]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/riscv/include/asm/io.h
RISC-V: use RISCV_{INT,SHORT} instead of {INT,SHORT} for asm macros
[mirror_ubuntu-bionic-kernel.git] / arch / riscv / include / asm / io.h
CommitLineData
fab957c1
PD
1/*
2 * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
3 * which was based on arch/arm/include/io.h
4 *
5 * Copyright (C) 1996-2000 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 * Copyright (C) 2014 Regents of the University of California
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation, version 2.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19#ifndef _ASM_RISCV_IO_H
20#define _ASM_RISCV_IO_H
21
22#ifdef CONFIG_MMU
23
24extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
25
26/*
27 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
28 * change the properties of memory regions. This should be fixed by the
29 * upcoming platform spec.
30 */
31#define ioremap_nocache(addr, size) ioremap((addr), (size))
32#define ioremap_wc(addr, size) ioremap((addr), (size))
33#define ioremap_wt(addr, size) ioremap((addr), (size))
34
35extern void iounmap(void __iomem *addr);
36
37#endif /* CONFIG_MMU */
38
39/* Generic IO read/write. These perform native-endian accesses. */
40#define __raw_writeb __raw_writeb
41static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
42{
43 asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
44}
45
46#define __raw_writew __raw_writew
47static inline void __raw_writew(u16 val, volatile void __iomem *addr)
48{
49 asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
50}
51
52#define __raw_writel __raw_writel
53static inline void __raw_writel(u32 val, volatile void __iomem *addr)
54{
55 asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
56}
57
58#ifdef CONFIG_64BIT
59#define __raw_writeq __raw_writeq
60static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
61{
62 asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
63}
64#endif
65
66#define __raw_readb __raw_readb
67static inline u8 __raw_readb(const volatile void __iomem *addr)
68{
69 u8 val;
70
71 asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
72 return val;
73}
74
75#define __raw_readw __raw_readw
76static inline u16 __raw_readw(const volatile void __iomem *addr)
77{
78 u16 val;
79
80 asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
81 return val;
82}
83
84#define __raw_readl __raw_readl
85static inline u32 __raw_readl(const volatile void __iomem *addr)
86{
87 u32 val;
88
89 asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
90 return val;
91}
92
93#ifdef CONFIG_64BIT
94#define __raw_readq __raw_readq
95static inline u64 __raw_readq(const volatile void __iomem *addr)
96{
97 u64 val;
98
99 asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
100 return val;
101}
102#endif
103
104/*
105 * FIXME: I'm flip-flopping on whether or not we should keep this or enforce
106 * the ordering with I/O on spinlocks like PowerPC does. The worry is that
107 * drivers won't get this correct, but I also don't want to introduce a fence
108 * into the lock code that otherwise only uses AMOs (and is essentially defined
109 * by the ISA to be correct). For now I'm leaving this here: "o,w" is
110 * sufficient to ensure that all writes to the device have completed before the
111 * write to the spinlock is allowed to commit. I surmised this from reading
112 * "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt.
113 */
114#define mmiowb() __asm__ __volatile__ ("fence o,w" : : : "memory");
115
116/*
117 * Unordered I/O memory access primitives. These are even more relaxed than
118 * the relaxed versions, as they don't even order accesses between successive
119 * operations to the I/O regions.
120 */
121#define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; })
122#define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
123#define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
124
125#define writeb_cpu(v,c) ((void)__raw_writeb((v),(c)))
126#define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
127#define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
128
129#ifdef CONFIG_64BIT
130#define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
131#define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
132#endif
133
134/*
135 * Relaxed I/O memory access primitives. These follow the Device memory
136 * ordering rules but do not guarantee any ordering relative to Normal memory
137 * accesses. These are defined to order the indicated access (either a read or
138 * write) with all other I/O memory accesses. Since the platform specification
139 * defines that all I/O regions are strongly ordered on channel 2, no explicit
140 * fences are required to enforce this ordering.
141 */
142/* FIXME: These are now the same as asm-generic */
143#define __io_rbr() do {} while (0)
144#define __io_rar() do {} while (0)
145#define __io_rbw() do {} while (0)
146#define __io_raw() do {} while (0)
147
148#define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
149#define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
150#define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
151
152#define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
153#define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
154#define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
155
156#ifdef CONFIG_64BIT
157#define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
158#define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
159#endif
160
161/*
162 * I/O memory access primitives. Reads are ordered relative to any
163 * following Normal memory access. Writes are ordered relative to any prior
164 * Normal memory access. The memory barriers here are necessary as RISC-V
165 * doesn't define any ordering between the memory space and the I/O space.
166 */
167#define __io_br() do {} while (0)
168#define __io_ar() __asm__ __volatile__ ("fence i,r" : : : "memory");
169#define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory");
170#define __io_aw() do {} while (0)
171
172#define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; })
173#define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; })
174#define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; })
175
176#define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
177#define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
178#define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
179
180#ifdef CONFIG_64BIT
181#define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; })
182#define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
183#endif
184
185/*
186 * Emulation routines for the port-mapped IO space used by some PCI drivers.
187 * These are defined as being "fully synchronous", but also "not guaranteed to
188 * be fully ordered with respect to other memory and I/O operations". We're
189 * going to be on the safe side here and just make them:
190 * - Fully ordered WRT each other, by bracketing them with two fences. The
191 * outer set contains both I/O so inX is ordered with outX, while the inner just
192 * needs the type of the access (I for inX and O for outX).
193 * - Ordered in the same manner as readX/writeX WRT memory by subsuming their
194 * fences.
195 * - Ordered WRT timer reads, so udelay and friends don't get elided by the
196 * implementation.
197 * Note that there is no way to actually enforce that outX is a non-posted
198 * operation on RISC-V, but hopefully the timer ordering constraint is
199 * sufficient to ensure this works sanely on controllers that support I/O
200 * writes.
201 */
202#define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory");
203#define __io_par() __asm__ __volatile__ ("fence i,ior" : : : "memory");
204#define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory");
205#define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory");
206
207#define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
208#define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
209#define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
210
211#define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
212#define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
213#define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
214
215#ifdef CONFIG_64BIT
216#define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; })
217#define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
218#endif
219
220/*
221 * Accesses from a single hart to a single I/O address must be ordered. This
222 * allows us to use the raw read macros, but we still need to fence before and
223 * after the block to ensure ordering WRT other macros. These are defined to
224 * perform host-endian accesses so we use __raw instead of __cpu.
225 */
226#define __io_reads_ins(port, ctype, len, bfence, afence) \
227 static inline void __ ## port ## len(const volatile void __iomem *addr, \
228 void *buffer, \
229 unsigned int count) \
230 { \
231 bfence; \
232 if (count) { \
233 ctype *buf = buffer; \
234 \
235 do { \
236 ctype x = __raw_read ## len(addr); \
237 *buf++ = x; \
238 } while (--count); \
239 } \
240 afence; \
241 }
242
243#define __io_writes_outs(port, ctype, len, bfence, afence) \
244 static inline void __ ## port ## len(volatile void __iomem *addr, \
245 const void *buffer, \
246 unsigned int count) \
247 { \
248 bfence; \
249 if (count) { \
250 const ctype *buf = buffer; \
251 \
252 do { \
253 __raw_writeq(*buf++, addr); \
254 } while (--count); \
255 } \
256 afence; \
257 }
258
259__io_reads_ins(reads, u8, b, __io_br(), __io_ar())
260__io_reads_ins(reads, u16, w, __io_br(), __io_ar())
261__io_reads_ins(reads, u32, l, __io_br(), __io_ar())
262#define readsb(addr, buffer, count) __readsb(addr, buffer, count)
263#define readsw(addr, buffer, count) __readsw(addr, buffer, count)
264#define readsl(addr, buffer, count) __readsl(addr, buffer, count)
265
266__io_reads_ins(ins, u8, b, __io_pbr(), __io_par())
267__io_reads_ins(ins, u16, w, __io_pbr(), __io_par())
268__io_reads_ins(ins, u32, l, __io_pbr(), __io_par())
269#define insb(addr, buffer, count) __insb((void __iomem *)addr, buffer, count)
270#define insw(addr, buffer, count) __insw((void __iomem *)addr, buffer, count)
271#define insl(addr, buffer, count) __insl((void __iomem *)addr, buffer, count)
272
273__io_writes_outs(writes, u8, b, __io_bw(), __io_aw())
274__io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
275__io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
276#define writesb(addr, buffer, count) __writesb(addr, buffer, count)
277#define writesw(addr, buffer, count) __writesw(addr, buffer, count)
278#define writesl(addr, buffer, count) __writesl(addr, buffer, count)
279
280__io_writes_outs(outs, u8, b, __io_pbw(), __io_paw())
281__io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
282__io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
283#define outsb(addr, buffer, count) __outsb((void __iomem *)addr, buffer, count)
284#define outsw(addr, buffer, count) __outsw((void __iomem *)addr, buffer, count)
285#define outsl(addr, buffer, count) __outsl((void __iomem *)addr, buffer, count)
286
287#ifdef CONFIG_64BIT
288__io_reads_ins(reads, u64, q, __io_br(), __io_ar())
289#define readsq(addr, buffer, count) __readsq(addr, buffer, count)
290
291__io_reads_ins(ins, u64, q, __io_pbr(), __io_par())
292#define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
293
294__io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
295#define writesq(addr, buffer, count) __writesq(addr, buffer, count)
296
297__io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
298#define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
299#endif
300
301#include <asm-generic/io.h>
302
303#endif /* _ASM_RISCV_IO_H */