]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/platforms/cell/spufs/sched.c
Merge branch 'for-2.6.25' of master.kernel.org:/pub/scm/linux/kernel/git/arnd/cell...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
CommitLineData
8b3d6663
AB
1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
a68cf983 6 * 2006-03-31 NUMA domains added.
8b3d6663
AB
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
3b3d22cb
AB
23#undef DEBUG
24
8b3d6663
AB
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/sched.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
8b3d6663
AB
33#include <linux/stddef.h>
34#include <linux/unistd.h>
a68cf983
MN
35#include <linux/numa.h>
36#include <linux/mutex.h>
86767277 37#include <linux/notifier.h>
37901802 38#include <linux/kthread.h>
65de66f0
CH
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
038200cf 42#include <linux/marker.h>
8b3d6663
AB
43
44#include <asm/io.h>
45#include <asm/mmu_context.h>
46#include <asm/spu.h>
47#include <asm/spu_csa.h>
a91942ae 48#include <asm/spu_priv1.h>
8b3d6663
AB
49#include "spufs.h"
50
8b3d6663 51struct spu_prio_array {
72cb3608 52 DECLARE_BITMAP(bitmap, MAX_PRIO);
079cdb61
CH
53 struct list_head runq[MAX_PRIO];
54 spinlock_t runq_lock;
65de66f0 55 int nr_waiting;
8b3d6663
AB
56};
57
65de66f0 58static unsigned long spu_avenrun[3];
a68cf983 59static struct spu_prio_array *spu_prio;
37901802
CH
60static struct task_struct *spusched_task;
61static struct timer_list spusched_timer;
90608a29 62static struct timer_list spuloadavg_timer;
8b3d6663 63
fe443ef2
CH
64/*
65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66 */
67#define NORMAL_PRIO 120
68
69/*
70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
71 * tick for every 10 CPU scheduler ticks.
72 */
73#define SPUSCHED_TICK (10)
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
77 *
60e24239
JK
78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
fe443ef2 80 */
60e24239
JK
81#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
fe443ef2
CH
83
84#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
85#define SCALE_PRIO(x, prio) \
86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87
88/*
89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90 * [800ms ... 100ms ... 5ms]
91 *
92 * The higher a thread's priority, the bigger timeslices
93 * it gets during one round of execution. But even the lowest
94 * priority thread gets MIN_TIMESLICE worth of execution time.
95 */
96void spu_set_timeslice(struct spu_context *ctx)
97{
98 if (ctx->prio < NORMAL_PRIO)
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 else
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102}
103
2cf2b3b4
CH
104/*
105 * Update scheduling information from the owning thread.
106 */
107void __spu_update_sched_info(struct spu_context *ctx)
108{
91569531
LB
109 /*
110 * assert that the context is not on the runqueue, so it is safe
111 * to change its scheduling parameters.
112 */
113 BUG_ON(!list_empty(&ctx->rq));
114
476273ad 115 /*
9b1d21f8
JMV
116 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 * memory ordering here because retrieving the controlling thread is
118 * per definition racy.
476273ad
CH
119 */
120 ctx->tid = current->pid;
121
2cf2b3b4
CH
122 /*
123 * We do our own priority calculations, so we normally want
9b1d21f8 124 * ->static_prio to start with. Unfortunately this field
2cf2b3b4
CH
125 * contains junk for threads with a realtime scheduling
126 * policy so we have to look at ->prio in this case.
127 */
128 if (rt_prio(current->prio))
129 ctx->prio = current->prio;
130 else
131 ctx->prio = current->static_prio;
132 ctx->policy = current->policy;
ea1ae594
CH
133
134 /*
91569531
LB
135 * TO DO: the context may be loaded, so we may need to activate
136 * it again on a different node. But it shouldn't hurt anything
137 * to update its parameters, because we know that the scheduler
138 * is not actively looking at this field, since it is not on the
139 * runqueue. The context will be rescheduled on the proper node
140 * if it is timesliced or preempted.
ea1ae594 141 */
ea1ae594 142 ctx->cpus_allowed = current->cpus_allowed;
2cf2b3b4
CH
143}
144
145void spu_update_sched_info(struct spu_context *ctx)
146{
91569531 147 int node;
2cf2b3b4 148
91569531
LB
149 if (ctx->state == SPU_STATE_RUNNABLE) {
150 node = ctx->spu->node;
e65c2f6f
LB
151
152 /*
153 * Take list_mutex to sync with find_victim().
154 */
91569531
LB
155 mutex_lock(&cbe_spu_info[node].list_mutex);
156 __spu_update_sched_info(ctx);
157 mutex_unlock(&cbe_spu_info[node].list_mutex);
158 } else {
159 __spu_update_sched_info(ctx);
160 }
2cf2b3b4
CH
161}
162
ea1ae594 163static int __node_allowed(struct spu_context *ctx, int node)
8b3d6663 164{
ea1ae594
CH
165 if (nr_cpus_node(node)) {
166 cpumask_t mask = node_to_cpumask(node);
8b3d6663 167
ea1ae594
CH
168 if (cpus_intersects(mask, ctx->cpus_allowed))
169 return 1;
170 }
171
172 return 0;
173}
174
175static int node_allowed(struct spu_context *ctx, int node)
176{
177 int rval;
178
179 spin_lock(&spu_prio->runq_lock);
180 rval = __node_allowed(ctx, node);
181 spin_unlock(&spu_prio->runq_lock);
182
183 return rval;
8b3d6663
AB
184}
185
aed3a8c9 186void do_notify_spus_active(void)
36aaccc1
BN
187{
188 int node;
189
190 /*
191 * Wake up the active spu_contexts.
192 *
193 * When the awakened processes see their "notify_active" flag is set,
9b1d21f8 194 * they will call spu_switch_notify().
36aaccc1
BN
195 */
196 for_each_online_node(node) {
197 struct spu *spu;
486acd48
CH
198
199 mutex_lock(&cbe_spu_info[node].list_mutex);
200 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
201 if (spu->alloc_state != SPU_FREE) {
202 struct spu_context *ctx = spu->ctx;
203 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
204 &ctx->sched_flags);
205 mb();
206 wake_up_all(&ctx->stop_wq);
207 }
36aaccc1 208 }
486acd48 209 mutex_unlock(&cbe_spu_info[node].list_mutex);
36aaccc1
BN
210 }
211}
212
202557d2
CH
213/**
214 * spu_bind_context - bind spu context to physical spu
215 * @spu: physical spu to bind to
216 * @ctx: context to bind
217 */
218static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 219{
038200cf
CH
220 spu_context_trace(spu_bind_context__enter, ctx, spu);
221
27ec41d3 222 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
e9f8a0b6 223
aa6d5b20
AB
224 if (ctx->flags & SPU_CREATE_NOSCHED)
225 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
226
e9f8a0b6
CH
227 ctx->stats.slb_flt_base = spu->stats.slb_flt;
228 ctx->stats.class2_intr_base = spu->stats.class2_intr;
229
8b3d6663
AB
230 spu->ctx = ctx;
231 spu->flags = 0;
232 ctx->spu = spu;
233 ctx->ops = &spu_hw_ops;
234 spu->pid = current->pid;
1474855d 235 spu->tgid = current->tgid;
94b2a439 236 spu_associate_mm(spu, ctx->owner);
8b3d6663
AB
237 spu->ibox_callback = spufs_ibox_callback;
238 spu->wbox_callback = spufs_wbox_callback;
5110459f 239 spu->stop_callback = spufs_stop_callback;
a33a7d73 240 spu->mfc_callback = spufs_mfc_callback;
8b3d6663 241 mb();
5110459f 242 spu_unmap_mappings(ctx);
8b3d6663 243 spu_restore(&ctx->csa, spu);
2a911f0b 244 spu->timestamp = jiffies;
a68cf983 245 spu_cpu_affinity_set(spu, raw_smp_processor_id());
86767277 246 spu_switch_notify(spu, ctx);
81998baf 247 ctx->state = SPU_STATE_RUNNABLE;
27ec41d3 248
2a58aa33 249 spuctx_switch_state(ctx, SPU_UTIL_USER);
8b3d6663
AB
250}
251
c5fc8d2a 252/*
486acd48 253 * Must be used with the list_mutex held.
c5fc8d2a
AB
254 */
255static inline int sched_spu(struct spu *spu)
256{
486acd48
CH
257 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
258
c5fc8d2a
AB
259 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
260}
261
262static void aff_merge_remaining_ctxs(struct spu_gang *gang)
263{
264 struct spu_context *ctx;
265
266 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
267 if (list_empty(&ctx->aff_list))
268 list_add(&ctx->aff_list, &gang->aff_list_head);
269 }
270 gang->aff_flags |= AFF_MERGED;
271}
272
273static void aff_set_offsets(struct spu_gang *gang)
274{
275 struct spu_context *ctx;
276 int offset;
277
278 offset = -1;
279 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
280 aff_list) {
281 if (&ctx->aff_list == &gang->aff_list_head)
282 break;
283 ctx->aff_offset = offset--;
284 }
285
286 offset = 0;
287 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
288 if (&ctx->aff_list == &gang->aff_list_head)
289 break;
290 ctx->aff_offset = offset++;
291 }
292
293 gang->aff_flags |= AFF_OFFSETS_SET;
294}
295
296static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
297 int group_size, int lowest_offset)
298{
299 struct spu *spu;
300 int node, n;
301
302 /*
303 * TODO: A better algorithm could be used to find a good spu to be
304 * used as reference location for the ctxs chain.
305 */
306 node = cpu_to_node(raw_smp_processor_id());
307 for (n = 0; n < MAX_NUMNODES; n++, node++) {
308 node = (node < MAX_NUMNODES) ? node : 0;
309 if (!node_allowed(ctx, node))
310 continue;
486acd48 311 mutex_lock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
312 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
313 if ((!mem_aff || spu->has_mem_affinity) &&
486acd48
CH
314 sched_spu(spu)) {
315 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a 316 return spu;
486acd48 317 }
c5fc8d2a 318 }
486acd48 319 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
320 }
321 return NULL;
322}
323
324static void aff_set_ref_point_location(struct spu_gang *gang)
325{
326 int mem_aff, gs, lowest_offset;
327 struct spu_context *ctx;
328 struct spu *tmp;
329
330 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
331 lowest_offset = 0;
332 gs = 0;
333
334 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
335 gs++;
336
337 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
338 aff_list) {
339 if (&ctx->aff_list == &gang->aff_list_head)
340 break;
341 lowest_offset = ctx->aff_offset;
342 }
343
683e3ab2
AD
344 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
345 lowest_offset);
c5fc8d2a
AB
346}
347
486acd48 348static struct spu *ctx_location(struct spu *ref, int offset, int node)
c5fc8d2a
AB
349{
350 struct spu *spu;
351
352 spu = NULL;
353 if (offset >= 0) {
354 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
486acd48 355 BUG_ON(spu->node != node);
c5fc8d2a
AB
356 if (offset == 0)
357 break;
358 if (sched_spu(spu))
359 offset--;
360 }
361 } else {
362 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
486acd48 363 BUG_ON(spu->node != node);
c5fc8d2a
AB
364 if (offset == 0)
365 break;
366 if (sched_spu(spu))
367 offset++;
368 }
369 }
486acd48 370
c5fc8d2a
AB
371 return spu;
372}
373
374/*
375 * affinity_check is called each time a context is going to be scheduled.
376 * It returns the spu ptr on which the context must run.
377 */
486acd48 378static int has_affinity(struct spu_context *ctx)
c5fc8d2a 379{
486acd48 380 struct spu_gang *gang = ctx->gang;
c5fc8d2a
AB
381
382 if (list_empty(&ctx->aff_list))
486acd48
CH
383 return 0;
384
c5fc8d2a
AB
385 if (!gang->aff_ref_spu) {
386 if (!(gang->aff_flags & AFF_MERGED))
387 aff_merge_remaining_ctxs(gang);
388 if (!(gang->aff_flags & AFF_OFFSETS_SET))
389 aff_set_offsets(gang);
390 aff_set_ref_point_location(gang);
391 }
486acd48
CH
392
393 return gang->aff_ref_spu != NULL;
c5fc8d2a
AB
394}
395
202557d2
CH
396/**
397 * spu_unbind_context - unbind spu context from physical spu
398 * @spu: physical spu to unbind from
399 * @ctx: context to unbind
202557d2 400 */
678b2ff1 401static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 402{
038200cf
CH
403 spu_context_trace(spu_unbind_context__enter, ctx, spu);
404
27ec41d3 405 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
fe2f896d 406
aa6d5b20
AB
407 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
408 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
36ddbb13
AD
409
410 if (ctx->gang){
411 mutex_lock(&ctx->gang->aff_mutex);
412 if (has_affinity(ctx)) {
413 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
414 ctx->gang->aff_ref_spu = NULL;
415 }
416 mutex_unlock(&ctx->gang->aff_mutex);
417 }
418
86767277 419 spu_switch_notify(spu, NULL);
5110459f 420 spu_unmap_mappings(ctx);
8b3d6663 421 spu_save(&ctx->csa, spu);
2a911f0b 422 spu->timestamp = jiffies;
8b3d6663
AB
423 ctx->state = SPU_STATE_SAVED;
424 spu->ibox_callback = NULL;
425 spu->wbox_callback = NULL;
5110459f 426 spu->stop_callback = NULL;
a33a7d73 427 spu->mfc_callback = NULL;
94b2a439 428 spu_associate_mm(spu, NULL);
8b3d6663 429 spu->pid = 0;
1474855d 430 spu->tgid = 0;
8b3d6663 431 ctx->ops = &spu_backing_ops;
2a911f0b 432 spu->flags = 0;
8b3d6663 433 spu->ctx = NULL;
e9f8a0b6
CH
434
435 ctx->stats.slb_flt +=
436 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
437 ctx->stats.class2_intr +=
438 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
27ec41d3
AD
439
440 /* This maps the underlying spu state to idle */
441 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
442 ctx->spu = NULL;
8b3d6663
AB
443}
444
079cdb61
CH
445/**
446 * spu_add_to_rq - add a context to the runqueue
447 * @ctx: context to add
448 */
4e0f4ed0 449static void __spu_add_to_rq(struct spu_context *ctx)
8b3d6663 450{
27449971
CH
451 /*
452 * Unfortunately this code path can be called from multiple threads
453 * on behalf of a single context due to the way the problem state
454 * mmap support works.
455 *
456 * Fortunately we need to wake up all these threads at the same time
457 * and can simply skip the runqueue addition for every but the first
458 * thread getting into this codepath.
459 *
460 * It's still quite hacky, and long-term we should proxy all other
461 * threads through the owner thread so that spu_run is in control
462 * of all the scheduling activity for a given context.
463 */
464 if (list_empty(&ctx->rq)) {
465 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
466 set_bit(ctx->prio, spu_prio->bitmap);
467 if (!spu_prio->nr_waiting++)
468 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
469 }
2a911f0b 470}
5110459f 471
e65c2f6f
LB
472static void spu_add_to_rq(struct spu_context *ctx)
473{
474 spin_lock(&spu_prio->runq_lock);
475 __spu_add_to_rq(ctx);
476 spin_unlock(&spu_prio->runq_lock);
477}
478
4e0f4ed0 479static void __spu_del_from_rq(struct spu_context *ctx)
a475c2f4 480{
4e0f4ed0
LB
481 int prio = ctx->prio;
482
65de66f0 483 if (!list_empty(&ctx->rq)) {
c77239b8
CH
484 if (!--spu_prio->nr_waiting)
485 del_timer(&spusched_timer);
a475c2f4 486 list_del_init(&ctx->rq);
c77239b8
CH
487
488 if (list_empty(&spu_prio->runq[prio]))
489 clear_bit(prio, spu_prio->bitmap);
65de66f0 490 }
079cdb61 491}
a68cf983 492
e65c2f6f
LB
493void spu_del_from_rq(struct spu_context *ctx)
494{
495 spin_lock(&spu_prio->runq_lock);
496 __spu_del_from_rq(ctx);
497 spin_unlock(&spu_prio->runq_lock);
498}
499
079cdb61 500static void spu_prio_wait(struct spu_context *ctx)
8b3d6663 501{
a68cf983 502 DEFINE_WAIT(wait);
8b3d6663 503
e65c2f6f
LB
504 /*
505 * The caller must explicitly wait for a context to be loaded
506 * if the nosched flag is set. If NOSCHED is not set, the caller
507 * queues the context and waits for an spu event or error.
508 */
509 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
510
4e0f4ed0 511 spin_lock(&spu_prio->runq_lock);
079cdb61 512 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
a68cf983 513 if (!signal_pending(current)) {
4e0f4ed0
LB
514 __spu_add_to_rq(ctx);
515 spin_unlock(&spu_prio->runq_lock);
650f8b02 516 mutex_unlock(&ctx->state_mutex);
a68cf983 517 schedule();
650f8b02 518 mutex_lock(&ctx->state_mutex);
4e0f4ed0
LB
519 spin_lock(&spu_prio->runq_lock);
520 __spu_del_from_rq(ctx);
8b3d6663 521 }
4e0f4ed0 522 spin_unlock(&spu_prio->runq_lock);
079cdb61
CH
523 __set_current_state(TASK_RUNNING);
524 remove_wait_queue(&ctx->stop_wq, &wait);
8b3d6663
AB
525}
526
079cdb61 527static struct spu *spu_get_idle(struct spu_context *ctx)
a68cf983 528{
36ddbb13 529 struct spu *spu, *aff_ref_spu;
486acd48
CH
530 int node, n;
531
038200cf
CH
532 spu_context_nospu_trace(spu_get_idle__enter, ctx);
533
36ddbb13
AD
534 if (ctx->gang) {
535 mutex_lock(&ctx->gang->aff_mutex);
536 if (has_affinity(ctx)) {
537 aff_ref_spu = ctx->gang->aff_ref_spu;
538 atomic_inc(&ctx->gang->aff_sched_count);
539 mutex_unlock(&ctx->gang->aff_mutex);
540 node = aff_ref_spu->node;
541
542 mutex_lock(&cbe_spu_info[node].list_mutex);
543 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
544 if (spu && spu->alloc_state == SPU_FREE)
545 goto found;
546 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 547
36ddbb13
AD
548 mutex_lock(&ctx->gang->aff_mutex);
549 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
550 ctx->gang->aff_ref_spu = NULL;
551 mutex_unlock(&ctx->gang->aff_mutex);
038200cf 552 goto not_found;
36ddbb13
AD
553 }
554 mutex_unlock(&ctx->gang->aff_mutex);
555 }
486acd48 556 node = cpu_to_node(raw_smp_processor_id());
a68cf983
MN
557 for (n = 0; n < MAX_NUMNODES; n++, node++) {
558 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 559 if (!node_allowed(ctx, node))
a68cf983 560 continue;
486acd48
CH
561
562 mutex_lock(&cbe_spu_info[node].list_mutex);
563 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
564 if (spu->alloc_state == SPU_FREE)
565 goto found;
566 }
567 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 568 }
486acd48 569
038200cf
CH
570 not_found:
571 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
486acd48
CH
572 return NULL;
573
574 found:
575 spu->alloc_state = SPU_USED;
576 mutex_unlock(&cbe_spu_info[node].list_mutex);
038200cf 577 spu_context_trace(spu_get_idle__found, ctx, spu);
486acd48 578 spu_init_channels(spu);
a68cf983
MN
579 return spu;
580}
8b3d6663 581
52f04fcf
CH
582/**
583 * find_victim - find a lower priority context to preempt
584 * @ctx: canidate context for running
585 *
586 * Returns the freed physical spu to run the new context on.
587 */
588static struct spu *find_victim(struct spu_context *ctx)
589{
590 struct spu_context *victim = NULL;
591 struct spu *spu;
592 int node, n;
593
038200cf
CH
594 spu_context_nospu_trace(spu_find_vitim__enter, ctx);
595
52f04fcf
CH
596 /*
597 * Look for a possible preemption candidate on the local node first.
598 * If there is no candidate look at the other nodes. This isn't
9b1d21f8 599 * exactly fair, but so far the whole spu scheduler tries to keep
52f04fcf
CH
600 * a strong node affinity. We might want to fine-tune this in
601 * the future.
602 */
603 restart:
604 node = cpu_to_node(raw_smp_processor_id());
605 for (n = 0; n < MAX_NUMNODES; n++, node++) {
606 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 607 if (!node_allowed(ctx, node))
52f04fcf
CH
608 continue;
609
486acd48
CH
610 mutex_lock(&cbe_spu_info[node].list_mutex);
611 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
52f04fcf
CH
612 struct spu_context *tmp = spu->ctx;
613
c0e7b4aa 614 if (tmp && tmp->prio > ctx->prio &&
e65c2f6f 615 !(tmp->flags & SPU_CREATE_NOSCHED) &&
fe443ef2 616 (!victim || tmp->prio > victim->prio))
52f04fcf
CH
617 victim = spu->ctx;
618 }
486acd48 619 mutex_unlock(&cbe_spu_info[node].list_mutex);
52f04fcf
CH
620
621 if (victim) {
622 /*
623 * This nests ctx->state_mutex, but we always lock
624 * higher priority contexts before lower priority
625 * ones, so this is safe until we introduce
626 * priority inheritance schemes.
91569531
LB
627 *
628 * XXX if the highest priority context is locked,
629 * this can loop a long time. Might be better to
630 * look at another context or give up after X retries.
52f04fcf
CH
631 */
632 if (!mutex_trylock(&victim->state_mutex)) {
633 victim = NULL;
634 goto restart;
635 }
636
637 spu = victim->spu;
b192541b 638 if (!spu || victim->prio <= ctx->prio) {
52f04fcf
CH
639 /*
640 * This race can happen because we've dropped
b192541b 641 * the active list mutex. Not a problem, just
52f04fcf
CH
642 * restart the search.
643 */
644 mutex_unlock(&victim->state_mutex);
645 victim = NULL;
646 goto restart;
647 }
486acd48 648
038200cf
CH
649 spu_context_trace(__spu_deactivate__unload, ctx, spu);
650
486acd48
CH
651 mutex_lock(&cbe_spu_info[node].list_mutex);
652 cbe_spu_info[node].nr_active--;
c0e7b4aa 653 spu_unbind_context(spu, victim);
486acd48
CH
654 mutex_unlock(&cbe_spu_info[node].list_mutex);
655
e9f8a0b6 656 victim->stats.invol_ctx_switch++;
fe2f896d 657 spu->stats.invol_ctx_switch++;
e65c2f6f
LB
658 spu_add_to_rq(victim);
659
52f04fcf 660 mutex_unlock(&victim->state_mutex);
e65c2f6f 661
52f04fcf
CH
662 return spu;
663 }
664 }
665
666 return NULL;
667}
668
e65c2f6f
LB
669static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
670{
671 int node = spu->node;
672 int success = 0;
673
674 spu_set_timeslice(ctx);
675
676 mutex_lock(&cbe_spu_info[node].list_mutex);
677 if (spu->ctx == NULL) {
678 spu_bind_context(spu, ctx);
679 cbe_spu_info[node].nr_active++;
680 spu->alloc_state = SPU_USED;
681 success = 1;
682 }
683 mutex_unlock(&cbe_spu_info[node].list_mutex);
684
685 if (success)
686 wake_up_all(&ctx->run_wq);
687 else
688 spu_add_to_rq(ctx);
689}
690
691static void spu_schedule(struct spu *spu, struct spu_context *ctx)
692{
c9101bdb
CH
693 /* not a candidate for interruptible because it's called either
694 from the scheduler thread or from spu_deactivate */
695 mutex_lock(&ctx->state_mutex);
e65c2f6f
LB
696 __spu_schedule(spu, ctx);
697 spu_release(ctx);
698}
699
700static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
701{
702 int node = spu->node;
703
704 mutex_lock(&cbe_spu_info[node].list_mutex);
705 cbe_spu_info[node].nr_active--;
706 spu->alloc_state = SPU_FREE;
707 spu_unbind_context(spu, ctx);
708 ctx->stats.invol_ctx_switch++;
709 spu->stats.invol_ctx_switch++;
710 mutex_unlock(&cbe_spu_info[node].list_mutex);
711}
712
079cdb61
CH
713/**
714 * spu_activate - find a free spu for a context and execute it
715 * @ctx: spu context to schedule
716 * @flags: flags (currently ignored)
717 *
08873095 718 * Tries to find a free spu to run @ctx. If no free spu is available
079cdb61
CH
719 * add the context to the runqueue so it gets woken up once an spu
720 * is available.
721 */
26bec673 722int spu_activate(struct spu_context *ctx, unsigned long flags)
8b3d6663 723{
e65c2f6f 724 struct spu *spu;
079cdb61 725
e65c2f6f
LB
726 /*
727 * If there are multiple threads waiting for a single context
728 * only one actually binds the context while the others will
729 * only be able to acquire the state_mutex once the context
730 * already is in runnable state.
731 */
732 if (ctx->spu)
733 return 0;
27449971 734
e65c2f6f
LB
735spu_activate_top:
736 if (signal_pending(current))
737 return -ERESTARTSYS;
486acd48 738
e65c2f6f
LB
739 spu = spu_get_idle(ctx);
740 /*
741 * If this is a realtime thread we try to get it running by
742 * preempting a lower priority thread.
743 */
744 if (!spu && rt_prio(ctx->prio))
745 spu = find_victim(ctx);
746 if (spu) {
747 unsigned long runcntl;
748
749 runcntl = ctx->ops->runcntl_read(ctx);
750 __spu_schedule(spu, ctx);
751 if (runcntl & SPU_RUNCNTL_RUNNABLE)
752 spuctx_switch_state(ctx, SPU_UTIL_USER);
079cdb61 753
e65c2f6f
LB
754 return 0;
755 }
756
757 if (ctx->flags & SPU_CREATE_NOSCHED) {
50b520d4 758 spu_prio_wait(ctx);
e65c2f6f
LB
759 goto spu_activate_top;
760 }
761
762 spu_add_to_rq(ctx);
079cdb61 763
e65c2f6f 764 return 0;
8b3d6663
AB
765}
766
bb5db29a
CH
767/**
768 * grab_runnable_context - try to find a runnable context
769 *
770 * Remove the highest priority context on the runqueue and return it
771 * to the caller. Returns %NULL if no runnable context was found.
772 */
ea1ae594 773static struct spu_context *grab_runnable_context(int prio, int node)
bb5db29a 774{
ea1ae594 775 struct spu_context *ctx;
bb5db29a
CH
776 int best;
777
778 spin_lock(&spu_prio->runq_lock);
7e90b749 779 best = find_first_bit(spu_prio->bitmap, prio);
ea1ae594 780 while (best < prio) {
bb5db29a
CH
781 struct list_head *rq = &spu_prio->runq[best];
782
ea1ae594
CH
783 list_for_each_entry(ctx, rq, rq) {
784 /* XXX(hch): check for affinity here aswell */
785 if (__node_allowed(ctx, node)) {
786 __spu_del_from_rq(ctx);
787 goto found;
788 }
789 }
790 best++;
bb5db29a 791 }
ea1ae594
CH
792 ctx = NULL;
793 found:
bb5db29a 794 spin_unlock(&spu_prio->runq_lock);
bb5db29a
CH
795 return ctx;
796}
797
798static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
799{
800 struct spu *spu = ctx->spu;
801 struct spu_context *new = NULL;
802
803 if (spu) {
ea1ae594 804 new = grab_runnable_context(max_prio, spu->node);
bb5db29a 805 if (new || force) {
e65c2f6f
LB
806 spu_unschedule(spu, ctx);
807 if (new) {
808 if (new->flags & SPU_CREATE_NOSCHED)
809 wake_up(&new->stop_wq);
810 else {
811 spu_release(ctx);
812 spu_schedule(spu, new);
c9101bdb
CH
813 /* this one can't easily be made
814 interruptible */
815 mutex_lock(&ctx->state_mutex);
e65c2f6f
LB
816 }
817 }
bb5db29a 818 }
bb5db29a
CH
819 }
820
821 return new != NULL;
822}
823
678b2ff1
CH
824/**
825 * spu_deactivate - unbind a context from it's physical spu
826 * @ctx: spu context to unbind
827 *
828 * Unbind @ctx from the physical spu it is running on and schedule
829 * the highest priority context to run on the freed physical spu.
830 */
8b3d6663
AB
831void spu_deactivate(struct spu_context *ctx)
832{
038200cf 833 spu_context_nospu_trace(spu_deactivate__enter, ctx);
bb5db29a 834 __spu_deactivate(ctx, 1, MAX_PRIO);
8b3d6663
AB
835}
836
ae7b4c52 837/**
1474855d 838 * spu_yield - yield a physical spu if others are waiting
ae7b4c52
CH
839 * @ctx: spu context to yield
840 *
841 * Check if there is a higher priority context waiting and if yes
842 * unbind @ctx from the physical spu and schedule the highest
843 * priority context to run on the freed physical spu instead.
844 */
8b3d6663
AB
845void spu_yield(struct spu_context *ctx)
846{
038200cf 847 spu_context_nospu_trace(spu_yield__enter, ctx);
e5c0b9ec
CH
848 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
849 mutex_lock(&ctx->state_mutex);
27ec41d3 850 __spu_deactivate(ctx, 0, MAX_PRIO);
e5c0b9ec
CH
851 mutex_unlock(&ctx->state_mutex);
852 }
bb5db29a 853}
8b3d6663 854
486acd48 855static noinline void spusched_tick(struct spu_context *ctx)
bb5db29a 856{
e65c2f6f
LB
857 struct spu_context *new = NULL;
858 struct spu *spu = NULL;
e65c2f6f 859
c9101bdb
CH
860 if (spu_acquire(ctx))
861 BUG(); /* a kernel thread never has signals pending */
e65c2f6f
LB
862
863 if (ctx->state != SPU_STATE_RUNNABLE)
864 goto out;
df09cf3e 865 if (ctx->flags & SPU_CREATE_NOSCHED)
e65c2f6f 866 goto out;
df09cf3e 867 if (ctx->policy == SCHED_FIFO)
e65c2f6f 868 goto out;
df09cf3e 869
4ef11014 870 if (--ctx->time_slice && ctx->policy != SCHED_IDLE)
e65c2f6f 871 goto out;
bb5db29a 872
e65c2f6f 873 spu = ctx->spu;
038200cf
CH
874
875 spu_context_trace(spusched_tick__preempt, ctx, spu);
876
e65c2f6f
LB
877 new = grab_runnable_context(ctx->prio + 1, spu->node);
878 if (new) {
879 spu_unschedule(spu, ctx);
4ef11014
JK
880 if (ctx->policy != SCHED_IDLE)
881 spu_add_to_rq(ctx);
bb5db29a 882 } else {
038200cf 883 spu_context_nospu_trace(spusched_tick__newslice, ctx);
37901802 884 ctx->time_slice++;
8b3d6663 885 }
e65c2f6f
LB
886out:
887 spu_release(ctx);
888
889 if (new)
890 spu_schedule(spu, new);
8b3d6663
AB
891}
892
65de66f0
CH
893/**
894 * count_active_contexts - count nr of active tasks
895 *
896 * Return the number of tasks currently running or waiting to run.
897 *
486acd48 898 * Note that we don't take runq_lock / list_mutex here. Reading
65de66f0
CH
899 * a single 32bit value is atomic on powerpc, and we don't care
900 * about memory ordering issues here.
901 */
902static unsigned long count_active_contexts(void)
903{
904 int nr_active = 0, node;
905
906 for (node = 0; node < MAX_NUMNODES; node++)
486acd48 907 nr_active += cbe_spu_info[node].nr_active;
65de66f0
CH
908 nr_active += spu_prio->nr_waiting;
909
910 return nr_active;
911}
912
913/**
90608a29 914 * spu_calc_load - update the avenrun load estimates.
65de66f0
CH
915 *
916 * No locking against reading these values from userspace, as for
917 * the CPU loadavg code.
918 */
90608a29 919static void spu_calc_load(void)
65de66f0
CH
920{
921 unsigned long active_tasks; /* fixed-point */
90608a29
AL
922
923 active_tasks = count_active_contexts() * FIXED_1;
924 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
925 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
926 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
65de66f0
CH
927}
928
37901802
CH
929static void spusched_wake(unsigned long data)
930{
931 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
932 wake_up_process(spusched_task);
90608a29
AL
933}
934
935static void spuloadavg_wake(unsigned long data)
936{
937 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
938 spu_calc_load();
37901802
CH
939}
940
941static int spusched_thread(void *unused)
942{
486acd48 943 struct spu *spu;
37901802
CH
944 int node;
945
37901802
CH
946 while (!kthread_should_stop()) {
947 set_current_state(TASK_INTERRUPTIBLE);
948 schedule();
949 for (node = 0; node < MAX_NUMNODES; node++) {
e65c2f6f
LB
950 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
951
952 mutex_lock(mtx);
953 list_for_each_entry(spu, &cbe_spu_info[node].spus,
954 cbe_list) {
955 struct spu_context *ctx = spu->ctx;
956
957 if (ctx) {
958 mutex_unlock(mtx);
959 spusched_tick(ctx);
960 mutex_lock(mtx);
961 }
962 }
963 mutex_unlock(mtx);
37901802
CH
964 }
965 }
966
37901802
CH
967 return 0;
968}
969
7cd58e43
JK
970void spuctx_switch_state(struct spu_context *ctx,
971 enum spu_utilization_state new_state)
972{
973 unsigned long long curtime;
974 signed long long delta;
975 struct timespec ts;
976 struct spu *spu;
977 enum spu_utilization_state old_state;
978
979 ktime_get_ts(&ts);
980 curtime = timespec_to_ns(&ts);
981 delta = curtime - ctx->stats.tstamp;
982
983 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
984 WARN_ON(delta < 0);
985
986 spu = ctx->spu;
987 old_state = ctx->stats.util_state;
988 ctx->stats.util_state = new_state;
989 ctx->stats.tstamp = curtime;
990
991 /*
992 * Update the physical SPU utilization statistics.
993 */
994 if (spu) {
995 ctx->stats.times[old_state] += delta;
996 spu->stats.times[old_state] += delta;
997 spu->stats.util_state = new_state;
998 spu->stats.tstamp = curtime;
999 }
1000}
1001
65de66f0
CH
1002#define LOAD_INT(x) ((x) >> FSHIFT)
1003#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1004
1005static int show_spu_loadavg(struct seq_file *s, void *private)
1006{
1007 int a, b, c;
1008
1009 a = spu_avenrun[0] + (FIXED_1/200);
1010 b = spu_avenrun[1] + (FIXED_1/200);
1011 c = spu_avenrun[2] + (FIXED_1/200);
1012
1013 /*
1014 * Note that last_pid doesn't really make much sense for the
9b1d21f8 1015 * SPU loadavg (it even seems very odd on the CPU side...),
65de66f0
CH
1016 * but we include it here to have a 100% compatible interface.
1017 */
1018 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1019 LOAD_INT(a), LOAD_FRAC(a),
1020 LOAD_INT(b), LOAD_FRAC(b),
1021 LOAD_INT(c), LOAD_FRAC(c),
1022 count_active_contexts(),
1023 atomic_read(&nr_spu_contexts),
1024 current->nsproxy->pid_ns->last_pid);
1025 return 0;
1026}
1027
1028static int spu_loadavg_open(struct inode *inode, struct file *file)
1029{
1030 return single_open(file, show_spu_loadavg, NULL);
1031}
1032
1033static const struct file_operations spu_loadavg_fops = {
1034 .open = spu_loadavg_open,
1035 .read = seq_read,
1036 .llseek = seq_lseek,
1037 .release = single_release,
1038};
1039
8b3d6663
AB
1040int __init spu_sched_init(void)
1041{
65de66f0
CH
1042 struct proc_dir_entry *entry;
1043 int err = -ENOMEM, i;
8b3d6663 1044
a68cf983 1045 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
37901802 1046 if (!spu_prio)
65de66f0 1047 goto out;
37901802 1048
8b3d6663 1049 for (i = 0; i < MAX_PRIO; i++) {
079cdb61 1050 INIT_LIST_HEAD(&spu_prio->runq[i]);
a68cf983 1051 __clear_bit(i, spu_prio->bitmap);
8b3d6663 1052 }
079cdb61 1053 spin_lock_init(&spu_prio->runq_lock);
37901802 1054
c77239b8 1055 setup_timer(&spusched_timer, spusched_wake, 0);
90608a29 1056 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
c77239b8 1057
37901802
CH
1058 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1059 if (IS_ERR(spusched_task)) {
65de66f0
CH
1060 err = PTR_ERR(spusched_task);
1061 goto out_free_spu_prio;
37901802 1062 }
f3f59bec 1063
90608a29
AL
1064 mod_timer(&spuloadavg_timer, 0);
1065
65de66f0
CH
1066 entry = create_proc_entry("spu_loadavg", 0, NULL);
1067 if (!entry)
1068 goto out_stop_kthread;
1069 entry->proc_fops = &spu_loadavg_fops;
1070
f3f59bec
JK
1071 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1072 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
8b3d6663 1073 return 0;
37901802 1074
65de66f0
CH
1075 out_stop_kthread:
1076 kthread_stop(spusched_task);
1077 out_free_spu_prio:
1078 kfree(spu_prio);
1079 out:
1080 return err;
8b3d6663
AB
1081}
1082
d1450317 1083void spu_sched_exit(void)
8b3d6663 1084{
486acd48 1085 struct spu *spu;
a68cf983
MN
1086 int node;
1087
65de66f0
CH
1088 remove_proc_entry("spu_loadavg", NULL);
1089
c77239b8 1090 del_timer_sync(&spusched_timer);
90608a29 1091 del_timer_sync(&spuloadavg_timer);
37901802
CH
1092 kthread_stop(spusched_task);
1093
a68cf983 1094 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
1095 mutex_lock(&cbe_spu_info[node].list_mutex);
1096 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1097 if (spu->alloc_state != SPU_FREE)
1098 spu->alloc_state = SPU_FREE;
1099 mutex_unlock(&cbe_spu_info[node].list_mutex);
8b3d6663 1100 }
a68cf983 1101 kfree(spu_prio);
8b3d6663 1102}