]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/platforms/cell/spufs/sched.c
[POWERPC] cell: wrap master run control bit
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
CommitLineData
8b3d6663
AB
1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
a68cf983 6 * 2006-03-31 NUMA domains added.
8b3d6663
AB
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
3b3d22cb
AB
23#undef DEBUG
24
8b3d6663
AB
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/sched.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/completion.h>
31#include <linux/vmalloc.h>
32#include <linux/smp.h>
8b3d6663
AB
33#include <linux/stddef.h>
34#include <linux/unistd.h>
a68cf983
MN
35#include <linux/numa.h>
36#include <linux/mutex.h>
86767277 37#include <linux/notifier.h>
37901802 38#include <linux/kthread.h>
65de66f0
CH
39#include <linux/pid_namespace.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
8b3d6663
AB
42
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/spu.h>
46#include <asm/spu_csa.h>
a91942ae 47#include <asm/spu_priv1.h>
8b3d6663
AB
48#include "spufs.h"
49
8b3d6663 50struct spu_prio_array {
72cb3608 51 DECLARE_BITMAP(bitmap, MAX_PRIO);
079cdb61
CH
52 struct list_head runq[MAX_PRIO];
53 spinlock_t runq_lock;
65de66f0 54 int nr_waiting;
8b3d6663
AB
55};
56
65de66f0 57static unsigned long spu_avenrun[3];
a68cf983 58static struct spu_prio_array *spu_prio;
37901802
CH
59static struct task_struct *spusched_task;
60static struct timer_list spusched_timer;
8b3d6663 61
fe443ef2
CH
62/*
63 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
64 */
65#define NORMAL_PRIO 120
66
67/*
68 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
69 * tick for every 10 CPU scheduler ticks.
70 */
71#define SPUSCHED_TICK (10)
72
73/*
74 * These are the 'tuning knobs' of the scheduler:
75 *
60e24239
JK
76 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
77 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
fe443ef2 78 */
60e24239
JK
79#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
80#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
fe443ef2
CH
81
82#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
83#define SCALE_PRIO(x, prio) \
84 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
85
86/*
87 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
88 * [800ms ... 100ms ... 5ms]
89 *
90 * The higher a thread's priority, the bigger timeslices
91 * it gets during one round of execution. But even the lowest
92 * priority thread gets MIN_TIMESLICE worth of execution time.
93 */
94void spu_set_timeslice(struct spu_context *ctx)
95{
96 if (ctx->prio < NORMAL_PRIO)
97 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
98 else
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
100}
101
2cf2b3b4
CH
102/*
103 * Update scheduling information from the owning thread.
104 */
105void __spu_update_sched_info(struct spu_context *ctx)
106{
476273ad
CH
107 /*
108 * 32-Bit assignment are atomic on powerpc, and we don't care about
109 * memory ordering here because retriving the controlling thread is
110 * per defintion racy.
111 */
112 ctx->tid = current->pid;
113
2cf2b3b4
CH
114 /*
115 * We do our own priority calculations, so we normally want
116 * ->static_prio to start with. Unfortunately thies field
117 * contains junk for threads with a realtime scheduling
118 * policy so we have to look at ->prio in this case.
119 */
120 if (rt_prio(current->prio))
121 ctx->prio = current->prio;
122 else
123 ctx->prio = current->static_prio;
124 ctx->policy = current->policy;
ea1ae594
CH
125
126 /*
486acd48 127 * A lot of places that don't hold list_mutex poke into
ea1ae594
CH
128 * cpus_allowed, including grab_runnable_context which
129 * already holds the runq_lock. So abuse runq_lock
130 * to protect this field aswell.
131 */
132 spin_lock(&spu_prio->runq_lock);
133 ctx->cpus_allowed = current->cpus_allowed;
134 spin_unlock(&spu_prio->runq_lock);
2cf2b3b4
CH
135}
136
137void spu_update_sched_info(struct spu_context *ctx)
138{
139 int node = ctx->spu->node;
140
486acd48 141 mutex_lock(&cbe_spu_info[node].list_mutex);
2cf2b3b4 142 __spu_update_sched_info(ctx);
486acd48 143 mutex_unlock(&cbe_spu_info[node].list_mutex);
2cf2b3b4
CH
144}
145
ea1ae594 146static int __node_allowed(struct spu_context *ctx, int node)
8b3d6663 147{
ea1ae594
CH
148 if (nr_cpus_node(node)) {
149 cpumask_t mask = node_to_cpumask(node);
8b3d6663 150
ea1ae594
CH
151 if (cpus_intersects(mask, ctx->cpus_allowed))
152 return 1;
153 }
154
155 return 0;
156}
157
158static int node_allowed(struct spu_context *ctx, int node)
159{
160 int rval;
161
162 spin_lock(&spu_prio->runq_lock);
163 rval = __node_allowed(ctx, node);
164 spin_unlock(&spu_prio->runq_lock);
165
166 return rval;
8b3d6663
AB
167}
168
86767277
AB
169static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
170
36aaccc1 171void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
86767277
AB
172{
173 blocking_notifier_call_chain(&spu_switch_notifier,
174 ctx ? ctx->object_id : 0, spu);
175}
176
36aaccc1
BN
177static void notify_spus_active(void)
178{
179 int node;
180
181 /*
182 * Wake up the active spu_contexts.
183 *
184 * When the awakened processes see their "notify_active" flag is set,
185 * they will call spu_switch_notify();
186 */
187 for_each_online_node(node) {
188 struct spu *spu;
486acd48
CH
189
190 mutex_lock(&cbe_spu_info[node].list_mutex);
191 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
192 if (spu->alloc_state != SPU_FREE) {
193 struct spu_context *ctx = spu->ctx;
194 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
195 &ctx->sched_flags);
196 mb();
197 wake_up_all(&ctx->stop_wq);
198 }
36aaccc1 199 }
486acd48 200 mutex_unlock(&cbe_spu_info[node].list_mutex);
36aaccc1
BN
201 }
202}
203
86767277
AB
204int spu_switch_event_register(struct notifier_block * n)
205{
36aaccc1
BN
206 int ret;
207 ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
208 if (!ret)
209 notify_spus_active();
210 return ret;
86767277 211}
36aaccc1 212EXPORT_SYMBOL_GPL(spu_switch_event_register);
86767277
AB
213
214int spu_switch_event_unregister(struct notifier_block * n)
215{
216 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
217}
36aaccc1 218EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
86767277 219
202557d2
CH
220/**
221 * spu_bind_context - bind spu context to physical spu
222 * @spu: physical spu to bind to
223 * @ctx: context to bind
224 */
225static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 226{
a68cf983
MN
227 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
228 spu->number, spu->node);
27ec41d3 229 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
e9f8a0b6 230
aa6d5b20
AB
231 if (ctx->flags & SPU_CREATE_NOSCHED)
232 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
233
e9f8a0b6
CH
234 ctx->stats.slb_flt_base = spu->stats.slb_flt;
235 ctx->stats.class2_intr_base = spu->stats.class2_intr;
236
8b3d6663
AB
237 spu->ctx = ctx;
238 spu->flags = 0;
239 ctx->spu = spu;
240 ctx->ops = &spu_hw_ops;
241 spu->pid = current->pid;
1474855d 242 spu->tgid = current->tgid;
94b2a439 243 spu_associate_mm(spu, ctx->owner);
8b3d6663
AB
244 spu->ibox_callback = spufs_ibox_callback;
245 spu->wbox_callback = spufs_wbox_callback;
5110459f 246 spu->stop_callback = spufs_stop_callback;
a33a7d73 247 spu->mfc_callback = spufs_mfc_callback;
9add11da 248 spu->dma_callback = spufs_dma_callback;
8b3d6663 249 mb();
5110459f 250 spu_unmap_mappings(ctx);
8b3d6663 251 spu_restore(&ctx->csa, spu);
2a911f0b 252 spu->timestamp = jiffies;
a68cf983 253 spu_cpu_affinity_set(spu, raw_smp_processor_id());
86767277 254 spu_switch_notify(spu, ctx);
81998baf 255 ctx->state = SPU_STATE_RUNNABLE;
27ec41d3
AD
256
257 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
8b3d6663
AB
258}
259
c5fc8d2a 260/*
486acd48 261 * Must be used with the list_mutex held.
c5fc8d2a
AB
262 */
263static inline int sched_spu(struct spu *spu)
264{
486acd48
CH
265 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
266
c5fc8d2a
AB
267 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
268}
269
270static void aff_merge_remaining_ctxs(struct spu_gang *gang)
271{
272 struct spu_context *ctx;
273
274 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
275 if (list_empty(&ctx->aff_list))
276 list_add(&ctx->aff_list, &gang->aff_list_head);
277 }
278 gang->aff_flags |= AFF_MERGED;
279}
280
281static void aff_set_offsets(struct spu_gang *gang)
282{
283 struct spu_context *ctx;
284 int offset;
285
286 offset = -1;
287 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
288 aff_list) {
289 if (&ctx->aff_list == &gang->aff_list_head)
290 break;
291 ctx->aff_offset = offset--;
292 }
293
294 offset = 0;
295 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
296 if (&ctx->aff_list == &gang->aff_list_head)
297 break;
298 ctx->aff_offset = offset++;
299 }
300
301 gang->aff_flags |= AFF_OFFSETS_SET;
302}
303
304static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
305 int group_size, int lowest_offset)
306{
307 struct spu *spu;
308 int node, n;
309
310 /*
311 * TODO: A better algorithm could be used to find a good spu to be
312 * used as reference location for the ctxs chain.
313 */
314 node = cpu_to_node(raw_smp_processor_id());
315 for (n = 0; n < MAX_NUMNODES; n++, node++) {
316 node = (node < MAX_NUMNODES) ? node : 0;
317 if (!node_allowed(ctx, node))
318 continue;
486acd48 319 mutex_lock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
320 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
321 if ((!mem_aff || spu->has_mem_affinity) &&
486acd48
CH
322 sched_spu(spu)) {
323 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a 324 return spu;
486acd48 325 }
c5fc8d2a 326 }
486acd48 327 mutex_unlock(&cbe_spu_info[node].list_mutex);
c5fc8d2a
AB
328 }
329 return NULL;
330}
331
332static void aff_set_ref_point_location(struct spu_gang *gang)
333{
334 int mem_aff, gs, lowest_offset;
335 struct spu_context *ctx;
336 struct spu *tmp;
337
338 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
339 lowest_offset = 0;
340 gs = 0;
341
342 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
343 gs++;
344
345 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
346 aff_list) {
347 if (&ctx->aff_list == &gang->aff_list_head)
348 break;
349 lowest_offset = ctx->aff_offset;
350 }
351
683e3ab2
AD
352 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
353 lowest_offset);
c5fc8d2a
AB
354}
355
486acd48 356static struct spu *ctx_location(struct spu *ref, int offset, int node)
c5fc8d2a
AB
357{
358 struct spu *spu;
359
360 spu = NULL;
361 if (offset >= 0) {
362 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
486acd48 363 BUG_ON(spu->node != node);
c5fc8d2a
AB
364 if (offset == 0)
365 break;
366 if (sched_spu(spu))
367 offset--;
368 }
369 } else {
370 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
486acd48 371 BUG_ON(spu->node != node);
c5fc8d2a
AB
372 if (offset == 0)
373 break;
374 if (sched_spu(spu))
375 offset++;
376 }
377 }
486acd48 378
c5fc8d2a
AB
379 return spu;
380}
381
382/*
383 * affinity_check is called each time a context is going to be scheduled.
384 * It returns the spu ptr on which the context must run.
385 */
486acd48 386static int has_affinity(struct spu_context *ctx)
c5fc8d2a 387{
486acd48 388 struct spu_gang *gang = ctx->gang;
c5fc8d2a
AB
389
390 if (list_empty(&ctx->aff_list))
486acd48
CH
391 return 0;
392
c5fc8d2a
AB
393 if (!gang->aff_ref_spu) {
394 if (!(gang->aff_flags & AFF_MERGED))
395 aff_merge_remaining_ctxs(gang);
396 if (!(gang->aff_flags & AFF_OFFSETS_SET))
397 aff_set_offsets(gang);
398 aff_set_ref_point_location(gang);
399 }
486acd48
CH
400
401 return gang->aff_ref_spu != NULL;
c5fc8d2a
AB
402}
403
202557d2
CH
404/**
405 * spu_unbind_context - unbind spu context from physical spu
406 * @spu: physical spu to unbind from
407 * @ctx: context to unbind
202557d2 408 */
678b2ff1 409static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
8b3d6663 410{
a68cf983
MN
411 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
412 spu->pid, spu->number, spu->node);
27ec41d3 413 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
fe2f896d 414
aa6d5b20
AB
415 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
416 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
36ddbb13
AD
417
418 if (ctx->gang){
419 mutex_lock(&ctx->gang->aff_mutex);
420 if (has_affinity(ctx)) {
421 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
422 ctx->gang->aff_ref_spu = NULL;
423 }
424 mutex_unlock(&ctx->gang->aff_mutex);
425 }
426
86767277 427 spu_switch_notify(spu, NULL);
5110459f 428 spu_unmap_mappings(ctx);
8b3d6663 429 spu_save(&ctx->csa, spu);
2a911f0b 430 spu->timestamp = jiffies;
8b3d6663
AB
431 ctx->state = SPU_STATE_SAVED;
432 spu->ibox_callback = NULL;
433 spu->wbox_callback = NULL;
5110459f 434 spu->stop_callback = NULL;
a33a7d73 435 spu->mfc_callback = NULL;
9add11da 436 spu->dma_callback = NULL;
94b2a439 437 spu_associate_mm(spu, NULL);
8b3d6663 438 spu->pid = 0;
1474855d 439 spu->tgid = 0;
8b3d6663 440 ctx->ops = &spu_backing_ops;
2a911f0b 441 spu->flags = 0;
8b3d6663 442 spu->ctx = NULL;
e9f8a0b6
CH
443
444 ctx->stats.slb_flt +=
445 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
446 ctx->stats.class2_intr +=
447 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
27ec41d3
AD
448
449 /* This maps the underlying spu state to idle */
450 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
451 ctx->spu = NULL;
8b3d6663
AB
452}
453
079cdb61
CH
454/**
455 * spu_add_to_rq - add a context to the runqueue
456 * @ctx: context to add
457 */
4e0f4ed0 458static void __spu_add_to_rq(struct spu_context *ctx)
8b3d6663 459{
27449971
CH
460 /*
461 * Unfortunately this code path can be called from multiple threads
462 * on behalf of a single context due to the way the problem state
463 * mmap support works.
464 *
465 * Fortunately we need to wake up all these threads at the same time
466 * and can simply skip the runqueue addition for every but the first
467 * thread getting into this codepath.
468 *
469 * It's still quite hacky, and long-term we should proxy all other
470 * threads through the owner thread so that spu_run is in control
471 * of all the scheduling activity for a given context.
472 */
473 if (list_empty(&ctx->rq)) {
474 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
475 set_bit(ctx->prio, spu_prio->bitmap);
476 if (!spu_prio->nr_waiting++)
477 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
478 }
2a911f0b 479}
5110459f 480
4e0f4ed0 481static void __spu_del_from_rq(struct spu_context *ctx)
a475c2f4 482{
4e0f4ed0
LB
483 int prio = ctx->prio;
484
65de66f0 485 if (!list_empty(&ctx->rq)) {
c77239b8
CH
486 if (!--spu_prio->nr_waiting)
487 del_timer(&spusched_timer);
a475c2f4 488 list_del_init(&ctx->rq);
c77239b8
CH
489
490 if (list_empty(&spu_prio->runq[prio]))
491 clear_bit(prio, spu_prio->bitmap);
65de66f0 492 }
079cdb61 493}
a68cf983 494
079cdb61 495static void spu_prio_wait(struct spu_context *ctx)
8b3d6663 496{
a68cf983 497 DEFINE_WAIT(wait);
8b3d6663 498
4e0f4ed0 499 spin_lock(&spu_prio->runq_lock);
079cdb61 500 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
a68cf983 501 if (!signal_pending(current)) {
4e0f4ed0
LB
502 __spu_add_to_rq(ctx);
503 spin_unlock(&spu_prio->runq_lock);
650f8b02 504 mutex_unlock(&ctx->state_mutex);
a68cf983 505 schedule();
650f8b02 506 mutex_lock(&ctx->state_mutex);
4e0f4ed0
LB
507 spin_lock(&spu_prio->runq_lock);
508 __spu_del_from_rq(ctx);
8b3d6663 509 }
4e0f4ed0 510 spin_unlock(&spu_prio->runq_lock);
079cdb61
CH
511 __set_current_state(TASK_RUNNING);
512 remove_wait_queue(&ctx->stop_wq, &wait);
8b3d6663
AB
513}
514
079cdb61 515static struct spu *spu_get_idle(struct spu_context *ctx)
a68cf983 516{
36ddbb13 517 struct spu *spu, *aff_ref_spu;
486acd48
CH
518 int node, n;
519
36ddbb13
AD
520 if (ctx->gang) {
521 mutex_lock(&ctx->gang->aff_mutex);
522 if (has_affinity(ctx)) {
523 aff_ref_spu = ctx->gang->aff_ref_spu;
524 atomic_inc(&ctx->gang->aff_sched_count);
525 mutex_unlock(&ctx->gang->aff_mutex);
526 node = aff_ref_spu->node;
527
528 mutex_lock(&cbe_spu_info[node].list_mutex);
529 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
530 if (spu && spu->alloc_state == SPU_FREE)
531 goto found;
532 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 533
36ddbb13
AD
534 mutex_lock(&ctx->gang->aff_mutex);
535 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
536 ctx->gang->aff_ref_spu = NULL;
537 mutex_unlock(&ctx->gang->aff_mutex);
cbc23d3e 538
36ddbb13
AD
539 return NULL;
540 }
541 mutex_unlock(&ctx->gang->aff_mutex);
542 }
486acd48 543 node = cpu_to_node(raw_smp_processor_id());
a68cf983
MN
544 for (n = 0; n < MAX_NUMNODES; n++, node++) {
545 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 546 if (!node_allowed(ctx, node))
a68cf983 547 continue;
486acd48
CH
548
549 mutex_lock(&cbe_spu_info[node].list_mutex);
550 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
551 if (spu->alloc_state == SPU_FREE)
552 goto found;
553 }
554 mutex_unlock(&cbe_spu_info[node].list_mutex);
a68cf983 555 }
486acd48
CH
556
557 return NULL;
558
559 found:
560 spu->alloc_state = SPU_USED;
561 mutex_unlock(&cbe_spu_info[node].list_mutex);
562 pr_debug("Got SPU %d %d\n", spu->number, spu->node);
563 spu_init_channels(spu);
a68cf983
MN
564 return spu;
565}
8b3d6663 566
52f04fcf
CH
567/**
568 * find_victim - find a lower priority context to preempt
569 * @ctx: canidate context for running
570 *
571 * Returns the freed physical spu to run the new context on.
572 */
573static struct spu *find_victim(struct spu_context *ctx)
574{
575 struct spu_context *victim = NULL;
576 struct spu *spu;
577 int node, n;
578
579 /*
580 * Look for a possible preemption candidate on the local node first.
581 * If there is no candidate look at the other nodes. This isn't
582 * exactly fair, but so far the whole spu schedule tries to keep
583 * a strong node affinity. We might want to fine-tune this in
584 * the future.
585 */
586 restart:
587 node = cpu_to_node(raw_smp_processor_id());
588 for (n = 0; n < MAX_NUMNODES; n++, node++) {
589 node = (node < MAX_NUMNODES) ? node : 0;
ea1ae594 590 if (!node_allowed(ctx, node))
52f04fcf
CH
591 continue;
592
486acd48
CH
593 mutex_lock(&cbe_spu_info[node].list_mutex);
594 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
52f04fcf
CH
595 struct spu_context *tmp = spu->ctx;
596
c0e7b4aa 597 if (tmp && tmp->prio > ctx->prio &&
fe443ef2 598 (!victim || tmp->prio > victim->prio))
52f04fcf
CH
599 victim = spu->ctx;
600 }
486acd48 601 mutex_unlock(&cbe_spu_info[node].list_mutex);
52f04fcf
CH
602
603 if (victim) {
604 /*
605 * This nests ctx->state_mutex, but we always lock
606 * higher priority contexts before lower priority
607 * ones, so this is safe until we introduce
608 * priority inheritance schemes.
609 */
610 if (!mutex_trylock(&victim->state_mutex)) {
611 victim = NULL;
612 goto restart;
613 }
614
615 spu = victim->spu;
616 if (!spu) {
617 /*
618 * This race can happen because we've dropped
619 * the active list mutex. No a problem, just
620 * restart the search.
621 */
622 mutex_unlock(&victim->state_mutex);
623 victim = NULL;
624 goto restart;
625 }
486acd48
CH
626
627 mutex_lock(&cbe_spu_info[node].list_mutex);
628 cbe_spu_info[node].nr_active--;
c0e7b4aa 629 spu_unbind_context(spu, victim);
486acd48
CH
630 mutex_unlock(&cbe_spu_info[node].list_mutex);
631
e9f8a0b6 632 victim->stats.invol_ctx_switch++;
fe2f896d 633 spu->stats.invol_ctx_switch++;
52f04fcf 634 mutex_unlock(&victim->state_mutex);
e097b513
CH
635 /*
636 * We need to break out of the wait loop in spu_run
637 * manually to ensure this context gets put on the
638 * runqueue again ASAP.
639 */
640 wake_up(&victim->stop_wq);
52f04fcf
CH
641 return spu;
642 }
643 }
644
645 return NULL;
646}
647
079cdb61
CH
648/**
649 * spu_activate - find a free spu for a context and execute it
650 * @ctx: spu context to schedule
651 * @flags: flags (currently ignored)
652 *
08873095 653 * Tries to find a free spu to run @ctx. If no free spu is available
079cdb61
CH
654 * add the context to the runqueue so it gets woken up once an spu
655 * is available.
656 */
26bec673 657int spu_activate(struct spu_context *ctx, unsigned long flags)
8b3d6663 658{
079cdb61
CH
659 do {
660 struct spu *spu;
661
27449971
CH
662 /*
663 * If there are multiple threads waiting for a single context
664 * only one actually binds the context while the others will
665 * only be able to acquire the state_mutex once the context
666 * already is in runnable state.
667 */
668 if (ctx->spu)
669 return 0;
670
079cdb61 671 spu = spu_get_idle(ctx);
52f04fcf
CH
672 /*
673 * If this is a realtime thread we try to get it running by
674 * preempting a lower priority thread.
675 */
fe443ef2 676 if (!spu && rt_prio(ctx->prio))
52f04fcf 677 spu = find_victim(ctx);
079cdb61 678 if (spu) {
486acd48
CH
679 int node = spu->node;
680
681 mutex_lock(&cbe_spu_info[node].list_mutex);
202557d2 682 spu_bind_context(spu, ctx);
486acd48
CH
683 cbe_spu_info[node].nr_active++;
684 mutex_unlock(&cbe_spu_info[node].list_mutex);
079cdb61 685 return 0;
a68cf983 686 }
079cdb61 687
50b520d4 688 spu_prio_wait(ctx);
079cdb61
CH
689 } while (!signal_pending(current));
690
691 return -ERESTARTSYS;
8b3d6663
AB
692}
693
bb5db29a
CH
694/**
695 * grab_runnable_context - try to find a runnable context
696 *
697 * Remove the highest priority context on the runqueue and return it
698 * to the caller. Returns %NULL if no runnable context was found.
699 */
ea1ae594 700static struct spu_context *grab_runnable_context(int prio, int node)
bb5db29a 701{
ea1ae594 702 struct spu_context *ctx;
bb5db29a
CH
703 int best;
704
705 spin_lock(&spu_prio->runq_lock);
7e90b749 706 best = find_first_bit(spu_prio->bitmap, prio);
ea1ae594 707 while (best < prio) {
bb5db29a
CH
708 struct list_head *rq = &spu_prio->runq[best];
709
ea1ae594
CH
710 list_for_each_entry(ctx, rq, rq) {
711 /* XXX(hch): check for affinity here aswell */
712 if (__node_allowed(ctx, node)) {
713 __spu_del_from_rq(ctx);
714 goto found;
715 }
716 }
717 best++;
bb5db29a 718 }
ea1ae594
CH
719 ctx = NULL;
720 found:
bb5db29a 721 spin_unlock(&spu_prio->runq_lock);
bb5db29a
CH
722 return ctx;
723}
724
725static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
726{
727 struct spu *spu = ctx->spu;
728 struct spu_context *new = NULL;
729
730 if (spu) {
ea1ae594 731 new = grab_runnable_context(max_prio, spu->node);
bb5db29a 732 if (new || force) {
486acd48
CH
733 int node = spu->node;
734
735 mutex_lock(&cbe_spu_info[node].list_mutex);
bb5db29a 736 spu_unbind_context(spu, ctx);
486acd48
CH
737 spu->alloc_state = SPU_FREE;
738 cbe_spu_info[node].nr_active--;
739 mutex_unlock(&cbe_spu_info[node].list_mutex);
740
e9f8a0b6 741 ctx->stats.vol_ctx_switch++;
fe2f896d 742 spu->stats.vol_ctx_switch++;
486acd48 743
bb5db29a
CH
744 if (new)
745 wake_up(&new->stop_wq);
746 }
747
748 }
749
750 return new != NULL;
751}
752
678b2ff1
CH
753/**
754 * spu_deactivate - unbind a context from it's physical spu
755 * @ctx: spu context to unbind
756 *
757 * Unbind @ctx from the physical spu it is running on and schedule
758 * the highest priority context to run on the freed physical spu.
759 */
8b3d6663
AB
760void spu_deactivate(struct spu_context *ctx)
761{
bb5db29a 762 __spu_deactivate(ctx, 1, MAX_PRIO);
8b3d6663
AB
763}
764
ae7b4c52 765/**
1474855d 766 * spu_yield - yield a physical spu if others are waiting
ae7b4c52
CH
767 * @ctx: spu context to yield
768 *
769 * Check if there is a higher priority context waiting and if yes
770 * unbind @ctx from the physical spu and schedule the highest
771 * priority context to run on the freed physical spu instead.
772 */
8b3d6663
AB
773void spu_yield(struct spu_context *ctx)
774{
e5c0b9ec
CH
775 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
776 mutex_lock(&ctx->state_mutex);
27ec41d3 777 __spu_deactivate(ctx, 0, MAX_PRIO);
e5c0b9ec
CH
778 mutex_unlock(&ctx->state_mutex);
779 }
bb5db29a 780}
8b3d6663 781
486acd48 782static noinline void spusched_tick(struct spu_context *ctx)
bb5db29a 783{
df09cf3e
CH
784 if (ctx->flags & SPU_CREATE_NOSCHED)
785 return;
786 if (ctx->policy == SCHED_FIFO)
787 return;
788
789 if (--ctx->time_slice)
37901802 790 return;
bb5db29a
CH
791
792 /*
486acd48 793 * Unfortunately list_mutex ranks outside of state_mutex, so
37901802
CH
794 * we have to trylock here. If we fail give the context another
795 * tick and try again.
bb5db29a 796 */
37901802 797 if (mutex_trylock(&ctx->state_mutex)) {
7022543e 798 struct spu *spu = ctx->spu;
ea1ae594
CH
799 struct spu_context *new;
800
801 new = grab_runnable_context(ctx->prio + 1, spu->node);
37901802 802 if (new) {
37901802 803 spu_unbind_context(spu, ctx);
e9f8a0b6 804 ctx->stats.invol_ctx_switch++;
fe2f896d 805 spu->stats.invol_ctx_switch++;
486acd48
CH
806 spu->alloc_state = SPU_FREE;
807 cbe_spu_info[spu->node].nr_active--;
37901802
CH
808 wake_up(&new->stop_wq);
809 /*
810 * We need to break out of the wait loop in
811 * spu_run manually to ensure this context
812 * gets put on the runqueue again ASAP.
813 */
814 wake_up(&ctx->stop_wq);
815 }
fe443ef2 816 spu_set_timeslice(ctx);
37901802 817 mutex_unlock(&ctx->state_mutex);
bb5db29a 818 } else {
37901802 819 ctx->time_slice++;
8b3d6663 820 }
8b3d6663
AB
821}
822
65de66f0
CH
823/**
824 * count_active_contexts - count nr of active tasks
825 *
826 * Return the number of tasks currently running or waiting to run.
827 *
486acd48 828 * Note that we don't take runq_lock / list_mutex here. Reading
65de66f0
CH
829 * a single 32bit value is atomic on powerpc, and we don't care
830 * about memory ordering issues here.
831 */
832static unsigned long count_active_contexts(void)
833{
834 int nr_active = 0, node;
835
836 for (node = 0; node < MAX_NUMNODES; node++)
486acd48 837 nr_active += cbe_spu_info[node].nr_active;
65de66f0
CH
838 nr_active += spu_prio->nr_waiting;
839
840 return nr_active;
841}
842
843/**
844 * spu_calc_load - given tick count, update the avenrun load estimates.
845 * @tick: tick count
846 *
847 * No locking against reading these values from userspace, as for
848 * the CPU loadavg code.
849 */
850static void spu_calc_load(unsigned long ticks)
851{
852 unsigned long active_tasks; /* fixed-point */
853 static int count = LOAD_FREQ;
854
855 count -= ticks;
856
857 if (unlikely(count < 0)) {
858 active_tasks = count_active_contexts() * FIXED_1;
859 do {
860 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
861 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
862 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
863 count += LOAD_FREQ;
864 } while (count < 0);
865 }
866}
867
37901802
CH
868static void spusched_wake(unsigned long data)
869{
870 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
871 wake_up_process(spusched_task);
65de66f0 872 spu_calc_load(SPUSCHED_TICK);
37901802
CH
873}
874
875static int spusched_thread(void *unused)
876{
486acd48 877 struct spu *spu;
37901802
CH
878 int node;
879
37901802
CH
880 while (!kthread_should_stop()) {
881 set_current_state(TASK_INTERRUPTIBLE);
882 schedule();
883 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
884 mutex_lock(&cbe_spu_info[node].list_mutex);
885 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
886 if (spu->ctx)
887 spusched_tick(spu->ctx);
888 mutex_unlock(&cbe_spu_info[node].list_mutex);
37901802
CH
889 }
890 }
891
37901802
CH
892 return 0;
893}
894
65de66f0
CH
895#define LOAD_INT(x) ((x) >> FSHIFT)
896#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
897
898static int show_spu_loadavg(struct seq_file *s, void *private)
899{
900 int a, b, c;
901
902 a = spu_avenrun[0] + (FIXED_1/200);
903 b = spu_avenrun[1] + (FIXED_1/200);
904 c = spu_avenrun[2] + (FIXED_1/200);
905
906 /*
907 * Note that last_pid doesn't really make much sense for the
908 * SPU loadavg (it even seems very odd on the CPU side..),
909 * but we include it here to have a 100% compatible interface.
910 */
911 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
912 LOAD_INT(a), LOAD_FRAC(a),
913 LOAD_INT(b), LOAD_FRAC(b),
914 LOAD_INT(c), LOAD_FRAC(c),
915 count_active_contexts(),
916 atomic_read(&nr_spu_contexts),
917 current->nsproxy->pid_ns->last_pid);
918 return 0;
919}
920
921static int spu_loadavg_open(struct inode *inode, struct file *file)
922{
923 return single_open(file, show_spu_loadavg, NULL);
924}
925
926static const struct file_operations spu_loadavg_fops = {
927 .open = spu_loadavg_open,
928 .read = seq_read,
929 .llseek = seq_lseek,
930 .release = single_release,
931};
932
8b3d6663
AB
933int __init spu_sched_init(void)
934{
65de66f0
CH
935 struct proc_dir_entry *entry;
936 int err = -ENOMEM, i;
8b3d6663 937
a68cf983 938 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
37901802 939 if (!spu_prio)
65de66f0 940 goto out;
37901802 941
8b3d6663 942 for (i = 0; i < MAX_PRIO; i++) {
079cdb61 943 INIT_LIST_HEAD(&spu_prio->runq[i]);
a68cf983 944 __clear_bit(i, spu_prio->bitmap);
8b3d6663 945 }
079cdb61 946 spin_lock_init(&spu_prio->runq_lock);
37901802 947
c77239b8
CH
948 setup_timer(&spusched_timer, spusched_wake, 0);
949
37901802
CH
950 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
951 if (IS_ERR(spusched_task)) {
65de66f0
CH
952 err = PTR_ERR(spusched_task);
953 goto out_free_spu_prio;
37901802 954 }
f3f59bec 955
65de66f0
CH
956 entry = create_proc_entry("spu_loadavg", 0, NULL);
957 if (!entry)
958 goto out_stop_kthread;
959 entry->proc_fops = &spu_loadavg_fops;
960
f3f59bec
JK
961 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
962 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
8b3d6663 963 return 0;
37901802 964
65de66f0
CH
965 out_stop_kthread:
966 kthread_stop(spusched_task);
967 out_free_spu_prio:
968 kfree(spu_prio);
969 out:
970 return err;
8b3d6663
AB
971}
972
d1450317 973void spu_sched_exit(void)
8b3d6663 974{
486acd48 975 struct spu *spu;
a68cf983
MN
976 int node;
977
65de66f0
CH
978 remove_proc_entry("spu_loadavg", NULL);
979
c77239b8 980 del_timer_sync(&spusched_timer);
37901802
CH
981 kthread_stop(spusched_task);
982
a68cf983 983 for (node = 0; node < MAX_NUMNODES; node++) {
486acd48
CH
984 mutex_lock(&cbe_spu_info[node].list_mutex);
985 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
986 if (spu->alloc_state != SPU_FREE)
987 spu->alloc_state = SPU_FREE;
988 mutex_unlock(&cbe_spu_info[node].list_mutex);
8b3d6663 989 }
a68cf983 990 kfree(spu_prio);
8b3d6663 991}