;
660 struct imc_pmu_ref *ref;
661
662 if (event->cpu < 0)
663 return;
664 /*
665 * See if we need to disable the IMC PMU.
666 * If no events are currently in use, then we have to take a
667 * mutex to ensure that we don't race with another task doing
668 * enable or disable the core counters.
669 */
670 core_id = event->cpu / threads_per_core;
671
672 /* Take the mutex lock and decrement the refernce count for this core */
673 ref = &core_imc_refc[core_id];
674 if (!ref)
675 return;
676
677 mutex_lock(&ref->lock);
0d923820
AS
678 if (ref->refc == 0) {
679 /*
680 * The scenario where this is true is, when perf session is
681 * started, followed by offlining of all cpus in a given core.
682 *
683 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
684 * function set the ref->count to zero, if the cpu which is
685 * about to offline is the last cpu in a given core and make
686 * an OPAL call to disable the engine in that core.
687 *
688 */
689 mutex_unlock(&ref->lock);
690 return;
691 }
39a846db
AS
692 ref->refc--;
693 if (ref->refc == 0) {
694 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
695 get_hard_smp_processor_id(event->cpu));
696 if (rc) {
697 mutex_unlock(&ref->lock);
698 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
699 return;
700 }
701 } else if (ref->refc < 0) {
702 WARN(1, "core-imc: Invalid event reference count\n");
703 ref->refc = 0;
704 }
705 mutex_unlock(&ref->lock);
706}
707
708static int core_imc_event_init(struct perf_event *event)
709{
710 int core_id, rc;
711 u64 config = event->attr.config;
712 struct imc_mem_info *pcmi;
713 struct imc_pmu *pmu;
714 struct imc_pmu_ref *ref;
715
716 if (event->attr.type != event->pmu->type)
717 return -ENOENT;
718
719 /* Sampling not supported */
720 if (event->hw.sample_period)
721 return -EINVAL;
722
723 /* unsupported modes and filters */
724 if (event->attr.exclude_user ||
725 event->attr.exclude_kernel ||
726 event->attr.exclude_hv ||
727 event->attr.exclude_idle ||
728 event->attr.exclude_host ||
729 event->attr.exclude_guest)
730 return -EINVAL;
731
732 if (event->cpu < 0)
733 return -EINVAL;
734
735 event->hw.idx = -1;
736 pmu = imc_event_to_pmu(event);
737
738 /* Sanity check for config (event offset) */
739 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
740 return -EINVAL;
741
742 if (!is_core_imc_mem_inited(event->cpu))
743 return -ENODEV;
744
745 core_id = event->cpu / threads_per_core;
746 pcmi = &core_imc_pmu->mem_info[core_id];
747 if ((!pcmi->vbase))
748 return -ENODEV;
749
750 /* Get the core_imc mutex for this core */
751 ref = &core_imc_refc[core_id];
752 if (!ref)
753 return -EINVAL;
754
755 /*
756 * Core pmu units are enabled only when it is used.
757 * See if this is triggered for the first time.
758 * If yes, take the mutex lock and enable the core counters.
759 * If not, just increment the count in core_imc_refc struct.
760 */
761 mutex_lock(&ref->lock);
762 if (ref->refc == 0) {
763 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
764 get_hard_smp_processor_id(event->cpu));
765 if (rc) {
766 mutex_unlock(&ref->lock);
767 pr_err("core-imc: Unable to start the counters for core %d\n",
768 core_id);
769 return rc;
770 }
771 }
772 ++ref->refc;
773 mutex_unlock(&ref->lock);
774
775 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
776 event->destroy = core_imc_counters_release;
777 return 0;
778}
779
f74c89bd
AS
780/*
781 * Allocates a page of memory for each of the online cpus, and write the
782 * physical base address of that page to the LDBAR for that cpu.
783 *
784 * LDBAR Register Layout:
785 *
786 * 0 4 8 12 16 20 24 28
787 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
788 * | | [ ] [ Counter Address [8:50]
789 * | * Mode |
790 * | * PB Scope
791 * * Enable/Disable
792 *
793 * 32 36 40 44 48 52 56 60
794 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
795 * Counter Address [8:50] ]
796 *
797 */
798static int thread_imc_mem_alloc(int cpu_id, int size)
799{
800 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
f3f1dfd6 801 int nid = cpu_to_node(cpu_id);
f74c89bd
AS
802
803 if (!local_mem) {
804 /*
805 * This case could happen only once at start, since we dont
806 * free the memory in cpu offline path.
807 */
f3f1dfd6 808 local_mem = page_address(alloc_pages_node(nid,
cd4f2b30
AS
809 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
810 __GFP_NOWARN, get_order(size)));
f74c89bd
AS
811 if (!local_mem)
812 return -ENOMEM;
813
814 per_cpu(thread_imc_mem, cpu_id) = local_mem;
815 }
816
817 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
818
819 mtspr(SPRN_LDBAR, ldbar_value);
820 return 0;
821}
822
823static int ppc_thread_imc_cpu_online(unsigned int cpu)
885dcd70 824{
f74c89bd
AS
825 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
826}
827
828static int ppc_thread_imc_cpu_offline(unsigned int cpu)
829{
830 mtspr(SPRN_LDBAR, 0);
831 return 0;
832}
833
834static int thread_imc_cpu_init(void)
835{
836 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
837 "perf/powerpc/imc_thread:online",
838 ppc_thread_imc_cpu_online,
839 ppc_thread_imc_cpu_offline);
840}
841
842void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
843 bool sched_in)
844{
845 int core_id;
846 struct imc_pmu_ref *ref;
847
848 if (!is_core_imc_mem_inited(smp_processor_id()))
849 return;
850
851 core_id = smp_processor_id() / threads_per_core;
885dcd70 852 /*
f74c89bd
AS
853 * imc pmus are enabled only when it is used.
854 * See if this is triggered for the first time.
855 * If yes, take the mutex lock and enable the counters.
856 * If not, just increment the count in ref count struct.
885dcd70 857 */
f74c89bd
AS
858 ref = &core_imc_refc[core_id];
859 if (!ref)
860 return;
861
862 if (sched_in) {
863 mutex_lock(&ref->lock);
864 if (ref->refc == 0) {
865 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
866 get_hard_smp_processor_id(smp_processor_id()))) {
867 mutex_unlock(&ref->lock);
868 pr_err("thread-imc: Unable to start the counter\
869 for core %d\n", core_id);
870 return;
871 }
872 }
873 ++ref->refc;
874 mutex_unlock(&ref->lock);
875 } else {
876 mutex_lock(&ref->lock);
877 ref->refc--;
878 if (ref->refc == 0) {
879 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
880 get_hard_smp_processor_id(smp_processor_id()))) {
881 mutex_unlock(&ref->lock);
882 pr_err("thread-imc: Unable to stop the counters\
883 for core %d\n", core_id);
884 return;
885 }
886 } else if (ref->refc < 0) {
887 ref->refc = 0;
888 }
889 mutex_unlock(&ref->lock);
890 }
891
892 return;
893}
894
895static int thread_imc_event_init(struct perf_event *event)
896{
897 u32 config = event->attr.config;
898 struct task_struct *target;
899 struct imc_pmu *pmu;
900
901 if (event->attr.type != event->pmu->type)
902 return -ENOENT;
903
904 /* Sampling not supported */
905 if (event->hw.sample_period)
906 return -EINVAL;
907
908 event->hw.idx = -1;
909 pmu = imc_event_to_pmu(event);
910
911 /* Sanity check for config offset */
912 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
913 return -EINVAL;
914
915 target = event->hw.target;
916 if (!target)
917 return -EINVAL;
918
919 event->pmu->task_ctx_nr = perf_sw_context;
920 return 0;
921}
922
923static bool is_thread_imc_pmu(struct perf_event *event)
924{
925 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
926 return true;
927
928 return false;
929}
930
931static u64 * get_event_base_addr(struct perf_event *event)
932{
933 u64 addr;
934
935 if (is_thread_imc_pmu(event)) {
936 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
937 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
938 }
939
885dcd70
AS
940 return (u64 *)event->hw.event_base;
941}
942
f74c89bd
AS
943static void thread_imc_pmu_start_txn(struct pmu *pmu,
944 unsigned int txn_flags)
945{
946 if (txn_flags & ~PERF_PMU_TXN_ADD)
947 return;
948 perf_pmu_disable(pmu);
949}
950
951static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
952{
953 perf_pmu_enable(pmu);
954}
955
956static int thread_imc_pmu_commit_txn(struct pmu *pmu)
957{
958 perf_pmu_enable(pmu);
959 return 0;
960}
961
885dcd70
AS
962static u64 imc_read_counter(struct perf_event *event)
963{
964 u64 *addr, data;
965
966 /*
967 * In-Memory Collection (IMC) counters are free flowing counters.
968 * So we take a snapshot of the counter value on enable and save it
969 * to calculate the delta at later stage to present the event counter
970 * value.
971 */
972 addr = get_event_base_addr(event);
973 data = be64_to_cpu(READ_ONCE(*addr));
974 local64_set(&event->hw.prev_count, data);
975
976 return data;
977}
978
979static void imc_event_update(struct perf_event *event)
980{
981 u64 counter_prev, counter_new, final_count;
982
983 counter_prev = local64_read(&event->hw.prev_count);
984 counter_new = imc_read_counter(event);
985 final_count = counter_new - counter_prev;
986
987 /* Update the delta to the event count */
988 local64_add(final_count, &event->count);
989}
990
991static void imc_event_start(struct perf_event *event, int flags)
992{
993 /*
994 * In Memory Counters are free flowing counters. HW or the microcode
995 * keeps adding to the counter offset in memory. To get event
996 * counter value, we snapshot the value here and we calculate
997 * delta at later point.
998 */
999 imc_read_counter(event);
1000}
1001
1002static void imc_event_stop(struct perf_event *event, int flags)
1003{
1004 /*
1005 * Take a snapshot and calculate the delta and update
1006 * the event counter values.
1007 */
1008 imc_event_update(event);
1009}
1010
1011static int imc_event_add(struct perf_event *event, int flags)
1012{
1013 if (flags & PERF_EF_START)
1014 imc_event_start(event, flags);
1015
1016 return 0;
1017}
1018
f74c89bd
AS
1019static int thread_imc_event_add(struct perf_event *event, int flags)
1020{
1021 if (flags & PERF_EF_START)
1022 imc_event_start(event, flags);
1023
1024 /* Enable the sched_task to start the engine */
1025 perf_sched_cb_inc(event->ctx->pmu);
1026 return 0;
1027}
1028
1029static void thread_imc_event_del(struct perf_event *event, int flags)
1030{
1031 /*
1032 * Take a snapshot and calculate the delta and update
1033 * the event counter values.
1034 */
1035 imc_event_update(event);
1036 perf_sched_cb_dec(event->ctx->pmu);
1037}
1038
885dcd70
AS
1039/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1040static int update_pmu_ops(struct imc_pmu *pmu)
1041{
1042 pmu->pmu.task_ctx_nr = perf_invalid_context;
1043 pmu->pmu.add = imc_event_add;
1044 pmu->pmu.del = imc_event_stop;
1045 pmu->pmu.start = imc_event_start;
1046 pmu->pmu.stop = imc_event_stop;
1047 pmu->pmu.read = imc_event_update;
1048 pmu->pmu.attr_groups = pmu->attr_groups;
1049 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1050
885dcd70
AS
1051 switch (pmu->domain) {
1052 case IMC_DOMAIN_NEST:
1053 pmu->pmu.event_init = nest_imc_event_init;
1054 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1055 break;
39a846db
AS
1056 case IMC_DOMAIN_CORE:
1057 pmu->pmu.event_init = core_imc_event_init;
1058 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1059 break;
f74c89bd
AS
1060 case IMC_DOMAIN_THREAD:
1061 pmu->pmu.event_init = thread_imc_event_init;
1062 pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1063 pmu->pmu.add = thread_imc_event_add;
1064 pmu->pmu.del = thread_imc_event_del;
1065 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1066 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1067 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1068 break;
885dcd70
AS
1069 default:
1070 break;
1071 }
1072
1073 return 0;
1074}
1075
1076/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1077static int init_nest_pmu_ref(void)
1078{
1079 int nid, i, cpu;
1080
1081 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1082 GFP_KERNEL);
1083
1084 if (!nest_imc_refc)
1085 return -ENOMEM;
1086
1087 i = 0;
1088 for_each_node(nid) {
1089 /*
1090 * Mutex lock to avoid races while tracking the number of
1091 * sessions using the chip's nest pmu units.
1092 */
1093 mutex_init(&nest_imc_refc[i].lock);
1094
1095 /*
1096 * Loop to init the "id" with the node_id. Variable "i" initialized to
1097 * 0 and will be used as index to the array. "i" will not go off the
1098 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1099 * nodes only.
1100 */
1101 nest_imc_refc[i++].id = nid;
1102 }
1103
1104 /*
1105 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1106 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1107 */
1108 for_each_possible_cpu(cpu) {
1109 nid = cpu_to_node(cpu);
7efbae90 1110 for (i = 0; i < num_possible_nodes(); i++) {
885dcd70
AS
1111 if (nest_imc_refc[i].id == nid) {
1112 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1113 break;
1114 }
1115 }
1116 }
1117 return 0;
1118}
1119
39a846db
AS
1120static void cleanup_all_core_imc_memory(void)
1121{
0b167f11 1122 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
39a846db
AS
1123 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1124 int size = core_imc_pmu->counter_mem_size;
1125
1126 /* mem_info will never be NULL */
1127 for (i = 0; i < nr_cores; i++) {
1128 if (ptr[i].vbase)
1129 free_pages((u64)ptr->vbase, get_order(size));
1130 }
1131
1132 kfree(ptr);
1133 kfree(core_imc_refc);
1134}
1135
f74c89bd
AS
1136static void thread_imc_ldbar_disable(void *dummy)
1137{
1138 /*
1139 * By Zeroing LDBAR, we disable thread-imc
1140 * updates.
1141 */
1142 mtspr(SPRN_LDBAR, 0);
1143}
1144
1145void thread_imc_disable(void)
1146{
1147 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1148}
1149
1150static void cleanup_all_thread_imc_memory(void)
1151{
1152 int i, order = get_order(thread_imc_mem_size);
1153
1154 for_each_online_cpu(i) {
1155 if (per_cpu(thread_imc_mem, i))
1156 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1157
1158 }
1159}
1160
885dcd70
AS
1161/*
1162 * Common function to unregister cpu hotplug callback and
1163 * free the memory.
1164 * TODO: Need to handle pmu unregistering, which will be
1165 * done in followup series.
1166 */
1167static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1168{
1169 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
b3376dcc 1170 mutex_lock(&nest_init_lock);
885dcd70
AS
1171 if (nest_pmus == 1) {
1172 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1173 kfree(nest_imc_refc);
1174 }
1175
1176 if (nest_pmus > 0)
1177 nest_pmus--;
1178 mutex_unlock(&nest_init_lock);
1179 }
1180
39a846db
AS
1181 /* Free core_imc memory */
1182 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1183 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1184 cleanup_all_core_imc_memory();
1185 }
1186
f74c89bd
AS
1187 /* Free thread_imc memory */
1188 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1189 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1190 cleanup_all_thread_imc_memory();
1191 }
1192
885dcd70 1193 /* Only free the attr_groups which are dynamically allocated */
0d8ba162
AS
1194 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1195 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
885dcd70
AS
1196 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1197 kfree(pmu_ptr);
73ce9aec 1198 kfree(per_nest_pmu_arr);
885dcd70
AS
1199 return;
1200}
1201
1202
1203/*
1204 * imc_mem_init : Function to support memory allocation for core imc.
1205 */
1206static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1207 int pmu_index)
1208{
1209 const char *s;
f74c89bd 1210 int nr_cores, cpu, res;
885dcd70
AS
1211
1212 if (of_property_read_string(parent, "name", &s))
1213 return -ENODEV;
1214
885dcd70
AS
1215 switch (pmu_ptr->domain) {
1216 case IMC_DOMAIN_NEST:
1217 /* Update the pmu name */
1218 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1219 if (!pmu_ptr->pmu.name)
1220 return -ENOMEM;
1221
1222 /* Needed for hotplug/migration */
73ce9aec
MS
1223 if (!per_nest_pmu_arr) {
1224 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1225 sizeof(struct imc_pmu *),
1226 GFP_KERNEL);
1227 if (!per_nest_pmu_arr)
1228 return -ENOMEM;
1229 }
885dcd70
AS
1230 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1231 break;
39a846db
AS
1232 case IMC_DOMAIN_CORE:
1233 /* Update the pmu name */
1234 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1235 if (!pmu_ptr->pmu.name)
1236 return -ENOMEM;
1237
0b167f11 1238 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
39a846db
AS
1239 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1240 GFP_KERNEL);
1241
1242 if (!pmu_ptr->mem_info)
1243 return -ENOMEM;
1244
1245 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1246 GFP_KERNEL);
1247
1248 if (!core_imc_refc)
1249 return -ENOMEM;
1250
1251 core_imc_pmu = pmu_ptr;
1252 break;
f74c89bd
AS
1253 case IMC_DOMAIN_THREAD:
1254 /* Update the pmu name */
1255 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1256 if (!pmu_ptr->pmu.name)
1257 return -ENOMEM;
1258
1259 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1260 for_each_online_cpu(cpu) {
1261 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1262 if (res)
1263 return res;
1264 }
1265
1266 thread_imc_pmu = pmu_ptr;
1267 break;
885dcd70
AS
1268 default:
1269 return -EINVAL;
1270 }
1271
1272 return 0;
1273}
1274
1275/*
1276 * init_imc_pmu : Setup and register the IMC pmu device.
1277 *
1278 * @parent: Device tree unit node
1279 * @pmu_ptr: memory allocated for this pmu
1280 * @pmu_idx: Count of nest pmc registered
1281 *
1282 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1283 * Handles failure cases and accordingly frees memory.
1284 */
1285int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1286{
1287 int ret;
1288
1289 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1290 if (ret)
1291 goto err_free;
1292
885dcd70
AS
1293 switch (pmu_ptr->domain) {
1294 case IMC_DOMAIN_NEST:
1295 /*
1296 * Nest imc pmu need only one cpu per chip, we initialize the
1297 * cpumask for the first nest imc pmu and use the same for the
1298 * rest. To handle the cpuhotplug callback unregister, we track
1299 * the number of nest pmus in "nest_pmus".
1300 */
1301 mutex_lock(&nest_init_lock);
1302 if (nest_pmus == 0) {
1303 ret = init_nest_pmu_ref();
1304 if (ret) {
1305 mutex_unlock(&nest_init_lock);
1306 goto err_free;
1307 }
1308 /* Register for cpu hotplug notification. */
1309 ret = nest_pmu_cpumask_init();
1310 if (ret) {
1311 mutex_unlock(&nest_init_lock);
1312 goto err_free;
1313 }
1314 }
1315 nest_pmus++;
1316 mutex_unlock(&nest_init_lock);
39a846db
AS
1317 break;
1318 case IMC_DOMAIN_CORE:
1319 ret = core_imc_pmu_cpumask_init();
1320 if (ret) {
1321 cleanup_all_core_imc_memory();
1322 return ret;
1323 }
1324
f74c89bd
AS
1325 break;
1326 case IMC_DOMAIN_THREAD:
1327 ret = thread_imc_cpu_init();
1328 if (ret) {
1329 cleanup_all_thread_imc_memory();
1330 return ret;
1331 }
1332
885dcd70
AS
1333 break;
1334 default:
1335 return -1; /* Unknown domain */
1336 }
1337
1338 ret = update_events_in_group(parent, pmu_ptr);
1339 if (ret)
1340 goto err_free;
1341
1342 ret = update_pmu_ops(pmu_ptr);
1343 if (ret)
1344 goto err_free;
1345
1346 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1347 if (ret)
1348 goto err_free;
1349
1350 pr_info("%s performance monitor hardware support registered\n",
1351 pmu_ptr->pmu.name);
1352
1353 return 0;
1354
1355err_free:
1356 imc_common_cpuhp_mem_free(pmu_ptr);
1357 return ret;
1358}