]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/platforms/powernv/pci-ioda.c
hexagon: use the generic dma_capable helper
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
CommitLineData
184cd4a3
BH
1/*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
cee72d5b 12#undef DEBUG
184cd4a3
BH
13
14#include <linux/kernel.h>
15#include <linux/pci.h>
361f2a2a 16#include <linux/crash_dump.h>
184cd4a3
BH
17#include <linux/delay.h>
18#include <linux/string.h>
19#include <linux/init.h>
20#include <linux/bootmem.h>
21#include <linux/irq.h>
22#include <linux/io.h>
23#include <linux/msi.h>
cd15b048 24#include <linux/memblock.h>
ac9a5889 25#include <linux/iommu.h>
e57080f1 26#include <linux/rculist.h>
4793d65d 27#include <linux/sizes.h>
184cd4a3
BH
28
29#include <asm/sections.h>
30#include <asm/io.h>
31#include <asm/prom.h>
32#include <asm/pci-bridge.h>
33#include <asm/machdep.h>
fb1b55d6 34#include <asm/msi_bitmap.h>
184cd4a3
BH
35#include <asm/ppc-pci.h>
36#include <asm/opal.h>
37#include <asm/iommu.h>
38#include <asm/tce.h>
137436c9 39#include <asm/xics.h>
7644d581 40#include <asm/debugfs.h>
262af557 41#include <asm/firmware.h>
80c49c7e 42#include <asm/pnv-pci.h>
aca6913f 43#include <asm/mmzone.h>
80c49c7e 44
ec249dd8 45#include <misc/cxl-base.h>
184cd4a3
BH
46
47#include "powernv.h"
48#include "pci.h"
49
99451551
GS
50#define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
51#define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
acce971c 52#define PNV_IODA1_DMA32_SEGSIZE 0x10000000
781a868f 53
bbb845c4
AK
54#define POWERNV_IOMMU_DEFAULT_LEVELS 1
55#define POWERNV_IOMMU_MAX_LEVELS 5
56
9497a1c1 57static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
aca6913f
AK
58static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
7d623e42 60void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
6d31c2fa
JP
61 const char *fmt, ...)
62{
63 struct va_format vaf;
64 va_list args;
65 char pfix[32];
66
67 va_start(args, fmt);
68
69 vaf.fmt = fmt;
70 vaf.va = &args;
71
781a868f 72 if (pe->flags & PNV_IODA_PE_DEV)
6d31c2fa 73 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
781a868f 74 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
6d31c2fa
JP
75 sprintf(pfix, "%04x:%02x ",
76 pci_domain_nr(pe->pbus), pe->pbus->number);
781a868f
WY
77#ifdef CONFIG_PCI_IOV
78 else if (pe->flags & PNV_IODA_PE_VF)
79 sprintf(pfix, "%04x:%02x:%2x.%d",
80 pci_domain_nr(pe->parent_dev->bus),
81 (pe->rid & 0xff00) >> 8,
82 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83#endif /* CONFIG_PCI_IOV*/
6d31c2fa 84
1f52f176 85 printk("%spci %s: [PE# %.2x] %pV",
6d31c2fa
JP
86 level, pfix, pe->pe_number, &vaf);
87
88 va_end(args);
89}
184cd4a3 90
4e287840
TLSC
91static bool pnv_iommu_bypass_disabled __read_mostly;
92
93static int __init iommu_setup(char *str)
94{
95 if (!str)
96 return -EINVAL;
97
98 while (*str) {
99 if (!strncmp(str, "nobypass", 8)) {
100 pnv_iommu_bypass_disabled = true;
101 pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 break;
103 }
104 str += strcspn(str, ",");
105 if (*str == ',')
106 str++;
107 }
108
109 return 0;
110}
111early_param("iommu", iommu_setup);
112
5958d19a 113static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
262af557 114{
5958d19a
BH
115 /*
116 * WARNING: We cannot rely on the resource flags. The Linux PCI
117 * allocation code sometimes decides to put a 64-bit prefetchable
118 * BAR in the 32-bit window, so we have to compare the addresses.
119 *
120 * For simplicity we only test resource start.
121 */
122 return (r->start >= phb->ioda.m64_base &&
123 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
262af557
GC
124}
125
b79331a5
RC
126static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127{
128 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129
130 return (resource_flags & flags) == flags;
131}
132
1e916772
GS
133static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134{
313483dd
GS
135 s64 rc;
136
1e916772
GS
137 phb->ioda.pe_array[pe_no].phb = phb;
138 phb->ioda.pe_array[pe_no].pe_number = pe_no;
139
313483dd
GS
140 /*
141 * Clear the PE frozen state as it might be put into frozen state
142 * in the last PCI remove path. It's not harmful to do so when the
143 * PE is already in unfrozen state.
144 */
145 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
d4791db5 147 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1f52f176 148 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
313483dd
GS
149 __func__, rc, phb->hose->global_number, pe_no);
150
1e916772
GS
151 return &phb->ioda.pe_array[pe_no];
152}
153
4b82ab18
GS
154static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155{
92b8f137 156 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
1f52f176 157 pr_warn("%s: Invalid PE %x on PHB#%x\n",
4b82ab18
GS
158 __func__, pe_no, phb->hose->global_number);
159 return;
160 }
161
e9dc4d7f 162 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
1f52f176 163 pr_debug("%s: PE %x was reserved on PHB#%x\n",
e9dc4d7f 164 __func__, pe_no, phb->hose->global_number);
4b82ab18 165
1e916772 166 pnv_ioda_init_pe(phb, pe_no);
4b82ab18
GS
167}
168
1e916772 169static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
184cd4a3 170{
60964816 171 long pe;
184cd4a3 172
9fcd6f4a
GS
173 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175 return pnv_ioda_init_pe(phb, pe);
176 }
184cd4a3 177
9fcd6f4a 178 return NULL;
184cd4a3
BH
179}
180
1e916772 181static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
184cd4a3 182{
1e916772 183 struct pnv_phb *phb = pe->phb;
caa58f80 184 unsigned int pe_num = pe->pe_number;
1e916772
GS
185
186 WARN_ON(pe->pdev);
184cd4a3 187
1e916772 188 memset(pe, 0, sizeof(struct pnv_ioda_pe));
caa58f80 189 clear_bit(pe_num, phb->ioda.pe_alloc);
184cd4a3
BH
190}
191
262af557
GC
192/* The default M64 BAR is shared by all PEs */
193static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194{
195 const char *desc;
196 struct resource *r;
197 s64 rc;
198
199 /* Configure the default M64 BAR */
200 rc = opal_pci_set_phb_mem_window(phb->opal_id,
201 OPAL_M64_WINDOW_TYPE,
202 phb->ioda.m64_bar_idx,
203 phb->ioda.m64_base,
204 0, /* unused */
205 phb->ioda.m64_size);
206 if (rc != OPAL_SUCCESS) {
207 desc = "configuring";
208 goto fail;
209 }
210
211 /* Enable the default M64 BAR */
212 rc = opal_pci_phb_mmio_enable(phb->opal_id,
213 OPAL_M64_WINDOW_TYPE,
214 phb->ioda.m64_bar_idx,
215 OPAL_ENABLE_M64_SPLIT);
216 if (rc != OPAL_SUCCESS) {
217 desc = "enabling";
218 goto fail;
219 }
220
262af557 221 /*
63803c39
GS
222 * Exclude the segments for reserved and root bus PE, which
223 * are first or last two PEs.
262af557
GC
224 */
225 r = &phb->hose->mem_resources[1];
92b8f137 226 if (phb->ioda.reserved_pe_idx == 0)
63803c39 227 r->start += (2 * phb->ioda.m64_segsize);
92b8f137 228 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
63803c39 229 r->end -= (2 * phb->ioda.m64_segsize);
262af557 230 else
1f52f176 231 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
92b8f137 232 phb->ioda.reserved_pe_idx);
262af557
GC
233
234 return 0;
235
236fail:
237 pr_warn(" Failure %lld %s M64 BAR#%d\n",
238 rc, desc, phb->ioda.m64_bar_idx);
239 opal_pci_phb_mmio_enable(phb->opal_id,
240 OPAL_M64_WINDOW_TYPE,
241 phb->ioda.m64_bar_idx,
242 OPAL_DISABLE_M64);
243 return -EIO;
244}
245
c430670a 246static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
96a2f92b 247 unsigned long *pe_bitmap)
262af557 248{
96a2f92b
GS
249 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250 struct pnv_phb *phb = hose->private_data;
262af557 251 struct resource *r;
96a2f92b
GS
252 resource_size_t base, sgsz, start, end;
253 int segno, i;
254
255 base = phb->ioda.m64_base;
256 sgsz = phb->ioda.m64_segsize;
257 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258 r = &pdev->resource[i];
5958d19a 259 if (!r->parent || !pnv_pci_is_m64(phb, r))
96a2f92b 260 continue;
262af557 261
96a2f92b
GS
262 start = _ALIGN_DOWN(r->start - base, sgsz);
263 end = _ALIGN_UP(r->end - base, sgsz);
264 for (segno = start / sgsz; segno < end / sgsz; segno++) {
265 if (pe_bitmap)
266 set_bit(segno, pe_bitmap);
267 else
268 pnv_ioda_reserve_pe(phb, segno);
262af557
GC
269 }
270 }
271}
272
99451551
GS
273static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274{
275 struct resource *r;
276 int index;
277
278 /*
279 * There are 16 M64 BARs, each of which has 8 segments. So
280 * there are as many M64 segments as the maximum number of
281 * PEs, which is 128.
282 */
283 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284 unsigned long base, segsz = phb->ioda.m64_segsize;
285 int64_t rc;
286
287 base = phb->ioda.m64_base +
288 index * PNV_IODA1_M64_SEGS * segsz;
289 rc = opal_pci_set_phb_mem_window(phb->opal_id,
290 OPAL_M64_WINDOW_TYPE, index, base, 0,
291 PNV_IODA1_M64_SEGS * segsz);
292 if (rc != OPAL_SUCCESS) {
1f52f176 293 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
99451551
GS
294 rc, phb->hose->global_number, index);
295 goto fail;
296 }
297
298 rc = opal_pci_phb_mmio_enable(phb->opal_id,
299 OPAL_M64_WINDOW_TYPE, index,
300 OPAL_ENABLE_M64_SPLIT);
301 if (rc != OPAL_SUCCESS) {
1f52f176 302 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
99451551
GS
303 rc, phb->hose->global_number, index);
304 goto fail;
305 }
306 }
307
308 /*
63803c39
GS
309 * Exclude the segments for reserved and root bus PE, which
310 * are first or last two PEs.
99451551
GS
311 */
312 r = &phb->hose->mem_resources[1];
313 if (phb->ioda.reserved_pe_idx == 0)
63803c39 314 r->start += (2 * phb->ioda.m64_segsize);
99451551 315 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
63803c39 316 r->end -= (2 * phb->ioda.m64_segsize);
99451551 317 else
1f52f176 318 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
99451551
GS
319 phb->ioda.reserved_pe_idx, phb->hose->global_number);
320
321 return 0;
322
323fail:
324 for ( ; index >= 0; index--)
325 opal_pci_phb_mmio_enable(phb->opal_id,
326 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327
328 return -EIO;
329}
330
c430670a
GS
331static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332 unsigned long *pe_bitmap,
333 bool all)
262af557 334{
262af557 335 struct pci_dev *pdev;
96a2f92b
GS
336
337 list_for_each_entry(pdev, &bus->devices, bus_list) {
c430670a 338 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
96a2f92b
GS
339
340 if (all && pdev->subordinate)
c430670a
GS
341 pnv_ioda_reserve_m64_pe(pdev->subordinate,
342 pe_bitmap, all);
96a2f92b
GS
343 }
344}
345
1e916772 346static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
262af557 347{
26ba248d
GS
348 struct pci_controller *hose = pci_bus_to_host(bus);
349 struct pnv_phb *phb = hose->private_data;
262af557
GC
350 struct pnv_ioda_pe *master_pe, *pe;
351 unsigned long size, *pe_alloc;
26ba248d 352 int i;
262af557
GC
353
354 /* Root bus shouldn't use M64 */
355 if (pci_is_root_bus(bus))
1e916772 356 return NULL;
262af557 357
262af557 358 /* Allocate bitmap */
92b8f137 359 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
262af557
GC
360 pe_alloc = kzalloc(size, GFP_KERNEL);
361 if (!pe_alloc) {
362 pr_warn("%s: Out of memory !\n",
363 __func__);
1e916772 364 return NULL;
262af557
GC
365 }
366
26ba248d 367 /* Figure out reserved PE numbers by the PE */
c430670a 368 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
262af557
GC
369
370 /*
371 * the current bus might not own M64 window and that's all
372 * contributed by its child buses. For the case, we needn't
373 * pick M64 dependent PE#.
374 */
92b8f137 375 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
262af557 376 kfree(pe_alloc);
1e916772 377 return NULL;
262af557
GC
378 }
379
380 /*
381 * Figure out the master PE and put all slave PEs to master
382 * PE's list to form compound PE.
383 */
262af557
GC
384 master_pe = NULL;
385 i = -1;
92b8f137
GS
386 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387 phb->ioda.total_pe_num) {
262af557 388 pe = &phb->ioda.pe_array[i];
262af557 389
93289d8c 390 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
262af557
GC
391 if (!master_pe) {
392 pe->flags |= PNV_IODA_PE_MASTER;
393 INIT_LIST_HEAD(&pe->slaves);
394 master_pe = pe;
395 } else {
396 pe->flags |= PNV_IODA_PE_SLAVE;
397 pe->master = master_pe;
398 list_add_tail(&pe->list, &master_pe->slaves);
399 }
99451551
GS
400
401 /*
402 * P7IOC supports M64DT, which helps mapping M64 segment
403 * to one particular PE#. However, PHB3 has fixed mapping
404 * between M64 segment and PE#. In order to have same logic
405 * for P7IOC and PHB3, we enforce fixed mapping between M64
406 * segment and PE# on P7IOC.
407 */
408 if (phb->type == PNV_PHB_IODA1) {
409 int64_t rc;
410
411 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412 pe->pe_number, OPAL_M64_WINDOW_TYPE,
413 pe->pe_number / PNV_IODA1_M64_SEGS,
414 pe->pe_number % PNV_IODA1_M64_SEGS);
415 if (rc != OPAL_SUCCESS)
1f52f176 416 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
99451551
GS
417 __func__, rc, phb->hose->global_number,
418 pe->pe_number);
419 }
262af557
GC
420 }
421
422 kfree(pe_alloc);
1e916772 423 return master_pe;
262af557
GC
424}
425
426static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427{
428 struct pci_controller *hose = phb->hose;
429 struct device_node *dn = hose->dn;
430 struct resource *res;
a1339faf 431 u32 m64_range[2], i;
0e7736c6 432 const __be32 *r;
262af557
GC
433 u64 pci_addr;
434
99451551 435 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
1665c4a8
GS
436 pr_info(" Not support M64 window\n");
437 return;
438 }
439
e4d54f71 440 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
262af557
GC
441 pr_info(" Firmware too old to support M64 window\n");
442 return;
443 }
444
445 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446 if (!r) {
b7c670d6
RH
447 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
448 dn);
262af557
GC
449 return;
450 }
451
a1339faf
BH
452 /*
453 * Find the available M64 BAR range and pickup the last one for
454 * covering the whole 64-bits space. We support only one range.
455 */
456 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457 m64_range, 2)) {
458 /* In absence of the property, assume 0..15 */
459 m64_range[0] = 0;
460 m64_range[1] = 16;
461 }
462 /* We only support 64 bits in our allocator */
463 if (m64_range[1] > 63) {
464 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465 __func__, m64_range[1], phb->hose->global_number);
466 m64_range[1] = 63;
467 }
468 /* Empty range, no m64 */
469 if (m64_range[1] <= m64_range[0]) {
470 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471 __func__, phb->hose->global_number);
472 return;
473 }
474
475 /* Configure M64 informations */
262af557 476 res = &hose->mem_resources[1];
e80c4e7c 477 res->name = dn->full_name;
262af557
GC
478 res->start = of_translate_address(dn, r + 2);
479 res->end = res->start + of_read_number(r + 4, 2) - 1;
480 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481 pci_addr = of_read_number(r, 2);
482 hose->mem_offset[1] = res->start - pci_addr;
483
484 phb->ioda.m64_size = resource_size(res);
92b8f137 485 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
262af557
GC
486 phb->ioda.m64_base = pci_addr;
487
a1339faf
BH
488 /* This lines up nicely with the display from processing OF ranges */
489 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490 res->start, res->end, pci_addr, m64_range[0],
491 m64_range[0] + m64_range[1] - 1);
492
493 /* Mark all M64 used up by default */
494 phb->ioda.m64_bar_alloc = (unsigned long)-1;
e9863e68 495
262af557 496 /* Use last M64 BAR to cover M64 window */
a1339faf
BH
497 m64_range[1]--;
498 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499
500 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501
502 /* Mark remaining ones free */
503 for (i = m64_range[0]; i < m64_range[1]; i++)
504 clear_bit(i, &phb->ioda.m64_bar_alloc);
505
506 /*
507 * Setup init functions for M64 based on IODA version, IODA3 uses
508 * the IODA2 code.
509 */
99451551
GS
510 if (phb->type == PNV_PHB_IODA1)
511 phb->init_m64 = pnv_ioda1_init_m64;
512 else
513 phb->init_m64 = pnv_ioda2_init_m64;
c430670a
GS
514 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
262af557
GC
516}
517
49dec922
GS
518static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519{
520 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521 struct pnv_ioda_pe *slave;
522 s64 rc;
523
524 /* Fetch master PE */
525 if (pe->flags & PNV_IODA_PE_SLAVE) {
526 pe = pe->master;
ec8e4e9d
GS
527 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528 return;
529
49dec922
GS
530 pe_no = pe->pe_number;
531 }
532
533 /* Freeze master PE */
534 rc = opal_pci_eeh_freeze_set(phb->opal_id,
535 pe_no,
536 OPAL_EEH_ACTION_SET_FREEZE_ALL);
537 if (rc != OPAL_SUCCESS) {
538 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539 __func__, rc, phb->hose->global_number, pe_no);
540 return;
541 }
542
543 /* Freeze slave PEs */
544 if (!(pe->flags & PNV_IODA_PE_MASTER))
545 return;
546
547 list_for_each_entry(slave, &pe->slaves, list) {
548 rc = opal_pci_eeh_freeze_set(phb->opal_id,
549 slave->pe_number,
550 OPAL_EEH_ACTION_SET_FREEZE_ALL);
551 if (rc != OPAL_SUCCESS)
552 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553 __func__, rc, phb->hose->global_number,
554 slave->pe_number);
555 }
556}
557
e51df2c1 558static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
49dec922
GS
559{
560 struct pnv_ioda_pe *pe, *slave;
561 s64 rc;
562
563 /* Find master PE */
564 pe = &phb->ioda.pe_array[pe_no];
565 if (pe->flags & PNV_IODA_PE_SLAVE) {
566 pe = pe->master;
567 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568 pe_no = pe->pe_number;
569 }
570
571 /* Clear frozen state for master PE */
572 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573 if (rc != OPAL_SUCCESS) {
574 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575 __func__, rc, opt, phb->hose->global_number, pe_no);
576 return -EIO;
577 }
578
579 if (!(pe->flags & PNV_IODA_PE_MASTER))
580 return 0;
581
582 /* Clear frozen state for slave PEs */
583 list_for_each_entry(slave, &pe->slaves, list) {
584 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585 slave->pe_number,
586 opt);
587 if (rc != OPAL_SUCCESS) {
588 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589 __func__, rc, opt, phb->hose->global_number,
590 slave->pe_number);
591 return -EIO;
592 }
593 }
594
595 return 0;
596}
597
598static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599{
600 struct pnv_ioda_pe *slave, *pe;
601 u8 fstate, state;
602 __be16 pcierr;
603 s64 rc;
604
605 /* Sanity check on PE number */
92b8f137 606 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
49dec922
GS
607 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608
609 /*
610 * Fetch the master PE and the PE instance might be
611 * not initialized yet.
612 */
613 pe = &phb->ioda.pe_array[pe_no];
614 if (pe->flags & PNV_IODA_PE_SLAVE) {
615 pe = pe->master;
616 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617 pe_no = pe->pe_number;
618 }
619
620 /* Check the master PE */
621 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622 &state, &pcierr, NULL);
623 if (rc != OPAL_SUCCESS) {
624 pr_warn("%s: Failure %lld getting "
625 "PHB#%x-PE#%x state\n",
626 __func__, rc,
627 phb->hose->global_number, pe_no);
628 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629 }
630
631 /* Check the slave PE */
632 if (!(pe->flags & PNV_IODA_PE_MASTER))
633 return state;
634
635 list_for_each_entry(slave, &pe->slaves, list) {
636 rc = opal_pci_eeh_freeze_status(phb->opal_id,
637 slave->pe_number,
638 &fstate,
639 &pcierr,
640 NULL);
641 if (rc != OPAL_SUCCESS) {
642 pr_warn("%s: Failure %lld getting "
643 "PHB#%x-PE#%x state\n",
644 __func__, rc,
645 phb->hose->global_number, slave->pe_number);
646 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647 }
648
649 /*
650 * Override the result based on the ascending
651 * priority.
652 */
653 if (fstate > state)
654 state = fstate;
655 }
656
657 return state;
658}
659
184cd4a3
BH
660/* Currently those 2 are only used when MSIs are enabled, this will change
661 * but in the meantime, we need to protect them to avoid warnings
662 */
663#ifdef CONFIG_PCI_MSI
f456834a 664struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
184cd4a3
BH
665{
666 struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 struct pnv_phb *phb = hose->private_data;
b72c1f65 668 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
669
670 if (!pdn)
671 return NULL;
672 if (pdn->pe_number == IODA_INVALID_PE)
673 return NULL;
674 return &phb->ioda.pe_array[pdn->pe_number];
675}
184cd4a3
BH
676#endif /* CONFIG_PCI_MSI */
677
b131a842
GS
678static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 struct pnv_ioda_pe *parent,
680 struct pnv_ioda_pe *child,
681 bool is_add)
682{
683 const char *desc = is_add ? "adding" : "removing";
684 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 OPAL_REMOVE_PE_FROM_DOMAIN;
686 struct pnv_ioda_pe *slave;
687 long rc;
688
689 /* Parent PE affects child PE */
690 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 child->pe_number, op);
692 if (rc != OPAL_SUCCESS) {
693 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 rc, desc);
695 return -ENXIO;
696 }
697
698 if (!(child->flags & PNV_IODA_PE_MASTER))
699 return 0;
700
701 /* Compound case: parent PE affects slave PEs */
702 list_for_each_entry(slave, &child->slaves, list) {
703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 slave->pe_number, op);
705 if (rc != OPAL_SUCCESS) {
706 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 rc, desc);
708 return -ENXIO;
709 }
710 }
711
712 return 0;
713}
714
715static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 struct pnv_ioda_pe *pe,
717 bool is_add)
718{
719 struct pnv_ioda_pe *slave;
781a868f 720 struct pci_dev *pdev = NULL;
b131a842
GS
721 int ret;
722
723 /*
724 * Clear PE frozen state. If it's master PE, we need
725 * clear slave PE frozen state as well.
726 */
727 if (is_add) {
728 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 if (pe->flags & PNV_IODA_PE_MASTER) {
731 list_for_each_entry(slave, &pe->slaves, list)
732 opal_pci_eeh_freeze_clear(phb->opal_id,
733 slave->pe_number,
734 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 }
736 }
737
738 /*
739 * Associate PE in PELT. We need add the PE into the
740 * corresponding PELT-V as well. Otherwise, the error
741 * originated from the PE might contribute to other
742 * PEs.
743 */
744 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 if (ret)
746 return ret;
747
748 /* For compound PEs, any one affects all of them */
749 if (pe->flags & PNV_IODA_PE_MASTER) {
750 list_for_each_entry(slave, &pe->slaves, list) {
751 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 if (ret)
753 return ret;
754 }
755 }
756
757 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 pdev = pe->pbus->self;
781a868f 759 else if (pe->flags & PNV_IODA_PE_DEV)
b131a842 760 pdev = pe->pdev->bus->self;
781a868f
WY
761#ifdef CONFIG_PCI_IOV
762 else if (pe->flags & PNV_IODA_PE_VF)
283e2d8a 763 pdev = pe->parent_dev;
781a868f 764#endif /* CONFIG_PCI_IOV */
b131a842
GS
765 while (pdev) {
766 struct pci_dn *pdn = pci_get_pdn(pdev);
767 struct pnv_ioda_pe *parent;
768
769 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 parent = &phb->ioda.pe_array[pdn->pe_number];
771 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 if (ret)
773 return ret;
774 }
775
776 pdev = pdev->bus->self;
777 }
778
779 return 0;
780}
781
781a868f
WY
782static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783{
784 struct pci_dev *parent;
785 uint8_t bcomp, dcomp, fcomp;
786 int64_t rc;
787 long rid_end, rid;
788
789 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 if (pe->pbus) {
791 int count;
792
793 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 parent = pe->pbus->self;
796 if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 else
799 count = 1;
800
801 switch(count) {
802 case 1: bcomp = OpalPciBusAll; break;
803 case 2: bcomp = OpalPciBus7Bits; break;
804 case 4: bcomp = OpalPciBus6Bits; break;
805 case 8: bcomp = OpalPciBus5Bits; break;
806 case 16: bcomp = OpalPciBus4Bits; break;
807 case 32: bcomp = OpalPciBus3Bits; break;
808 default:
809 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 count);
811 /* Do an exact match only */
812 bcomp = OpalPciBusAll;
813 }
814 rid_end = pe->rid + (count << 8);
815 } else {
93e01a50 816#ifdef CONFIG_PCI_IOV
781a868f
WY
817 if (pe->flags & PNV_IODA_PE_VF)
818 parent = pe->parent_dev;
819 else
93e01a50 820#endif
781a868f
WY
821 parent = pe->pdev->bus->self;
822 bcomp = OpalPciBusAll;
823 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 rid_end = pe->rid + 1;
826 }
827
828 /* Clear the reverse map */
829 for (rid = pe->rid; rid < rid_end; rid++)
c127562a 830 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
781a868f
WY
831
832 /* Release from all parents PELT-V */
833 while (parent) {
834 struct pci_dn *pdn = pci_get_pdn(parent);
835 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 /* XXX What to do in case of error ? */
839 }
840 parent = parent->bus->self;
841 }
842
f951e510 843 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
781a868f
WY
844 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845
846 /* Disassociate PE in PELT */
847 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 if (rc)
850 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 if (rc)
854 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855
856 pe->pbus = NULL;
857 pe->pdev = NULL;
93e01a50 858#ifdef CONFIG_PCI_IOV
781a868f 859 pe->parent_dev = NULL;
93e01a50 860#endif
781a868f
WY
861
862 return 0;
863}
781a868f 864
cad5cef6 865static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
184cd4a3
BH
866{
867 struct pci_dev *parent;
868 uint8_t bcomp, dcomp, fcomp;
869 long rc, rid_end, rid;
870
871 /* Bus validation ? */
872 if (pe->pbus) {
873 int count;
874
875 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 parent = pe->pbus->self;
fb446ad0
GS
878 if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 else
881 count = 1;
882
184cd4a3
BH
883 switch(count) {
884 case 1: bcomp = OpalPciBusAll; break;
885 case 2: bcomp = OpalPciBus7Bits; break;
886 case 4: bcomp = OpalPciBus6Bits; break;
887 case 8: bcomp = OpalPciBus5Bits; break;
888 case 16: bcomp = OpalPciBus4Bits; break;
889 case 32: bcomp = OpalPciBus3Bits; break;
890 default:
781a868f
WY
891 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 count);
184cd4a3
BH
893 /* Do an exact match only */
894 bcomp = OpalPciBusAll;
895 }
896 rid_end = pe->rid + (count << 8);
897 } else {
781a868f
WY
898#ifdef CONFIG_PCI_IOV
899 if (pe->flags & PNV_IODA_PE_VF)
900 parent = pe->parent_dev;
901 else
902#endif /* CONFIG_PCI_IOV */
903 parent = pe->pdev->bus->self;
184cd4a3
BH
904 bcomp = OpalPciBusAll;
905 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 rid_end = pe->rid + 1;
908 }
909
631ad691
GS
910 /*
911 * Associate PE in PELT. We need add the PE into the
912 * corresponding PELT-V as well. Otherwise, the error
913 * originated from the PE might contribute to other
914 * PEs.
915 */
184cd4a3
BH
916 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 if (rc) {
919 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 return -ENXIO;
921 }
631ad691 922
5d2aa710
AP
923 /*
924 * Configure PELTV. NPUs don't have a PELTV table so skip
925 * configuration on them.
926 */
927 if (phb->type != PNV_PHB_NPU)
928 pnv_ioda_set_peltv(phb, pe, true);
184cd4a3 929
184cd4a3
BH
930 /* Setup reverse map */
931 for (rid = pe->rid; rid < rid_end; rid++)
932 phb->ioda.pe_rmap[rid] = pe->pe_number;
933
934 /* Setup one MVTs on IODA1 */
4773f76b
GS
935 if (phb->type != PNV_PHB_IODA1) {
936 pe->mve_number = 0;
937 goto out;
938 }
939
940 pe->mve_number = pe->pe_number;
941 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 if (rc != OPAL_SUCCESS) {
1f52f176 943 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
4773f76b
GS
944 rc, pe->mve_number);
945 pe->mve_number = -1;
946 } else {
947 rc = opal_pci_set_mve_enable(phb->opal_id,
948 pe->mve_number, OPAL_ENABLE_MVE);
184cd4a3 949 if (rc) {
1f52f176 950 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
184cd4a3
BH
951 rc, pe->mve_number);
952 pe->mve_number = -1;
184cd4a3 953 }
4773f76b 954 }
184cd4a3 955
4773f76b 956out:
184cd4a3
BH
957 return 0;
958}
959
781a868f
WY
960#ifdef CONFIG_PCI_IOV
961static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962{
963 struct pci_dn *pdn = pci_get_pdn(dev);
964 int i;
965 struct resource *res, res2;
966 resource_size_t size;
967 u16 num_vfs;
968
969 if (!dev->is_physfn)
970 return -EINVAL;
971
972 /*
973 * "offset" is in VFs. The M64 windows are sized so that when they
974 * are segmented, each segment is the same size as the IOV BAR.
975 * Each segment is in a separate PE, and the high order bits of the
976 * address are the PE number. Therefore, each VF's BAR is in a
977 * separate PE, and changing the IOV BAR start address changes the
978 * range of PEs the VFs are in.
979 */
980 num_vfs = pdn->num_vfs;
981 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 res = &dev->resource[i + PCI_IOV_RESOURCES];
983 if (!res->flags || !res->parent)
984 continue;
985
781a868f
WY
986 /*
987 * The actual IOV BAR range is determined by the start address
988 * and the actual size for num_vfs VFs BAR. This check is to
989 * make sure that after shifting, the range will not overlap
990 * with another device.
991 */
992 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 res2.flags = res->flags;
994 res2.start = res->start + (size * offset);
995 res2.end = res2.start + (size * num_vfs) - 1;
996
997 if (res2.end > res->end) {
998 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 i, &res2, res, num_vfs, offset);
1000 return -EBUSY;
1001 }
1002 }
1003
1004 /*
d6f934fd
AK
1005 * Since M64 BAR shares segments among all possible 256 PEs,
1006 * we have to shift the beginning of PF IOV BAR to make it start from
1007 * the segment which belongs to the PE number assigned to the first VF.
1008 * This creates a "hole" in the /proc/iomem which could be used for
1009 * allocating other resources so we reserve this area below and
1010 * release when IOV is released.
781a868f
WY
1011 */
1012 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 if (!res->flags || !res->parent)
1015 continue;
1016
781a868f
WY
1017 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 res2 = *res;
1019 res->start += size * offset;
1020
74703cc4
WY
1021 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 num_vfs, offset);
d6f934fd
AK
1024
1025 if (offset < 0) {
1026 devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 }
1029
781a868f 1030 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
d6f934fd
AK
1031
1032 if (offset > 0) {
1033 pdn->holes[i].start = res2.start;
1034 pdn->holes[i].end = res2.start + size * offset - 1;
1035 pdn->holes[i].flags = IORESOURCE_BUS;
1036 pdn->holes[i].name = "pnv_iov_reserved";
1037 devm_request_resource(&dev->dev, res->parent,
1038 &pdn->holes[i]);
1039 }
781a868f
WY
1040 }
1041 return 0;
1042}
1043#endif /* CONFIG_PCI_IOV */
1044
cad5cef6 1045static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
184cd4a3
BH
1046{
1047 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 struct pnv_phb *phb = hose->private_data;
b72c1f65 1049 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3 1050 struct pnv_ioda_pe *pe;
184cd4a3
BH
1051
1052 if (!pdn) {
1053 pr_err("%s: Device tree node not associated properly\n",
1054 pci_name(dev));
1055 return NULL;
1056 }
1057 if (pdn->pe_number != IODA_INVALID_PE)
1058 return NULL;
1059
1e916772
GS
1060 pe = pnv_ioda_alloc_pe(phb);
1061 if (!pe) {
184cd4a3
BH
1062 pr_warning("%s: Not enough PE# available, disabling device\n",
1063 pci_name(dev));
1064 return NULL;
1065 }
1066
1067 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 * pointer in the PE data structure, both should be destroyed at the
1069 * same time. However, this needs to be looked at more closely again
1070 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 *
1072 * At some point we want to remove the PDN completely anyways
1073 */
184cd4a3
BH
1074 pci_dev_get(dev);
1075 pdn->pcidev = dev;
1e916772 1076 pdn->pe_number = pe->pe_number;
5d2aa710 1077 pe->flags = PNV_IODA_PE_DEV;
184cd4a3
BH
1078 pe->pdev = dev;
1079 pe->pbus = NULL;
184cd4a3
BH
1080 pe->mve_number = -1;
1081 pe->rid = dev->bus->number << 8 | pdn->devfn;
1082
1083 pe_info(pe, "Associated device to PE\n");
1084
1085 if (pnv_ioda_configure_pe(phb, pe)) {
1086 /* XXX What do we do here ? */
1e916772 1087 pnv_ioda_free_pe(pe);
184cd4a3
BH
1088 pdn->pe_number = IODA_INVALID_PE;
1089 pe->pdev = NULL;
1090 pci_dev_put(dev);
1091 return NULL;
1092 }
1093
1d4e89cf
AK
1094 /* Put PE to the list */
1095 list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
184cd4a3
BH
1097 return pe;
1098}
1099
1100static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1101{
1102 struct pci_dev *dev;
1103
1104 list_for_each_entry(dev, &bus->devices, bus_list) {
b72c1f65 1105 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
1106
1107 if (pdn == NULL) {
1108 pr_warn("%s: No device node associated with device !\n",
1109 pci_name(dev));
1110 continue;
1111 }
ccd1c191
GS
1112
1113 /*
1114 * In partial hotplug case, the PCI device might be still
1115 * associated with the PE and needn't attach it to the PE
1116 * again.
1117 */
1118 if (pdn->pe_number != IODA_INVALID_PE)
1119 continue;
1120
c5f7700b 1121 pe->device_count++;
94973b24 1122 pdn->pcidev = dev;
184cd4a3 1123 pdn->pe_number = pe->pe_number;
fb446ad0 1124 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
184cd4a3
BH
1125 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1126 }
1127}
1128
fb446ad0
GS
1129/*
1130 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1131 * single PCI bus. Another one that contains the primary PCI bus and its
1132 * subordinate PCI devices and buses. The second type of PE is normally
1133 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1134 */
1e916772 1135static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
184cd4a3 1136{
fb446ad0 1137 struct pci_controller *hose = pci_bus_to_host(bus);
184cd4a3 1138 struct pnv_phb *phb = hose->private_data;
1e916772 1139 struct pnv_ioda_pe *pe = NULL;
ccd1c191
GS
1140 unsigned int pe_num;
1141
1142 /*
1143 * In partial hotplug case, the PE instance might be still alive.
1144 * We should reuse it instead of allocating a new one.
1145 */
1146 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1147 if (pe_num != IODA_INVALID_PE) {
1148 pe = &phb->ioda.pe_array[pe_num];
1149 pnv_ioda_setup_same_PE(bus, pe);
1150 return NULL;
1151 }
262af557 1152
63803c39
GS
1153 /* PE number for root bus should have been reserved */
1154 if (pci_is_root_bus(bus) &&
1155 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1156 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1157
262af557 1158 /* Check if PE is determined by M64 */
63803c39 1159 if (!pe && phb->pick_m64_pe)
1e916772 1160 pe = phb->pick_m64_pe(bus, all);
262af557
GC
1161
1162 /* The PE number isn't pinned by M64 */
1e916772
GS
1163 if (!pe)
1164 pe = pnv_ioda_alloc_pe(phb);
184cd4a3 1165
1e916772 1166 if (!pe) {
fb446ad0
GS
1167 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1168 __func__, pci_domain_nr(bus), bus->number);
1e916772 1169 return NULL;
184cd4a3
BH
1170 }
1171
262af557 1172 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
184cd4a3
BH
1173 pe->pbus = bus;
1174 pe->pdev = NULL;
184cd4a3 1175 pe->mve_number = -1;
b918c62e 1176 pe->rid = bus->busn_res.start << 8;
184cd4a3 1177
fb446ad0 1178 if (all)
1f52f176 1179 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1e916772 1180 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
fb446ad0 1181 else
1f52f176 1182 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1e916772 1183 bus->busn_res.start, pe->pe_number);
184cd4a3
BH
1184
1185 if (pnv_ioda_configure_pe(phb, pe)) {
1186 /* XXX What do we do here ? */
1e916772 1187 pnv_ioda_free_pe(pe);
184cd4a3 1188 pe->pbus = NULL;
1e916772 1189 return NULL;
184cd4a3
BH
1190 }
1191
1192 /* Associate it with all child devices */
1193 pnv_ioda_setup_same_PE(bus, pe);
1194
7ebdf956
GS
1195 /* Put PE to the list */
1196 list_add_tail(&pe->list, &phb->ioda.pe_list);
1e916772
GS
1197
1198 return pe;
184cd4a3
BH
1199}
1200
b521549a
AP
1201static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1202{
1203 int pe_num, found_pe = false, rc;
1204 long rid;
1205 struct pnv_ioda_pe *pe;
1206 struct pci_dev *gpu_pdev;
1207 struct pci_dn *npu_pdn;
1208 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1209 struct pnv_phb *phb = hose->private_data;
1210
1211 /*
1212 * Due to a hardware errata PE#0 on the NPU is reserved for
1213 * error handling. This means we only have three PEs remaining
1214 * which need to be assigned to four links, implying some
1215 * links must share PEs.
1216 *
1217 * To achieve this we assign PEs such that NPUs linking the
1218 * same GPU get assigned the same PE.
1219 */
1220 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
92b8f137 1221 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
b521549a
AP
1222 pe = &phb->ioda.pe_array[pe_num];
1223 if (!pe->pdev)
1224 continue;
1225
1226 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1227 /*
1228 * This device has the same peer GPU so should
1229 * be assigned the same PE as the existing
1230 * peer NPU.
1231 */
1232 dev_info(&npu_pdev->dev,
1f52f176 1233 "Associating to existing PE %x\n", pe_num);
b521549a
AP
1234 pci_dev_get(npu_pdev);
1235 npu_pdn = pci_get_pdn(npu_pdev);
1236 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1237 npu_pdn->pcidev = npu_pdev;
1238 npu_pdn->pe_number = pe_num;
b521549a
AP
1239 phb->ioda.pe_rmap[rid] = pe->pe_number;
1240
1241 /* Map the PE to this link */
1242 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1243 OpalPciBusAll,
1244 OPAL_COMPARE_RID_DEVICE_NUMBER,
1245 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1246 OPAL_MAP_PE);
1247 WARN_ON(rc != OPAL_SUCCESS);
1248 found_pe = true;
1249 break;
1250 }
1251 }
1252
1253 if (!found_pe)
1254 /*
1255 * Could not find an existing PE so allocate a new
1256 * one.
1257 */
1258 return pnv_ioda_setup_dev_PE(npu_pdev);
1259 else
1260 return pe;
1261}
1262
1263static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
5d2aa710 1264{
5d2aa710
AP
1265 struct pci_dev *pdev;
1266
1267 list_for_each_entry(pdev, &bus->devices, bus_list)
b521549a 1268 pnv_ioda_setup_npu_PE(pdev);
5d2aa710
AP
1269}
1270
cad5cef6 1271static void pnv_pci_ioda_setup_PEs(void)
fb446ad0
GS
1272{
1273 struct pci_controller *hose, *tmp;
262af557 1274 struct pnv_phb *phb;
fb446ad0
GS
1275
1276 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
262af557 1277 phb = hose->private_data;
08f48f32
AP
1278 if (phb->type == PNV_PHB_NPU) {
1279 /* PE#0 is needed for error reporting */
1280 pnv_ioda_reserve_pe(phb, 0);
b521549a 1281 pnv_ioda_setup_npu_PEs(hose->bus);
1ab66d1f
AP
1282 if (phb->model == PNV_PHB_MODEL_NPU2)
1283 pnv_npu2_init(phb);
ccd1c191 1284 }
184cd4a3
BH
1285 }
1286}
1287
a8b2f828 1288#ifdef CONFIG_PCI_IOV
ee8222fe 1289static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
781a868f
WY
1290{
1291 struct pci_bus *bus;
1292 struct pci_controller *hose;
1293 struct pnv_phb *phb;
1294 struct pci_dn *pdn;
02639b0e 1295 int i, j;
ee8222fe 1296 int m64_bars;
781a868f
WY
1297
1298 bus = pdev->bus;
1299 hose = pci_bus_to_host(bus);
1300 phb = hose->private_data;
1301 pdn = pci_get_pdn(pdev);
1302
ee8222fe
WY
1303 if (pdn->m64_single_mode)
1304 m64_bars = num_vfs;
1305 else
1306 m64_bars = 1;
1307
02639b0e 1308 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
ee8222fe
WY
1309 for (j = 0; j < m64_bars; j++) {
1310 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
02639b0e
WY
1311 continue;
1312 opal_pci_phb_mmio_enable(phb->opal_id,
ee8222fe
WY
1313 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1314 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1315 pdn->m64_map[j][i] = IODA_INVALID_M64;
02639b0e 1316 }
781a868f 1317
ee8222fe 1318 kfree(pdn->m64_map);
781a868f
WY
1319 return 0;
1320}
1321
02639b0e 1322static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
781a868f
WY
1323{
1324 struct pci_bus *bus;
1325 struct pci_controller *hose;
1326 struct pnv_phb *phb;
1327 struct pci_dn *pdn;
1328 unsigned int win;
1329 struct resource *res;
02639b0e 1330 int i, j;
781a868f 1331 int64_t rc;
02639b0e
WY
1332 int total_vfs;
1333 resource_size_t size, start;
1334 int pe_num;
ee8222fe 1335 int m64_bars;
781a868f
WY
1336
1337 bus = pdev->bus;
1338 hose = pci_bus_to_host(bus);
1339 phb = hose->private_data;
1340 pdn = pci_get_pdn(pdev);
02639b0e 1341 total_vfs = pci_sriov_get_totalvfs(pdev);
781a868f 1342
ee8222fe
WY
1343 if (pdn->m64_single_mode)
1344 m64_bars = num_vfs;
1345 else
1346 m64_bars = 1;
1347
fb37e128
ME
1348 pdn->m64_map = kmalloc_array(m64_bars,
1349 sizeof(*pdn->m64_map),
1350 GFP_KERNEL);
ee8222fe
WY
1351 if (!pdn->m64_map)
1352 return -ENOMEM;
1353 /* Initialize the m64_map to IODA_INVALID_M64 */
1354 for (i = 0; i < m64_bars ; i++)
1355 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1356 pdn->m64_map[i][j] = IODA_INVALID_M64;
02639b0e 1357
781a868f
WY
1358
1359 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1360 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1361 if (!res->flags || !res->parent)
1362 continue;
1363
ee8222fe 1364 for (j = 0; j < m64_bars; j++) {
02639b0e
WY
1365 do {
1366 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1367 phb->ioda.m64_bar_idx + 1, 0);
1368
1369 if (win >= phb->ioda.m64_bar_idx + 1)
1370 goto m64_failed;
1371 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1372
ee8222fe 1373 pdn->m64_map[j][i] = win;
02639b0e 1374
ee8222fe 1375 if (pdn->m64_single_mode) {
02639b0e
WY
1376 size = pci_iov_resource_size(pdev,
1377 PCI_IOV_RESOURCES + i);
02639b0e
WY
1378 start = res->start + size * j;
1379 } else {
1380 size = resource_size(res);
1381 start = res->start;
1382 }
1383
1384 /* Map the M64 here */
ee8222fe 1385 if (pdn->m64_single_mode) {
be283eeb 1386 pe_num = pdn->pe_num_map[j];
02639b0e
WY
1387 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1388 pe_num, OPAL_M64_WINDOW_TYPE,
ee8222fe 1389 pdn->m64_map[j][i], 0);
02639b0e
WY
1390 }
1391
1392 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1393 OPAL_M64_WINDOW_TYPE,
ee8222fe 1394 pdn->m64_map[j][i],
02639b0e
WY
1395 start,
1396 0, /* unused */
1397 size);
781a868f 1398
781a868f 1399
02639b0e
WY
1400 if (rc != OPAL_SUCCESS) {
1401 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1402 win, rc);
1403 goto m64_failed;
1404 }
781a868f 1405
ee8222fe 1406 if (pdn->m64_single_mode)
02639b0e 1407 rc = opal_pci_phb_mmio_enable(phb->opal_id,
ee8222fe 1408 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
02639b0e
WY
1409 else
1410 rc = opal_pci_phb_mmio_enable(phb->opal_id,
ee8222fe 1411 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
781a868f 1412
02639b0e
WY
1413 if (rc != OPAL_SUCCESS) {
1414 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1415 win, rc);
1416 goto m64_failed;
1417 }
781a868f
WY
1418 }
1419 }
1420 return 0;
1421
1422m64_failed:
ee8222fe 1423 pnv_pci_vf_release_m64(pdev, num_vfs);
781a868f
WY
1424 return -EBUSY;
1425}
1426
c035e37b
AK
1427static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1428 int num);
c035e37b 1429
781a868f
WY
1430static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1431{
781a868f 1432 struct iommu_table *tbl;
781a868f
WY
1433 int64_t rc;
1434
b348aa65 1435 tbl = pe->table_group.tables[0];
c035e37b 1436 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
781a868f
WY
1437 if (rc)
1438 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1439
c035e37b 1440 pnv_pci_ioda2_set_bypass(pe, false);
0eaf4def
AK
1441 if (pe->table_group.group) {
1442 iommu_group_put(pe->table_group.group);
1443 BUG_ON(pe->table_group.group);
ac9a5889 1444 }
e5afdf9d 1445 iommu_tce_table_put(tbl);
781a868f
WY
1446}
1447
ee8222fe 1448static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
781a868f
WY
1449{
1450 struct pci_bus *bus;
1451 struct pci_controller *hose;
1452 struct pnv_phb *phb;
1453 struct pnv_ioda_pe *pe, *pe_n;
1454 struct pci_dn *pdn;
1455
1456 bus = pdev->bus;
1457 hose = pci_bus_to_host(bus);
1458 phb = hose->private_data;
02639b0e 1459 pdn = pci_get_pdn(pdev);
781a868f
WY
1460
1461 if (!pdev->is_physfn)
1462 return;
1463
781a868f
WY
1464 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1465 if (pe->parent_dev != pdev)
1466 continue;
1467
1468 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1469
1470 /* Remove from list */
1471 mutex_lock(&phb->ioda.pe_list_mutex);
1472 list_del(&pe->list);
1473 mutex_unlock(&phb->ioda.pe_list_mutex);
1474
1475 pnv_ioda_deconfigure_pe(phb, pe);
1476
1e916772 1477 pnv_ioda_free_pe(pe);
781a868f
WY
1478 }
1479}
1480
1481void pnv_pci_sriov_disable(struct pci_dev *pdev)
1482{
1483 struct pci_bus *bus;
1484 struct pci_controller *hose;
1485 struct pnv_phb *phb;
1e916772 1486 struct pnv_ioda_pe *pe;
781a868f 1487 struct pci_dn *pdn;
be283eeb 1488 u16 num_vfs, i;
781a868f
WY
1489
1490 bus = pdev->bus;
1491 hose = pci_bus_to_host(bus);
1492 phb = hose->private_data;
1493 pdn = pci_get_pdn(pdev);
781a868f
WY
1494 num_vfs = pdn->num_vfs;
1495
1496 /* Release VF PEs */
ee8222fe 1497 pnv_ioda_release_vf_PE(pdev);
781a868f
WY
1498
1499 if (phb->type == PNV_PHB_IODA2) {
ee8222fe 1500 if (!pdn->m64_single_mode)
be283eeb 1501 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
781a868f
WY
1502
1503 /* Release M64 windows */
ee8222fe 1504 pnv_pci_vf_release_m64(pdev, num_vfs);
781a868f
WY
1505
1506 /* Release PE numbers */
be283eeb
WY
1507 if (pdn->m64_single_mode) {
1508 for (i = 0; i < num_vfs; i++) {
1e916772
GS
1509 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1510 continue;
1511
1512 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1513 pnv_ioda_free_pe(pe);
be283eeb
WY
1514 }
1515 } else
1516 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1517 /* Releasing pe_num_map */
1518 kfree(pdn->pe_num_map);
781a868f
WY
1519 }
1520}
1521
1522static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1523 struct pnv_ioda_pe *pe);
1524static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1525{
1526 struct pci_bus *bus;
1527 struct pci_controller *hose;
1528 struct pnv_phb *phb;
1529 struct pnv_ioda_pe *pe;
1530 int pe_num;
1531 u16 vf_index;
1532 struct pci_dn *pdn;
1533
1534 bus = pdev->bus;
1535 hose = pci_bus_to_host(bus);
1536 phb = hose->private_data;
1537 pdn = pci_get_pdn(pdev);
1538
1539 if (!pdev->is_physfn)
1540 return;
1541
1542 /* Reserve PE for each VF */
1543 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
be283eeb
WY
1544 if (pdn->m64_single_mode)
1545 pe_num = pdn->pe_num_map[vf_index];
1546 else
1547 pe_num = *pdn->pe_num_map + vf_index;
781a868f
WY
1548
1549 pe = &phb->ioda.pe_array[pe_num];
1550 pe->pe_number = pe_num;
1551 pe->phb = phb;
1552 pe->flags = PNV_IODA_PE_VF;
1553 pe->pbus = NULL;
1554 pe->parent_dev = pdev;
781a868f
WY
1555 pe->mve_number = -1;
1556 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1557 pci_iov_virtfn_devfn(pdev, vf_index);
1558
1f52f176 1559 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
781a868f
WY
1560 hose->global_number, pdev->bus->number,
1561 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1562 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1563
1564 if (pnv_ioda_configure_pe(phb, pe)) {
1565 /* XXX What do we do here ? */
1e916772 1566 pnv_ioda_free_pe(pe);
781a868f
WY
1567 pe->pdev = NULL;
1568 continue;
1569 }
1570
781a868f
WY
1571 /* Put PE to the list */
1572 mutex_lock(&phb->ioda.pe_list_mutex);
1573 list_add_tail(&pe->list, &phb->ioda.pe_list);
1574 mutex_unlock(&phb->ioda.pe_list_mutex);
1575
1576 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1577 }
1578}
1579
1580int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1581{
1582 struct pci_bus *bus;
1583 struct pci_controller *hose;
1584 struct pnv_phb *phb;
1e916772 1585 struct pnv_ioda_pe *pe;
781a868f
WY
1586 struct pci_dn *pdn;
1587 int ret;
be283eeb 1588 u16 i;
781a868f
WY
1589
1590 bus = pdev->bus;
1591 hose = pci_bus_to_host(bus);
1592 phb = hose->private_data;
1593 pdn = pci_get_pdn(pdev);
1594
1595 if (phb->type == PNV_PHB_IODA2) {
b0331854
WY
1596 if (!pdn->vfs_expanded) {
1597 dev_info(&pdev->dev, "don't support this SRIOV device"
1598 " with non 64bit-prefetchable IOV BAR\n");
1599 return -ENOSPC;
1600 }
1601
ee8222fe
WY
1602 /*
1603 * When M64 BARs functions in Single PE mode, the number of VFs
1604 * could be enabled must be less than the number of M64 BARs.
1605 */
1606 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1607 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1608 return -EBUSY;
1609 }
1610
be283eeb
WY
1611 /* Allocating pe_num_map */
1612 if (pdn->m64_single_mode)
fb37e128
ME
1613 pdn->pe_num_map = kmalloc_array(num_vfs,
1614 sizeof(*pdn->pe_num_map),
1615 GFP_KERNEL);
be283eeb
WY
1616 else
1617 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1618
1619 if (!pdn->pe_num_map)
1620 return -ENOMEM;
1621
1622 if (pdn->m64_single_mode)
1623 for (i = 0; i < num_vfs; i++)
1624 pdn->pe_num_map[i] = IODA_INVALID_PE;
1625
781a868f 1626 /* Calculate available PE for required VFs */
be283eeb
WY
1627 if (pdn->m64_single_mode) {
1628 for (i = 0; i < num_vfs; i++) {
1e916772
GS
1629 pe = pnv_ioda_alloc_pe(phb);
1630 if (!pe) {
be283eeb
WY
1631 ret = -EBUSY;
1632 goto m64_failed;
1633 }
1e916772
GS
1634
1635 pdn->pe_num_map[i] = pe->pe_number;
be283eeb
WY
1636 }
1637 } else {
1638 mutex_lock(&phb->ioda.pe_alloc_mutex);
1639 *pdn->pe_num_map = bitmap_find_next_zero_area(
92b8f137 1640 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
be283eeb 1641 0, num_vfs, 0);
92b8f137 1642 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
be283eeb
WY
1643 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1644 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1645 kfree(pdn->pe_num_map);
1646 return -EBUSY;
1647 }
1648 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
781a868f 1649 mutex_unlock(&phb->ioda.pe_alloc_mutex);
781a868f 1650 }
781a868f 1651 pdn->num_vfs = num_vfs;
781a868f
WY
1652
1653 /* Assign M64 window accordingly */
02639b0e 1654 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
781a868f
WY
1655 if (ret) {
1656 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1657 goto m64_failed;
1658 }
1659
1660 /*
1661 * When using one M64 BAR to map one IOV BAR, we need to shift
1662 * the IOV BAR according to the PE# allocated to the VFs.
1663 * Otherwise, the PE# for the VF will conflict with others.
1664 */
ee8222fe 1665 if (!pdn->m64_single_mode) {
be283eeb 1666 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
02639b0e
WY
1667 if (ret)
1668 goto m64_failed;
1669 }
781a868f
WY
1670 }
1671
1672 /* Setup VF PEs */
1673 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1674
1675 return 0;
1676
1677m64_failed:
be283eeb
WY
1678 if (pdn->m64_single_mode) {
1679 for (i = 0; i < num_vfs; i++) {
1e916772
GS
1680 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1681 continue;
1682
1683 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1684 pnv_ioda_free_pe(pe);
be283eeb
WY
1685 }
1686 } else
1687 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1688
1689 /* Releasing pe_num_map */
1690 kfree(pdn->pe_num_map);
781a868f
WY
1691
1692 return ret;
1693}
1694
a8b2f828
GS
1695int pcibios_sriov_disable(struct pci_dev *pdev)
1696{
781a868f
WY
1697 pnv_pci_sriov_disable(pdev);
1698
a8b2f828
GS
1699 /* Release PCI data */
1700 remove_dev_pci_data(pdev);
1701 return 0;
1702}
1703
1704int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1705{
1706 /* Allocate PCI data */
1707 add_dev_pci_data(pdev);
781a868f 1708
ee8222fe 1709 return pnv_pci_sriov_enable(pdev, num_vfs);
a8b2f828
GS
1710}
1711#endif /* CONFIG_PCI_IOV */
1712
959c9bdd 1713static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
184cd4a3 1714{
b72c1f65 1715 struct pci_dn *pdn = pci_get_pdn(pdev);
959c9bdd 1716 struct pnv_ioda_pe *pe;
184cd4a3 1717
959c9bdd
GS
1718 /*
1719 * The function can be called while the PE#
1720 * hasn't been assigned. Do nothing for the
1721 * case.
1722 */
1723 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1724 return;
184cd4a3 1725
959c9bdd 1726 pe = &phb->ioda.pe_array[pdn->pe_number];
cd15b048 1727 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
0e1ffef0 1728 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
b348aa65 1729 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
4617082e
AK
1730 /*
1731 * Note: iommu_add_device() will fail here as
1732 * for physical PE: the device is already added by now;
1733 * for virtual PE: sysfs entries are not ready yet and
1734 * tce_iommu_bus_notifier will add the device to a group later.
1735 */
184cd4a3
BH
1736}
1737
a0f98629
RC
1738static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1739{
1740 unsigned short vendor = 0;
1741 struct pci_dev *pdev;
1742
1743 if (pe->device_count == 1)
1744 return true;
1745
1746 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1747 if (!pe->pbus)
1748 return true;
1749
1750 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1751 if (!vendor) {
1752 vendor = pdev->vendor;
1753 continue;
1754 }
1755
1756 if (pdev->vendor != vendor)
1757 return false;
1758 }
1759
1760 return true;
1761}
1762
8e3f1b1d
RC
1763/*
1764 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1765 *
1766 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1767 * Devices can only access more than that if bit 59 of the PCI address is set
1768 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1769 * Many PCI devices are not capable of addressing that many bits, and as a
1770 * result are limited to the 4GB of virtual memory made available to 32-bit
1771 * devices in TVE#0.
1772 *
1773 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1774 * devices by configuring the virtual memory past the first 4GB inaccessible
1775 * by 64-bit DMAs. This should only be used by devices that want more than
1776 * 4GB, and only on PEs that have no 32-bit devices.
1777 *
1778 * Currently this will only work on PHB3 (POWER8).
1779 */
1780static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1781{
1782 u64 window_size, table_size, tce_count, addr;
1783 struct page *table_pages;
1784 u64 tce_order = 28; /* 256MB TCEs */
1785 __be64 *tces;
1786 s64 rc;
1787
1788 /*
1789 * Window size needs to be a power of two, but needs to account for
1790 * shifting memory by the 4GB offset required to skip 32bit space.
1791 */
1792 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1793 tce_count = window_size >> tce_order;
1794 table_size = tce_count << 3;
1795
1796 if (table_size < PAGE_SIZE)
1797 table_size = PAGE_SIZE;
1798
1799 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1800 get_order(table_size));
1801 if (!table_pages)
1802 goto err;
1803
1804 tces = page_address(table_pages);
1805 if (!tces)
1806 goto err;
1807
1808 memset(tces, 0, table_size);
1809
1810 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1811 tces[(addr + (1ULL << 32)) >> tce_order] =
1812 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1813 }
1814
1815 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1816 pe->pe_number,
1817 /* reconfigure window 0 */
1818 (pe->pe_number << 1) + 0,
1819 1,
1820 __pa(tces),
1821 table_size,
1822 1 << tce_order);
1823 if (rc == OPAL_SUCCESS) {
1824 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1825 return 0;
1826 }
1827err:
1828 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1829 return -EIO;
1830}
1831
763d2d8d 1832static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
cd15b048 1833{
763d2d8d
DA
1834 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1835 struct pnv_phb *phb = hose->private_data;
cd15b048
BH
1836 struct pci_dn *pdn = pci_get_pdn(pdev);
1837 struct pnv_ioda_pe *pe;
1838 uint64_t top;
1839 bool bypass = false;
8e3f1b1d 1840 s64 rc;
cd15b048
BH
1841
1842 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1843 return -ENODEV;;
1844
1845 pe = &phb->ioda.pe_array[pdn->pe_number];
1846 if (pe->tce_bypass_enabled) {
1847 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1848 bypass = (dma_mask >= top);
1849 }
1850
1851 if (bypass) {
1852 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1853 set_dma_ops(&pdev->dev, &dma_direct_ops);
cd15b048 1854 } else {
8e3f1b1d
RC
1855 /*
1856 * If the device can't set the TCE bypass bit but still wants
1857 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1858 * bypass the 32-bit region and be usable for 64-bit DMAs.
1859 * The device needs to be able to address all of this space.
1860 */
1861 if (dma_mask >> 32 &&
1862 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1863 pnv_pci_ioda_pe_single_vendor(pe) &&
1864 phb->model == PNV_PHB_MODEL_PHB3) {
1865 /* Configure the bypass mode */
1866 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1867 if (rc)
1868 return rc;
1869 /* 4GB offset bypasses 32-bit space */
1870 set_dma_offset(&pdev->dev, (1ULL << 32));
1871 set_dma_ops(&pdev->dev, &dma_direct_ops);
253fd51e
AP
1872 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1873 /*
1874 * Fail the request if a DMA mask between 32 and 64 bits
1875 * was requested but couldn't be fulfilled. Ideally we
1876 * would do this for 64-bits but historically we have
1877 * always fallen back to 32-bits.
1878 */
1879 return -ENOMEM;
8e3f1b1d
RC
1880 } else {
1881 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1882 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1883 }
cd15b048 1884 }
a32305bf 1885 *pdev->dev.dma_mask = dma_mask;
5d2aa710
AP
1886
1887 /* Update peer npu devices */
f9f83456 1888 pnv_npu_try_dma_set_bypass(pdev, bypass);
5d2aa710 1889
cd15b048
BH
1890 return 0;
1891}
1892
53522982 1893static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
fe7e85c6 1894{
53522982
AD
1895 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1896 struct pnv_phb *phb = hose->private_data;
fe7e85c6
GS
1897 struct pci_dn *pdn = pci_get_pdn(pdev);
1898 struct pnv_ioda_pe *pe;
1899 u64 end, mask;
1900
1901 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1902 return 0;
1903
1904 pe = &phb->ioda.pe_array[pdn->pe_number];
1905 if (!pe->tce_bypass_enabled)
1906 return __dma_get_required_mask(&pdev->dev);
1907
1908
1909 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1910 mask = 1ULL << (fls64(end) - 1);
1911 mask += mask - 1;
1912
1913 return mask;
1914}
1915
dff4a39e 1916static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
db08e1d5
AK
1917 struct pci_bus *bus,
1918 bool add_to_group)
74251fe2
BH
1919{
1920 struct pci_dev *dev;
1921
1922 list_for_each_entry(dev, &bus->devices, bus_list) {
b348aa65 1923 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
e91c2511 1924 set_dma_offset(&dev->dev, pe->tce_bypass_base);
db08e1d5
AK
1925 if (add_to_group)
1926 iommu_add_device(&dev->dev);
dff4a39e 1927
5c89a87d 1928 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
db08e1d5
AK
1929 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1930 add_to_group);
74251fe2
BH
1931 }
1932}
1933
fd141d1a
BH
1934static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1935 bool real_mode)
1936{
1937 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1938 (phb->regs + 0x210);
1939}
1940
a34ab7c3 1941static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
decbda25 1942 unsigned long index, unsigned long npages, bool rm)
4cce9550 1943{
0eaf4def
AK
1944 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1945 &tbl->it_group_list, struct iommu_table_group_link,
1946 next);
1947 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
b348aa65 1948 struct pnv_ioda_pe, table_group);
fd141d1a 1949 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
4cce9550
GS
1950 unsigned long start, end, inc;
1951
decbda25
AK
1952 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1953 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1954 npages - 1);
4cce9550 1955
08acce1c
BH
1956 /* p7ioc-style invalidation, 2 TCEs per write */
1957 start |= (1ull << 63);
1958 end |= (1ull << 63);
1959 inc = 16;
4cce9550
GS
1960 end |= inc - 1; /* round up end to be different than start */
1961
1962 mb(); /* Ensure above stores are visible */
1963 while (start <= end) {
8e0a1611 1964 if (rm)
3ad26e5c 1965 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 1966 else
3ad26e5c 1967 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
1968 start += inc;
1969 }
1970
1971 /*
1972 * The iommu layer will do another mb() for us on build()
1973 * and we don't care on free()
1974 */
1975}
1976
decbda25
AK
1977static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1978 long npages, unsigned long uaddr,
1979 enum dma_data_direction direction,
00085f1e 1980 unsigned long attrs)
decbda25
AK
1981{
1982 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1983 attrs);
1984
08acce1c 1985 if (!ret)
a34ab7c3 1986 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
decbda25
AK
1987
1988 return ret;
1989}
1990
05c6cfb9
AK
1991#ifdef CONFIG_IOMMU_API
1992static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1993 unsigned long *hpa, enum dma_data_direction *direction)
1994{
1995 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1996
08acce1c 1997 if (!ret)
a34ab7c3 1998 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
05c6cfb9
AK
1999
2000 return ret;
2001}
a540aa56
AK
2002
2003static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2004 unsigned long *hpa, enum dma_data_direction *direction)
2005{
2006 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2007
2008 if (!ret)
2009 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2010
2011 return ret;
2012}
05c6cfb9
AK
2013#endif
2014
decbda25
AK
2015static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2016 long npages)
2017{
2018 pnv_tce_free(tbl, index, npages);
2019
08acce1c 2020 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
decbda25
AK
2021}
2022
da004c36 2023static struct iommu_table_ops pnv_ioda1_iommu_ops = {
decbda25 2024 .set = pnv_ioda1_tce_build,
05c6cfb9
AK
2025#ifdef CONFIG_IOMMU_API
2026 .exchange = pnv_ioda1_tce_xchg,
a540aa56 2027 .exchange_rm = pnv_ioda1_tce_xchg_rm,
05c6cfb9 2028#endif
decbda25 2029 .clear = pnv_ioda1_tce_free,
da004c36
AK
2030 .get = pnv_tce_get,
2031};
2032
a34ab7c3
BH
2033#define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
2034#define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
2035#define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
bef9253f 2036
6b3d12a9 2037static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
0bbcdb43 2038{
fd141d1a 2039 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
a34ab7c3 2040 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
0bbcdb43
AK
2041
2042 mb(); /* Ensure previous TCE table stores are visible */
2043 if (rm)
fd141d1a 2044 __raw_rm_writeq(cpu_to_be64(val), invalidate);
0bbcdb43 2045 else
fd141d1a 2046 __raw_writeq(cpu_to_be64(val), invalidate);
0bbcdb43
AK
2047}
2048
a34ab7c3 2049static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
5780fb04
AK
2050{
2051 /* 01xb - invalidate TCEs that match the specified PE# */
fd141d1a 2052 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
a34ab7c3 2053 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
5780fb04
AK
2054
2055 mb(); /* Ensure above stores are visible */
fd141d1a 2056 __raw_writeq(cpu_to_be64(val), invalidate);
5780fb04
AK
2057}
2058
fd141d1a
BH
2059static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2060 unsigned shift, unsigned long index,
2061 unsigned long npages)
4cce9550 2062{
4d902195 2063 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
4cce9550 2064 unsigned long start, end, inc;
4cce9550
GS
2065
2066 /* We'll invalidate DMA address in PE scope */
a34ab7c3 2067 start = PHB3_TCE_KILL_INVAL_ONE;
fd141d1a 2068 start |= (pe->pe_number & 0xFF);
4cce9550
GS
2069 end = start;
2070
2071 /* Figure out the start, end and step */
decbda25
AK
2072 start |= (index << shift);
2073 end |= ((index + npages - 1) << shift);
b0376c9b 2074 inc = (0x1ull << shift);
4cce9550
GS
2075 mb();
2076
2077 while (start <= end) {
8e0a1611 2078 if (rm)
3ad26e5c 2079 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 2080 else
3ad26e5c 2081 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
2082 start += inc;
2083 }
2084}
2085
f0228c41
BH
2086static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2087{
2088 struct pnv_phb *phb = pe->phb;
2089
2090 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2091 pnv_pci_phb3_tce_invalidate_pe(pe);
2092 else
2093 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2094 pe->pe_number, 0, 0, 0);
2095}
2096
e57080f1
AK
2097static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2098 unsigned long index, unsigned long npages, bool rm)
2099{
2100 struct iommu_table_group_link *tgl;
2101
a540aa56 2102 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
e57080f1
AK
2103 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2104 struct pnv_ioda_pe, table_group);
f0228c41
BH
2105 struct pnv_phb *phb = pe->phb;
2106 unsigned int shift = tbl->it_page_shift;
2107
616badd2
AP
2108 /*
2109 * NVLink1 can use the TCE kill register directly as
2110 * it's the same as PHB3. NVLink2 is different and
2111 * should go via the OPAL call.
2112 */
2113 if (phb->model == PNV_PHB_MODEL_NPU) {
0bbcdb43
AK
2114 /*
2115 * The NVLink hardware does not support TCE kill
2116 * per TCE entry so we have to invalidate
2117 * the entire cache for it.
2118 */
f0228c41 2119 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
85674868
AK
2120 continue;
2121 }
f0228c41
BH
2122 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2123 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2124 index, npages);
f0228c41
BH
2125 else
2126 opal_pci_tce_kill(phb->opal_id,
2127 OPAL_PCI_TCE_KILL_PAGES,
2128 pe->pe_number, 1u << shift,
2129 index << shift, npages);
e57080f1
AK
2130 }
2131}
2132
6b3d12a9
AP
2133void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2134{
2135 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2136 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2137 else
2138 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2139}
2140
decbda25
AK
2141static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2142 long npages, unsigned long uaddr,
2143 enum dma_data_direction direction,
00085f1e 2144 unsigned long attrs)
4cce9550 2145{
decbda25
AK
2146 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2147 attrs);
4cce9550 2148
08acce1c 2149 if (!ret)
decbda25
AK
2150 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2151
2152 return ret;
2153}
2154
05c6cfb9
AK
2155#ifdef CONFIG_IOMMU_API
2156static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2157 unsigned long *hpa, enum dma_data_direction *direction)
2158{
2159 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2160
08acce1c 2161 if (!ret)
05c6cfb9
AK
2162 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2163
2164 return ret;
2165}
a540aa56
AK
2166
2167static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2168 unsigned long *hpa, enum dma_data_direction *direction)
2169{
2170 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2171
2172 if (!ret)
2173 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2174
2175 return ret;
2176}
05c6cfb9
AK
2177#endif
2178
decbda25
AK
2179static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2180 long npages)
2181{
2182 pnv_tce_free(tbl, index, npages);
2183
08acce1c 2184 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
4cce9550
GS
2185}
2186
4793d65d
AK
2187static void pnv_ioda2_table_free(struct iommu_table *tbl)
2188{
2189 pnv_pci_ioda2_table_free_pages(tbl);
4793d65d
AK
2190}
2191
da004c36 2192static struct iommu_table_ops pnv_ioda2_iommu_ops = {
decbda25 2193 .set = pnv_ioda2_tce_build,
05c6cfb9
AK
2194#ifdef CONFIG_IOMMU_API
2195 .exchange = pnv_ioda2_tce_xchg,
a540aa56 2196 .exchange_rm = pnv_ioda2_tce_xchg_rm,
05c6cfb9 2197#endif
decbda25 2198 .clear = pnv_ioda2_tce_free,
da004c36 2199 .get = pnv_tce_get,
4793d65d 2200 .free = pnv_ioda2_table_free,
da004c36
AK
2201};
2202
801846d1
GS
2203static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2204{
2205 unsigned int *weight = (unsigned int *)data;
2206
2207 /* This is quite simplistic. The "base" weight of a device
2208 * is 10. 0 means no DMA is to be accounted for it.
2209 */
2210 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2211 return 0;
2212
2213 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2214 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2215 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2216 *weight += 3;
2217 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2218 *weight += 15;
2219 else
2220 *weight += 10;
2221
2222 return 0;
2223}
2224
2225static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2226{
2227 unsigned int weight = 0;
2228
2229 /* SRIOV VF has same DMA32 weight as its PF */
2230#ifdef CONFIG_PCI_IOV
2231 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2232 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2233 return weight;
2234 }
2235#endif
2236
2237 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2238 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2239 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2240 struct pci_dev *pdev;
2241
2242 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2243 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2244 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2245 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2246 }
2247
2248 return weight;
2249}
2250
b30d936f 2251static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2b923ed1 2252 struct pnv_ioda_pe *pe)
184cd4a3
BH
2253{
2254
2255 struct page *tce_mem = NULL;
184cd4a3 2256 struct iommu_table *tbl;
2b923ed1
GS
2257 unsigned int weight, total_weight = 0;
2258 unsigned int tce32_segsz, base, segs, avail, i;
184cd4a3
BH
2259 int64_t rc;
2260 void *addr;
2261
184cd4a3
BH
2262 /* XXX FIXME: Handle 64-bit only DMA devices */
2263 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2264 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2b923ed1
GS
2265 weight = pnv_pci_ioda_pe_dma_weight(pe);
2266 if (!weight)
2267 return;
2268
2269 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2270 &total_weight);
2271 segs = (weight * phb->ioda.dma32_count) / total_weight;
2272 if (!segs)
2273 segs = 1;
184cd4a3 2274
2b923ed1
GS
2275 /*
2276 * Allocate contiguous DMA32 segments. We begin with the expected
2277 * number of segments. With one more attempt, the number of DMA32
2278 * segments to be allocated is decreased by one until one segment
2279 * is allocated successfully.
2280 */
2281 do {
2282 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2283 for (avail = 0, i = base; i < base + segs; i++) {
2284 if (phb->ioda.dma32_segmap[i] ==
2285 IODA_INVALID_PE)
2286 avail++;
2287 }
2288
2289 if (avail == segs)
2290 goto found;
2291 }
2292 } while (--segs);
2293
2294 if (!segs) {
2295 pe_warn(pe, "No available DMA32 segments\n");
2296 return;
2297 }
2298
2299found:
0eaf4def 2300 tbl = pnv_pci_table_alloc(phb->hose->node);
82eae1af
AK
2301 if (WARN_ON(!tbl))
2302 return;
2303
b348aa65
AK
2304 iommu_register_group(&pe->table_group, phb->hose->global_number,
2305 pe->pe_number);
0eaf4def 2306 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
c5773822 2307
184cd4a3 2308 /* Grab a 32-bit TCE table */
2b923ed1
GS
2309 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2310 weight, total_weight, base, segs);
184cd4a3 2311 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
acce971c
GS
2312 base * PNV_IODA1_DMA32_SEGSIZE,
2313 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
184cd4a3
BH
2314
2315 /* XXX Currently, we allocate one big contiguous table for the
2316 * TCEs. We only really need one chunk per 256M of TCE space
2317 * (ie per segment) but that's an optimization for later, it
2318 * requires some added smarts with our get/put_tce implementation
acce971c
GS
2319 *
2320 * Each TCE page is 4KB in size and each TCE entry occupies 8
2321 * bytes
184cd4a3 2322 */
acce971c 2323 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
184cd4a3 2324 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
acce971c 2325 get_order(tce32_segsz * segs));
184cd4a3
BH
2326 if (!tce_mem) {
2327 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2328 goto fail;
2329 }
2330 addr = page_address(tce_mem);
acce971c 2331 memset(addr, 0, tce32_segsz * segs);
184cd4a3
BH
2332
2333 /* Configure HW */
2334 for (i = 0; i < segs; i++) {
2335 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2336 pe->pe_number,
2337 base + i, 1,
acce971c
GS
2338 __pa(addr) + tce32_segsz * i,
2339 tce32_segsz, IOMMU_PAGE_SIZE_4K);
184cd4a3
BH
2340 if (rc) {
2341 pe_err(pe, " Failed to configure 32-bit TCE table,"
2342 " err %ld\n", rc);
2343 goto fail;
2344 }
2345 }
2346
2b923ed1
GS
2347 /* Setup DMA32 segment mapping */
2348 for (i = base; i < base + segs; i++)
2349 phb->ioda.dma32_segmap[i] = pe->pe_number;
2350
184cd4a3 2351 /* Setup linux iommu table */
acce971c
GS
2352 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2353 base * PNV_IODA1_DMA32_SEGSIZE,
2354 IOMMU_PAGE_SHIFT_4K);
184cd4a3 2355
da004c36 2356 tbl->it_ops = &pnv_ioda1_iommu_ops;
4793d65d
AK
2357 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2358 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
184cd4a3
BH
2359 iommu_init_table(tbl, phb->hose->node);
2360
781a868f 2361 if (pe->flags & PNV_IODA_PE_DEV) {
4617082e
AK
2362 /*
2363 * Setting table base here only for carrying iommu_group
2364 * further down to let iommu_add_device() do the job.
2365 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2366 */
2367 set_iommu_table_base(&pe->pdev->dev, tbl);
2368 iommu_add_device(&pe->pdev->dev);
c5773822 2369 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
db08e1d5 2370 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
74251fe2 2371
184cd4a3
BH
2372 return;
2373 fail:
2374 /* XXX Failure: Try to fallback to 64-bit only ? */
184cd4a3 2375 if (tce_mem)
acce971c 2376 __free_pages(tce_mem, get_order(tce32_segsz * segs));
0eaf4def
AK
2377 if (tbl) {
2378 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
e5afdf9d 2379 iommu_tce_table_put(tbl);
0eaf4def 2380 }
184cd4a3
BH
2381}
2382
43cb60ab
AK
2383static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2384 int num, struct iommu_table *tbl)
2385{
2386 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2387 table_group);
2388 struct pnv_phb *phb = pe->phb;
2389 int64_t rc;
bbb845c4
AK
2390 const unsigned long size = tbl->it_indirect_levels ?
2391 tbl->it_level_size : tbl->it_size;
43cb60ab
AK
2392 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2393 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2394
4793d65d 2395 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
43cb60ab
AK
2396 start_addr, start_addr + win_size - 1,
2397 IOMMU_PAGE_SIZE(tbl));
2398
2399 /*
2400 * Map TCE table through TVT. The TVE index is the PE number
2401 * shifted by 1 bit for 32-bits DMA space.
2402 */
2403 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2404 pe->pe_number,
4793d65d 2405 (pe->pe_number << 1) + num,
bbb845c4 2406 tbl->it_indirect_levels + 1,
43cb60ab 2407 __pa(tbl->it_base),
bbb845c4 2408 size << 3,
43cb60ab
AK
2409 IOMMU_PAGE_SIZE(tbl));
2410 if (rc) {
2411 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2412 return rc;
2413 }
2414
2415 pnv_pci_link_table_and_group(phb->hose->node, num,
2416 tbl, &pe->table_group);
ed7d9a1d 2417 pnv_pci_ioda2_tce_invalidate_pe(pe);
43cb60ab
AK
2418
2419 return 0;
2420}
2421
25529100 2422void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
cd15b048 2423{
cd15b048
BH
2424 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2425 int64_t rc;
2426
2427 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2428 if (enable) {
2429 phys_addr_t top = memblock_end_of_DRAM();
2430
2431 top = roundup_pow_of_two(top);
2432 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2433 pe->pe_number,
2434 window_id,
2435 pe->tce_bypass_base,
2436 top);
2437 } else {
2438 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2439 pe->pe_number,
2440 window_id,
2441 pe->tce_bypass_base,
2442 0);
cd15b048
BH
2443 }
2444 if (rc)
2445 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2446 else
2447 pe->tce_bypass_enabled = enable;
2448}
2449
4793d65d
AK
2450static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2451 __u32 page_shift, __u64 window_size, __u32 levels,
2452 struct iommu_table *tbl);
2453
2454static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2455 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2456 struct iommu_table **ptbl)
2457{
2458 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2459 table_group);
2460 int nid = pe->phb->hose->node;
2461 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2462 long ret;
2463 struct iommu_table *tbl;
2464
2465 tbl = pnv_pci_table_alloc(nid);
2466 if (!tbl)
2467 return -ENOMEM;
2468
11edf116
AK
2469 tbl->it_ops = &pnv_ioda2_iommu_ops;
2470
4793d65d
AK
2471 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2472 bus_offset, page_shift, window_size,
2473 levels, tbl);
2474 if (ret) {
e5afdf9d 2475 iommu_tce_table_put(tbl);
4793d65d
AK
2476 return ret;
2477 }
2478
4793d65d
AK
2479 *ptbl = tbl;
2480
2481 return 0;
2482}
2483
46d3e1e1
AK
2484static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2485{
2486 struct iommu_table *tbl = NULL;
2487 long rc;
2488
fa144869
NA
2489 /*
2490 * crashkernel= specifies the kdump kernel's maximum memory at
2491 * some offset and there is no guaranteed the result is a power
2492 * of 2, which will cause errors later.
2493 */
2494 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2495
bb005455
NA
2496 /*
2497 * In memory constrained environments, e.g. kdump kernel, the
2498 * DMA window can be larger than available memory, which will
2499 * cause errors later.
2500 */
fa144869 2501 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
bb005455 2502
46d3e1e1
AK
2503 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2504 IOMMU_PAGE_SHIFT_4K,
bb005455 2505 window_size,
46d3e1e1
AK
2506 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2507 if (rc) {
2508 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2509 rc);
2510 return rc;
2511 }
2512
2513 iommu_init_table(tbl, pe->phb->hose->node);
2514
2515 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2516 if (rc) {
2517 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2518 rc);
e5afdf9d 2519 iommu_tce_table_put(tbl);
46d3e1e1
AK
2520 return rc;
2521 }
2522
2523 if (!pnv_iommu_bypass_disabled)
2524 pnv_pci_ioda2_set_bypass(pe, true);
2525
46d3e1e1
AK
2526 /*
2527 * Setting table base here only for carrying iommu_group
2528 * further down to let iommu_add_device() do the job.
2529 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2530 */
2531 if (pe->flags & PNV_IODA_PE_DEV)
2532 set_iommu_table_base(&pe->pdev->dev, tbl);
2533
2534 return 0;
2535}
2536
b5926430
AK
2537#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2538static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2539 int num)
2540{
2541 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2542 table_group);
2543 struct pnv_phb *phb = pe->phb;
2544 long ret;
2545
2546 pe_info(pe, "Removing DMA window #%d\n", num);
2547
2548 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2549 (pe->pe_number << 1) + num,
2550 0/* levels */, 0/* table address */,
2551 0/* table size */, 0/* page size */);
2552 if (ret)
2553 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2554 else
ed7d9a1d 2555 pnv_pci_ioda2_tce_invalidate_pe(pe);
b5926430
AK
2556
2557 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2558
2559 return ret;
2560}
2561#endif
2562
f87a8864 2563#ifdef CONFIG_IOMMU_API
00547193
AK
2564static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2565 __u64 window_size, __u32 levels)
2566{
2567 unsigned long bytes = 0;
2568 const unsigned window_shift = ilog2(window_size);
2569 unsigned entries_shift = window_shift - page_shift;
2570 unsigned table_shift = entries_shift + 3;
2571 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2572 unsigned long direct_table_size;
2573
2574 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2575 (window_size > memory_hotplug_max()) ||
2576 !is_power_of_2(window_size))
2577 return 0;
2578
2579 /* Calculate a direct table size from window_size and levels */
2580 entries_shift = (entries_shift + levels - 1) / levels;
2581 table_shift = entries_shift + 3;
2582 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2583 direct_table_size = 1UL << table_shift;
2584
2585 for ( ; levels; --levels) {
2586 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2587
2588 tce_table_size /= direct_table_size;
2589 tce_table_size <<= 3;
e49a6a21
AK
2590 tce_table_size = max_t(unsigned long,
2591 tce_table_size, direct_table_size);
00547193
AK
2592 }
2593
2594 return bytes;
2595}
2596
f87a8864 2597static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
cd15b048 2598{
f87a8864
AK
2599 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2600 table_group);
46d3e1e1
AK
2601 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2602 struct iommu_table *tbl = pe->table_group.tables[0];
cd15b048 2603
f87a8864 2604 pnv_pci_ioda2_set_bypass(pe, false);
46d3e1e1 2605 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
db08e1d5
AK
2606 if (pe->pbus)
2607 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
e5afdf9d 2608 iommu_tce_table_put(tbl);
f87a8864 2609}
cd15b048 2610
f87a8864
AK
2611static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2612{
2613 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2614 table_group);
2615
46d3e1e1 2616 pnv_pci_ioda2_setup_default_config(pe);
db08e1d5
AK
2617 if (pe->pbus)
2618 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
cd15b048
BH
2619}
2620
f87a8864 2621static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
00547193 2622 .get_table_size = pnv_pci_ioda2_get_table_size,
4793d65d
AK
2623 .create_table = pnv_pci_ioda2_create_table,
2624 .set_window = pnv_pci_ioda2_set_window,
2625 .unset_window = pnv_pci_ioda2_unset_window,
f87a8864
AK
2626 .take_ownership = pnv_ioda2_take_ownership,
2627 .release_ownership = pnv_ioda2_release_ownership,
2628};
b5cb9ab1
AK
2629
2630static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2631{
2632 struct pci_controller *hose;
2633 struct pnv_phb *phb;
2634 struct pnv_ioda_pe **ptmppe = opaque;
2635 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2636 struct pci_dn *pdn = pci_get_pdn(pdev);
2637
2638 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2639 return 0;
2640
2641 hose = pci_bus_to_host(pdev->bus);
2642 phb = hose->private_data;
2643 if (phb->type != PNV_PHB_NPU)
2644 return 0;
2645
2646 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2647
2648 return 1;
2649}
2650
2651/*
2652 * This returns PE of associated NPU.
2653 * This assumes that NPU is in the same IOMMU group with GPU and there is
2654 * no other PEs.
2655 */
2656static struct pnv_ioda_pe *gpe_table_group_to_npe(
2657 struct iommu_table_group *table_group)
2658{
2659 struct pnv_ioda_pe *npe = NULL;
2660 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2661 gpe_table_group_to_npe_cb);
2662
2663 BUG_ON(!ret || !npe);
2664
2665 return npe;
2666}
2667
2668static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2669 int num, struct iommu_table *tbl)
2670{
2671 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2672
2673 if (ret)
2674 return ret;
2675
2676 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2677 if (ret)
2678 pnv_pci_ioda2_unset_window(table_group, num);
2679
2680 return ret;
2681}
2682
2683static long pnv_pci_ioda2_npu_unset_window(
2684 struct iommu_table_group *table_group,
2685 int num)
2686{
2687 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2688
2689 if (ret)
2690 return ret;
2691
2692 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2693}
2694
2695static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2696{
2697 /*
2698 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2699 * the iommu_table if 32bit DMA is enabled.
2700 */
2701 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2702 pnv_ioda2_take_ownership(table_group);
2703}
2704
2705static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2706 .get_table_size = pnv_pci_ioda2_get_table_size,
2707 .create_table = pnv_pci_ioda2_create_table,
2708 .set_window = pnv_pci_ioda2_npu_set_window,
2709 .unset_window = pnv_pci_ioda2_npu_unset_window,
2710 .take_ownership = pnv_ioda2_npu_take_ownership,
2711 .release_ownership = pnv_ioda2_release_ownership,
2712};
2713
2714static void pnv_pci_ioda_setup_iommu_api(void)
2715{
2716 struct pci_controller *hose, *tmp;
2717 struct pnv_phb *phb;
2718 struct pnv_ioda_pe *pe, *gpe;
2719
2720 /*
2721 * Now we have all PHBs discovered, time to add NPU devices to
2722 * the corresponding IOMMU groups.
2723 */
2724 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2725 phb = hose->private_data;
2726
2727 if (phb->type != PNV_PHB_NPU)
2728 continue;
2729
2730 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2731 gpe = pnv_pci_npu_setup_iommu(pe);
2732 if (gpe)
2733 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2734 }
2735 }
2736}
2737#else /* !CONFIG_IOMMU_API */
2738static void pnv_pci_ioda_setup_iommu_api(void) { };
f87a8864
AK
2739#endif
2740
bbb845c4
AK
2741static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2742 unsigned levels, unsigned long limit,
3ba3a73e 2743 unsigned long *current_offset, unsigned long *total_allocated)
373f5657
GS
2744{
2745 struct page *tce_mem = NULL;
bbb845c4 2746 __be64 *addr, *tmp;
aca6913f 2747 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
bbb845c4
AK
2748 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2749 unsigned entries = 1UL << (shift - 3);
2750 long i;
aca6913f
AK
2751
2752 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2753 if (!tce_mem) {
2754 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2755 return NULL;
2756 }
2757 addr = page_address(tce_mem);
bbb845c4 2758 memset(addr, 0, allocated);
3ba3a73e 2759 *total_allocated += allocated;
bbb845c4
AK
2760
2761 --levels;
2762 if (!levels) {
2763 *current_offset += allocated;
2764 return addr;
2765 }
2766
2767 for (i = 0; i < entries; ++i) {
2768 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
3ba3a73e 2769 levels, limit, current_offset, total_allocated);
bbb845c4
AK
2770 if (!tmp)
2771 break;
2772
2773 addr[i] = cpu_to_be64(__pa(tmp) |
2774 TCE_PCI_READ | TCE_PCI_WRITE);
2775
2776 if (*current_offset >= limit)
2777 break;
2778 }
aca6913f
AK
2779
2780 return addr;
2781}
2782
bbb845c4
AK
2783static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2784 unsigned long size, unsigned level);
2785
aca6913f 2786static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
bbb845c4
AK
2787 __u32 page_shift, __u64 window_size, __u32 levels,
2788 struct iommu_table *tbl)
aca6913f 2789{
373f5657 2790 void *addr;
3ba3a73e 2791 unsigned long offset = 0, level_shift, total_allocated = 0;
aca6913f
AK
2792 const unsigned window_shift = ilog2(window_size);
2793 unsigned entries_shift = window_shift - page_shift;
2794 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2795 const unsigned long tce_table_size = 1UL << table_shift;
2796
bbb845c4
AK
2797 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2798 return -EINVAL;
2799
9003a249 2800 if (!is_power_of_2(window_size))
aca6913f
AK
2801 return -EINVAL;
2802
bbb845c4
AK
2803 /* Adjust direct table size from window_size and levels */
2804 entries_shift = (entries_shift + levels - 1) / levels;
2805 level_shift = entries_shift + 3;
2806 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2807
7aafac11
AK
2808 if ((level_shift - 3) * levels + page_shift >= 60)
2809 return -EINVAL;
2810
aca6913f 2811 /* Allocate TCE table */
bbb845c4 2812 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
3ba3a73e 2813 levels, tce_table_size, &offset, &total_allocated);
bbb845c4
AK
2814
2815 /* addr==NULL means that the first level allocation failed */
aca6913f
AK
2816 if (!addr)
2817 return -ENOMEM;
2818
bbb845c4
AK
2819 /*
2820 * First level was allocated but some lower level failed as
2821 * we did not allocate as much as we wanted,
2822 * release partially allocated table.
2823 */
2824 if (offset < tce_table_size) {
2825 pnv_pci_ioda2_table_do_free_pages(addr,
2826 1ULL << (level_shift - 3), levels - 1);
2827 return -ENOMEM;
2828 }
2829
aca6913f
AK
2830 /* Setup linux iommu table */
2831 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2832 page_shift);
bbb845c4
AK
2833 tbl->it_level_size = 1ULL << (level_shift - 3);
2834 tbl->it_indirect_levels = levels - 1;
3ba3a73e 2835 tbl->it_allocated_size = total_allocated;
aca6913f
AK
2836
2837 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2838 window_size, tce_table_size, bus_offset);
2839
2840 return 0;
2841}
2842
bbb845c4
AK
2843static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2844 unsigned long size, unsigned level)
2845{
2846 const unsigned long addr_ul = (unsigned long) addr &
2847 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2848
2849 if (level) {
2850 long i;
2851 u64 *tmp = (u64 *) addr_ul;
2852
2853 for (i = 0; i < size; ++i) {
2854 unsigned long hpa = be64_to_cpu(tmp[i]);
2855
2856 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2857 continue;
2858
2859 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2860 level - 1);
2861 }
2862 }
2863
2864 free_pages(addr_ul, get_order(size << 3));
2865}
2866
aca6913f
AK
2867static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2868{
bbb845c4
AK
2869 const unsigned long size = tbl->it_indirect_levels ?
2870 tbl->it_level_size : tbl->it_size;
2871
aca6913f
AK
2872 if (!tbl->it_size)
2873 return;
2874
bbb845c4
AK
2875 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2876 tbl->it_indirect_levels);
aca6913f
AK
2877}
2878
2879static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2880 struct pnv_ioda_pe *pe)
2881{
373f5657
GS
2882 int64_t rc;
2883
ccd1c191
GS
2884 if (!pnv_pci_ioda_pe_dma_weight(pe))
2885 return;
2886
f87a8864
AK
2887 /* TVE #1 is selected by PCI address bit 59 */
2888 pe->tce_bypass_base = 1ull << 59;
2889
b348aa65
AK
2890 iommu_register_group(&pe->table_group, phb->hose->global_number,
2891 pe->pe_number);
c5773822 2892
373f5657 2893 /* The PE will reserve all possible 32-bits space */
373f5657 2894 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
aca6913f 2895 phb->ioda.m32_pci_base);
373f5657 2896
aca6913f 2897 /* Setup linux iommu table */
4793d65d
AK
2898 pe->table_group.tce32_start = 0;
2899 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2900 pe->table_group.max_dynamic_windows_supported =
2901 IOMMU_TABLE_GROUP_MAX_TABLES;
2902 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2903 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
e5aad1e6
AK
2904#ifdef CONFIG_IOMMU_API
2905 pe->table_group.ops = &pnv_pci_ioda2_ops;
2906#endif
2907
46d3e1e1 2908 rc = pnv_pci_ioda2_setup_default_config(pe);
801846d1 2909 if (rc)
46d3e1e1 2910 return;
373f5657 2911
20f13b95 2912 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
db08e1d5 2913 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
373f5657
GS
2914}
2915
184cd4a3 2916#ifdef CONFIG_PCI_MSI
4ee11c1a 2917int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
137436c9 2918{
137436c9
GS
2919 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2920 ioda.irq_chip);
4ee11c1a
SW
2921
2922 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2923}
2924
2925static void pnv_ioda2_msi_eoi(struct irq_data *d)
2926{
137436c9 2927 int64_t rc;
4ee11c1a
SW
2928 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2929 struct irq_chip *chip = irq_data_get_irq_chip(d);
137436c9 2930
4ee11c1a 2931 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
137436c9
GS
2932 WARN_ON_ONCE(rc);
2933
2934 icp_native_eoi(d);
2935}
2936
fd9a1c26 2937
f456834a 2938void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
fd9a1c26
IM
2939{
2940 struct irq_data *idata;
2941 struct irq_chip *ichip;
2942
fb111334
BH
2943 /* The MSI EOI OPAL call is only needed on PHB3 */
2944 if (phb->model != PNV_PHB_MODEL_PHB3)
fd9a1c26
IM
2945 return;
2946
2947 if (!phb->ioda.irq_chip_init) {
2948 /*
2949 * First time we setup an MSI IRQ, we need to setup the
2950 * corresponding IRQ chip to route correctly.
2951 */
2952 idata = irq_get_irq_data(virq);
2953 ichip = irq_data_get_irq_chip(idata);
2954 phb->ioda.irq_chip_init = 1;
2955 phb->ioda.irq_chip = *ichip;
2956 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2957 }
2958 irq_set_chip(virq, &phb->ioda.irq_chip);
2959}
2960
4ee11c1a
SW
2961/*
2962 * Returns true iff chip is something that we could call
2963 * pnv_opal_pci_msi_eoi for.
2964 */
2965bool is_pnv_opal_msi(struct irq_chip *chip)
2966{
2967 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2968}
2969EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2970
184cd4a3 2971static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
137436c9
GS
2972 unsigned int hwirq, unsigned int virq,
2973 unsigned int is_64, struct msi_msg *msg)
184cd4a3
BH
2974{
2975 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2976 unsigned int xive_num = hwirq - phb->msi_base;
3a1a4661 2977 __be32 data;
184cd4a3
BH
2978 int rc;
2979
2980 /* No PE assigned ? bail out ... no MSI for you ! */
2981 if (pe == NULL)
2982 return -ENXIO;
2983
2984 /* Check if we have an MVE */
2985 if (pe->mve_number < 0)
2986 return -ENXIO;
2987
b72c1f65 2988 /* Force 32-bit MSI on some broken devices */
36074381 2989 if (dev->no_64bit_msi)
b72c1f65
BH
2990 is_64 = 0;
2991
184cd4a3
BH
2992 /* Assign XIVE to PE */
2993 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2994 if (rc) {
2995 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2996 pci_name(dev), rc, xive_num);
2997 return -EIO;
2998 }
2999
3000 if (is_64) {
3a1a4661
BH
3001 __be64 addr64;
3002
184cd4a3
BH
3003 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3004 &addr64, &data);
3005 if (rc) {
3006 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3007 pci_name(dev), rc);
3008 return -EIO;
3009 }
3a1a4661
BH
3010 msg->address_hi = be64_to_cpu(addr64) >> 32;
3011 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
184cd4a3 3012 } else {
3a1a4661
BH
3013 __be32 addr32;
3014
184cd4a3
BH
3015 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3016 &addr32, &data);
3017 if (rc) {
3018 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3019 pci_name(dev), rc);
3020 return -EIO;
3021 }
3022 msg->address_hi = 0;
3a1a4661 3023 msg->address_lo = be32_to_cpu(addr32);
184cd4a3 3024 }
3a1a4661 3025 msg->data = be32_to_cpu(data);
184cd4a3 3026
f456834a 3027 pnv_set_msi_irq_chip(phb, virq);
137436c9 3028
184cd4a3 3029 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1f52f176 3030 " address=%x_%08x data=%x PE# %x\n",
184cd4a3
BH
3031 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3032 msg->address_hi, msg->address_lo, data, pe->pe_number);
3033
3034 return 0;
3035}
3036
3037static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3038{
fb1b55d6 3039 unsigned int count;
184cd4a3
BH
3040 const __be32 *prop = of_get_property(phb->hose->dn,
3041 "ibm,opal-msi-ranges", NULL);
3042 if (!prop) {
3043 /* BML Fallback */
3044 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3045 }
3046 if (!prop)
3047 return;
3048
3049 phb->msi_base = be32_to_cpup(prop);
fb1b55d6
GS
3050 count = be32_to_cpup(prop + 1);
3051 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
184cd4a3
BH
3052 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3053 phb->hose->global_number);
3054 return;
3055 }
fb1b55d6 3056
184cd4a3
BH
3057 phb->msi_setup = pnv_pci_ioda_msi_setup;
3058 phb->msi32_support = 1;
3059 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
fb1b55d6 3060 count, phb->msi_base);
184cd4a3
BH
3061}
3062#else
3063static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3064#endif /* CONFIG_PCI_MSI */
3065
6e628c7d
WY
3066#ifdef CONFIG_PCI_IOV
3067static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3068{
f2dd0afe
WY
3069 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3070 struct pnv_phb *phb = hose->private_data;
3071 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
6e628c7d
WY
3072 struct resource *res;
3073 int i;
dfcc8d45 3074 resource_size_t size, total_vf_bar_sz;
6e628c7d 3075 struct pci_dn *pdn;
5b88ec22 3076 int mul, total_vfs;
6e628c7d
WY
3077
3078 if (!pdev->is_physfn || pdev->is_added)
3079 return;
3080
6e628c7d
WY
3081 pdn = pci_get_pdn(pdev);
3082 pdn->vfs_expanded = 0;
ee8222fe 3083 pdn->m64_single_mode = false;
6e628c7d 3084
5b88ec22 3085 total_vfs = pci_sriov_get_totalvfs(pdev);
92b8f137 3086 mul = phb->ioda.total_pe_num;
dfcc8d45 3087 total_vf_bar_sz = 0;
5b88ec22
WY
3088
3089 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3090 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3091 if (!res->flags || res->parent)
3092 continue;
b79331a5 3093 if (!pnv_pci_is_m64_flags(res->flags)) {
b0331854
WY
3094 dev_warn(&pdev->dev, "Don't support SR-IOV with"
3095 " non M64 VF BAR%d: %pR. \n",
5b88ec22 3096 i, res);
b0331854 3097 goto truncate_iov;
5b88ec22
WY
3098 }
3099
dfcc8d45
WY
3100 total_vf_bar_sz += pci_iov_resource_size(pdev,
3101 i + PCI_IOV_RESOURCES);
5b88ec22 3102
f2dd0afe
WY
3103 /*
3104 * If bigger than quarter of M64 segment size, just round up
3105 * power of two.
3106 *
3107 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3108 * with other devices, IOV BAR size is expanded to be
3109 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
3110 * segment size , the expanded size would equal to half of the
3111 * whole M64 space size, which will exhaust the M64 Space and
3112 * limit the system flexibility. This is a design decision to
3113 * set the boundary to quarter of the M64 segment size.
3114 */
dfcc8d45 3115 if (total_vf_bar_sz > gate) {
5b88ec22 3116 mul = roundup_pow_of_two(total_vfs);
dfcc8d45
WY
3117 dev_info(&pdev->dev,
3118 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3119 total_vf_bar_sz, gate, mul);
ee8222fe 3120 pdn->m64_single_mode = true;
5b88ec22
WY
3121 break;
3122 }
3123 }
3124
6e628c7d
WY
3125 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3126 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3127 if (!res->flags || res->parent)
3128 continue;
6e628c7d 3129
6e628c7d 3130 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
ee8222fe
WY
3131 /*
3132 * On PHB3, the minimum size alignment of M64 BAR in single
3133 * mode is 32MB.
3134 */
3135 if (pdn->m64_single_mode && (size < SZ_32M))
3136 goto truncate_iov;
3137 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
5b88ec22 3138 res->end = res->start + size * mul - 1;
6e628c7d
WY
3139 dev_dbg(&pdev->dev, " %pR\n", res);
3140 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
5b88ec22 3141 i, res, mul);
6e628c7d 3142 }
5b88ec22 3143 pdn->vfs_expanded = mul;
b0331854
WY
3144
3145 return;
3146
3147truncate_iov:
3148 /* To save MMIO space, IOV BAR is truncated. */
3149 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3150 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3151 res->flags = 0;
3152 res->end = res->start - 1;
3153 }
6e628c7d
WY
3154}
3155#endif /* CONFIG_PCI_IOV */
3156
23e79425
GS
3157static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3158 struct resource *res)
3159{
3160 struct pnv_phb *phb = pe->phb;
3161 struct pci_bus_region region;
3162 int index;
3163 int64_t rc;
3164
3165 if (!res || !res->flags || res->start > res->end)
3166 return;
3167
3168 if (res->flags & IORESOURCE_IO) {
3169 region.start = res->start - phb->ioda.io_pci_base;
3170 region.end = res->end - phb->ioda.io_pci_base;
3171 index = region.start / phb->ioda.io_segsize;
3172
3173 while (index < phb->ioda.total_pe_num &&
3174 region.start <= region.end) {
3175 phb->ioda.io_segmap[index] = pe->pe_number;
3176 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3177 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3178 if (rc != OPAL_SUCCESS) {
1f52f176 3179 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
23e79425
GS
3180 __func__, rc, index, pe->pe_number);
3181 break;
3182 }
3183
3184 region.start += phb->ioda.io_segsize;
3185 index++;
3186 }
3187 } else if ((res->flags & IORESOURCE_MEM) &&
5958d19a 3188 !pnv_pci_is_m64(phb, res)) {
23e79425
GS
3189 region.start = res->start -
3190 phb->hose->mem_offset[0] -
3191 phb->ioda.m32_pci_base;
3192 region.end = res->end -
3193 phb->hose->mem_offset[0] -
3194 phb->ioda.m32_pci_base;
3195 index = region.start / phb->ioda.m32_segsize;
3196
3197 while (index < phb->ioda.total_pe_num &&
3198 region.start <= region.end) {
3199 phb->ioda.m32_segmap[index] = pe->pe_number;
3200 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3201 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3202 if (rc != OPAL_SUCCESS) {
1f52f176 3203 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
23e79425
GS
3204 __func__, rc, index, pe->pe_number);
3205 break;
3206 }
3207
3208 region.start += phb->ioda.m32_segsize;
3209 index++;
3210 }
3211 }
3212}
3213
11685bec
GS
3214/*
3215 * This function is supposed to be called on basis of PE from top
3216 * to bottom style. So the the I/O or MMIO segment assigned to
03671057 3217 * parent PE could be overridden by its child PEs if necessary.
11685bec 3218 */
23e79425 3219static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
11685bec 3220{
69d733e7 3221 struct pci_dev *pdev;
23e79425 3222 int i;
11685bec
GS
3223
3224 /*
3225 * NOTE: We only care PCI bus based PE for now. For PCI
3226 * device based PE, for example SRIOV sensitive VF should
3227 * be figured out later.
3228 */
3229 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3230
69d733e7
GS
3231 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3232 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3233 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3234
3235 /*
3236 * If the PE contains all subordinate PCI buses, the
3237 * windows of the child bridges should be mapped to
3238 * the PE as well.
3239 */
3240 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3241 continue;
3242 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3243 pnv_ioda_setup_pe_res(pe,
3244 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3245 }
11685bec
GS
3246}
3247
98b665da
RC
3248#ifdef CONFIG_DEBUG_FS
3249static int pnv_pci_diag_data_set(void *data, u64 val)
3250{
3251 struct pci_controller *hose;
3252 struct pnv_phb *phb;
3253 s64 ret;
3254
3255 if (val != 1ULL)
3256 return -EINVAL;
3257
3258 hose = (struct pci_controller *)data;
3259 if (!hose || !hose->private_data)
3260 return -ENODEV;
3261
3262 phb = hose->private_data;
3263
3264 /* Retrieve the diag data from firmware */
5cb1f8fd
RC
3265 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3266 phb->diag_data_size);
98b665da
RC
3267 if (ret != OPAL_SUCCESS)
3268 return -EIO;
3269
3270 /* Print the diag data to the kernel log */
5cb1f8fd 3271 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
98b665da
RC
3272 return 0;
3273}
3274
3275DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3276 pnv_pci_diag_data_set, "%llu\n");
3277
3278#endif /* CONFIG_DEBUG_FS */
3279
37c367f2
GS
3280static void pnv_pci_ioda_create_dbgfs(void)
3281{
3282#ifdef CONFIG_DEBUG_FS
3283 struct pci_controller *hose, *tmp;
3284 struct pnv_phb *phb;
3285 char name[16];
3286
3287 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3288 phb = hose->private_data;
3289
ccd1c191
GS
3290 /* Notify initialization of PHB done */
3291 phb->initialized = 1;
3292
37c367f2
GS
3293 sprintf(name, "PCI%04x", hose->global_number);
3294 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
98b665da 3295 if (!phb->dbgfs) {
37c367f2
GS
3296 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3297 __func__, hose->global_number);
98b665da
RC
3298 continue;
3299 }
3300
3301 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3302 &pnv_pci_diag_data_fops);
37c367f2
GS
3303 }
3304#endif /* CONFIG_DEBUG_FS */
3305}
3306
cad5cef6 3307static void pnv_pci_ioda_fixup(void)
fb446ad0
GS
3308{
3309 pnv_pci_ioda_setup_PEs();
ccd1c191 3310 pnv_pci_ioda_setup_iommu_api();
37c367f2
GS
3311 pnv_pci_ioda_create_dbgfs();
3312
e9cc17d4 3313#ifdef CONFIG_EEH
b9fde58d 3314 pnv_eeh_post_init();
e9cc17d4 3315#endif
fb446ad0
GS
3316}
3317
271fd03a
GS
3318/*
3319 * Returns the alignment for I/O or memory windows for P2P
3320 * bridges. That actually depends on how PEs are segmented.
3321 * For now, we return I/O or M32 segment size for PE sensitive
3322 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3323 * 1MiB for memory) will be returned.
3324 *
3325 * The current PCI bus might be put into one PE, which was
3326 * create against the parent PCI bridge. For that case, we
3327 * needn't enlarge the alignment so that we can save some
3328 * resources.
3329 */
3330static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3331 unsigned long type)
3332{
3333 struct pci_dev *bridge;
3334 struct pci_controller *hose = pci_bus_to_host(bus);
3335 struct pnv_phb *phb = hose->private_data;
3336 int num_pci_bridges = 0;
3337
3338 bridge = bus->self;
3339 while (bridge) {
3340 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3341 num_pci_bridges++;
3342 if (num_pci_bridges >= 2)
3343 return 1;
3344 }
3345
3346 bridge = bridge->bus->self;
3347 }
3348
5958d19a
BH
3349 /*
3350 * We fall back to M32 if M64 isn't supported. We enforce the M64
3351 * alignment for any 64-bit resource, PCIe doesn't care and
3352 * bridges only do 64-bit prefetchable anyway.
3353 */
b79331a5 3354 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
262af557 3355 return phb->ioda.m64_segsize;
271fd03a
GS
3356 if (type & IORESOURCE_MEM)
3357 return phb->ioda.m32_segsize;
3358
3359 return phb->ioda.io_segsize;
3360}
3361
40e2a47e
GS
3362/*
3363 * We are updating root port or the upstream port of the
3364 * bridge behind the root port with PHB's windows in order
3365 * to accommodate the changes on required resources during
3366 * PCI (slot) hotplug, which is connected to either root
3367 * port or the downstream ports of PCIe switch behind the
3368 * root port.
3369 */
3370static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3371 unsigned long type)
3372{
3373 struct pci_controller *hose = pci_bus_to_host(bus);
3374 struct pnv_phb *phb = hose->private_data;
3375 struct pci_dev *bridge = bus->self;
3376 struct resource *r, *w;
3377 bool msi_region = false;
3378 int i;
3379
3380 /* Check if we need apply fixup to the bridge's windows */
3381 if (!pci_is_root_bus(bridge->bus) &&
3382 !pci_is_root_bus(bridge->bus->self->bus))
3383 return;
3384
3385 /* Fixup the resources */
3386 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3387 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3388 if (!r->flags || !r->parent)
3389 continue;
3390
3391 w = NULL;
3392 if (r->flags & type & IORESOURCE_IO)
3393 w = &hose->io_resource;
5958d19a 3394 else if (pnv_pci_is_m64(phb, r) &&
40e2a47e
GS
3395 (type & IORESOURCE_PREFETCH) &&
3396 phb->ioda.m64_segsize)
3397 w = &hose->mem_resources[1];
3398 else if (r->flags & type & IORESOURCE_MEM) {
3399 w = &hose->mem_resources[0];
3400 msi_region = true;
3401 }
3402
3403 r->start = w->start;
3404 r->end = w->end;
3405
3406 /* The 64KB 32-bits MSI region shouldn't be included in
3407 * the 32-bits bridge window. Otherwise, we can see strange
3408 * issues. One of them is EEH error observed on Garrison.
3409 *
3410 * Exclude top 1MB region which is the minimal alignment of
3411 * 32-bits bridge window.
3412 */
3413 if (msi_region) {
3414 r->end += 0x10000;
3415 r->end -= 0x100000;
3416 }
3417 }
3418}
3419
ccd1c191
GS
3420static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3421{
3422 struct pci_controller *hose = pci_bus_to_host(bus);
3423 struct pnv_phb *phb = hose->private_data;
3424 struct pci_dev *bridge = bus->self;
3425 struct pnv_ioda_pe *pe;
3426 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3427
40e2a47e
GS
3428 /* Extend bridge's windows if necessary */
3429 pnv_pci_fixup_bridge_resources(bus, type);
3430
63803c39
GS
3431 /* The PE for root bus should be realized before any one else */
3432 if (!phb->ioda.root_pe_populated) {
3433 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3434 if (pe) {
3435 phb->ioda.root_pe_idx = pe->pe_number;
3436 phb->ioda.root_pe_populated = true;
3437 }
3438 }
3439
ccd1c191
GS
3440 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3441 if (list_empty(&bus->devices))
3442 return;
3443
3444 /* Reserve PEs according to used M64 resources */
3445 if (phb->reserve_m64_pe)
3446 phb->reserve_m64_pe(bus, NULL, all);
3447
3448 /*
3449 * Assign PE. We might run here because of partial hotplug.
3450 * For the case, we just pick up the existing PE and should
3451 * not allocate resources again.
3452 */
3453 pe = pnv_ioda_setup_bus_PE(bus, all);
3454 if (!pe)
3455 return;
3456
3457 pnv_ioda_setup_pe_seg(pe);
3458 switch (phb->type) {
3459 case PNV_PHB_IODA1:
3460 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3461 break;
3462 case PNV_PHB_IODA2:
3463 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3464 break;
3465 default:
1f52f176 3466 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
ccd1c191
GS
3467 __func__, phb->hose->global_number, phb->type);
3468 }
3469}
3470
38274637
YX
3471static resource_size_t pnv_pci_default_alignment(void)
3472{
3473 return PAGE_SIZE;
3474}
3475
5350ab3f
WY
3476#ifdef CONFIG_PCI_IOV
3477static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3478 int resno)
3479{
ee8222fe
WY
3480 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3481 struct pnv_phb *phb = hose->private_data;
5350ab3f 3482 struct pci_dn *pdn = pci_get_pdn(pdev);
7fbe7a93 3483 resource_size_t align;
5350ab3f 3484
7fbe7a93
WY
3485 /*
3486 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3487 * SR-IOV. While from hardware perspective, the range mapped by M64
3488 * BAR should be size aligned.
3489 *
ee8222fe
WY
3490 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3491 * powernv-specific hardware restriction is gone. But if just use the
3492 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3493 * in one segment of M64 #15, which introduces the PE conflict between
3494 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3495 * m64_segsize.
3496 *
7fbe7a93
WY
3497 * This function returns the total IOV BAR size if M64 BAR is in
3498 * Shared PE mode or just VF BAR size if not.
ee8222fe
WY
3499 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3500 * M64 segment size if IOV BAR size is less.
7fbe7a93 3501 */
5350ab3f 3502 align = pci_iov_resource_size(pdev, resno);
7fbe7a93
WY
3503 if (!pdn->vfs_expanded)
3504 return align;
ee8222fe
WY
3505 if (pdn->m64_single_mode)
3506 return max(align, (resource_size_t)phb->ioda.m64_segsize);
5350ab3f 3507
7fbe7a93 3508 return pdn->vfs_expanded * align;
5350ab3f
WY
3509}
3510#endif /* CONFIG_PCI_IOV */
3511
184cd4a3
BH
3512/* Prevent enabling devices for which we couldn't properly
3513 * assign a PE
3514 */
4361b034 3515bool pnv_pci_enable_device_hook(struct pci_dev *dev)
184cd4a3 3516{
db1266c8
GS
3517 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3518 struct pnv_phb *phb = hose->private_data;
3519 struct pci_dn *pdn;
184cd4a3 3520
db1266c8
GS
3521 /* The function is probably called while the PEs have
3522 * not be created yet. For example, resource reassignment
3523 * during PCI probe period. We just skip the check if
3524 * PEs isn't ready.
3525 */
3526 if (!phb->initialized)
c88c2a18 3527 return true;
db1266c8 3528
b72c1f65 3529 pdn = pci_get_pdn(dev);
184cd4a3 3530 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
c88c2a18 3531 return false;
db1266c8 3532
c88c2a18 3533 return true;
184cd4a3
BH
3534}
3535
c5f7700b
GS
3536static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3537 int num)
3538{
3539 struct pnv_ioda_pe *pe = container_of(table_group,
3540 struct pnv_ioda_pe, table_group);
3541 struct pnv_phb *phb = pe->phb;
3542 unsigned int idx;
3543 long rc;
3544
3545 pe_info(pe, "Removing DMA window #%d\n", num);
3546 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3547 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3548 continue;
3549
3550 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3551 idx, 0, 0ul, 0ul, 0ul);
3552 if (rc != OPAL_SUCCESS) {
3553 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3554 rc, idx);
3555 return rc;
3556 }
3557
3558 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3559 }
3560
3561 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3562 return OPAL_SUCCESS;
3563}
3564
3565static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3566{
3567 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3568 struct iommu_table *tbl = pe->table_group.tables[0];
3569 int64_t rc;
3570
3571 if (!weight)
3572 return;
3573
3574 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3575 if (rc != OPAL_SUCCESS)
3576 return;
3577
a34ab7c3 3578 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
c5f7700b
GS
3579 if (pe->table_group.group) {
3580 iommu_group_put(pe->table_group.group);
3581 WARN_ON(pe->table_group.group);
3582 }
3583
3584 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
e5afdf9d 3585 iommu_tce_table_put(tbl);
c5f7700b
GS
3586}
3587
3588static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3589{
3590 struct iommu_table *tbl = pe->table_group.tables[0];
3591 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3592#ifdef CONFIG_IOMMU_API
3593 int64_t rc;
3594#endif
3595
3596 if (!weight)
3597 return;
3598
3599#ifdef CONFIG_IOMMU_API
3600 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3601 if (rc)
3602 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3603#endif
3604
3605 pnv_pci_ioda2_set_bypass(pe, false);
3606 if (pe->table_group.group) {
3607 iommu_group_put(pe->table_group.group);
3608 WARN_ON(pe->table_group.group);
3609 }
3610
3611 pnv_pci_ioda2_table_free_pages(tbl);
e5afdf9d 3612 iommu_tce_table_put(tbl);
c5f7700b
GS
3613}
3614
3615static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3616 unsigned short win,
3617 unsigned int *map)
3618{
3619 struct pnv_phb *phb = pe->phb;
3620 int idx;
3621 int64_t rc;
3622
3623 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3624 if (map[idx] != pe->pe_number)
3625 continue;
3626
3627 if (win == OPAL_M64_WINDOW_TYPE)
3628 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3629 phb->ioda.reserved_pe_idx, win,
3630 idx / PNV_IODA1_M64_SEGS,
3631 idx % PNV_IODA1_M64_SEGS);
3632 else
3633 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3634 phb->ioda.reserved_pe_idx, win, 0, idx);
3635
3636 if (rc != OPAL_SUCCESS)
3637 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3638 rc, win, idx);
3639
3640 map[idx] = IODA_INVALID_PE;
3641 }
3642}
3643
3644static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3645{
3646 struct pnv_phb *phb = pe->phb;
3647
3648 if (phb->type == PNV_PHB_IODA1) {
3649 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3650 phb->ioda.io_segmap);
3651 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3652 phb->ioda.m32_segmap);
3653 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3654 phb->ioda.m64_segmap);
3655 } else if (phb->type == PNV_PHB_IODA2) {
3656 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3657 phb->ioda.m32_segmap);
3658 }
3659}
3660
3661static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3662{
3663 struct pnv_phb *phb = pe->phb;
3664 struct pnv_ioda_pe *slave, *tmp;
3665
c5f7700b
GS
3666 list_del(&pe->list);
3667 switch (phb->type) {
3668 case PNV_PHB_IODA1:
3669 pnv_pci_ioda1_release_pe_dma(pe);
3670 break;
3671 case PNV_PHB_IODA2:
3672 pnv_pci_ioda2_release_pe_dma(pe);
3673 break;
3674 default:
3675 WARN_ON(1);
3676 }
3677
3678 pnv_ioda_release_pe_seg(pe);
3679 pnv_ioda_deconfigure_pe(pe->phb, pe);
b314427a
GS
3680
3681 /* Release slave PEs in the compound PE */
3682 if (pe->flags & PNV_IODA_PE_MASTER) {
3683 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3684 list_del(&slave->list);
3685 pnv_ioda_free_pe(slave);
3686 }
3687 }
3688
6eaed166
GS
3689 /*
3690 * The PE for root bus can be removed because of hotplug in EEH
3691 * recovery for fenced PHB error. We need to mark the PE dead so
3692 * that it can be populated again in PCI hot add path. The PE
3693 * shouldn't be destroyed as it's the global reserved resource.
3694 */
3695 if (phb->ioda.root_pe_populated &&
3696 phb->ioda.root_pe_idx == pe->pe_number)
3697 phb->ioda.root_pe_populated = false;
3698 else
3699 pnv_ioda_free_pe(pe);
c5f7700b
GS
3700}
3701
3702static void pnv_pci_release_device(struct pci_dev *pdev)
3703{
3704 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3705 struct pnv_phb *phb = hose->private_data;
3706 struct pci_dn *pdn = pci_get_pdn(pdev);
3707 struct pnv_ioda_pe *pe;
3708
3709 if (pdev->is_virtfn)
3710 return;
3711
3712 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3713 return;
3714
29bf282d
GS
3715 /*
3716 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3717 * isn't removed and added afterwards in this scenario. We should
3718 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3719 * device count is decreased on removing devices while failing to
3720 * be increased on adding devices. It leads to unbalanced PE's device
3721 * count and eventually make normal PCI hotplug path broken.
3722 */
c5f7700b 3723 pe = &phb->ioda.pe_array[pdn->pe_number];
29bf282d
GS
3724 pdn->pe_number = IODA_INVALID_PE;
3725
c5f7700b
GS
3726 WARN_ON(--pe->device_count < 0);
3727 if (pe->device_count == 0)
3728 pnv_ioda_release_pe(pe);
3729}
3730
7a8e6bbf 3731static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
73ed148a 3732{
7a8e6bbf
MN
3733 struct pnv_phb *phb = hose->private_data;
3734
d1a85eee 3735 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
73ed148a
BH
3736 OPAL_ASSERT_RESET);
3737}
3738
92ae0353 3739static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
cb4224c5
GS
3740 .dma_dev_setup = pnv_pci_dma_dev_setup,
3741 .dma_bus_setup = pnv_pci_dma_bus_setup,
92ae0353 3742#ifdef CONFIG_PCI_MSI
cb4224c5
GS
3743 .setup_msi_irqs = pnv_setup_msi_irqs,
3744 .teardown_msi_irqs = pnv_teardown_msi_irqs,
92ae0353 3745#endif
cb4224c5 3746 .enable_device_hook = pnv_pci_enable_device_hook,
c5f7700b 3747 .release_device = pnv_pci_release_device,
cb4224c5 3748 .window_alignment = pnv_pci_window_alignment,
ccd1c191 3749 .setup_bridge = pnv_pci_setup_bridge,
cb4224c5
GS
3750 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3751 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3752 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3753 .shutdown = pnv_pci_ioda_shutdown,
92ae0353
DA
3754};
3755
f9f83456
AK
3756static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3757{
3758 dev_err_once(&npdev->dev,
3759 "%s operation unsupported for NVLink devices\n",
3760 __func__);
3761 return -EPERM;
3762}
3763
5d2aa710 3764static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
cb4224c5 3765 .dma_dev_setup = pnv_pci_dma_dev_setup,
5d2aa710 3766#ifdef CONFIG_PCI_MSI
cb4224c5
GS
3767 .setup_msi_irqs = pnv_setup_msi_irqs,
3768 .teardown_msi_irqs = pnv_teardown_msi_irqs,
5d2aa710 3769#endif
cb4224c5
GS
3770 .enable_device_hook = pnv_pci_enable_device_hook,
3771 .window_alignment = pnv_pci_window_alignment,
3772 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3773 .dma_set_mask = pnv_npu_dma_set_mask,
3774 .shutdown = pnv_pci_ioda_shutdown,
5d2aa710
AP
3775};
3776
4361b034
IM
3777#ifdef CONFIG_CXL_BASE
3778const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3779 .dma_dev_setup = pnv_pci_dma_dev_setup,
3780 .dma_bus_setup = pnv_pci_dma_bus_setup,
a2f67d5e
IM
3781#ifdef CONFIG_PCI_MSI
3782 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3783 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3784#endif
4361b034
IM
3785 .enable_device_hook = pnv_cxl_enable_device_hook,
3786 .disable_device = pnv_cxl_disable_device,
3787 .release_device = pnv_pci_release_device,
3788 .window_alignment = pnv_pci_window_alignment,
3789 .setup_bridge = pnv_pci_setup_bridge,
3790 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3791 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3792 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3793 .shutdown = pnv_pci_ioda_shutdown,
3794};
3795#endif
3796
e51df2c1
AB
3797static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3798 u64 hub_id, int ioda_type)
184cd4a3
BH
3799{
3800 struct pci_controller *hose;
184cd4a3 3801 struct pnv_phb *phb;
2b923ed1
GS
3802 unsigned long size, m64map_off, m32map_off, pemap_off;
3803 unsigned long iomap_off = 0, dma32map_off = 0;
fd141d1a 3804 struct resource r;
c681b93c 3805 const __be64 *prop64;
3a1a4661 3806 const __be32 *prop32;
f1b7cc3e 3807 int len;
3fa23ff8 3808 unsigned int segno;
184cd4a3
BH
3809 u64 phb_id;
3810 void *aux;
3811 long rc;
3812
08a45b32
BH
3813 if (!of_device_is_available(np))
3814 return;
3815
b7c670d6 3816 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
184cd4a3
BH
3817
3818 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3819 if (!prop64) {
3820 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3821 return;
3822 }
3823 phb_id = be64_to_cpup(prop64);
3824 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3825
e39f223f 3826 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
58d714ec
GS
3827
3828 /* Allocate PCI controller */
58d714ec
GS
3829 phb->hose = hose = pcibios_alloc_controller(np);
3830 if (!phb->hose) {
b7c670d6
RH
3831 pr_err(" Can't allocate PCI controller for %pOF\n",
3832 np);
e39f223f 3833 memblock_free(__pa(phb), sizeof(struct pnv_phb));
184cd4a3
BH
3834 return;
3835 }
3836
3837 spin_lock_init(&phb->lock);
f1b7cc3e
GS
3838 prop32 = of_get_property(np, "bus-range", &len);
3839 if (prop32 && len == 8) {
3a1a4661
BH
3840 hose->first_busno = be32_to_cpu(prop32[0]);
3841 hose->last_busno = be32_to_cpu(prop32[1]);
f1b7cc3e 3842 } else {
b7c670d6 3843 pr_warn(" Broken <bus-range> on %pOF\n", np);
f1b7cc3e
GS
3844 hose->first_busno = 0;
3845 hose->last_busno = 0xff;
3846 }
184cd4a3 3847 hose->private_data = phb;
e9cc17d4 3848 phb->hub_id = hub_id;
184cd4a3 3849 phb->opal_id = phb_id;
aa0c033f 3850 phb->type = ioda_type;
781a868f 3851 mutex_init(&phb->ioda.pe_alloc_mutex);
184cd4a3 3852
cee72d5b
BH
3853 /* Detect specific models for error handling */
3854 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3855 phb->model = PNV_PHB_MODEL_P7IOC;
f3d40c25 3856 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
aa0c033f 3857 phb->model = PNV_PHB_MODEL_PHB3;
5d2aa710
AP
3858 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3859 phb->model = PNV_PHB_MODEL_NPU;
616badd2
AP
3860 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3861 phb->model = PNV_PHB_MODEL_NPU2;
cee72d5b
BH
3862 else
3863 phb->model = PNV_PHB_MODEL_UNKNOWN;
3864
5cb1f8fd
RC
3865 /* Initialize diagnostic data buffer */
3866 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3867 if (prop32)
3868 phb->diag_data_size = be32_to_cpup(prop32);
3869 else
3870 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3871
3872 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3873
aa0c033f 3874 /* Parse 32-bit and IO ranges (if any) */
2f1ec02e 3875 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
184cd4a3 3876
aa0c033f 3877 /* Get registers */
fd141d1a
BH
3878 if (!of_address_to_resource(np, 0, &r)) {
3879 phb->regs_phys = r.start;
3880 phb->regs = ioremap(r.start, resource_size(&r));
3881 if (phb->regs == NULL)
3882 pr_err(" Failed to map registers !\n");
3883 }
577c8c88 3884
184cd4a3 3885 /* Initialize more IODA stuff */
92b8f137 3886 phb->ioda.total_pe_num = 1;
aa0c033f 3887 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
36954dc7 3888 if (prop32)
92b8f137 3889 phb->ioda.total_pe_num = be32_to_cpup(prop32);
36954dc7
GS
3890 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3891 if (prop32)
92b8f137 3892 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
262af557 3893
c127562a
GS
3894 /* Invalidate RID to PE# mapping */
3895 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3896 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3897
262af557
GC
3898 /* Parse 64-bit MMIO range */
3899 pnv_ioda_parse_m64_window(phb);
3900
184cd4a3 3901 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
aa0c033f 3902 /* FW Has already off top 64k of M32 space (MSI space) */
184cd4a3
BH
3903 phb->ioda.m32_size += 0x10000;
3904
92b8f137 3905 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3fd47f06 3906 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
184cd4a3 3907 phb->ioda.io_size = hose->pci_io_size;
92b8f137 3908 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
184cd4a3
BH
3909 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3910
2b923ed1
GS
3911 /* Calculate how many 32-bit TCE segments we have */
3912 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3913 PNV_IODA1_DMA32_SEGSIZE;
3914
c35d2a8c 3915 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
92a86756
AK
3916 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3917 sizeof(unsigned long));
93289d8c
GS
3918 m64map_off = size;
3919 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
184cd4a3 3920 m32map_off = size;
92b8f137 3921 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
c35d2a8c
GS
3922 if (phb->type == PNV_PHB_IODA1) {
3923 iomap_off = size;
92b8f137 3924 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
2b923ed1
GS
3925 dma32map_off = size;
3926 size += phb->ioda.dma32_count *
3927 sizeof(phb->ioda.dma32_segmap[0]);
c35d2a8c 3928 }
184cd4a3 3929 pemap_off = size;
92b8f137 3930 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
e39f223f 3931 aux = memblock_virt_alloc(size, 0);
184cd4a3 3932 phb->ioda.pe_alloc = aux;
93289d8c 3933 phb->ioda.m64_segmap = aux + m64map_off;
184cd4a3 3934 phb->ioda.m32_segmap = aux + m32map_off;
93289d8c
GS
3935 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3936 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3fa23ff8 3937 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
93289d8c 3938 }
3fa23ff8 3939 if (phb->type == PNV_PHB_IODA1) {
c35d2a8c 3940 phb->ioda.io_segmap = aux + iomap_off;
3fa23ff8
GS
3941 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3942 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
2b923ed1
GS
3943
3944 phb->ioda.dma32_segmap = aux + dma32map_off;
3945 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3946 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3fa23ff8 3947 }
184cd4a3 3948 phb->ioda.pe_array = aux + pemap_off;
63803c39
GS
3949
3950 /*
3951 * Choose PE number for root bus, which shouldn't have
3952 * M64 resources consumed by its child devices. To pick
3953 * the PE number adjacent to the reserved one if possible.
3954 */
3955 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3956 if (phb->ioda.reserved_pe_idx == 0) {
3957 phb->ioda.root_pe_idx = 1;
3958 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3959 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3960 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3961 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3962 } else {
3963 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3964 }
184cd4a3
BH
3965
3966 INIT_LIST_HEAD(&phb->ioda.pe_list);
781a868f 3967 mutex_init(&phb->ioda.pe_list_mutex);
184cd4a3
BH
3968
3969 /* Calculate how many 32-bit TCE segments we have */
2b923ed1 3970 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
acce971c 3971 PNV_IODA1_DMA32_SEGSIZE;
184cd4a3 3972
aa0c033f 3973#if 0 /* We should really do that ... */
184cd4a3
BH
3974 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3975 window_type,
3976 window_num,
3977 starting_real_address,
3978 starting_pci_address,
3979 segment_size);
3980#endif
3981
262af557 3982 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
92b8f137 3983 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
262af557
GC
3984 phb->ioda.m32_size, phb->ioda.m32_segsize);
3985 if (phb->ioda.m64_size)
3986 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3987 phb->ioda.m64_size, phb->ioda.m64_segsize);
3988 if (phb->ioda.io_size)
3989 pr_info(" IO: 0x%x [segment=0x%x]\n",
3990 phb->ioda.io_size, phb->ioda.io_segsize);
3991
184cd4a3 3992
184cd4a3 3993 phb->hose->ops = &pnv_pci_ops;
49dec922
GS
3994 phb->get_pe_state = pnv_ioda_get_pe_state;
3995 phb->freeze_pe = pnv_ioda_freeze_pe;
3996 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
184cd4a3 3997
184cd4a3
BH
3998 /* Setup MSI support */
3999 pnv_pci_init_ioda_msis(phb);
4000
c40a4210
GS
4001 /*
4002 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4003 * to let the PCI core do resource assignment. It's supposed
4004 * that the PCI core will do correct I/O and MMIO alignment
4005 * for the P2P bridge bars so that each PCI bus (excluding
4006 * the child P2P bridges) can form individual PE.
184cd4a3 4007 */
fb446ad0 4008 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
5d2aa710 4009
f9f83456 4010 if (phb->type == PNV_PHB_NPU) {
5d2aa710 4011 hose->controller_ops = pnv_npu_ioda_controller_ops;
f9f83456
AK
4012 } else {
4013 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
5d2aa710 4014 hose->controller_ops = pnv_pci_ioda_controller_ops;
f9f83456 4015 }
ad30cb99 4016
38274637
YX
4017 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4018
6e628c7d
WY
4019#ifdef CONFIG_PCI_IOV
4020 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
5350ab3f 4021 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
ad30cb99
ME
4022#endif
4023
c40a4210 4024 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
184cd4a3
BH
4025
4026 /* Reset IODA tables to a clean state */
d1a85eee 4027 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
184cd4a3 4028 if (rc)
f11fe552 4029 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
361f2a2a 4030
6060e9ea
AD
4031 /*
4032 * If we're running in kdump kernel, the previous kernel never
361f2a2a
GS
4033 * shutdown PCI devices correctly. We already got IODA table
4034 * cleaned out. So we have to issue PHB reset to stop all PCI
6060e9ea 4035 * transactions from previous kernel.
361f2a2a
GS
4036 */
4037 if (is_kdump_kernel()) {
4038 pr_info(" Issue PHB reset ...\n");
cadf364d
GS
4039 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4040 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
361f2a2a 4041 }
262af557 4042
9e9e8935
GS
4043 /* Remove M64 resource if we can't configure it successfully */
4044 if (!phb->init_m64 || phb->init_m64(phb))
262af557 4045 hose->mem_resources[1].flags = 0;
aa0c033f
GS
4046}
4047
67975005 4048void __init pnv_pci_init_ioda2_phb(struct device_node *np)
aa0c033f 4049{
e9cc17d4 4050 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
184cd4a3
BH
4051}
4052
5d2aa710
AP
4053void __init pnv_pci_init_npu_phb(struct device_node *np)
4054{
4055 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4056}
4057
184cd4a3
BH
4058void __init pnv_pci_init_ioda_hub(struct device_node *np)
4059{
4060 struct device_node *phbn;
c681b93c 4061 const __be64 *prop64;
184cd4a3
BH
4062 u64 hub_id;
4063
b7c670d6 4064 pr_info("Probing IODA IO-Hub %pOF\n", np);
184cd4a3
BH
4065
4066 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4067 if (!prop64) {
4068 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4069 return;
4070 }
4071 hub_id = be64_to_cpup(prop64);
4072 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4073
4074 /* Count child PHBs */
4075 for_each_child_of_node(np, phbn) {
4076 /* Look for IODA1 PHBs */
4077 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
e9cc17d4 4078 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
184cd4a3
BH
4079 }
4080}