]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/platforms/cell/spufs/sched.c
powerpc/spufs: correct kcalloc usage
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
CommitLineData
8b3d6663
AB
1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
a68cf983 6 * 2006-03-31 NUMA domains added.
8b3d6663
AB
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
3b3d22cb
AB
23#undef DEBUG
24
8b3d6663
AB
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/sched.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
8b3d6663
AB
33#include <linux/stddef.h>
34#include <linux/unistd.h>
a68cf983
MN
35#include <linux/numa.h>
36#include <linux/mutex.h>
86767277 37#include <linux/notifier.h>
37901802 38#include <linux/kthread.h>
65de66f0
CH
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
038200cf 42#include <linux/marker.h>
8b3d6663
AB
43
44#include <asm/io.h>
45#include <asm/mmu_context.h>
46#include <asm/spu.h>
47#include <asm/spu_csa.h>
a91942ae 48#include <asm/spu_priv1.h>
8b3d6663
AB
49#include "spufs.h"
50
8b3d6663 51struct spu_prio_array {
72cb3608 52 DECLARE_BITMAP(bitmap, MAX_PRIO);
079cdb61
CH
53 struct list_head runq[MAX_PRIO];
54 spinlock_t runq_lock;
65de66f0 55 int nr_waiting;
8b3d6663
AB
56};
57
65de66f0 58static unsigned long spu_avenrun[3];
a68cf983 59static struct spu_prio_array *spu_prio;
37901802
CH
60static struct task_struct *spusched_task;
61static struct timer_list spusched_timer;
90608a29 62static struct timer_list spuloadavg_timer;
8b3d6663 63
fe443ef2
CH
64/*
65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66 */
67#define NORMAL_PRIO 120
68
69/*
70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
71 * tick for every 10 CPU scheduler ticks.
72 */
73#define SPUSCHED_TICK (10)
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
77 *
60e24239
JK
78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
fe443ef2 80 */
60e24239
JK
81#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
fe443ef2
CH
83
84#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
85#define SCALE_PRIO(x, prio) \
86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87
88/*
89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90 * [800ms ... 100ms ... 5ms]
91 *
92 * The higher a thread's priority, the bigger timeslices
93 * it gets during one round of execution. But even the lowest
94 * priority thread gets MIN_TIMESLICE worth of execution time.
95 */
96void spu_set_timeslice(struct spu_context *ctx)
97{
98 if (ctx->prio < NORMAL_PRIO)
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 else
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102}
103
2cf2b3b4
CH
104/*
105 * Update scheduling information from the owning thread.
106 */
107void __spu_update_sched_info(struct spu_context *ctx)
108{
91569531
LB
109 /*
110 * assert that the context is not on the runqueue, so it is safe
111 * to change its scheduling parameters.
112 */
113 BUG_ON(!list_empty(&ctx->rq));
114
476273ad 115 /*
9b1d21f8
JMV
116 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 * memory ordering here because retrieving the controlling thread is
118 * per definition racy.
476273ad
CH
119 */
120 ctx->tid = current->pid;
121
2cf2b3b4
CH
122 /*
123 * We do our own priority calculations, so we normally want
9b1d21f8 124 * ->static_prio to start with. Unfortunately this field
2cf2b3b4
CH
125 * contains junk for threads with a realtime scheduling
126 * policy so we have to look at ->prio in this case.
127 */
128 if (rt_prio(current->prio))
129 ctx->prio = current->prio;
130 else
131 ctx->prio = current->static_prio;
132 ctx->policy = current->policy;
ea1ae594
CH
133
134 /*
91569531
LB
135 * TO DO: the context may be loaded, so we may need to activate
136 * it again on a different node. But it shouldn't hurt anything
137 * to update its parameters, because we know that the scheduler
138 * is not actively looking at this field, since it is not on the
139 * runqueue. The context will be rescheduled on the proper node
140 * if it is timesliced or preempted.
ea1ae594 141 */
ea1ae594 142 ctx->cpus_allowed = current->cpus_allowed;
7a214200
LB
143
144 /* Save the current cpu id for spu interrupt routing. */
145 ctx->last_ran = raw_smp_processor_id();
2cf2b3b4
CH
146}
147
148void spu_update_sched_info(struct spu_context *ctx)
149{
91569531 150 int node;
2cf2b3b4 151
91569531
LB
152 if (ctx->state == SPU_STATE_RUNNABLE) {
153 node = ctx->spu->node;
e65c2f6f
LB
154
155 /*
156 * Take list_mutex to sync with find_victim().
157 */
91569531
LB
158 mutex_lock(&cbe_spu_info[node].list_mutex);
159 __spu_update_sched_info(ctx);
160 mutex_unlock(&cbe_spu_info[node].list_mutex);
161 } else {
162 __spu_update_sched_info(ctx);
163 }
2cf2b3b4
CH
164}
165
ea1ae594 166static int __node_allowed(struct spu_context *ctx, int node)
8b3d6663 167{
ea1ae594
CH
168 if (nr_cpus_node(node)) {
169 cpumask_t mask = node_to_cpumask(node);
8b3d6663 170
ea1ae594
CH
171 if (cpus_intersects(mask, ctx->cpus_allowed))
172 return 1;
173 }
174
175 return 0;
176}
177
178static int node_allowed(struct spu_context *ctx, int node)
179{
180 int rval;
181
182 spin_lock(&spu_prio->runq_lock);
183 rval = __node_allowed(ctx, node);
184 spin_unlock(&spu_prio->runq_lock);
185
186 return rval;
8b3d6663
AB
187}
188
aed3a8c9 189void do_notify_spus_active(void)
36aaccc1
BN
190{
191 int node;
192
193 /*
194 * Wake up the active spu_contexts.
195 *
196 * When the awakened processes see their "notify_active" flag is set,
9b1d21f8 197 * they will call spu_switch_notify().
36aaccc1
BN
198 */
199 for_each_online_node(node) {
200 struct spu *spu;
486acd48
CH
201
202 mutex_lock(&cbe_spu_info[node].list_mutex);
203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
204 if (spu->alloc_state != SPU_FREE) {
205 struct spu_context *ctx = spu->ctx;
206 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
207 &ctx->sched_flags);
208 mb();
209 wake_up_all(&ctx->stop_wq);
210 }
36aaccc1 211 }
486acd48 212 mutex_unlock(&cbe_spu_info[node].list_mutex);
36aaccc1
BN
213 }
214}
215
202557d2
CH
216/**
217 * spu_bind_context - bind spu context to physical spu
218 * @spu: physical spu to bind to
219 * @ctx: context to bind
220 */
221static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 222{
038200cf
CH
223 spu_context_trace(spu_bind_context__enter, ctx, spu);
224
27ec41d3 225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
e9f8a0b6 226
aa6d5b20
AB
227 if (ctx->flags & SPU_CREATE_NOSCHED)
228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
229
e9f8a0b6
CH
230 ctx->stats.slb_flt_base = spu->stats.slb_flt;
231 ctx->stats.class2_intr_base = spu->stats.class2_intr;
232
2c911a14
LB
233 spu_associate_mm(spu, ctx->owner);
234
235 spin_lock_irq(&spu->register_lock);
8b3d6663
AB
236 spu->ctx = ctx;
237 spu->flags = 0;
238 ctx->spu = spu;
239 ctx->ops = &spu_hw_ops;
240 spu->pid = current->pid;
1474855d 241 spu->tgid = current->tgid;
8b3d6663
AB
242 spu->ibox_callback = spufs_ibox_callback;
243 spu->wbox_callback = spufs_wbox_callback;
5110459f 244 spu->stop_callback = spufs_stop_callback;
a33a7d73 245 spu->mfc_callback = spufs_mfc_callback;
2c911a14
LB
246 spin_unlock_irq(&spu->register_lock);
247
5110459f 248 spu_unmap_mappings(ctx);
2c911a14 249
5158e9b5 250 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
8b3d6663 251 spu_restore(&ctx->csa, spu);
2a911f0b 252 spu->timestamp = jiffies;
86767277 253 spu_switch_notify(spu, ctx);
81998baf 254 ctx->state = SPU_STATE_RUNNABLE;
27ec41d3 255
2a58aa33 256 spuctx_switch_state(ctx, SPU_UTIL_USER);
8b3d6663
AB
257}
258
c5fc8d2a 259/*
486acd48 260 * Must be used with the list_mutex held.
c5fc8d2a
AB
261 */
262static inline int sched_spu(struct spu *spu)
263{
486acd48
CH
264 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
265
c5fc8d2a
AB
266 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
267}
268
269static void aff_merge_remaining_ctxs(struct spu_gang *gang)
270{
271 struct spu_context *ctx;
272
273 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
274 if (list_empty(&ctx->aff_list))
275 list_add(&ctx->aff_list, &gang->aff_list_head);
276 }
277 gang->aff_flags |= AFF_MERGED;
278}
279
280static void aff_set_offsets(struct spu_gang *gang)
281{
282 struct spu_context *ctx;
283 int offset;
284
285 offset = -1;
286 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
287 aff_list) {
288 if (&ctx->aff_list == &gang->aff_list_head)
289 break;
290 ctx->aff_offset = offset--;
291 }
292
293 offset = 0;
294 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
295 if (&ctx->aff_list == &gang->aff_list_head)
296 break;
297 ctx->aff_offset = offset++;
298 }
299
300 gang->aff_flags |= AFF_OFFSETS_SET;
301}
302
303static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
304 int group_size, int lowest_offset)
305{
306 struct spu *spu;
307 int node, n;
308
309 /*
310 * TODO: A better algorithm could be used to find a good spu to be
311 * used as reference location for the ctxs chain.
312 */
313 node = cpu_to_node(raw_smp_processor_id());
314 for (n = 0; n < MAX_NUMNODES; n++, node++) {
315 node = (node < MAX_NUMNODES) ? node : 0;
316 if (!node_allowed(ctx, node))
317 continue;
486acd48 318 mutex_lock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
319 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
320 if ((!mem_aff || spu->has_mem_affinity) &&
486acd48
CH
321 sched_spu(spu)) {
322 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a 323 return spu;
486acd48 324 }
c5fc8d2a 325 }
486acd48 326 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
327 }
328 return NULL;
329}
330
331static void aff_set_ref_point_location(struct spu_gang *gang)
332{
333 int mem_aff, gs, lowest_offset;
334 struct spu_context *ctx;
335 struct spu *tmp;
336
337 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
338 lowest_offset = 0;
339 gs = 0;
340
341 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
342 gs++;
343
344 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
345 aff_list) {
346 if (&ctx->aff_list == &gang->aff_list_head)
347 break;
348 lowest_offset = ctx->aff_offset;
349 }
350
683e3ab2
AD
351 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
352 lowest_offset);
c5fc8d2a
AB
353}
354
486acd48 355static struct spu *ctx_location(struct spu *ref, int offset, int node)
c5fc8d2a
AB
356{
357 struct spu *spu;
358
359 spu = NULL;
360 if (offset >= 0) {
361 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
486acd48 362 BUG_ON(spu->node != node);
c5fc8d2a
AB
363 if (offset == 0)
364 break;
365 if (sched_spu(spu))
366 offset--;
367 }
368 } else {
369 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
486acd48 370 BUG_ON(spu->node != node);
c5fc8d2a
AB
371 if (offset == 0)
372 break;
373 if (sched_spu(spu))
374 offset++;
375 }
376 }
486acd48 377
c5fc8d2a
AB
378 return spu;
379}
380
381/*
382 * affinity_check is called each time a context is going to be scheduled.
383 * It returns the spu ptr on which the context must run.
384 */
486acd48 385static int has_affinity(struct spu_context *ctx)
c5fc8d2a 386{
486acd48 387 struct spu_gang *gang = ctx->gang;
c5fc8d2a
AB
388
389 if (list_empty(&ctx->aff_list))
486acd48
CH
390 return 0;
391
c5fc8d2a
AB
392 if (!gang->aff_ref_spu) {
393 if (!(gang->aff_flags & AFF_MERGED))
394 aff_merge_remaining_ctxs(gang);
395 if (!(gang->aff_flags & AFF_OFFSETS_SET))
396 aff_set_offsets(gang);
397 aff_set_ref_point_location(gang);
398 }
486acd48
CH
399
400 return gang->aff_ref_spu != NULL;
c5fc8d2a
AB
401}
402
202557d2
CH
403/**
404 * spu_unbind_context - unbind spu context from physical spu
405 * @spu: physical spu to unbind from
406 * @ctx: context to unbind
202557d2 407 */
678b2ff1 408static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 409{
028fda0a
LB
410 u32 status;
411
038200cf
CH
412 spu_context_trace(spu_unbind_context__enter, ctx, spu);
413
27ec41d3 414 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
fe2f896d 415
aa6d5b20
AB
416 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
417 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
36ddbb13
AD
418
419 if (ctx->gang){
420 mutex_lock(&ctx->gang->aff_mutex);
421 if (has_affinity(ctx)) {
422 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
423 ctx->gang->aff_ref_spu = NULL;
424 }
425 mutex_unlock(&ctx->gang->aff_mutex);
426 }
427
86767277 428 spu_switch_notify(spu, NULL);
5110459f 429 spu_unmap_mappings(ctx);
8b3d6663 430 spu_save(&ctx->csa, spu);
5158e9b5 431 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
2c911a14
LB
432
433 spin_lock_irq(&spu->register_lock);
2a911f0b 434 spu->timestamp = jiffies;
8b3d6663
AB
435 ctx->state = SPU_STATE_SAVED;
436 spu->ibox_callback = NULL;
437 spu->wbox_callback = NULL;
5110459f 438 spu->stop_callback = NULL;
a33a7d73 439 spu->mfc_callback = NULL;
8b3d6663 440 spu->pid = 0;
1474855d 441 spu->tgid = 0;
8b3d6663 442 ctx->ops = &spu_backing_ops;
2a911f0b 443 spu->flags = 0;
8b3d6663 444 spu->ctx = NULL;
2c911a14
LB
445 spin_unlock_irq(&spu->register_lock);
446
447 spu_associate_mm(spu, NULL);
e9f8a0b6
CH
448
449 ctx->stats.slb_flt +=
450 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
451 ctx->stats.class2_intr +=
452 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
27ec41d3
AD
453
454 /* This maps the underlying spu state to idle */
455 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
456 ctx->spu = NULL;
028fda0a
LB
457
458 if (spu_stopped(ctx, &status))
459 wake_up_all(&ctx->stop_wq);
8b3d6663
AB
460}
461
079cdb61
CH
462/**
463 * spu_add_to_rq - add a context to the runqueue
464 * @ctx: context to add
465 */
4e0f4ed0 466static void __spu_add_to_rq(struct spu_context *ctx)
8b3d6663 467{
27449971
CH
468 /*
469 * Unfortunately this code path can be called from multiple threads
470 * on behalf of a single context due to the way the problem state
471 * mmap support works.
472 *
473 * Fortunately we need to wake up all these threads at the same time
474 * and can simply skip the runqueue addition for every but the first
475 * thread getting into this codepath.
476 *
477 * It's still quite hacky, and long-term we should proxy all other
478 * threads through the owner thread so that spu_run is in control
479 * of all the scheduling activity for a given context.
480 */
481 if (list_empty(&ctx->rq)) {
482 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
483 set_bit(ctx->prio, spu_prio->bitmap);
484 if (!spu_prio->nr_waiting++)
485 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
486 }
2a911f0b 487}
5110459f 488
e65c2f6f
LB
489static void spu_add_to_rq(struct spu_context *ctx)
490{
491 spin_lock(&spu_prio->runq_lock);
492 __spu_add_to_rq(ctx);
493 spin_unlock(&spu_prio->runq_lock);
494}
495
4e0f4ed0 496static void __spu_del_from_rq(struct spu_context *ctx)
a475c2f4 497{
4e0f4ed0
LB
498 int prio = ctx->prio;
499
65de66f0 500 if (!list_empty(&ctx->rq)) {
c77239b8
CH
501 if (!--spu_prio->nr_waiting)
502 del_timer(&spusched_timer);
a475c2f4 503 list_del_init(&ctx->rq);
c77239b8
CH
504
505 if (list_empty(&spu_prio->runq[prio]))
506 clear_bit(prio, spu_prio->bitmap);
65de66f0 507 }
079cdb61 508}
a68cf983 509
e65c2f6f
LB
510void spu_del_from_rq(struct spu_context *ctx)
511{
512 spin_lock(&spu_prio->runq_lock);
513 __spu_del_from_rq(ctx);
514 spin_unlock(&spu_prio->runq_lock);
515}
516
079cdb61 517static void spu_prio_wait(struct spu_context *ctx)
8b3d6663 518{
a68cf983 519 DEFINE_WAIT(wait);
8b3d6663 520
e65c2f6f
LB
521 /*
522 * The caller must explicitly wait for a context to be loaded
523 * if the nosched flag is set. If NOSCHED is not set, the caller
524 * queues the context and waits for an spu event or error.
525 */
526 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
527
4e0f4ed0 528 spin_lock(&spu_prio->runq_lock);
079cdb61 529 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
a68cf983 530 if (!signal_pending(current)) {
4e0f4ed0
LB
531 __spu_add_to_rq(ctx);
532 spin_unlock(&spu_prio->runq_lock);
650f8b02 533 mutex_unlock(&ctx->state_mutex);
a68cf983 534 schedule();
650f8b02 535 mutex_lock(&ctx->state_mutex);
4e0f4ed0
LB
536 spin_lock(&spu_prio->runq_lock);
537 __spu_del_from_rq(ctx);
8b3d6663 538 }
4e0f4ed0 539 spin_unlock(&spu_prio->runq_lock);
079cdb61
CH
540 __set_current_state(TASK_RUNNING);
541 remove_wait_queue(&ctx->stop_wq, &wait);
8b3d6663
AB
542}
543
079cdb61 544static struct spu *spu_get_idle(struct spu_context *ctx)
a68cf983 545{
36ddbb13 546 struct spu *spu, *aff_ref_spu;
486acd48
CH
547 int node, n;
548
038200cf
CH
549 spu_context_nospu_trace(spu_get_idle__enter, ctx);
550
36ddbb13
AD
551 if (ctx->gang) {
552 mutex_lock(&ctx->gang->aff_mutex);
553 if (has_affinity(ctx)) {
554 aff_ref_spu = ctx->gang->aff_ref_spu;
555 atomic_inc(&ctx->gang->aff_sched_count);
556 mutex_unlock(&ctx->gang->aff_mutex);
557 node = aff_ref_spu->node;
558
559 mutex_lock(&cbe_spu_info[node].list_mutex);
560 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
561 if (spu && spu->alloc_state == SPU_FREE)
562 goto found;
563 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 564
36ddbb13
AD
565 mutex_lock(&ctx->gang->aff_mutex);
566 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
567 ctx->gang->aff_ref_spu = NULL;
568 mutex_unlock(&ctx->gang->aff_mutex);
038200cf 569 goto not_found;
36ddbb13
AD
570 }
571 mutex_unlock(&ctx->gang->aff_mutex);
572 }
486acd48 573 node = cpu_to_node(raw_smp_processor_id());
a68cf983
MN
574 for (n = 0; n < MAX_NUMNODES; n++, node++) {
575 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 576 if (!node_allowed(ctx, node))
a68cf983 577 continue;
486acd48
CH
578
579 mutex_lock(&cbe_spu_info[node].list_mutex);
580 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
581 if (spu->alloc_state == SPU_FREE)
582 goto found;
583 }
584 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 585 }
486acd48 586
038200cf
CH
587 not_found:
588 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
486acd48
CH
589 return NULL;
590
591 found:
592 spu->alloc_state = SPU_USED;
593 mutex_unlock(&cbe_spu_info[node].list_mutex);
038200cf 594 spu_context_trace(spu_get_idle__found, ctx, spu);
486acd48 595 spu_init_channels(spu);
a68cf983
MN
596 return spu;
597}
8b3d6663 598
52f04fcf
CH
599/**
600 * find_victim - find a lower priority context to preempt
601 * @ctx: canidate context for running
602 *
603 * Returns the freed physical spu to run the new context on.
604 */
605static struct spu *find_victim(struct spu_context *ctx)
606{
607 struct spu_context *victim = NULL;
608 struct spu *spu;
609 int node, n;
610
8a476d49 611 spu_context_nospu_trace(spu_find_victim__enter, ctx);
038200cf 612
52f04fcf
CH
613 /*
614 * Look for a possible preemption candidate on the local node first.
615 * If there is no candidate look at the other nodes. This isn't
9b1d21f8 616 * exactly fair, but so far the whole spu scheduler tries to keep
52f04fcf
CH
617 * a strong node affinity. We might want to fine-tune this in
618 * the future.
619 */
620 restart:
621 node = cpu_to_node(raw_smp_processor_id());
622 for (n = 0; n < MAX_NUMNODES; n++, node++) {
623 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 624 if (!node_allowed(ctx, node))
52f04fcf
CH
625 continue;
626
486acd48
CH
627 mutex_lock(&cbe_spu_info[node].list_mutex);
628 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
52f04fcf
CH
629 struct spu_context *tmp = spu->ctx;
630
c0e7b4aa 631 if (tmp && tmp->prio > ctx->prio &&
e65c2f6f 632 !(tmp->flags & SPU_CREATE_NOSCHED) &&
fe443ef2 633 (!victim || tmp->prio > victim->prio))
52f04fcf
CH
634 victim = spu->ctx;
635 }
486acd48 636 mutex_unlock(&cbe_spu_info[node].list_mutex);
52f04fcf
CH
637
638 if (victim) {
639 /*
640 * This nests ctx->state_mutex, but we always lock
641 * higher priority contexts before lower priority
642 * ones, so this is safe until we introduce
643 * priority inheritance schemes.
91569531
LB
644 *
645 * XXX if the highest priority context is locked,
646 * this can loop a long time. Might be better to
647 * look at another context or give up after X retries.
52f04fcf
CH
648 */
649 if (!mutex_trylock(&victim->state_mutex)) {
650 victim = NULL;
651 goto restart;
652 }
653
654 spu = victim->spu;
b192541b 655 if (!spu || victim->prio <= ctx->prio) {
52f04fcf
CH
656 /*
657 * This race can happen because we've dropped
b192541b 658 * the active list mutex. Not a problem, just
52f04fcf
CH
659 * restart the search.
660 */
661 mutex_unlock(&victim->state_mutex);
662 victim = NULL;
663 goto restart;
664 }
486acd48 665
038200cf
CH
666 spu_context_trace(__spu_deactivate__unload, ctx, spu);
667
486acd48
CH
668 mutex_lock(&cbe_spu_info[node].list_mutex);
669 cbe_spu_info[node].nr_active--;
c0e7b4aa 670 spu_unbind_context(spu, victim);
486acd48
CH
671 mutex_unlock(&cbe_spu_info[node].list_mutex);
672
e9f8a0b6 673 victim->stats.invol_ctx_switch++;
fe2f896d 674 spu->stats.invol_ctx_switch++;
08fcf1d6 675 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
7a28a154 676 spu_add_to_rq(victim);
e65c2f6f 677
52f04fcf 678 mutex_unlock(&victim->state_mutex);
e65c2f6f 679
52f04fcf
CH
680 return spu;
681 }
682 }
683
684 return NULL;
685}
686
e65c2f6f
LB
687static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
688{
689 int node = spu->node;
690 int success = 0;
691
692 spu_set_timeslice(ctx);
693
694 mutex_lock(&cbe_spu_info[node].list_mutex);
695 if (spu->ctx == NULL) {
696 spu_bind_context(spu, ctx);
697 cbe_spu_info[node].nr_active++;
698 spu->alloc_state = SPU_USED;
699 success = 1;
700 }
701 mutex_unlock(&cbe_spu_info[node].list_mutex);
702
703 if (success)
704 wake_up_all(&ctx->run_wq);
705 else
706 spu_add_to_rq(ctx);
707}
708
709static void spu_schedule(struct spu *spu, struct spu_context *ctx)
710{
c9101bdb
CH
711 /* not a candidate for interruptible because it's called either
712 from the scheduler thread or from spu_deactivate */
713 mutex_lock(&ctx->state_mutex);
e65c2f6f
LB
714 __spu_schedule(spu, ctx);
715 spu_release(ctx);
716}
717
718static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
719{
720 int node = spu->node;
721
722 mutex_lock(&cbe_spu_info[node].list_mutex);
723 cbe_spu_info[node].nr_active--;
724 spu->alloc_state = SPU_FREE;
725 spu_unbind_context(spu, ctx);
726 ctx->stats.invol_ctx_switch++;
727 spu->stats.invol_ctx_switch++;
728 mutex_unlock(&cbe_spu_info[node].list_mutex);
729}
730
079cdb61
CH
731/**
732 * spu_activate - find a free spu for a context and execute it
733 * @ctx: spu context to schedule
734 * @flags: flags (currently ignored)
735 *
08873095 736 * Tries to find a free spu to run @ctx. If no free spu is available
079cdb61
CH
737 * add the context to the runqueue so it gets woken up once an spu
738 * is available.
739 */
26bec673 740int spu_activate(struct spu_context *ctx, unsigned long flags)
8b3d6663 741{
e65c2f6f 742 struct spu *spu;
079cdb61 743
e65c2f6f
LB
744 /*
745 * If there are multiple threads waiting for a single context
746 * only one actually binds the context while the others will
747 * only be able to acquire the state_mutex once the context
748 * already is in runnable state.
749 */
750 if (ctx->spu)
751 return 0;
27449971 752
e65c2f6f
LB
753spu_activate_top:
754 if (signal_pending(current))
755 return -ERESTARTSYS;
486acd48 756
e65c2f6f
LB
757 spu = spu_get_idle(ctx);
758 /*
759 * If this is a realtime thread we try to get it running by
760 * preempting a lower priority thread.
761 */
762 if (!spu && rt_prio(ctx->prio))
763 spu = find_victim(ctx);
764 if (spu) {
765 unsigned long runcntl;
766
767 runcntl = ctx->ops->runcntl_read(ctx);
768 __spu_schedule(spu, ctx);
769 if (runcntl & SPU_RUNCNTL_RUNNABLE)
770 spuctx_switch_state(ctx, SPU_UTIL_USER);
079cdb61 771
e65c2f6f
LB
772 return 0;
773 }
774
775 if (ctx->flags & SPU_CREATE_NOSCHED) {
50b520d4 776 spu_prio_wait(ctx);
e65c2f6f
LB
777 goto spu_activate_top;
778 }
779
780 spu_add_to_rq(ctx);
079cdb61 781
e65c2f6f 782 return 0;
8b3d6663
AB
783}
784
bb5db29a
CH
785/**
786 * grab_runnable_context - try to find a runnable context
787 *
788 * Remove the highest priority context on the runqueue and return it
789 * to the caller. Returns %NULL if no runnable context was found.
790 */
ea1ae594 791static struct spu_context *grab_runnable_context(int prio, int node)
bb5db29a 792{
ea1ae594 793 struct spu_context *ctx;
bb5db29a
CH
794 int best;
795
796 spin_lock(&spu_prio->runq_lock);
7e90b749 797 best = find_first_bit(spu_prio->bitmap, prio);
ea1ae594 798 while (best < prio) {
bb5db29a
CH
799 struct list_head *rq = &spu_prio->runq[best];
800
ea1ae594
CH
801 list_for_each_entry(ctx, rq, rq) {
802 /* XXX(hch): check for affinity here aswell */
803 if (__node_allowed(ctx, node)) {
804 __spu_del_from_rq(ctx);
805 goto found;
806 }
807 }
808 best++;
bb5db29a 809 }
ea1ae594
CH
810 ctx = NULL;
811 found:
bb5db29a 812 spin_unlock(&spu_prio->runq_lock);
bb5db29a
CH
813 return ctx;
814}
815
816static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
817{
818 struct spu *spu = ctx->spu;
819 struct spu_context *new = NULL;
820
821 if (spu) {
ea1ae594 822 new = grab_runnable_context(max_prio, spu->node);
bb5db29a 823 if (new || force) {
e65c2f6f
LB
824 spu_unschedule(spu, ctx);
825 if (new) {
826 if (new->flags & SPU_CREATE_NOSCHED)
827 wake_up(&new->stop_wq);
828 else {
829 spu_release(ctx);
830 spu_schedule(spu, new);
c9101bdb
CH
831 /* this one can't easily be made
832 interruptible */
833 mutex_lock(&ctx->state_mutex);
e65c2f6f
LB
834 }
835 }
bb5db29a 836 }
bb5db29a
CH
837 }
838
839 return new != NULL;
840}
841
678b2ff1
CH
842/**
843 * spu_deactivate - unbind a context from it's physical spu
844 * @ctx: spu context to unbind
845 *
846 * Unbind @ctx from the physical spu it is running on and schedule
847 * the highest priority context to run on the freed physical spu.
848 */
8b3d6663
AB
849void spu_deactivate(struct spu_context *ctx)
850{
038200cf 851 spu_context_nospu_trace(spu_deactivate__enter, ctx);
bb5db29a 852 __spu_deactivate(ctx, 1, MAX_PRIO);
8b3d6663
AB
853}
854
ae7b4c52 855/**
1474855d 856 * spu_yield - yield a physical spu if others are waiting
ae7b4c52
CH
857 * @ctx: spu context to yield
858 *
859 * Check if there is a higher priority context waiting and if yes
860 * unbind @ctx from the physical spu and schedule the highest
861 * priority context to run on the freed physical spu instead.
862 */
8b3d6663
AB
863void spu_yield(struct spu_context *ctx)
864{
038200cf 865 spu_context_nospu_trace(spu_yield__enter, ctx);
e5c0b9ec
CH
866 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
867 mutex_lock(&ctx->state_mutex);
27ec41d3 868 __spu_deactivate(ctx, 0, MAX_PRIO);
e5c0b9ec
CH
869 mutex_unlock(&ctx->state_mutex);
870 }
bb5db29a 871}
8b3d6663 872
486acd48 873static noinline void spusched_tick(struct spu_context *ctx)
bb5db29a 874{
e65c2f6f
LB
875 struct spu_context *new = NULL;
876 struct spu *spu = NULL;
e65c2f6f 877
c9101bdb
CH
878 if (spu_acquire(ctx))
879 BUG(); /* a kernel thread never has signals pending */
e65c2f6f
LB
880
881 if (ctx->state != SPU_STATE_RUNNABLE)
882 goto out;
df09cf3e 883 if (ctx->flags & SPU_CREATE_NOSCHED)
e65c2f6f 884 goto out;
df09cf3e 885 if (ctx->policy == SCHED_FIFO)
e65c2f6f 886 goto out;
df09cf3e 887
ce7c191b 888 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
e65c2f6f 889 goto out;
bb5db29a 890
e65c2f6f 891 spu = ctx->spu;
038200cf
CH
892
893 spu_context_trace(spusched_tick__preempt, ctx, spu);
894
e65c2f6f
LB
895 new = grab_runnable_context(ctx->prio + 1, spu->node);
896 if (new) {
897 spu_unschedule(spu, ctx);
ce7c191b 898 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
4ef11014 899 spu_add_to_rq(ctx);
bb5db29a 900 } else {
038200cf 901 spu_context_nospu_trace(spusched_tick__newslice, ctx);
2442a8ba
LB
902 if (!ctx->time_slice)
903 ctx->time_slice++;
8b3d6663 904 }
e65c2f6f
LB
905out:
906 spu_release(ctx);
907
908 if (new)
909 spu_schedule(spu, new);
8b3d6663
AB
910}
911
65de66f0
CH
912/**
913 * count_active_contexts - count nr of active tasks
914 *
915 * Return the number of tasks currently running or waiting to run.
916 *
486acd48 917 * Note that we don't take runq_lock / list_mutex here. Reading
65de66f0
CH
918 * a single 32bit value is atomic on powerpc, and we don't care
919 * about memory ordering issues here.
920 */
921static unsigned long count_active_contexts(void)
922{
923 int nr_active = 0, node;
924
925 for (node = 0; node < MAX_NUMNODES; node++)
486acd48 926 nr_active += cbe_spu_info[node].nr_active;
65de66f0
CH
927 nr_active += spu_prio->nr_waiting;
928
929 return nr_active;
930}
931
932/**
90608a29 933 * spu_calc_load - update the avenrun load estimates.
65de66f0
CH
934 *
935 * No locking against reading these values from userspace, as for
936 * the CPU loadavg code.
937 */
90608a29 938static void spu_calc_load(void)
65de66f0
CH
939{
940 unsigned long active_tasks; /* fixed-point */
90608a29
AL
941
942 active_tasks = count_active_contexts() * FIXED_1;
943 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
944 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
945 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
65de66f0
CH
946}
947
37901802
CH
948static void spusched_wake(unsigned long data)
949{
950 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
951 wake_up_process(spusched_task);
90608a29
AL
952}
953
954static void spuloadavg_wake(unsigned long data)
955{
956 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
957 spu_calc_load();
37901802
CH
958}
959
960static int spusched_thread(void *unused)
961{
486acd48 962 struct spu *spu;
37901802
CH
963 int node;
964
37901802
CH
965 while (!kthread_should_stop()) {
966 set_current_state(TASK_INTERRUPTIBLE);
967 schedule();
968 for (node = 0; node < MAX_NUMNODES; node++) {
e65c2f6f
LB
969 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
970
971 mutex_lock(mtx);
972 list_for_each_entry(spu, &cbe_spu_info[node].spus,
973 cbe_list) {
974 struct spu_context *ctx = spu->ctx;
975
976 if (ctx) {
977 mutex_unlock(mtx);
978 spusched_tick(ctx);
979 mutex_lock(mtx);
980 }
981 }
982 mutex_unlock(mtx);
37901802
CH
983 }
984 }
985
37901802
CH
986 return 0;
987}
988
7cd58e43
JK
989void spuctx_switch_state(struct spu_context *ctx,
990 enum spu_utilization_state new_state)
991{
992 unsigned long long curtime;
993 signed long long delta;
994 struct timespec ts;
995 struct spu *spu;
996 enum spu_utilization_state old_state;
fabb6570 997 int node;
7cd58e43
JK
998
999 ktime_get_ts(&ts);
1000 curtime = timespec_to_ns(&ts);
1001 delta = curtime - ctx->stats.tstamp;
1002
1003 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1004 WARN_ON(delta < 0);
1005
1006 spu = ctx->spu;
1007 old_state = ctx->stats.util_state;
1008 ctx->stats.util_state = new_state;
1009 ctx->stats.tstamp = curtime;
1010
1011 /*
1012 * Update the physical SPU utilization statistics.
1013 */
1014 if (spu) {
1015 ctx->stats.times[old_state] += delta;
1016 spu->stats.times[old_state] += delta;
1017 spu->stats.util_state = new_state;
1018 spu->stats.tstamp = curtime;
fabb6570
MS
1019 node = spu->node;
1020 if (old_state == SPU_UTIL_USER)
1021 atomic_dec(&cbe_spu_info[node].busy_spus);
1022 if (new_state == SPU_UTIL_USER);
1023 atomic_inc(&cbe_spu_info[node].busy_spus);
7cd58e43
JK
1024 }
1025}
1026
65de66f0
CH
1027#define LOAD_INT(x) ((x) >> FSHIFT)
1028#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1029
1030static int show_spu_loadavg(struct seq_file *s, void *private)
1031{
1032 int a, b, c;
1033
1034 a = spu_avenrun[0] + (FIXED_1/200);
1035 b = spu_avenrun[1] + (FIXED_1/200);
1036 c = spu_avenrun[2] + (FIXED_1/200);
1037
1038 /*
1039 * Note that last_pid doesn't really make much sense for the
9b1d21f8 1040 * SPU loadavg (it even seems very odd on the CPU side...),
65de66f0
CH
1041 * but we include it here to have a 100% compatible interface.
1042 */
1043 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1044 LOAD_INT(a), LOAD_FRAC(a),
1045 LOAD_INT(b), LOAD_FRAC(b),
1046 LOAD_INT(c), LOAD_FRAC(c),
1047 count_active_contexts(),
1048 atomic_read(&nr_spu_contexts),
1049 current->nsproxy->pid_ns->last_pid);
1050 return 0;
1051}
1052
1053static int spu_loadavg_open(struct inode *inode, struct file *file)
1054{
1055 return single_open(file, show_spu_loadavg, NULL);
1056}
1057
1058static const struct file_operations spu_loadavg_fops = {
1059 .open = spu_loadavg_open,
1060 .read = seq_read,
1061 .llseek = seq_lseek,
1062 .release = single_release,
1063};
1064
8b3d6663
AB
1065int __init spu_sched_init(void)
1066{
65de66f0
CH
1067 struct proc_dir_entry *entry;
1068 int err = -ENOMEM, i;
8b3d6663 1069
a68cf983 1070 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
37901802 1071 if (!spu_prio)
65de66f0 1072 goto out;
37901802 1073
8b3d6663 1074 for (i = 0; i < MAX_PRIO; i++) {
079cdb61 1075 INIT_LIST_HEAD(&spu_prio->runq[i]);
a68cf983 1076 __clear_bit(i, spu_prio->bitmap);
8b3d6663 1077 }
079cdb61 1078 spin_lock_init(&spu_prio->runq_lock);
37901802 1079
c77239b8 1080 setup_timer(&spusched_timer, spusched_wake, 0);
90608a29 1081 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
c77239b8 1082
37901802
CH
1083 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1084 if (IS_ERR(spusched_task)) {
65de66f0
CH
1085 err = PTR_ERR(spusched_task);
1086 goto out_free_spu_prio;
37901802 1087 }
f3f59bec 1088
90608a29
AL
1089 mod_timer(&spuloadavg_timer, 0);
1090
66747138 1091 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
65de66f0
CH
1092 if (!entry)
1093 goto out_stop_kthread;
65de66f0 1094
f3f59bec
JK
1095 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1096 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
8b3d6663 1097 return 0;
37901802 1098
65de66f0
CH
1099 out_stop_kthread:
1100 kthread_stop(spusched_task);
1101 out_free_spu_prio:
1102 kfree(spu_prio);
1103 out:
1104 return err;
8b3d6663
AB
1105}
1106
d1450317 1107void spu_sched_exit(void)
8b3d6663 1108{
486acd48 1109 struct spu *spu;
a68cf983
MN
1110 int node;
1111
65de66f0
CH
1112 remove_proc_entry("spu_loadavg", NULL);
1113
c77239b8 1114 del_timer_sync(&spusched_timer);
90608a29 1115 del_timer_sync(&spuloadavg_timer);
37901802
CH
1116 kthread_stop(spusched_task);
1117
a68cf983 1118 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
1119 mutex_lock(&cbe_spu_info[node].list_mutex);
1120 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1121 if (spu->alloc_state != SPU_FREE)
1122 spu->alloc_state = SPU_FREE;
1123 mutex_unlock(&cbe_spu_info[node].list_mutex);
8b3d6663 1124 }
a68cf983 1125 kfree(spu_prio);
8b3d6663 1126}