]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/platforms/cell/spufs/sched.c
[POWERPC] spufs: don't set reserved bits in spu interrupt status
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
CommitLineData
8b3d6663
AB
1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
a68cf983 6 * 2006-03-31 NUMA domains added.
8b3d6663
AB
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
3b3d22cb
AB
23#undef DEBUG
24
8b3d6663
AB
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/sched.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
8b3d6663
AB
33#include <linux/stddef.h>
34#include <linux/unistd.h>
a68cf983
MN
35#include <linux/numa.h>
36#include <linux/mutex.h>
86767277 37#include <linux/notifier.h>
37901802 38#include <linux/kthread.h>
65de66f0
CH
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
8b3d6663
AB
42
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/spu.h>
46#include <asm/spu_csa.h>
a91942ae 47#include <asm/spu_priv1.h>
8b3d6663
AB
48#include "spufs.h"
49
8b3d6663 50struct spu_prio_array {
72cb3608 51 DECLARE_BITMAP(bitmap, MAX_PRIO);
079cdb61
CH
52 struct list_head runq[MAX_PRIO];
53 spinlock_t runq_lock;
65de66f0 54 int nr_waiting;
8b3d6663
AB
55};
56
65de66f0 57static unsigned long spu_avenrun[3];
a68cf983 58static struct spu_prio_array *spu_prio;
37901802
CH
59static struct task_struct *spusched_task;
60static struct timer_list spusched_timer;
8b3d6663 61
fe443ef2
CH
62/*
63 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
64 */
65#define NORMAL_PRIO 120
66
67/*
68 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
69 * tick for every 10 CPU scheduler ticks.
70 */
71#define SPUSCHED_TICK (10)
72
73/*
74 * These are the 'tuning knobs' of the scheduler:
75 *
60e24239
JK
76 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
77 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
fe443ef2 78 */
60e24239
JK
79#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
80#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
fe443ef2
CH
81
82#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
83#define SCALE_PRIO(x, prio) \
84 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
85
86/*
87 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
88 * [800ms ... 100ms ... 5ms]
89 *
90 * The higher a thread's priority, the bigger timeslices
91 * it gets during one round of execution. But even the lowest
92 * priority thread gets MIN_TIMESLICE worth of execution time.
93 */
94void spu_set_timeslice(struct spu_context *ctx)
95{
96 if (ctx->prio < NORMAL_PRIO)
97 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
98 else
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
100}
101
2cf2b3b4
CH
102/*
103 * Update scheduling information from the owning thread.
104 */
105void __spu_update_sched_info(struct spu_context *ctx)
106{
91569531
LB
107 /*
108 * assert that the context is not on the runqueue, so it is safe
109 * to change its scheduling parameters.
110 */
111 BUG_ON(!list_empty(&ctx->rq));
112
476273ad 113 /*
9b1d21f8
JMV
114 * 32-Bit assignments are atomic on powerpc, and we don't care about
115 * memory ordering here because retrieving the controlling thread is
116 * per definition racy.
476273ad
CH
117 */
118 ctx->tid = current->pid;
119
2cf2b3b4
CH
120 /*
121 * We do our own priority calculations, so we normally want
9b1d21f8 122 * ->static_prio to start with. Unfortunately this field
2cf2b3b4
CH
123 * contains junk for threads with a realtime scheduling
124 * policy so we have to look at ->prio in this case.
125 */
126 if (rt_prio(current->prio))
127 ctx->prio = current->prio;
128 else
129 ctx->prio = current->static_prio;
130 ctx->policy = current->policy;
ea1ae594
CH
131
132 /*
91569531
LB
133 * TO DO: the context may be loaded, so we may need to activate
134 * it again on a different node. But it shouldn't hurt anything
135 * to update its parameters, because we know that the scheduler
136 * is not actively looking at this field, since it is not on the
137 * runqueue. The context will be rescheduled on the proper node
138 * if it is timesliced or preempted.
ea1ae594 139 */
ea1ae594 140 ctx->cpus_allowed = current->cpus_allowed;
2cf2b3b4
CH
141}
142
143void spu_update_sched_info(struct spu_context *ctx)
144{
91569531 145 int node;
2cf2b3b4 146
91569531
LB
147 if (ctx->state == SPU_STATE_RUNNABLE) {
148 node = ctx->spu->node;
149 mutex_lock(&cbe_spu_info[node].list_mutex);
150 __spu_update_sched_info(ctx);
151 mutex_unlock(&cbe_spu_info[node].list_mutex);
152 } else {
153 __spu_update_sched_info(ctx);
154 }
2cf2b3b4
CH
155}
156
ea1ae594 157static int __node_allowed(struct spu_context *ctx, int node)
8b3d6663 158{
ea1ae594
CH
159 if (nr_cpus_node(node)) {
160 cpumask_t mask = node_to_cpumask(node);
8b3d6663 161
ea1ae594
CH
162 if (cpus_intersects(mask, ctx->cpus_allowed))
163 return 1;
164 }
165
166 return 0;
167}
168
169static int node_allowed(struct spu_context *ctx, int node)
170{
171 int rval;
172
173 spin_lock(&spu_prio->runq_lock);
174 rval = __node_allowed(ctx, node);
175 spin_unlock(&spu_prio->runq_lock);
176
177 return rval;
8b3d6663
AB
178}
179
86767277
AB
180static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
181
36aaccc1 182void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
86767277
AB
183{
184 blocking_notifier_call_chain(&spu_switch_notifier,
185 ctx ? ctx->object_id : 0, spu);
186}
187
36aaccc1
BN
188static void notify_spus_active(void)
189{
190 int node;
191
192 /*
193 * Wake up the active spu_contexts.
194 *
195 * When the awakened processes see their "notify_active" flag is set,
9b1d21f8 196 * they will call spu_switch_notify().
36aaccc1
BN
197 */
198 for_each_online_node(node) {
199 struct spu *spu;
486acd48
CH
200
201 mutex_lock(&cbe_spu_info[node].list_mutex);
202 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
203 if (spu->alloc_state != SPU_FREE) {
204 struct spu_context *ctx = spu->ctx;
205 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
206 &ctx->sched_flags);
207 mb();
208 wake_up_all(&ctx->stop_wq);
209 }
36aaccc1 210 }
486acd48 211 mutex_unlock(&cbe_spu_info[node].list_mutex);
36aaccc1
BN
212 }
213}
214
86767277
AB
215int spu_switch_event_register(struct notifier_block * n)
216{
36aaccc1
BN
217 int ret;
218 ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
219 if (!ret)
220 notify_spus_active();
221 return ret;
86767277 222}
36aaccc1 223EXPORT_SYMBOL_GPL(spu_switch_event_register);
86767277
AB
224
225int spu_switch_event_unregister(struct notifier_block * n)
226{
227 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
228}
36aaccc1 229EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
86767277 230
202557d2
CH
231/**
232 * spu_bind_context - bind spu context to physical spu
233 * @spu: physical spu to bind to
234 * @ctx: context to bind
235 */
236static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 237{
a68cf983
MN
238 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
239 spu->number, spu->node);
27ec41d3 240 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
e9f8a0b6 241
aa6d5b20
AB
242 if (ctx->flags & SPU_CREATE_NOSCHED)
243 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
244
e9f8a0b6
CH
245 ctx->stats.slb_flt_base = spu->stats.slb_flt;
246 ctx->stats.class2_intr_base = spu->stats.class2_intr;
247
8b3d6663
AB
248 spu->ctx = ctx;
249 spu->flags = 0;
250 ctx->spu = spu;
251 ctx->ops = &spu_hw_ops;
252 spu->pid = current->pid;
1474855d 253 spu->tgid = current->tgid;
94b2a439 254 spu_associate_mm(spu, ctx->owner);
8b3d6663
AB
255 spu->ibox_callback = spufs_ibox_callback;
256 spu->wbox_callback = spufs_wbox_callback;
5110459f 257 spu->stop_callback = spufs_stop_callback;
a33a7d73 258 spu->mfc_callback = spufs_mfc_callback;
8b3d6663 259 mb();
5110459f 260 spu_unmap_mappings(ctx);
8b3d6663 261 spu_restore(&ctx->csa, spu);
2a911f0b 262 spu->timestamp = jiffies;
a68cf983 263 spu_cpu_affinity_set(spu, raw_smp_processor_id());
86767277 264 spu_switch_notify(spu, ctx);
81998baf 265 ctx->state = SPU_STATE_RUNNABLE;
27ec41d3
AD
266
267 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
8b3d6663
AB
268}
269
c5fc8d2a 270/*
486acd48 271 * Must be used with the list_mutex held.
c5fc8d2a
AB
272 */
273static inline int sched_spu(struct spu *spu)
274{
486acd48
CH
275 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
276
c5fc8d2a
AB
277 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
278}
279
280static void aff_merge_remaining_ctxs(struct spu_gang *gang)
281{
282 struct spu_context *ctx;
283
284 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
285 if (list_empty(&ctx->aff_list))
286 list_add(&ctx->aff_list, &gang->aff_list_head);
287 }
288 gang->aff_flags |= AFF_MERGED;
289}
290
291static void aff_set_offsets(struct spu_gang *gang)
292{
293 struct spu_context *ctx;
294 int offset;
295
296 offset = -1;
297 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
298 aff_list) {
299 if (&ctx->aff_list == &gang->aff_list_head)
300 break;
301 ctx->aff_offset = offset--;
302 }
303
304 offset = 0;
305 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
306 if (&ctx->aff_list == &gang->aff_list_head)
307 break;
308 ctx->aff_offset = offset++;
309 }
310
311 gang->aff_flags |= AFF_OFFSETS_SET;
312}
313
314static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
315 int group_size, int lowest_offset)
316{
317 struct spu *spu;
318 int node, n;
319
320 /*
321 * TODO: A better algorithm could be used to find a good spu to be
322 * used as reference location for the ctxs chain.
323 */
324 node = cpu_to_node(raw_smp_processor_id());
325 for (n = 0; n < MAX_NUMNODES; n++, node++) {
326 node = (node < MAX_NUMNODES) ? node : 0;
327 if (!node_allowed(ctx, node))
328 continue;
486acd48 329 mutex_lock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
330 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
331 if ((!mem_aff || spu->has_mem_affinity) &&
486acd48
CH
332 sched_spu(spu)) {
333 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a 334 return spu;
486acd48 335 }
c5fc8d2a 336 }
486acd48 337 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
338 }
339 return NULL;
340}
341
342static void aff_set_ref_point_location(struct spu_gang *gang)
343{
344 int mem_aff, gs, lowest_offset;
345 struct spu_context *ctx;
346 struct spu *tmp;
347
348 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
349 lowest_offset = 0;
350 gs = 0;
351
352 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
353 gs++;
354
355 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
356 aff_list) {
357 if (&ctx->aff_list == &gang->aff_list_head)
358 break;
359 lowest_offset = ctx->aff_offset;
360 }
361
683e3ab2
AD
362 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
363 lowest_offset);
c5fc8d2a
AB
364}
365
486acd48 366static struct spu *ctx_location(struct spu *ref, int offset, int node)
c5fc8d2a
AB
367{
368 struct spu *spu;
369
370 spu = NULL;
371 if (offset >= 0) {
372 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
486acd48 373 BUG_ON(spu->node != node);
c5fc8d2a
AB
374 if (offset == 0)
375 break;
376 if (sched_spu(spu))
377 offset--;
378 }
379 } else {
380 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
486acd48 381 BUG_ON(spu->node != node);
c5fc8d2a
AB
382 if (offset == 0)
383 break;
384 if (sched_spu(spu))
385 offset++;
386 }
387 }
486acd48 388
c5fc8d2a
AB
389 return spu;
390}
391
392/*
393 * affinity_check is called each time a context is going to be scheduled.
394 * It returns the spu ptr on which the context must run.
395 */
486acd48 396static int has_affinity(struct spu_context *ctx)
c5fc8d2a 397{
486acd48 398 struct spu_gang *gang = ctx->gang;
c5fc8d2a
AB
399
400 if (list_empty(&ctx->aff_list))
486acd48
CH
401 return 0;
402
c5fc8d2a
AB
403 if (!gang->aff_ref_spu) {
404 if (!(gang->aff_flags & AFF_MERGED))
405 aff_merge_remaining_ctxs(gang);
406 if (!(gang->aff_flags & AFF_OFFSETS_SET))
407 aff_set_offsets(gang);
408 aff_set_ref_point_location(gang);
409 }
486acd48
CH
410
411 return gang->aff_ref_spu != NULL;
c5fc8d2a
AB
412}
413
202557d2
CH
414/**
415 * spu_unbind_context - unbind spu context from physical spu
416 * @spu: physical spu to unbind from
417 * @ctx: context to unbind
202557d2 418 */
678b2ff1 419static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 420{
a68cf983
MN
421 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
422 spu->pid, spu->number, spu->node);
27ec41d3 423 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
fe2f896d 424
aa6d5b20
AB
425 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
426 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
36ddbb13
AD
427
428 if (ctx->gang){
429 mutex_lock(&ctx->gang->aff_mutex);
430 if (has_affinity(ctx)) {
431 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
432 ctx->gang->aff_ref_spu = NULL;
433 }
434 mutex_unlock(&ctx->gang->aff_mutex);
435 }
436
86767277 437 spu_switch_notify(spu, NULL);
5110459f 438 spu_unmap_mappings(ctx);
8b3d6663 439 spu_save(&ctx->csa, spu);
2a911f0b 440 spu->timestamp = jiffies;
8b3d6663
AB
441 ctx->state = SPU_STATE_SAVED;
442 spu->ibox_callback = NULL;
443 spu->wbox_callback = NULL;
5110459f 444 spu->stop_callback = NULL;
a33a7d73 445 spu->mfc_callback = NULL;
94b2a439 446 spu_associate_mm(spu, NULL);
8b3d6663 447 spu->pid = 0;
1474855d 448 spu->tgid = 0;
8b3d6663 449 ctx->ops = &spu_backing_ops;
2a911f0b 450 spu->flags = 0;
8b3d6663 451 spu->ctx = NULL;
e9f8a0b6
CH
452
453 ctx->stats.slb_flt +=
454 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
455 ctx->stats.class2_intr +=
456 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
27ec41d3
AD
457
458 /* This maps the underlying spu state to idle */
459 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
460 ctx->spu = NULL;
8b3d6663
AB
461}
462
079cdb61
CH
463/**
464 * spu_add_to_rq - add a context to the runqueue
465 * @ctx: context to add
466 */
4e0f4ed0 467static void __spu_add_to_rq(struct spu_context *ctx)
8b3d6663 468{
27449971
CH
469 /*
470 * Unfortunately this code path can be called from multiple threads
471 * on behalf of a single context due to the way the problem state
472 * mmap support works.
473 *
474 * Fortunately we need to wake up all these threads at the same time
475 * and can simply skip the runqueue addition for every but the first
476 * thread getting into this codepath.
477 *
478 * It's still quite hacky, and long-term we should proxy all other
479 * threads through the owner thread so that spu_run is in control
480 * of all the scheduling activity for a given context.
481 */
482 if (list_empty(&ctx->rq)) {
483 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
484 set_bit(ctx->prio, spu_prio->bitmap);
485 if (!spu_prio->nr_waiting++)
486 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
487 }
2a911f0b 488}
5110459f 489
4e0f4ed0 490static void __spu_del_from_rq(struct spu_context *ctx)
a475c2f4 491{
4e0f4ed0
LB
492 int prio = ctx->prio;
493
65de66f0 494 if (!list_empty(&ctx->rq)) {
c77239b8
CH
495 if (!--spu_prio->nr_waiting)
496 del_timer(&spusched_timer);
a475c2f4 497 list_del_init(&ctx->rq);
c77239b8
CH
498
499 if (list_empty(&spu_prio->runq[prio]))
500 clear_bit(prio, spu_prio->bitmap);
65de66f0 501 }
079cdb61 502}
a68cf983 503
079cdb61 504static void spu_prio_wait(struct spu_context *ctx)
8b3d6663 505{
a68cf983 506 DEFINE_WAIT(wait);
8b3d6663 507
4e0f4ed0 508 spin_lock(&spu_prio->runq_lock);
079cdb61 509 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
a68cf983 510 if (!signal_pending(current)) {
4e0f4ed0
LB
511 __spu_add_to_rq(ctx);
512 spin_unlock(&spu_prio->runq_lock);
650f8b02 513 mutex_unlock(&ctx->state_mutex);
a68cf983 514 schedule();
650f8b02 515 mutex_lock(&ctx->state_mutex);
4e0f4ed0
LB
516 spin_lock(&spu_prio->runq_lock);
517 __spu_del_from_rq(ctx);
8b3d6663 518 }
4e0f4ed0 519 spin_unlock(&spu_prio->runq_lock);
079cdb61
CH
520 __set_current_state(TASK_RUNNING);
521 remove_wait_queue(&ctx->stop_wq, &wait);
8b3d6663
AB
522}
523
079cdb61 524static struct spu *spu_get_idle(struct spu_context *ctx)
a68cf983 525{
36ddbb13 526 struct spu *spu, *aff_ref_spu;
486acd48
CH
527 int node, n;
528
36ddbb13
AD
529 if (ctx->gang) {
530 mutex_lock(&ctx->gang->aff_mutex);
531 if (has_affinity(ctx)) {
532 aff_ref_spu = ctx->gang->aff_ref_spu;
533 atomic_inc(&ctx->gang->aff_sched_count);
534 mutex_unlock(&ctx->gang->aff_mutex);
535 node = aff_ref_spu->node;
536
537 mutex_lock(&cbe_spu_info[node].list_mutex);
538 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
539 if (spu && spu->alloc_state == SPU_FREE)
540 goto found;
541 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 542
36ddbb13
AD
543 mutex_lock(&ctx->gang->aff_mutex);
544 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
545 ctx->gang->aff_ref_spu = NULL;
546 mutex_unlock(&ctx->gang->aff_mutex);
cbc23d3e 547
36ddbb13
AD
548 return NULL;
549 }
550 mutex_unlock(&ctx->gang->aff_mutex);
551 }
486acd48 552 node = cpu_to_node(raw_smp_processor_id());
a68cf983
MN
553 for (n = 0; n < MAX_NUMNODES; n++, node++) {
554 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 555 if (!node_allowed(ctx, node))
a68cf983 556 continue;
486acd48
CH
557
558 mutex_lock(&cbe_spu_info[node].list_mutex);
559 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
560 if (spu->alloc_state == SPU_FREE)
561 goto found;
562 }
563 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 564 }
486acd48
CH
565
566 return NULL;
567
568 found:
569 spu->alloc_state = SPU_USED;
570 mutex_unlock(&cbe_spu_info[node].list_mutex);
571 pr_debug("Got SPU %d %d\n", spu->number, spu->node);
572 spu_init_channels(spu);
a68cf983
MN
573 return spu;
574}
8b3d6663 575
52f04fcf
CH
576/**
577 * find_victim - find a lower priority context to preempt
578 * @ctx: canidate context for running
579 *
580 * Returns the freed physical spu to run the new context on.
581 */
582static struct spu *find_victim(struct spu_context *ctx)
583{
584 struct spu_context *victim = NULL;
585 struct spu *spu;
586 int node, n;
587
588 /*
589 * Look for a possible preemption candidate on the local node first.
590 * If there is no candidate look at the other nodes. This isn't
9b1d21f8 591 * exactly fair, but so far the whole spu scheduler tries to keep
52f04fcf
CH
592 * a strong node affinity. We might want to fine-tune this in
593 * the future.
594 */
595 restart:
596 node = cpu_to_node(raw_smp_processor_id());
597 for (n = 0; n < MAX_NUMNODES; n++, node++) {
598 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 599 if (!node_allowed(ctx, node))
52f04fcf
CH
600 continue;
601
486acd48
CH
602 mutex_lock(&cbe_spu_info[node].list_mutex);
603 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
52f04fcf
CH
604 struct spu_context *tmp = spu->ctx;
605
c0e7b4aa 606 if (tmp && tmp->prio > ctx->prio &&
fe443ef2 607 (!victim || tmp->prio > victim->prio))
52f04fcf
CH
608 victim = spu->ctx;
609 }
486acd48 610 mutex_unlock(&cbe_spu_info[node].list_mutex);
52f04fcf
CH
611
612 if (victim) {
613 /*
614 * This nests ctx->state_mutex, but we always lock
615 * higher priority contexts before lower priority
616 * ones, so this is safe until we introduce
617 * priority inheritance schemes.
91569531
LB
618 *
619 * XXX if the highest priority context is locked,
620 * this can loop a long time. Might be better to
621 * look at another context or give up after X retries.
52f04fcf
CH
622 */
623 if (!mutex_trylock(&victim->state_mutex)) {
624 victim = NULL;
625 goto restart;
626 }
627
628 spu = victim->spu;
b192541b 629 if (!spu || victim->prio <= ctx->prio) {
52f04fcf
CH
630 /*
631 * This race can happen because we've dropped
b192541b 632 * the active list mutex. Not a problem, just
52f04fcf
CH
633 * restart the search.
634 */
635 mutex_unlock(&victim->state_mutex);
636 victim = NULL;
637 goto restart;
638 }
486acd48
CH
639
640 mutex_lock(&cbe_spu_info[node].list_mutex);
641 cbe_spu_info[node].nr_active--;
c0e7b4aa 642 spu_unbind_context(spu, victim);
486acd48
CH
643 mutex_unlock(&cbe_spu_info[node].list_mutex);
644
e9f8a0b6 645 victim->stats.invol_ctx_switch++;
fe2f896d 646 spu->stats.invol_ctx_switch++;
52f04fcf 647 mutex_unlock(&victim->state_mutex);
e097b513
CH
648 /*
649 * We need to break out of the wait loop in spu_run
650 * manually to ensure this context gets put on the
651 * runqueue again ASAP.
652 */
653 wake_up(&victim->stop_wq);
52f04fcf
CH
654 return spu;
655 }
656 }
657
658 return NULL;
659}
660
079cdb61
CH
661/**
662 * spu_activate - find a free spu for a context and execute it
663 * @ctx: spu context to schedule
664 * @flags: flags (currently ignored)
665 *
08873095 666 * Tries to find a free spu to run @ctx. If no free spu is available
079cdb61
CH
667 * add the context to the runqueue so it gets woken up once an spu
668 * is available.
669 */
26bec673 670int spu_activate(struct spu_context *ctx, unsigned long flags)
8b3d6663 671{
079cdb61
CH
672 do {
673 struct spu *spu;
674
27449971
CH
675 /*
676 * If there are multiple threads waiting for a single context
677 * only one actually binds the context while the others will
678 * only be able to acquire the state_mutex once the context
679 * already is in runnable state.
680 */
681 if (ctx->spu)
682 return 0;
683
079cdb61 684 spu = spu_get_idle(ctx);
52f04fcf
CH
685 /*
686 * If this is a realtime thread we try to get it running by
687 * preempting a lower priority thread.
688 */
fe443ef2 689 if (!spu && rt_prio(ctx->prio))
52f04fcf 690 spu = find_victim(ctx);
079cdb61 691 if (spu) {
486acd48
CH
692 int node = spu->node;
693
694 mutex_lock(&cbe_spu_info[node].list_mutex);
202557d2 695 spu_bind_context(spu, ctx);
486acd48
CH
696 cbe_spu_info[node].nr_active++;
697 mutex_unlock(&cbe_spu_info[node].list_mutex);
33bfd7a7 698 wake_up_all(&ctx->run_wq);
079cdb61 699 return 0;
a68cf983 700 }
079cdb61 701
50b520d4 702 spu_prio_wait(ctx);
079cdb61
CH
703 } while (!signal_pending(current));
704
705 return -ERESTARTSYS;
8b3d6663
AB
706}
707
bb5db29a
CH
708/**
709 * grab_runnable_context - try to find a runnable context
710 *
711 * Remove the highest priority context on the runqueue and return it
712 * to the caller. Returns %NULL if no runnable context was found.
713 */
ea1ae594 714static struct spu_context *grab_runnable_context(int prio, int node)
bb5db29a 715{
ea1ae594 716 struct spu_context *ctx;
bb5db29a
CH
717 int best;
718
719 spin_lock(&spu_prio->runq_lock);
7e90b749 720 best = find_first_bit(spu_prio->bitmap, prio);
ea1ae594 721 while (best < prio) {
bb5db29a
CH
722 struct list_head *rq = &spu_prio->runq[best];
723
ea1ae594
CH
724 list_for_each_entry(ctx, rq, rq) {
725 /* XXX(hch): check for affinity here aswell */
726 if (__node_allowed(ctx, node)) {
727 __spu_del_from_rq(ctx);
728 goto found;
729 }
730 }
731 best++;
bb5db29a 732 }
ea1ae594
CH
733 ctx = NULL;
734 found:
bb5db29a 735 spin_unlock(&spu_prio->runq_lock);
bb5db29a
CH
736 return ctx;
737}
738
739static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
740{
741 struct spu *spu = ctx->spu;
742 struct spu_context *new = NULL;
743
744 if (spu) {
ea1ae594 745 new = grab_runnable_context(max_prio, spu->node);
bb5db29a 746 if (new || force) {
486acd48
CH
747 int node = spu->node;
748
749 mutex_lock(&cbe_spu_info[node].list_mutex);
bb5db29a 750 spu_unbind_context(spu, ctx);
486acd48
CH
751 spu->alloc_state = SPU_FREE;
752 cbe_spu_info[node].nr_active--;
753 mutex_unlock(&cbe_spu_info[node].list_mutex);
754
e9f8a0b6 755 ctx->stats.vol_ctx_switch++;
fe2f896d 756 spu->stats.vol_ctx_switch++;
486acd48 757
bb5db29a
CH
758 if (new)
759 wake_up(&new->stop_wq);
760 }
761
762 }
763
764 return new != NULL;
765}
766
678b2ff1
CH
767/**
768 * spu_deactivate - unbind a context from it's physical spu
769 * @ctx: spu context to unbind
770 *
771 * Unbind @ctx from the physical spu it is running on and schedule
772 * the highest priority context to run on the freed physical spu.
773 */
8b3d6663
AB
774void spu_deactivate(struct spu_context *ctx)
775{
bb5db29a 776 __spu_deactivate(ctx, 1, MAX_PRIO);
8b3d6663
AB
777}
778
ae7b4c52 779/**
1474855d 780 * spu_yield - yield a physical spu if others are waiting
ae7b4c52
CH
781 * @ctx: spu context to yield
782 *
783 * Check if there is a higher priority context waiting and if yes
784 * unbind @ctx from the physical spu and schedule the highest
785 * priority context to run on the freed physical spu instead.
786 */
8b3d6663
AB
787void spu_yield(struct spu_context *ctx)
788{
e5c0b9ec
CH
789 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
790 mutex_lock(&ctx->state_mutex);
27ec41d3 791 __spu_deactivate(ctx, 0, MAX_PRIO);
e5c0b9ec
CH
792 mutex_unlock(&ctx->state_mutex);
793 }
bb5db29a 794}
8b3d6663 795
486acd48 796static noinline void spusched_tick(struct spu_context *ctx)
bb5db29a 797{
df09cf3e
CH
798 if (ctx->flags & SPU_CREATE_NOSCHED)
799 return;
800 if (ctx->policy == SCHED_FIFO)
801 return;
802
803 if (--ctx->time_slice)
37901802 804 return;
bb5db29a
CH
805
806 /*
486acd48 807 * Unfortunately list_mutex ranks outside of state_mutex, so
37901802
CH
808 * we have to trylock here. If we fail give the context another
809 * tick and try again.
bb5db29a 810 */
37901802 811 if (mutex_trylock(&ctx->state_mutex)) {
7022543e 812 struct spu *spu = ctx->spu;
ea1ae594
CH
813 struct spu_context *new;
814
815 new = grab_runnable_context(ctx->prio + 1, spu->node);
37901802 816 if (new) {
37901802 817 spu_unbind_context(spu, ctx);
e9f8a0b6 818 ctx->stats.invol_ctx_switch++;
fe2f896d 819 spu->stats.invol_ctx_switch++;
486acd48
CH
820 spu->alloc_state = SPU_FREE;
821 cbe_spu_info[spu->node].nr_active--;
37901802
CH
822 wake_up(&new->stop_wq);
823 /*
824 * We need to break out of the wait loop in
825 * spu_run manually to ensure this context
826 * gets put on the runqueue again ASAP.
827 */
828 wake_up(&ctx->stop_wq);
829 }
fe443ef2 830 spu_set_timeslice(ctx);
37901802 831 mutex_unlock(&ctx->state_mutex);
bb5db29a 832 } else {
37901802 833 ctx->time_slice++;
8b3d6663 834 }
8b3d6663
AB
835}
836
65de66f0
CH
837/**
838 * count_active_contexts - count nr of active tasks
839 *
840 * Return the number of tasks currently running or waiting to run.
841 *
486acd48 842 * Note that we don't take runq_lock / list_mutex here. Reading
65de66f0
CH
843 * a single 32bit value is atomic on powerpc, and we don't care
844 * about memory ordering issues here.
845 */
846static unsigned long count_active_contexts(void)
847{
848 int nr_active = 0, node;
849
850 for (node = 0; node < MAX_NUMNODES; node++)
486acd48 851 nr_active += cbe_spu_info[node].nr_active;
65de66f0
CH
852 nr_active += spu_prio->nr_waiting;
853
854 return nr_active;
855}
856
857/**
858 * spu_calc_load - given tick count, update the avenrun load estimates.
859 * @tick: tick count
860 *
861 * No locking against reading these values from userspace, as for
862 * the CPU loadavg code.
863 */
864static void spu_calc_load(unsigned long ticks)
865{
866 unsigned long active_tasks; /* fixed-point */
867 static int count = LOAD_FREQ;
868
869 count -= ticks;
870
871 if (unlikely(count < 0)) {
872 active_tasks = count_active_contexts() * FIXED_1;
873 do {
874 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
875 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
876 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
877 count += LOAD_FREQ;
878 } while (count < 0);
879 }
880}
881
37901802
CH
882static void spusched_wake(unsigned long data)
883{
884 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
885 wake_up_process(spusched_task);
65de66f0 886 spu_calc_load(SPUSCHED_TICK);
37901802
CH
887}
888
889static int spusched_thread(void *unused)
890{
486acd48 891 struct spu *spu;
37901802
CH
892 int node;
893
37901802
CH
894 while (!kthread_should_stop()) {
895 set_current_state(TASK_INTERRUPTIBLE);
896 schedule();
897 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
898 mutex_lock(&cbe_spu_info[node].list_mutex);
899 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
900 if (spu->ctx)
901 spusched_tick(spu->ctx);
902 mutex_unlock(&cbe_spu_info[node].list_mutex);
37901802
CH
903 }
904 }
905
37901802
CH
906 return 0;
907}
908
7cd58e43
JK
909void spuctx_switch_state(struct spu_context *ctx,
910 enum spu_utilization_state new_state)
911{
912 unsigned long long curtime;
913 signed long long delta;
914 struct timespec ts;
915 struct spu *spu;
916 enum spu_utilization_state old_state;
917
918 ktime_get_ts(&ts);
919 curtime = timespec_to_ns(&ts);
920 delta = curtime - ctx->stats.tstamp;
921
922 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
923 WARN_ON(delta < 0);
924
925 spu = ctx->spu;
926 old_state = ctx->stats.util_state;
927 ctx->stats.util_state = new_state;
928 ctx->stats.tstamp = curtime;
929
930 /*
931 * Update the physical SPU utilization statistics.
932 */
933 if (spu) {
934 ctx->stats.times[old_state] += delta;
935 spu->stats.times[old_state] += delta;
936 spu->stats.util_state = new_state;
937 spu->stats.tstamp = curtime;
938 }
939}
940
65de66f0
CH
941#define LOAD_INT(x) ((x) >> FSHIFT)
942#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
943
944static int show_spu_loadavg(struct seq_file *s, void *private)
945{
946 int a, b, c;
947
948 a = spu_avenrun[0] + (FIXED_1/200);
949 b = spu_avenrun[1] + (FIXED_1/200);
950 c = spu_avenrun[2] + (FIXED_1/200);
951
952 /*
953 * Note that last_pid doesn't really make much sense for the
9b1d21f8 954 * SPU loadavg (it even seems very odd on the CPU side...),
65de66f0
CH
955 * but we include it here to have a 100% compatible interface.
956 */
957 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
958 LOAD_INT(a), LOAD_FRAC(a),
959 LOAD_INT(b), LOAD_FRAC(b),
960 LOAD_INT(c), LOAD_FRAC(c),
961 count_active_contexts(),
962 atomic_read(&nr_spu_contexts),
963 current->nsproxy->pid_ns->last_pid);
964 return 0;
965}
966
967static int spu_loadavg_open(struct inode *inode, struct file *file)
968{
969 return single_open(file, show_spu_loadavg, NULL);
970}
971
972static const struct file_operations spu_loadavg_fops = {
973 .open = spu_loadavg_open,
974 .read = seq_read,
975 .llseek = seq_lseek,
976 .release = single_release,
977};
978
8b3d6663
AB
979int __init spu_sched_init(void)
980{
65de66f0
CH
981 struct proc_dir_entry *entry;
982 int err = -ENOMEM, i;
8b3d6663 983
a68cf983 984 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
37901802 985 if (!spu_prio)
65de66f0 986 goto out;
37901802 987
8b3d6663 988 for (i = 0; i < MAX_PRIO; i++) {
079cdb61 989 INIT_LIST_HEAD(&spu_prio->runq[i]);
a68cf983 990 __clear_bit(i, spu_prio->bitmap);
8b3d6663 991 }
079cdb61 992 spin_lock_init(&spu_prio->runq_lock);
37901802 993
c77239b8
CH
994 setup_timer(&spusched_timer, spusched_wake, 0);
995
37901802
CH
996 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
997 if (IS_ERR(spusched_task)) {
65de66f0
CH
998 err = PTR_ERR(spusched_task);
999 goto out_free_spu_prio;
37901802 1000 }
f3f59bec 1001
65de66f0
CH
1002 entry = create_proc_entry("spu_loadavg", 0, NULL);
1003 if (!entry)
1004 goto out_stop_kthread;
1005 entry->proc_fops = &spu_loadavg_fops;
1006
f3f59bec
JK
1007 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1008 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
8b3d6663 1009 return 0;
37901802 1010
65de66f0
CH
1011 out_stop_kthread:
1012 kthread_stop(spusched_task);
1013 out_free_spu_prio:
1014 kfree(spu_prio);
1015 out:
1016 return err;
8b3d6663
AB
1017}
1018
d1450317 1019void spu_sched_exit(void)
8b3d6663 1020{
486acd48 1021 struct spu *spu;
a68cf983
MN
1022 int node;
1023
65de66f0
CH
1024 remove_proc_entry("spu_loadavg", NULL);
1025
c77239b8 1026 del_timer_sync(&spusched_timer);
37901802
CH
1027 kthread_stop(spusched_task);
1028
a68cf983 1029 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
1030 mutex_lock(&cbe_spu_info[node].list_mutex);
1031 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1032 if (spu->alloc_state != SPU_FREE)
1033 spu->alloc_state = SPU_FREE;
1034 mutex_unlock(&cbe_spu_info[node].list_mutex);
8b3d6663 1035 }
a68cf983 1036 kfree(spu_prio);
8b3d6663 1037}