]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ppc64/mm/init.c
[PATCH] ppc64: add memory present
[mirror_ubuntu-artful-kernel.git] / arch / ppc64 / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 *
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 *
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
20 *
21 */
22
23#include <linux/config.h>
24#include <linux/signal.h>
25#include <linux/sched.h>
26#include <linux/kernel.h>
27#include <linux/errno.h>
28#include <linux/string.h>
29#include <linux/types.h>
30#include <linux/mman.h>
31#include <linux/mm.h>
32#include <linux/swap.h>
33#include <linux/stddef.h>
34#include <linux/vmalloc.h>
35#include <linux/init.h>
36#include <linux/delay.h>
37#include <linux/bootmem.h>
38#include <linux/highmem.h>
39#include <linux/idr.h>
40#include <linux/nodemask.h>
41#include <linux/module.h>
42
43#include <asm/pgalloc.h>
44#include <asm/page.h>
45#include <asm/abs_addr.h>
46#include <asm/prom.h>
47#include <asm/lmb.h>
48#include <asm/rtas.h>
49#include <asm/io.h>
50#include <asm/mmu_context.h>
51#include <asm/pgtable.h>
52#include <asm/mmu.h>
53#include <asm/uaccess.h>
54#include <asm/smp.h>
55#include <asm/machdep.h>
56#include <asm/tlb.h>
57#include <asm/eeh.h>
58#include <asm/processor.h>
59#include <asm/mmzone.h>
60#include <asm/cputable.h>
61#include <asm/ppcdebug.h>
62#include <asm/sections.h>
63#include <asm/system.h>
64#include <asm/iommu.h>
65#include <asm/abs_addr.h>
66#include <asm/vdso.h>
1f8d419e 67#include <asm/imalloc.h>
1da177e4
LT
68
69int mem_init_done;
70unsigned long ioremap_bot = IMALLOC_BASE;
71static unsigned long phbs_io_bot = PHBS_IO_BASE;
72
73extern pgd_t swapper_pg_dir[];
74extern struct task_struct *current_set[NR_CPUS];
75
1da177e4
LT
76unsigned long klimit = (unsigned long)_end;
77
78unsigned long _SDR1=0;
79unsigned long _ASR=0;
80
81/* max amount of RAM to use */
82unsigned long __max_memory;
83
84/* info on what we think the IO hole is */
85unsigned long io_hole_start;
86unsigned long io_hole_size;
87
88void show_mem(void)
89{
90 unsigned long total = 0, reserved = 0;
91 unsigned long shared = 0, cached = 0;
92 struct page *page;
93 pg_data_t *pgdat;
94 unsigned long i;
95
96 printk("Mem-info:\n");
97 show_free_areas();
98 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
99 for_each_pgdat(pgdat) {
100 for (i = 0; i < pgdat->node_spanned_pages; i++) {
408fde81 101 page = pgdat_page_nr(pgdat, i);
1da177e4
LT
102 total++;
103 if (PageReserved(page))
104 reserved++;
105 else if (PageSwapCache(page))
106 cached++;
107 else if (page_count(page))
108 shared += page_count(page) - 1;
109 }
110 }
111 printk("%ld pages of RAM\n", total);
112 printk("%ld reserved pages\n", reserved);
113 printk("%ld pages shared\n", shared);
114 printk("%ld pages swap cached\n", cached);
115}
116
117#ifdef CONFIG_PPC_ISERIES
118
119void __iomem *ioremap(unsigned long addr, unsigned long size)
120{
121 return (void __iomem *)addr;
122}
123
124extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
125 unsigned long flags)
126{
127 return (void __iomem *)addr;
128}
129
130void iounmap(volatile void __iomem *addr)
131{
132 return;
133}
134
135#else
136
137/*
138 * map_io_page currently only called by __ioremap
139 * map_io_page adds an entry to the ioremap page table
140 * and adds an entry to the HPT, possibly bolting it
141 */
58366af5 142static int map_io_page(unsigned long ea, unsigned long pa, int flags)
1da177e4
LT
143{
144 pgd_t *pgdp;
58366af5 145 pud_t *pudp;
1da177e4
LT
146 pmd_t *pmdp;
147 pte_t *ptep;
148 unsigned long vsid;
149
150 if (mem_init_done) {
20cee16c
DG
151 spin_lock(&init_mm.page_table_lock);
152 pgdp = pgd_offset_k(ea);
153 pudp = pud_alloc(&init_mm, pgdp, ea);
58366af5
BH
154 if (!pudp)
155 return -ENOMEM;
20cee16c 156 pmdp = pmd_alloc(&init_mm, pudp, ea);
58366af5
BH
157 if (!pmdp)
158 return -ENOMEM;
20cee16c 159 ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
58366af5
BH
160 if (!ptep)
161 return -ENOMEM;
1da177e4 162 pa = abs_to_phys(pa);
20cee16c 163 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
dfbacdc1 164 __pgprot(flags)));
20cee16c 165 spin_unlock(&init_mm.page_table_lock);
1da177e4
LT
166 } else {
167 unsigned long va, vpn, hash, hpteg;
168
169 /*
170 * If the mm subsystem is not fully up, we cannot create a
171 * linux page table entry for this mapping. Simply bolt an
172 * entry in the hardware page table.
173 */
174 vsid = get_kernel_vsid(ea);
175 va = (vsid << 28) | (ea & 0xFFFFFFF);
176 vpn = va >> PAGE_SHIFT;
177
178 hash = hpt_hash(vpn, 0);
179
180 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
181
182 /* Panic if a pte grpup is full */
183 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
184 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
185 1, 0) == -1) {
186 panic("map_io_page: could not insert mapping");
187 }
188 }
58366af5 189 return 0;
1da177e4
LT
190}
191
192
193static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
194 unsigned long ea, unsigned long size,
195 unsigned long flags)
196{
197 unsigned long i;
198
199 if ((flags & _PAGE_PRESENT) == 0)
200 flags |= pgprot_val(PAGE_KERNEL);
1da177e4 201
dfbacdc1 202 for (i = 0; i < size; i += PAGE_SIZE)
58366af5 203 if (map_io_page(ea+i, pa+i, flags))
20cee16c 204 return NULL;
1da177e4
LT
205
206 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
207}
208
209
210void __iomem *
211ioremap(unsigned long addr, unsigned long size)
212{
dfbacdc1 213 return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
1da177e4
LT
214}
215
58366af5
BH
216void __iomem * __ioremap(unsigned long addr, unsigned long size,
217 unsigned long flags)
1da177e4
LT
218{
219 unsigned long pa, ea;
58366af5 220 void __iomem *ret;
1da177e4
LT
221
222 /*
223 * Choose an address to map it to.
224 * Once the imalloc system is running, we use it.
225 * Before that, we map using addresses going
226 * up from ioremap_bot. imalloc will use
227 * the addresses from ioremap_bot through
228 * IMALLOC_END (0xE000001fffffffff)
229 *
230 */
231 pa = addr & PAGE_MASK;
232 size = PAGE_ALIGN(addr + size) - pa;
233
234 if (size == 0)
235 return NULL;
236
237 if (mem_init_done) {
238 struct vm_struct *area;
239 area = im_get_free_area(size);
240 if (area == NULL)
241 return NULL;
242 ea = (unsigned long)(area->addr);
58366af5
BH
243 ret = __ioremap_com(addr, pa, ea, size, flags);
244 if (!ret)
245 im_free(area->addr);
1da177e4
LT
246 } else {
247 ea = ioremap_bot;
58366af5
BH
248 ret = __ioremap_com(addr, pa, ea, size, flags);
249 if (ret)
250 ioremap_bot += size;
1da177e4 251 }
58366af5 252 return ret;
1da177e4
LT
253}
254
255#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
256
257int __ioremap_explicit(unsigned long pa, unsigned long ea,
258 unsigned long size, unsigned long flags)
259{
260 struct vm_struct *area;
58366af5 261 void __iomem *ret;
1da177e4
LT
262
263 /* For now, require page-aligned values for pa, ea, and size */
264 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
265 !IS_PAGE_ALIGNED(size)) {
266 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
267 return 1;
268 }
269
270 if (!mem_init_done) {
271 /* Two things to consider in this case:
272 * 1) No records will be kept (imalloc, etc) that the region
273 * has been remapped
274 * 2) It won't be easy to iounmap() the region later (because
275 * of 1)
276 */
277 ;
278 } else {
279 area = im_get_area(ea, size,
280 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
281 if (area == NULL) {
282 /* Expected when PHB-dlpar is in play */
283 return 1;
284 }
285 if (ea != (unsigned long) area->addr) {
dfbacdc1
BH
286 printk(KERN_ERR "unexpected addr return from "
287 "im_get_area\n");
1da177e4
LT
288 return 1;
289 }
290 }
291
58366af5
BH
292 ret = __ioremap_com(pa, pa, ea, size, flags);
293 if (ret == NULL) {
294 printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
295 return 1;
296 }
297 if (ret != (void *) ea) {
1da177e4
LT
298 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
299 return 1;
300 }
301
302 return 0;
303}
304
1da177e4
LT
305/*
306 * Unmap an IO region and remove it from imalloc'd list.
307 * Access to IO memory should be serialized by driver.
308 * This code is modeled after vmalloc code - unmap_vm_area()
309 *
dfbacdc1 310 * XXX what about calls before mem_init_done (ie python_countermeasures())
1da177e4
LT
311 */
312void iounmap(volatile void __iomem *token)
313{
1da177e4
LT
314 void *addr;
315
58366af5 316 if (!mem_init_done)
1da177e4 317 return;
1da177e4
LT
318
319 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
1da177e4 320
20cee16c 321 im_free(addr);
1da177e4
LT
322}
323
324static int iounmap_subset_regions(unsigned long addr, unsigned long size)
325{
326 struct vm_struct *area;
327
328 /* Check whether subsets of this region exist */
329 area = im_get_area(addr, size, IM_REGION_SUPERSET);
330 if (area == NULL)
331 return 1;
332
333 while (area) {
334 iounmap((void __iomem *) area->addr);
335 area = im_get_area(addr, size,
336 IM_REGION_SUPERSET);
337 }
338
339 return 0;
340}
341
342int iounmap_explicit(volatile void __iomem *start, unsigned long size)
343{
344 struct vm_struct *area;
345 unsigned long addr;
346 int rc;
347
348 addr = (unsigned long __force) start & PAGE_MASK;
349
350 /* Verify that the region either exists or is a subset of an existing
351 * region. In the latter case, split the parent region to create
352 * the exact region
353 */
354 area = im_get_area(addr, size,
355 IM_REGION_EXISTS | IM_REGION_SUBSET);
356 if (area == NULL) {
357 /* Determine whether subset regions exist. If so, unmap */
358 rc = iounmap_subset_regions(addr, size);
359 if (rc) {
360 printk(KERN_ERR
361 "%s() cannot unmap nonexistent range 0x%lx\n",
362 __FUNCTION__, addr);
363 return 1;
364 }
365 } else {
366 iounmap((void __iomem *) area->addr);
367 }
368 /*
369 * FIXME! This can't be right:
370 iounmap(area->addr);
371 * Maybe it should be "iounmap(area);"
372 */
373 return 0;
374}
375
376#endif
377
378EXPORT_SYMBOL(ioremap);
379EXPORT_SYMBOL(__ioremap);
380EXPORT_SYMBOL(iounmap);
381
382void free_initmem(void)
383{
384 unsigned long addr;
385
386 addr = (unsigned long)__init_begin;
387 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
388 ClearPageReserved(virt_to_page(addr));
389 set_page_count(virt_to_page(addr), 1);
390 free_page(addr);
391 totalram_pages++;
392 }
393 printk ("Freeing unused kernel memory: %luk freed\n",
394 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
395}
396
397#ifdef CONFIG_BLK_DEV_INITRD
398void free_initrd_mem(unsigned long start, unsigned long end)
399{
400 if (start < end)
401 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
402 for (; start < end; start += PAGE_SIZE) {
403 ClearPageReserved(virt_to_page(start));
404 set_page_count(virt_to_page(start), 1);
405 free_page(start);
406 totalram_pages++;
407 }
408}
409#endif
410
411static DEFINE_SPINLOCK(mmu_context_lock);
412static DEFINE_IDR(mmu_context_idr);
413
414int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
415{
416 int index;
417 int err;
418
419#ifdef CONFIG_HUGETLB_PAGE
420 /* We leave htlb_segs as it was, but for a fork, we need to
421 * clear the huge_pgdir. */
422 mm->context.huge_pgdir = NULL;
423#endif
424
425again:
426 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
427 return -ENOMEM;
428
429 spin_lock(&mmu_context_lock);
430 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
431 spin_unlock(&mmu_context_lock);
432
433 if (err == -EAGAIN)
434 goto again;
435 else if (err)
436 return err;
437
438 if (index > MAX_CONTEXT) {
439 idr_remove(&mmu_context_idr, index);
440 return -ENOMEM;
441 }
442
443 mm->context.id = index;
444
445 return 0;
446}
447
448void destroy_context(struct mm_struct *mm)
449{
450 spin_lock(&mmu_context_lock);
451 idr_remove(&mmu_context_idr, mm->context.id);
452 spin_unlock(&mmu_context_lock);
453
454 mm->context.id = NO_CONTEXT;
455
456 hugetlb_mm_free_pgd(mm);
457}
458
459/*
460 * Do very early mm setup.
461 */
462void __init mm_init_ppc64(void)
463{
464#ifndef CONFIG_PPC_ISERIES
465 unsigned long i;
466#endif
467
468 ppc64_boot_msg(0x100, "MM Init");
469
470 /* This is the story of the IO hole... please, keep seated,
471 * unfortunately, we are out of oxygen masks at the moment.
472 * So we need some rough way to tell where your big IO hole
473 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
474 * that area as well, on POWER4 we don't have one, etc...
475 * We need that as a "hint" when sizing the TCE table on POWER3
476 * So far, the simplest way that seem work well enough for us it
477 * to just assume that the first discontinuity in our physical
478 * RAM layout is the IO hole. That may not be correct in the future
479 * (and isn't on iSeries but then we don't care ;)
480 */
481
482#ifndef CONFIG_PPC_ISERIES
483 for (i = 1; i < lmb.memory.cnt; i++) {
484 unsigned long base, prevbase, prevsize;
485
486 prevbase = lmb.memory.region[i-1].physbase;
487 prevsize = lmb.memory.region[i-1].size;
488 base = lmb.memory.region[i].physbase;
489 if (base > (prevbase + prevsize)) {
490 io_hole_start = prevbase + prevsize;
491 io_hole_size = base - (prevbase + prevsize);
492 break;
493 }
494 }
495#endif /* CONFIG_PPC_ISERIES */
496 if (io_hole_start)
497 printk("IO Hole assumed to be %lx -> %lx\n",
498 io_hole_start, io_hole_start + io_hole_size - 1);
499
500 ppc64_boot_msg(0x100, "MM Init Done");
501}
502
503/*
504 * This is called by /dev/mem to know if a given address has to
505 * be mapped non-cacheable or not
506 */
507int page_is_ram(unsigned long pfn)
508{
509 int i;
510 unsigned long paddr = (pfn << PAGE_SHIFT);
511
512 for (i=0; i < lmb.memory.cnt; i++) {
513 unsigned long base;
514
515#ifdef CONFIG_MSCHUNKS
516 base = lmb.memory.region[i].physbase;
517#else
518 base = lmb.memory.region[i].base;
519#endif
520 if ((paddr >= base) &&
521 (paddr < (base + lmb.memory.region[i].size))) {
522 return 1;
523 }
524 }
525
526 return 0;
527}
528EXPORT_SYMBOL(page_is_ram);
529
530/*
531 * Initialize the bootmem system and give it all the memory we
532 * have available.
533 */
534#ifndef CONFIG_DISCONTIGMEM
535void __init do_init_bootmem(void)
536{
537 unsigned long i;
538 unsigned long start, bootmap_pages;
539 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
540 int boot_mapsize;
541
542 /*
543 * Find an area to use for the bootmem bitmap. Calculate the size of
544 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
545 * Add 1 additional page in case the address isn't page-aligned.
546 */
547 bootmap_pages = bootmem_bootmap_pages(total_pages);
548
549 start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
550 BUG_ON(!start);
551
552 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
553
554 max_pfn = max_low_pfn;
555
556 /* add all physical memory to the bootmem map. Also find the first */
557 for (i=0; i < lmb.memory.cnt; i++) {
558 unsigned long physbase, size;
559
560 physbase = lmb.memory.region[i].physbase;
561 size = lmb.memory.region[i].size;
562 free_bootmem(physbase, size);
563 }
564
565 /* reserve the sections we're already using */
566 for (i=0; i < lmb.reserved.cnt; i++) {
567 unsigned long physbase = lmb.reserved.region[i].physbase;
568 unsigned long size = lmb.reserved.region[i].size;
569
570 reserve_bootmem(physbase, size);
571 }
572}
573
574/*
575 * paging_init() sets up the page tables - in fact we've already done this.
576 */
577void __init paging_init(void)
578{
579 unsigned long zones_size[MAX_NR_ZONES];
580 unsigned long zholes_size[MAX_NR_ZONES];
581 unsigned long total_ram = lmb_phys_mem_size();
582 unsigned long top_of_ram = lmb_end_of_DRAM();
583
584 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
585 top_of_ram, total_ram);
586 printk(KERN_INFO "Memory hole size: %ldMB\n",
587 (top_of_ram - total_ram) >> 20);
588 /*
589 * All pages are DMA-able so we put them all in the DMA zone.
590 */
591 memset(zones_size, 0, sizeof(zones_size));
592 memset(zholes_size, 0, sizeof(zholes_size));
593
594 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
595 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
596
25128092 597 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
598 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
599}
600#endif /* CONFIG_DISCONTIGMEM */
601
602static struct kcore_list kcore_vmem;
603
604static int __init setup_kcore(void)
605{
606 int i;
607
608 for (i=0; i < lmb.memory.cnt; i++) {
609 unsigned long physbase, size;
610 struct kcore_list *kcore_mem;
611
612 physbase = lmb.memory.region[i].physbase;
613 size = lmb.memory.region[i].size;
614
615 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
616 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
617 if (!kcore_mem)
618 panic("mem_init: kmalloc failed\n");
619
620 kclist_add(kcore_mem, __va(physbase), size);
621 }
622
623 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
624
625 return 0;
626}
627module_init(setup_kcore);
628
629void __init mem_init(void)
630{
631#ifdef CONFIG_DISCONTIGMEM
632 int nid;
633#endif
634 pg_data_t *pgdat;
635 unsigned long i;
636 struct page *page;
637 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
638
639 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
640 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
641
642#ifdef CONFIG_DISCONTIGMEM
643 for_each_online_node(nid) {
644 if (NODE_DATA(nid)->node_spanned_pages != 0) {
645 printk("freeing bootmem node %x\n", nid);
646 totalram_pages +=
647 free_all_bootmem_node(NODE_DATA(nid));
648 }
649 }
650#else
651 max_mapnr = num_physpages;
652 totalram_pages += free_all_bootmem();
653#endif
654
655 for_each_pgdat(pgdat) {
656 for (i = 0; i < pgdat->node_spanned_pages; i++) {
408fde81 657 page = pgdat_page_nr(pgdat, i);
1da177e4
LT
658 if (PageReserved(page))
659 reservedpages++;
660 }
661 }
662
663 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
664 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
665 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
666 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
667
668 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
669 "%luk reserved, %luk data, %luk bss, %luk init)\n",
670 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
671 num_physpages << (PAGE_SHIFT-10),
672 codesize >> 10,
673 reservedpages << (PAGE_SHIFT-10),
674 datasize >> 10,
675 bsssize >> 10,
676 initsize >> 10);
677
678 mem_init_done = 1;
679
680#ifdef CONFIG_PPC_ISERIES
681 iommu_vio_init();
682#endif
683 /* Initialize the vDSO */
684 vdso_init();
685}
686
687/*
688 * This is called when a page has been modified by the kernel.
689 * It just marks the page as not i-cache clean. We do the i-cache
690 * flush later when the page is given to a user process, if necessary.
691 */
692void flush_dcache_page(struct page *page)
693{
694 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
695 return;
696 /* avoid an atomic op if possible */
697 if (test_bit(PG_arch_1, &page->flags))
698 clear_bit(PG_arch_1, &page->flags);
699}
700EXPORT_SYMBOL(flush_dcache_page);
701
702void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
703{
704 clear_page(page);
705
706 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
707 return;
708 /*
709 * We shouldnt have to do this, but some versions of glibc
710 * require it (ld.so assumes zero filled pages are icache clean)
711 * - Anton
712 */
713
714 /* avoid an atomic op if possible */
715 if (test_bit(PG_arch_1, &pg->flags))
716 clear_bit(PG_arch_1, &pg->flags);
717}
718EXPORT_SYMBOL(clear_user_page);
719
720void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
721 struct page *pg)
722{
723 copy_page(vto, vfrom);
724
725 /*
726 * We should be able to use the following optimisation, however
727 * there are two problems.
728 * Firstly a bug in some versions of binutils meant PLT sections
729 * were not marked executable.
730 * Secondly the first word in the GOT section is blrl, used
731 * to establish the GOT address. Until recently the GOT was
732 * not marked executable.
733 * - Anton
734 */
735#if 0
736 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
737 return;
738#endif
739
740 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
741 return;
742
743 /* avoid an atomic op if possible */
744 if (test_bit(PG_arch_1, &pg->flags))
745 clear_bit(PG_arch_1, &pg->flags);
746}
747
748void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
749 unsigned long addr, int len)
750{
751 unsigned long maddr;
752
753 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
754 flush_icache_range(maddr, maddr + len);
755}
756EXPORT_SYMBOL(flush_icache_user_range);
757
758/*
759 * This is called at the end of handling a user page fault, when the
760 * fault has been handled by updating a PTE in the linux page tables.
761 * We use it to preload an HPTE into the hash table corresponding to
762 * the updated linux PTE.
763 *
764 * This must always be called with the mm->page_table_lock held
765 */
766void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
767 pte_t pte)
768{
769 unsigned long vsid;
770 void *pgdir;
771 pte_t *ptep;
772 int local = 0;
773 cpumask_t tmp;
774 unsigned long flags;
775
776 /* handle i-cache coherency */
777 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
778 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
779 unsigned long pfn = pte_pfn(pte);
780 if (pfn_valid(pfn)) {
781 struct page *page = pfn_to_page(pfn);
782 if (!PageReserved(page)
783 && !test_bit(PG_arch_1, &page->flags)) {
784 __flush_dcache_icache(page_address(page));
785 set_bit(PG_arch_1, &page->flags);
786 }
787 }
788 }
789
790 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
791 if (!pte_young(pte))
792 return;
793
794 pgdir = vma->vm_mm->pgd;
795 if (pgdir == NULL)
796 return;
797
798 ptep = find_linux_pte(pgdir, ea);
799 if (!ptep)
800 return;
801
802 vsid = get_vsid(vma->vm_mm->context.id, ea);
803
804 local_irq_save(flags);
805 tmp = cpumask_of_cpu(smp_processor_id());
806 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
807 local = 1;
808
809 __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
810 0x300, local);
811 local_irq_restore(flags);
812}
813
814void __iomem * reserve_phb_iospace(unsigned long size)
815{
816 void __iomem *virt_addr;
817
818 if (phbs_io_bot >= IMALLOC_BASE)
819 panic("reserve_phb_iospace(): phb io space overflow\n");
820
821 virt_addr = (void __iomem *) phbs_io_bot;
822 phbs_io_bot += size;
823
824 return virt_addr;
825}
826
827kmem_cache_t *zero_cache;
828
829static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
830{
831 memset(pte, 0, PAGE_SIZE);
832}
833
834void pgtable_cache_init(void)
835{
836 zero_cache = kmem_cache_create("zero",
837 PAGE_SIZE,
838 0,
839 SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
840 zero_ctor,
841 NULL);
842 if (!zero_cache)
843 panic("pgtable_cache_init(): could not create zero_cache!\n");
844}
845
846pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
847 unsigned long size, pgprot_t vma_prot)
848{
849 if (ppc_md.phys_mem_access_prot)
850 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
851
852 if (!page_is_ram(addr >> PAGE_SHIFT))
853 vma_prot = __pgprot(pgprot_val(vma_prot)
854 | _PAGE_GUARDED | _PAGE_NO_CACHE);
855 return vma_prot;
856}
857EXPORT_SYMBOL(phys_mem_access_prot);