]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/s390/include/asm/pgtable.h
s390/mm: add guest ASCE TLB flush optimization
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
1da177e4 14/*
a1c843b8
MS
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
1da177e4
LT
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
9789db08 27#include <linux/sched.h>
2dcea57a 28#include <linux/mm_types.h>
abf09bed 29#include <linux/page-flags.h>
527e30b4 30#include <linux/radix-tree.h>
37cd944c 31#include <linux/atomic.h>
1da177e4 32#include <asm/bug.h>
b2fa47e6 33#include <asm/page.h>
1da177e4 34
0ccb32c9 35extern pgd_t swapper_pg_dir[];
1da177e4 36extern void paging_init(void);
2b67fc46 37extern void vmem_map_init(void);
e8a97e42
HC
38pmd_t *vmem_pmd_alloc(void);
39pte_t *vmem_pte_alloc(void);
1da177e4 40
37cd944c
HC
41enum {
42 PG_DIRECT_MAP_4K = 0,
43 PG_DIRECT_MAP_1M,
44 PG_DIRECT_MAP_2G,
45 PG_DIRECT_MAP_MAX
46};
47
48extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49
50static inline void update_page_count(int level, long count)
51{
52 if (IS_ENABLED(CONFIG_PROC_FS))
53 atomic_long_add(count, &direct_pages_count[level]);
54}
55
56struct seq_file;
57void arch_report_meminfo(struct seq_file *m);
58
1da177e4
LT
59/*
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
62 */
4b3073e1 63#define update_mmu_cache(vma, address, ptep) do { } while (0)
b113da65 64#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
65
66/*
238ec4ef 67 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
68 * for zero-mapped memory areas etc..
69 */
238ec4ef
MS
70
71extern unsigned long empty_zero_page;
72extern unsigned long zero_page_mask;
73
74#define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 77#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 78
4f2e2903 79/* TODO: s390 cannot support io_remap_pfn_range... */
1da177e4
LT
80#endif /* !__ASSEMBLY__ */
81
82/*
83 * PMD_SHIFT determines the size of the area a second-level page
84 * table can map
85 * PGDIR_SHIFT determines what a third-level page table entry can map
86 */
5a79859a
HC
87#define PMD_SHIFT 20
88#define PUD_SHIFT 31
1aea9b3f
MS
89#define P4D_SHIFT 42
90#define PGDIR_SHIFT 53
1da177e4
LT
91
92#define PMD_SIZE (1UL << PMD_SHIFT)
93#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
94#define PUD_SIZE (1UL << PUD_SHIFT)
95#define PUD_MASK (~(PUD_SIZE-1))
1aea9b3f
MS
96#define P4D_SIZE (1UL << P4D_SHIFT)
97#define P4D_MASK (~(P4D_SIZE-1))
5a216a20
MS
98#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
99#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
100
101/*
102 * entries per page directory level: the S390 is two-level, so
103 * we don't really have any PMD directory physically.
104 * for S390 segment-table entries are combined to one PGD
105 * that leads to 1024 pte per pgd
106 */
146e4b3c 107#define PTRS_PER_PTE 256
146e4b3c 108#define PTRS_PER_PMD 2048
5a216a20 109#define PTRS_PER_PUD 2048
1aea9b3f 110#define PTRS_PER_P4D 2048
146e4b3c 111#define PTRS_PER_PGD 2048
1da177e4 112
d016bf7e 113#define FIRST_USER_ADDRESS 0UL
d455a369 114
1da177e4
LT
115#define pte_ERROR(e) \
116 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
117#define pmd_ERROR(e) \
118 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
119#define pud_ERROR(e) \
120 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1aea9b3f
MS
121#define p4d_ERROR(e) \
122 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
1da177e4
LT
123#define pgd_ERROR(e) \
124 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
125
126#ifndef __ASSEMBLY__
127/*
a1c843b8
MS
128 * The vmalloc and module area will always be on the topmost area of the
129 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
c972cc60
HC
130 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
131 * modules will reside. That makes sure that inter module branches always
132 * happen without trampolines and in addition the placement within a 2GB frame
133 * is branch prediction unit friendly.
8b62bc96 134 */
239a6425 135extern unsigned long VMALLOC_START;
14045ebf
MS
136extern unsigned long VMALLOC_END;
137extern struct page *vmemmap;
239a6425 138
14045ebf 139#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
5fd9c6e2 140
c972cc60
HC
141extern unsigned long MODULES_VADDR;
142extern unsigned long MODULES_END;
143#define MODULES_VADDR MODULES_VADDR
144#define MODULES_END MODULES_END
145#define MODULES_LEN (1UL << 31)
c972cc60 146
c933146a
HC
147static inline int is_module_addr(void *addr)
148{
c933146a
HC
149 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
150 if (addr < (void *)MODULES_VADDR)
151 return 0;
152 if (addr > (void *)MODULES_END)
153 return 0;
c933146a
HC
154 return 1;
155}
156
1da177e4 157/*
1da177e4 158 * A 64 bit pagetable entry of S390 has following format:
6a985c61 159 * | PFRA |0IPC| OS |
1da177e4
LT
160 * 0000000000111111111122222222223333333333444444444455555555556666
161 * 0123456789012345678901234567890123456789012345678901234567890123
162 *
163 * I Page-Invalid Bit: Page is not available for address-translation
164 * P Page-Protection Bit: Store access not possible for page
6a985c61 165 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
166 *
167 * A 64 bit segmenttable entry of S390 has following format:
168 * | P-table origin | TT
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Segment-Invalid Bit: Segment is not available for address-translation
173 * C Common-Segment Bit: Segment is not private (PoP 3-30)
174 * P Page-Protection Bit: Store access not possible for page
175 * TT Type 00
176 *
177 * A 64 bit region table entry of S390 has following format:
178 * | S-table origin | TF TTTL
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
181 *
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * TT Type 01
184 * TF
190a1d72 185 * TL Table length
1da177e4
LT
186 *
187 * The 64 bit regiontable origin of S390 has following format:
188 * | region table origon | DTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
191 *
192 * X Space-Switch event:
193 * G Segment-Invalid Bit:
194 * P Private-Space Bit:
195 * S Storage-Alteration:
196 * R Real space
197 * TL Table-Length:
198 *
199 * A storage key has the following format:
200 * | ACC |F|R|C|0|
201 * 0 3 4 5 6 7
202 * ACC: access key
203 * F : fetch protection bit
204 * R : referenced bit
205 * C : changed bit
206 */
207
208/* Hardware bits in the page table entry */
57d7f939 209#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
e5098611 210#define _PAGE_PROTECT 0x200 /* HW read-only bit */
83377484 211#define _PAGE_INVALID 0x400 /* HW invalid bit */
e5098611 212#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
3610cce8
MS
213
214/* Software bits in the page table entry */
e5098611 215#define _PAGE_PRESENT 0x001 /* SW pte present bit */
e5098611
MS
216#define _PAGE_YOUNG 0x004 /* SW pte young bit */
217#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
0944fe3f
MS
218#define _PAGE_READ 0x010 /* SW pte read bit */
219#define _PAGE_WRITE 0x020 /* SW pte write bit */
220#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
b31288fa 221#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
a08cb629 222#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 223
5614dd92
MS
224#ifdef CONFIG_MEM_SOFT_DIRTY
225#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
226#else
227#define _PAGE_SOFT_DIRTY 0x000
228#endif
229
138c9021 230/* Set of bits not changed in pte_modify */
6a5c1482 231#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
5614dd92 232 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
53492b1d 233
83377484 234/*
6e76d4b2
KS
235 * handle_pte_fault uses pte_present and pte_none to find out the pte type
236 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
237 * distinguish present from not-present ptes. It is changed only with the page
238 * table lock held.
83377484 239 *
e5098611 240 * The following table gives the different possible bit combinations for
a1c843b8
MS
241 * the pte hardware and software bits in the last 12 bits of a pte
242 * (. unassigned bit, x don't care, t swap type):
83377484 243 *
0944fe3f
MS
244 * 842100000000
245 * 000084210000
246 * 000000008421
a1c843b8
MS
247 * .IR.uswrdy.p
248 * empty .10.00000000
249 * swap .11..ttttt.0
250 * prot-none, clean, old .11.xx0000.1
251 * prot-none, clean, young .11.xx0001.1
bc29b7ac
GS
252 * prot-none, dirty, old .11.xx0010.1
253 * prot-none, dirty, young .11.xx0011.1
a1c843b8
MS
254 * read-only, clean, old .11.xx0100.1
255 * read-only, clean, young .01.xx0101.1
256 * read-only, dirty, old .11.xx0110.1
257 * read-only, dirty, young .01.xx0111.1
258 * read-write, clean, old .11.xx1100.1
259 * read-write, clean, young .01.xx1101.1
260 * read-write, dirty, old .10.xx1110.1
261 * read-write, dirty, young .00.xx1111.1
262 * HW-bits: R read-only, I invalid
263 * SW-bits: p present, y young, d dirty, r read, w write, s special,
264 * u unused, l large
e5098611 265 *
a1c843b8
MS
266 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
267 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
268 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
83377484
MS
269 */
270
3610cce8
MS
271/* Bits in the segment/region table address-space-control-element */
272#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
273#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
274#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
275#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
276#define _ASCE_REAL_SPACE 0x20 /* real space control */
277#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
278#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
279#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
280#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
281#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
282#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
283
284/* Bits in the region table entry */
285#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
e5098611 286#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
57d7f939 287#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
4be130a0 288#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
e5098611 289#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
3610cce8
MS
290#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
291#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
292#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
293#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
294#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
295
296#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
e5098611 297#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
3610cce8 298#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
e5098611 299#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
3610cce8 300#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
e5098611 301#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
3610cce8 302
9e20b4da 303#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
2dffdcba
HC
304#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
305#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
306#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
307#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
308#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
309
310#ifdef CONFIG_MEM_SOFT_DIRTY
311#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
312#else
313#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
314#endif
315
1aea9b3f
MS
316#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
317#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
d08de8e2 318
1da177e4 319/* Bits in the segment table entry */
0944fe3f 320#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
152125b7 321#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
ea81531d 322#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
3610cce8 323#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
e5098611 324#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
57d7f939 325#define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
e5098611 326#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
1da177e4 327
3610cce8 328#define _SEGMENT_ENTRY (0)
e5098611 329#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
3610cce8 330
152125b7
MS
331#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
332#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
152125b7 333#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
bc29b7ac
GS
334#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
335#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
0944fe3f 336
5614dd92
MS
337#ifdef CONFIG_MEM_SOFT_DIRTY
338#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
339#else
340#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
341#endif
342
0944fe3f 343/*
2dffdcba
HC
344 * Segment table and region3 table entry encoding
345 * (R = read-only, I = invalid, y = young bit):
bc29b7ac 346 * dy..R...I...wr
152125b7
MS
347 * prot-none, clean, old 00..1...1...00
348 * prot-none, clean, young 01..1...1...00
349 * prot-none, dirty, old 10..1...1...00
350 * prot-none, dirty, young 11..1...1...00
bc29b7ac
GS
351 * read-only, clean, old 00..1...1...01
352 * read-only, clean, young 01..1...0...01
353 * read-only, dirty, old 10..1...1...01
354 * read-only, dirty, young 11..1...0...01
152125b7
MS
355 * read-write, clean, old 00..1...1...11
356 * read-write, clean, young 01..1...0...11
357 * read-write, dirty, old 10..0...1...11
358 * read-write, dirty, young 11..0...0...11
0944fe3f
MS
359 * The segment table origin is used to distinguish empty (origin==0) from
360 * read-write, old segment table entries (origin!=0)
a1c843b8
MS
361 * HW-bits: R read-only, I invalid
362 * SW-bits: y young, d dirty, r read, w write
0944fe3f 363 */
e5098611 364
6c61cfe9 365/* Page status table bits for virtualization */
0d0dafc1
MS
366#define PGSTE_ACC_BITS 0xf000000000000000UL
367#define PGSTE_FP_BIT 0x0800000000000000UL
368#define PGSTE_PCL_BIT 0x0080000000000000UL
369#define PGSTE_HR_BIT 0x0040000000000000UL
370#define PGSTE_HC_BIT 0x0020000000000000UL
371#define PGSTE_GR_BIT 0x0004000000000000UL
372#define PGSTE_GC_BIT 0x0002000000000000UL
0a61b222
MS
373#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
374#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
4be130a0 375#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
6c61cfe9 376
b31288fa 377/* Guest Page State used for virtualization */
2d42f947
CI
378#define _PGSTE_GPS_ZERO 0x0000000080000000UL
379#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
380#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
381#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
382#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
383#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
b31288fa 384
1da177e4 385/*
3610cce8
MS
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
1da177e4 389 */
3610cce8
MS
390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
1da177e4 392
1da177e4 393/*
9282ed92 394 * Page protection definitions.
1da177e4 395 */
bc29b7ac 396#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
57d7f939
MS
397#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
398 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
399#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
0944fe3f 400 _PAGE_INVALID | _PAGE_PROTECT)
57d7f939
MS
401#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
0944fe3f
MS
404 _PAGE_INVALID | _PAGE_PROTECT)
405
406#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 407 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
0944fe3f 408#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 409 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
0944fe3f 410#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
57d7f939
MS
411 _PAGE_PROTECT | _PAGE_NOEXEC)
412#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY)
1da177e4
LT
414
415/*
043d0708
MS
416 * On s390 the page table entry has an invalid bit and a read-only bit.
417 * Read permission implies execute permission and write permission
418 * implies read permission.
1da177e4
LT
419 */
420 /*xwr*/
9282ed92 421#define __P000 PAGE_NONE
57d7f939
MS
422#define __P001 PAGE_RO
423#define __P010 PAGE_RO
424#define __P011 PAGE_RO
425#define __P100 PAGE_RX
426#define __P101 PAGE_RX
427#define __P110 PAGE_RX
428#define __P111 PAGE_RX
9282ed92
GS
429
430#define __S000 PAGE_NONE
57d7f939
MS
431#define __S001 PAGE_RO
432#define __S010 PAGE_RW
433#define __S011 PAGE_RW
434#define __S100 PAGE_RX
435#define __S101 PAGE_RX
436#define __S110 PAGE_RWX
437#define __S111 PAGE_RWX
1da177e4 438
106c992a
GS
439/*
440 * Segment entry (large page) protection definitions.
441 */
e5098611
MS
442#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
443 _SEGMENT_ENTRY_PROTECT)
57d7f939
MS
444#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
445 _SEGMENT_ENTRY_READ | \
446 _SEGMENT_ENTRY_NOEXEC)
447#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
152125b7 448 _SEGMENT_ENTRY_READ)
57d7f939
MS
449#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_WRITE | \
451 _SEGMENT_ENTRY_NOEXEC)
452#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
152125b7 453 _SEGMENT_ENTRY_WRITE)
2dffdcba
HC
454#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
455 _SEGMENT_ENTRY_LARGE | \
456 _SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
459 _SEGMENT_ENTRY_DIRTY | \
460 _SEGMENT_ENTRY_NOEXEC)
2dffdcba
HC
461#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
465 _SEGMENT_ENTRY_PROTECT | \
466 _SEGMENT_ENTRY_NOEXEC)
2dffdcba
HC
467
468/*
469 * Region3 entry (large page) protection definitions.
470 */
471
472#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
473 _REGION3_ENTRY_LARGE | \
474 _REGION3_ENTRY_READ | \
475 _REGION3_ENTRY_WRITE | \
476 _REGION3_ENTRY_YOUNG | \
57d7f939
MS
477 _REGION3_ENTRY_DIRTY | \
478 _REGION_ENTRY_NOEXEC)
2dffdcba
HC
479#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
480 _REGION3_ENTRY_LARGE | \
481 _REGION3_ENTRY_READ | \
482 _REGION3_ENTRY_YOUNG | \
57d7f939
MS
483 _REGION_ENTRY_PROTECT | \
484 _REGION_ENTRY_NOEXEC)
106c992a 485
b2fa47e6
MS
486static inline int mm_has_pgste(struct mm_struct *mm)
487{
488#ifdef CONFIG_PGSTE
489 if (unlikely(mm->context.has_pgste))
490 return 1;
491#endif
492 return 0;
493}
65eef335 494
0b46e0a3
MS
495static inline int mm_alloc_pgste(struct mm_struct *mm)
496{
497#ifdef CONFIG_PGSTE
498 if (unlikely(mm->context.alloc_pgste))
499 return 1;
500#endif
501 return 0;
502}
503
2faee8ff
DD
504/*
505 * In the case that a guest uses storage keys
506 * faults should no longer be backed by zero pages
507 */
508#define mm_forbids_zeropage mm_use_skey
65eef335
DD
509static inline int mm_use_skey(struct mm_struct *mm)
510{
511#ifdef CONFIG_PGSTE
512 if (mm->context.use_skey)
513 return 1;
514#endif
515 return 0;
516}
517
4ccccc52
HC
518static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
519{
520 register unsigned long reg2 asm("2") = old;
521 register unsigned long reg3 asm("3") = new;
522 unsigned long address = (unsigned long)ptr | 1;
523
524 asm volatile(
525 " csp %0,%3"
526 : "+d" (reg2), "+m" (*ptr)
527 : "d" (reg3), "d" (address)
528 : "cc");
529}
530
e8a97e42
HC
531static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
532{
533 register unsigned long reg2 asm("2") = old;
534 register unsigned long reg3 asm("3") = new;
535 unsigned long address = (unsigned long)ptr | 1;
536
537 asm volatile(
538 " .insn rre,0xb98a0000,%0,%3"
539 : "+d" (reg2), "+m" (*ptr)
540 : "d" (reg3), "d" (address)
541 : "cc");
542}
543
544#define CRDTE_DTT_PAGE 0x00UL
545#define CRDTE_DTT_SEGMENT 0x10UL
546#define CRDTE_DTT_REGION3 0x14UL
547#define CRDTE_DTT_REGION2 0x18UL
548#define CRDTE_DTT_REGION1 0x1cUL
549
550static inline void crdte(unsigned long old, unsigned long new,
551 unsigned long table, unsigned long dtt,
552 unsigned long address, unsigned long asce)
553{
554 register unsigned long reg2 asm("2") = old;
555 register unsigned long reg3 asm("3") = new;
556 register unsigned long reg4 asm("4") = table | dtt;
557 register unsigned long reg5 asm("5") = address;
558
559 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
560 : "+d" (reg2)
561 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
562 : "memory", "cc");
563}
564
1da177e4 565/*
cc18b460 566 * pgd/p4d/pud/pmd/pte query functions
1da177e4 567 */
cc18b460
HC
568static inline int pgd_folded(pgd_t pgd)
569{
570 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
571}
572
5a216a20
MS
573static inline int pgd_present(pgd_t pgd)
574{
cc18b460 575 if (pgd_folded(pgd))
6252d702 576 return 1;
5a216a20
MS
577 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
578}
579
580static inline int pgd_none(pgd_t pgd)
581{
cc18b460 582 if (pgd_folded(pgd))
6252d702 583 return 0;
e5098611 584 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
5a216a20
MS
585}
586
587static inline int pgd_bad(pgd_t pgd)
588{
6252d702
MS
589 /*
590 * With dynamic page table levels the pgd can be a region table
591 * entry or a segment table entry. Check for the bit that are
592 * invalid for either table entry.
593 */
5a216a20 594 unsigned long mask =
e5098611 595 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
596 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
597 return (pgd_val(pgd) & mask) != 0;
598}
190a1d72 599
cc18b460
HC
600static inline int p4d_folded(p4d_t p4d)
601{
602 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
603}
604
1aea9b3f
MS
605static inline int p4d_present(p4d_t p4d)
606{
cc18b460 607 if (p4d_folded(p4d))
1aea9b3f
MS
608 return 1;
609 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
610}
611
612static inline int p4d_none(p4d_t p4d)
613{
cc18b460 614 if (p4d_folded(p4d))
1aea9b3f
MS
615 return 0;
616 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
617}
618
619static inline unsigned long p4d_pfn(p4d_t p4d)
620{
621 unsigned long origin_mask;
622
623 origin_mask = _REGION_ENTRY_ORIGIN;
624 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
625}
626
cc18b460
HC
627static inline int pud_folded(pud_t pud)
628{
629 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
630}
631
190a1d72 632static inline int pud_present(pud_t pud)
1da177e4 633{
cc18b460 634 if (pud_folded(pud))
6252d702 635 return 1;
0d017923 636 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
637}
638
190a1d72 639static inline int pud_none(pud_t pud)
1da177e4 640{
cc18b460 641 if (pud_folded(pud))
6252d702 642 return 0;
d08de8e2 643 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
1da177e4
LT
644}
645
18da2369
HC
646static inline int pud_large(pud_t pud)
647{
648 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
649 return 0;
650 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
651}
652
9e20b4da
HC
653static inline unsigned long pud_pfn(pud_t pud)
654{
655 unsigned long origin_mask;
656
f96c6f72 657 origin_mask = _REGION_ENTRY_ORIGIN;
9e20b4da
HC
658 if (pud_large(pud))
659 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
660 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
661}
662
d08de8e2
GS
663static inline int pmd_large(pmd_t pmd)
664{
665 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
666}
667
668static inline int pmd_bad(pmd_t pmd)
669{
670 if (pmd_large(pmd))
671 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
673}
674
190a1d72 675static inline int pud_bad(pud_t pud)
1da177e4 676{
d08de8e2
GS
677 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
678 return pmd_bad(__pmd(pud_val(pud)));
679 if (pud_large(pud))
680 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
681 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
1da177e4
LT
682}
683
1aea9b3f
MS
684static inline int p4d_bad(p4d_t p4d)
685{
686 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
687 return pud_bad(__pud(p4d_val(p4d)));
688 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
689}
690
4448aaf0 691static inline int pmd_present(pmd_t pmd)
1da177e4 692{
54397bb0 693 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
694}
695
4448aaf0 696static inline int pmd_none(pmd_t pmd)
1da177e4 697{
54397bb0 698 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
699}
700
7cded342 701static inline unsigned long pmd_pfn(pmd_t pmd)
0944fe3f 702{
152125b7
MS
703 unsigned long origin_mask;
704
705 origin_mask = _SEGMENT_ENTRY_ORIGIN;
706 if (pmd_large(pmd))
707 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
708 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
0944fe3f
MS
709}
710
1ae1c1d0
GS
711#define __HAVE_ARCH_PMD_WRITE
712static inline int pmd_write(pmd_t pmd)
713{
152125b7
MS
714 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
715}
716
717static inline int pmd_dirty(pmd_t pmd)
718{
719 int dirty = 1;
720 if (pmd_large(pmd))
721 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
722 return dirty;
1ae1c1d0
GS
723}
724
725static inline int pmd_young(pmd_t pmd)
726{
152125b7
MS
727 int young = 1;
728 if (pmd_large(pmd))
0944fe3f 729 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
0944fe3f 730 return young;
1ae1c1d0
GS
731}
732
e5098611 733static inline int pte_present(pte_t pte)
1da177e4 734{
e5098611
MS
735 /* Bit pattern: (pte & 0x001) == 0x001 */
736 return (pte_val(pte) & _PAGE_PRESENT) != 0;
1da177e4
LT
737}
738
e5098611 739static inline int pte_none(pte_t pte)
1da177e4 740{
e5098611
MS
741 /* Bit pattern: pte == 0x400 */
742 return pte_val(pte) == _PAGE_INVALID;
1da177e4
LT
743}
744
b31288fa
KW
745static inline int pte_swap(pte_t pte)
746{
a1c843b8
MS
747 /* Bit pattern: (pte & 0x201) == 0x200 */
748 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
749 == _PAGE_PROTECT;
b31288fa
KW
750}
751
7e675137
NP
752static inline int pte_special(pte_t pte)
753{
a08cb629 754 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
755}
756
ba8a9229 757#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
758static inline int pte_same(pte_t a, pte_t b)
759{
760 return pte_val(a) == pte_val(b);
761}
1da177e4 762
b54565b8
MS
763#ifdef CONFIG_NUMA_BALANCING
764static inline int pte_protnone(pte_t pte)
765{
766 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
767}
768
769static inline int pmd_protnone(pmd_t pmd)
770{
771 /* pmd_large(pmd) implies pmd_present(pmd) */
772 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
773}
774#endif
775
5614dd92
MS
776static inline int pte_soft_dirty(pte_t pte)
777{
778 return pte_val(pte) & _PAGE_SOFT_DIRTY;
779}
780#define pte_swp_soft_dirty pte_soft_dirty
781
782static inline pte_t pte_mksoft_dirty(pte_t pte)
783{
784 pte_val(pte) |= _PAGE_SOFT_DIRTY;
785 return pte;
786}
787#define pte_swp_mksoft_dirty pte_mksoft_dirty
788
789static inline pte_t pte_clear_soft_dirty(pte_t pte)
790{
791 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
792 return pte;
793}
794#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
795
796static inline int pmd_soft_dirty(pmd_t pmd)
797{
798 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
799}
800
801static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
802{
803 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
804 return pmd;
805}
806
807static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
808{
809 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
810 return pmd;
811}
812
1da177e4
LT
813/*
814 * query functions pte_write/pte_dirty/pte_young only work if
815 * pte_present() is true. Undefined behaviour if not..
816 */
4448aaf0 817static inline int pte_write(pte_t pte)
1da177e4 818{
e5098611 819 return (pte_val(pte) & _PAGE_WRITE) != 0;
1da177e4
LT
820}
821
4448aaf0 822static inline int pte_dirty(pte_t pte)
1da177e4 823{
e5098611 824 return (pte_val(pte) & _PAGE_DIRTY) != 0;
1da177e4
LT
825}
826
4448aaf0 827static inline int pte_young(pte_t pte)
1da177e4 828{
0944fe3f 829 return (pte_val(pte) & _PAGE_YOUNG) != 0;
1da177e4
LT
830}
831
b31288fa
KW
832#define __HAVE_ARCH_PTE_UNUSED
833static inline int pte_unused(pte_t pte)
834{
835 return pte_val(pte) & _PAGE_UNUSED;
836}
837
1da177e4
LT
838/*
839 * pgd/pmd/pte modification functions
840 */
841
b2fa47e6 842static inline void pgd_clear(pgd_t *pgd)
5a216a20 843{
1aea9b3f
MS
844 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
845 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
846}
847
848static inline void p4d_clear(p4d_t *p4d)
849{
850 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
851 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
852}
853
b2fa47e6 854static inline void pud_clear(pud_t *pud)
1da177e4 855{
6252d702
MS
856 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
857 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
858}
859
b2fa47e6 860static inline void pmd_clear(pmd_t *pmdp)
1da177e4 861{
54397bb0 862 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
863}
864
4448aaf0 865static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 866{
e5098611 867 pte_val(*ptep) = _PAGE_INVALID;
1da177e4
LT
868}
869
870/*
871 * The following pte modification functions only work if
872 * pte_present() is true. Undefined behaviour if not..
873 */
4448aaf0 874static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 875{
138c9021 876 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4 877 pte_val(pte) |= pgprot_val(newprot);
0944fe3f 878 /*
57d7f939
MS
879 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
880 * has the invalid bit set, clear it again for readable, young pages
0944fe3f
MS
881 */
882 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
883 pte_val(pte) &= ~_PAGE_INVALID;
884 /*
57d7f939
MS
885 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
886 * protection bit set, clear it again for writable, dirty pages
0944fe3f 887 */
e5098611
MS
888 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
889 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
890 return pte;
891}
892
4448aaf0 893static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 894{
e5098611
MS
895 pte_val(pte) &= ~_PAGE_WRITE;
896 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
897 return pte;
898}
899
4448aaf0 900static inline pte_t pte_mkwrite(pte_t pte)
1da177e4 901{
e5098611
MS
902 pte_val(pte) |= _PAGE_WRITE;
903 if (pte_val(pte) & _PAGE_DIRTY)
904 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
905 return pte;
906}
907
4448aaf0 908static inline pte_t pte_mkclean(pte_t pte)
1da177e4 909{
e5098611
MS
910 pte_val(pte) &= ~_PAGE_DIRTY;
911 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
912 return pte;
913}
914
4448aaf0 915static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 916{
5614dd92 917 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
e5098611
MS
918 if (pte_val(pte) & _PAGE_WRITE)
919 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
920 return pte;
921}
922
4448aaf0 923static inline pte_t pte_mkold(pte_t pte)
1da177e4 924{
e5098611 925 pte_val(pte) &= ~_PAGE_YOUNG;
0944fe3f 926 pte_val(pte) |= _PAGE_INVALID;
1da177e4
LT
927 return pte;
928}
929
4448aaf0 930static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 931{
0944fe3f
MS
932 pte_val(pte) |= _PAGE_YOUNG;
933 if (pte_val(pte) & _PAGE_READ)
934 pte_val(pte) &= ~_PAGE_INVALID;
1da177e4
LT
935 return pte;
936}
937
7e675137
NP
938static inline pte_t pte_mkspecial(pte_t pte)
939{
a08cb629 940 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
941 return pte;
942}
943
84afdcee
HC
944#ifdef CONFIG_HUGETLB_PAGE
945static inline pte_t pte_mkhuge(pte_t pte)
946{
e5098611 947 pte_val(pte) |= _PAGE_LARGE;
84afdcee
HC
948 return pte;
949}
950#endif
951
34eeaf37
MS
952#define IPTE_GLOBAL 0
953#define IPTE_LOCAL 1
53e857f3 954
118bd31b 955#define IPTE_NODAT 0x400
28c807e5 956#define IPTE_GUEST_ASCE 0x800
118bd31b
MS
957
958static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
28c807e5
MS
959 unsigned long opt, unsigned long asce,
960 int local)
1b948d6c
MS
961{
962 unsigned long pto = (unsigned long) ptep;
963
118bd31b
MS
964 if (__builtin_constant_p(opt) && opt == 0) {
965 /* Invalidation + TLB flush for the pte */
966 asm volatile(
967 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
968 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
969 [m4] "i" (local));
970 return;
971 }
972
973 /* Invalidate ptes with options + TLB flush of the ptes */
28c807e5 974 opt = opt | (asce & _ASCE_ORIGIN);
1b948d6c 975 asm volatile(
118bd31b
MS
976 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
977 : [r2] "+a" (address), [r3] "+a" (opt)
978 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1b948d6c
MS
979}
980
34eeaf37
MS
981static inline void __ptep_ipte_range(unsigned long address, int nr,
982 pte_t *ptep, int local)
cfb0b241
HC
983{
984 unsigned long pto = (unsigned long) ptep;
985
34eeaf37 986 /* Invalidate a range of ptes + TLB flush of the ptes */
cfb0b241
HC
987 do {
988 asm volatile(
34eeaf37
MS
989 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
990 : [r2] "+a" (address), [r3] "+a" (nr)
991 : [r1] "a" (pto), [m4] "i" (local) : "memory");
cfb0b241
HC
992 } while (nr != 255);
993}
994
0a61b222 995/*
ebde765c
MS
996 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
997 * both clear the TLB for the unmapped pte. The reason is that
998 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
999 * to modify an active pte. The sequence is
1000 * 1) ptep_get_and_clear
1001 * 2) set_pte_at
1002 * 3) flush_tlb_range
1003 * On s390 the tlb needs to get flushed with the modification of the pte
1004 * if the pte is active. The only way how this can be implemented is to
1005 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1006 * is a nop.
0a61b222 1007 */
ebde765c
MS
1008pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1009pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
0a61b222 1010
0944fe3f
MS
1011#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1012static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1013 unsigned long addr, pte_t *ptep)
1014{
ebde765c 1015 pte_t pte = *ptep;
0944fe3f 1016
ebde765c
MS
1017 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1018 return pte_young(pte);
0944fe3f
MS
1019}
1020
1021#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1022static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1023 unsigned long address, pte_t *ptep)
1024{
1025 return ptep_test_and_clear_young(vma, address, ptep);
1026}
1027
ba8a9229 1028#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6 1029static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
ebde765c 1030 unsigned long addr, pte_t *ptep)
b2fa47e6 1031{
ebde765c 1032 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
b2fa47e6
MS
1033}
1034
1035#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ebde765c
MS
1036pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1037void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
ba8a9229
MS
1038
1039#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22 1040static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
ebde765c 1041 unsigned long addr, pte_t *ptep)
f0e47c22 1042{
ebde765c 1043 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
1044}
1045
ba8a9229
MS
1046/*
1047 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1048 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1049 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1050 * cannot be accessed while the batched unmap is running. In this case
1051 * full==1 and a simple pte_clear is enough. See tlb.h.
1052 */
1053#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1054static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
ebde765c 1055 unsigned long addr,
ba8a9229 1056 pte_t *ptep, int full)
1da177e4 1057{
ebde765c
MS
1058 if (full) {
1059 pte_t pte = *ptep;
1060 *ptep = __pte(_PAGE_INVALID);
1061 return pte;
b2fa47e6 1062 }
ebde765c 1063 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
1064}
1065
ba8a9229 1066#define __HAVE_ARCH_PTEP_SET_WRPROTECT
ebde765c
MS
1067static inline void ptep_set_wrprotect(struct mm_struct *mm,
1068 unsigned long addr, pte_t *ptep)
b2fa47e6 1069{
b2fa47e6
MS
1070 pte_t pte = *ptep;
1071
ebde765c
MS
1072 if (pte_write(pte))
1073 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
b2fa47e6 1074}
ba8a9229
MS
1075
1076#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6 1077static inline int ptep_set_access_flags(struct vm_area_struct *vma,
ebde765c 1078 unsigned long addr, pte_t *ptep,
b2fa47e6
MS
1079 pte_t entry, int dirty)
1080{
ebde765c 1081 if (pte_same(*ptep, entry))
b2fa47e6 1082 return 0;
ebde765c
MS
1083 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1084 return 1;
1085}
b2fa47e6 1086
1e133ab2
MS
1087/*
1088 * Additional functions to handle KVM guest page tables
1089 */
1090void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1091 pte_t *ptep, pte_t entry);
1092void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0
MS
1093void ptep_notify(struct mm_struct *mm, unsigned long addr,
1094 pte_t *ptep, unsigned long bits);
b2d73b2a 1095int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
4be130a0 1096 pte_t *ptep, int prot, unsigned long bit);
1e133ab2
MS
1097void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1098 pte_t *ptep , int reset);
1099void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0 1100int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
a9d23e71 1101 pte_t *sptep, pte_t *tptep, pte_t pte);
4be130a0 1102void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1e133ab2
MS
1103
1104bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1105int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1106 unsigned char key, bool nq);
1824c723
DH
1107int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1108 unsigned char key, unsigned char *oldkey,
1109 bool nq, bool mr, bool mc);
a7e19ab5 1110int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
154c8c19
DH
1111int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1112 unsigned char *key);
b2fa47e6 1113
2d42f947
CI
1114int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1115 unsigned long bits, unsigned long value);
1116int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1117int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1118 unsigned long *oldpte, unsigned long *oldpgste);
1119
ebde765c
MS
1120/*
1121 * Certain architectures need to do special things when PTEs
1122 * within a page table are directly modified. Thus, the following
1123 * hook is made available.
1124 */
1125static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1126 pte_t *ptep, pte_t entry)
1127{
57d7f939
MS
1128 if (!MACHINE_HAS_NX)
1129 pte_val(entry) &= ~_PAGE_NOEXEC;
a8f60d1f
CB
1130 if (pte_present(entry))
1131 pte_val(entry) &= ~_PAGE_UNUSED;
ebde765c 1132 if (mm_has_pgste(mm))
1e133ab2 1133 ptep_set_pte_at(mm, addr, ptep, entry);
ebde765c 1134 else
abf09bed 1135 *ptep = entry;
b2fa47e6 1136}
1da177e4 1137
1da177e4
LT
1138/*
1139 * Conversion functions: convert a page and protection to a page entry,
1140 * and a page entry and page directory to the page they refer to.
1141 */
1142static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1143{
1144 pte_t __pte;
1145 pte_val(__pte) = physpage + pgprot_val(pgprot);
0944fe3f 1146 return pte_mkyoung(__pte);
1da177e4
LT
1147}
1148
2dcea57a
HC
1149static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1150{
0b2b6e1d 1151 unsigned long physpage = page_to_phys(page);
abf09bed 1152 pte_t __pte = mk_pte_phys(physpage, pgprot);
1da177e4 1153
e5098611
MS
1154 if (pte_write(__pte) && PageDirty(page))
1155 __pte = pte_mkdirty(__pte);
abf09bed 1156 return __pte;
2dcea57a
HC
1157}
1158
190a1d72 1159#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1aea9b3f 1160#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
190a1d72
MS
1161#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1162#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1163#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1164
190a1d72
MS
1165#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1166#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1167
190a1d72
MS
1168#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1169#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1aea9b3f 1170#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1171#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1172
1aea9b3f 1173static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
5a216a20 1174{
1aea9b3f
MS
1175 p4d_t *p4d = (p4d_t *) pgd;
1176
1177 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1178 p4d = (p4d_t *) pgd_deref(*pgd);
1179 return p4d + p4d_index(address);
1180}
1181
1182static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1183{
1184 pud_t *pud = (pud_t *) p4d;
1185
1186 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1187 pud = (pud_t *) p4d_deref(*p4d);
1188 return pud + pud_index(address);
5a216a20 1189}
1da177e4 1190
190a1d72 1191static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1192{
6252d702 1193 pmd_t *pmd = (pmd_t *) pud;
1aea9b3f 1194
6252d702
MS
1195 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1196 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1197 return pmd + pmd_index(address);
1da177e4
LT
1198}
1199
190a1d72
MS
1200#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1201#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1202#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1203
152125b7 1204#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
d08de8e2 1205#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1aea9b3f 1206#define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1da177e4 1207
190a1d72
MS
1208/* Find an entry in the lowest level page table.. */
1209#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1210#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4 1211#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1da177e4 1212#define pte_unmap(pte) do { } while (0)
1da177e4 1213
152125b7 1214static inline pmd_t pmd_wrprotect(pmd_t pmd)
0944fe3f 1215{
152125b7
MS
1216 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1217 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1218 return pmd;
1219}
1220
1221static inline pmd_t pmd_mkwrite(pmd_t pmd)
1222{
1223 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1224 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1225 return pmd;
1226 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1227 return pmd;
1228}
1229
1230static inline pmd_t pmd_mkclean(pmd_t pmd)
1231{
1232 if (pmd_large(pmd)) {
1233 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
0944fe3f 1234 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
152125b7
MS
1235 }
1236 return pmd;
1237}
1238
1239static inline pmd_t pmd_mkdirty(pmd_t pmd)
1240{
1241 if (pmd_large(pmd)) {
5614dd92
MS
1242 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1243 _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1244 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1245 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1246 }
1247 return pmd;
1248}
1249
9e20b4da
HC
1250static inline pud_t pud_wrprotect(pud_t pud)
1251{
1252 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1253 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1254 return pud;
1255}
1256
1257static inline pud_t pud_mkwrite(pud_t pud)
1258{
1259 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1260 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1261 return pud;
1262 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1263 return pud;
1264}
1265
1266static inline pud_t pud_mkclean(pud_t pud)
1267{
1268 if (pud_large(pud)) {
1269 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1270 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1271 }
1272 return pud;
1273}
1274
1275static inline pud_t pud_mkdirty(pud_t pud)
1276{
1277 if (pud_large(pud)) {
1278 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1279 _REGION3_ENTRY_SOFT_DIRTY;
1280 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1281 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1282 }
1283 return pud;
1284}
1285
1286#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1287static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1288{
1289 /*
57d7f939
MS
1290 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1291 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
9e20b4da
HC
1292 */
1293 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1294 return pgprot_val(SEGMENT_NONE);
57d7f939
MS
1295 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1296 return pgprot_val(SEGMENT_RO);
1297 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1298 return pgprot_val(SEGMENT_RX);
1299 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1300 return pgprot_val(SEGMENT_RW);
1301 return pgprot_val(SEGMENT_RWX);
9e20b4da
HC
1302}
1303
152125b7
MS
1304static inline pmd_t pmd_mkyoung(pmd_t pmd)
1305{
1306 if (pmd_large(pmd)) {
0944fe3f 1307 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
152125b7
MS
1308 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
0944fe3f 1310 }
0944fe3f
MS
1311 return pmd;
1312}
1313
1314static inline pmd_t pmd_mkold(pmd_t pmd)
1315{
152125b7 1316 if (pmd_large(pmd)) {
0944fe3f
MS
1317 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1319 }
0944fe3f
MS
1320 return pmd;
1321}
1322
1ae1c1d0
GS
1323static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1324{
152125b7
MS
1325 if (pmd_large(pmd)) {
1326 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1327 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
fecffad2 1328 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1329 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1330 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1331 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1332 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1333 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1334 return pmd;
1335 }
1336 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1ae1c1d0
GS
1337 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1338 return pmd;
1339}
1340
106c992a 1341static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1342{
106c992a
GS
1343 pmd_t __pmd;
1344 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
152125b7 1345 return __pmd;
1ae1c1d0
GS
1346}
1347
106c992a
GS
1348#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1349
1b948d6c
MS
1350static inline void __pmdp_csp(pmd_t *pmdp)
1351{
4ccccc52
HC
1352 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1353 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1b948d6c
MS
1354}
1355
47e4d851
MS
1356#define IDTE_GLOBAL 0
1357#define IDTE_LOCAL 1
d08de8e2 1358
118bd31b
MS
1359#define IDTE_PTOA 0x0800
1360#define IDTE_NODAT 0x1000
28c807e5 1361#define IDTE_GUEST_ASCE 0x2000
118bd31b
MS
1362
1363static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
28c807e5
MS
1364 unsigned long opt, unsigned long asce,
1365 int local)
1b948d6c
MS
1366{
1367 unsigned long sto;
1368
118bd31b 1369 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
28c807e5
MS
1370 if (__builtin_constant_p(opt) && opt == 0) {
1371 /* flush without guest asce */
1372 asm volatile(
1373 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1374 : "+m" (*pmdp)
1375 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1376 [m4] "i" (local)
1377 : "cc" );
1378 } else {
1379 /* flush with guest asce */
1380 asm volatile(
1381 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1382 : "+m" (*pmdp)
1383 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1384 [r3] "a" (asce), [m4] "i" (local)
1385 : "cc" );
1386 }
1b948d6c
MS
1387}
1388
118bd31b 1389static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
28c807e5
MS
1390 unsigned long opt, unsigned long asce,
1391 int local)
d08de8e2
GS
1392{
1393 unsigned long r3o;
1394
118bd31b 1395 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
d08de8e2 1396 r3o |= _ASCE_TYPE_REGION3;
28c807e5
MS
1397 if (__builtin_constant_p(opt) && opt == 0) {
1398 /* flush without guest asce */
1399 asm volatile(
1400 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1401 : "+m" (*pudp)
1402 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1403 [m4] "i" (local)
1404 : "cc");
1405 } else {
1406 /* flush with guest asce */
1407 asm volatile(
1408 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1409 : "+m" (*pudp)
1410 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1411 [r3] "a" (asce), [m4] "i" (local)
1412 : "cc" );
1413 }
d08de8e2
GS
1414}
1415
227be799
MS
1416pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1417pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
d08de8e2 1418pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1b948d6c 1419
227be799
MS
1420#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1421
1422#define __HAVE_ARCH_PGTABLE_DEPOSIT
1423void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1424 pgtable_t pgtable);
1425
1426#define __HAVE_ARCH_PGTABLE_WITHDRAW
1427pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1b948d6c 1428
227be799
MS
1429#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1430static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1431 unsigned long addr, pmd_t *pmdp,
1432 pmd_t entry, int dirty)
3eabaee9 1433{
227be799 1434 VM_BUG_ON(addr & ~HPAGE_MASK);
3eabaee9 1435
227be799
MS
1436 entry = pmd_mkyoung(entry);
1437 if (dirty)
1438 entry = pmd_mkdirty(entry);
1439 if (pmd_val(*pmdp) == pmd_val(entry))
1440 return 0;
1441 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1442 return 1;
3eabaee9
MS
1443}
1444
227be799
MS
1445#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1446static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1447 unsigned long addr, pmd_t *pmdp)
1448{
1449 pmd_t pmd = *pmdp;
106c992a 1450
227be799
MS
1451 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1452 return pmd_young(pmd);
1453}
106c992a 1454
227be799
MS
1455#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1456static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1457 unsigned long addr, pmd_t *pmdp)
1458{
1459 VM_BUG_ON(addr & ~HPAGE_MASK);
1460 return pmdp_test_and_clear_young(vma, addr, pmdp);
1461}
106c992a 1462
106c992a
GS
1463static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1464 pmd_t *pmdp, pmd_t entry)
1465{
57d7f939
MS
1466 if (!MACHINE_HAS_NX)
1467 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
106c992a
GS
1468 *pmdp = entry;
1469}
1470
1471static inline pmd_t pmd_mkhuge(pmd_t pmd)
1472{
1473 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
152125b7
MS
1474 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1475 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1ae1c1d0
GS
1476 return pmd;
1477}
1478
8809aa2d
AK
1479#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1480static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
227be799 1481 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1482{
54397bb0 1483 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1ae1c1d0
GS
1484}
1485
8809aa2d
AK
1486#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1487static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
227be799 1488 unsigned long addr,
8809aa2d 1489 pmd_t *pmdp, int full)
fcbe08d6 1490{
227be799
MS
1491 if (full) {
1492 pmd_t pmd = *pmdp;
54397bb0 1493 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
227be799
MS
1494 return pmd;
1495 }
54397bb0 1496 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
fcbe08d6
MS
1497}
1498
8809aa2d
AK
1499#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1500static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
227be799 1501 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1502{
227be799 1503 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1ae1c1d0
GS
1504}
1505
1506#define __HAVE_ARCH_PMDP_INVALIDATE
1507static inline void pmdp_invalidate(struct vm_area_struct *vma,
227be799 1508 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1509{
54397bb0 1510 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1ae1c1d0
GS
1511}
1512
be328650
GS
1513#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1514static inline void pmdp_set_wrprotect(struct mm_struct *mm,
227be799 1515 unsigned long addr, pmd_t *pmdp)
be328650
GS
1516{
1517 pmd_t pmd = *pmdp;
1518
227be799
MS
1519 if (pmd_write(pmd))
1520 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
be328650
GS
1521}
1522
f28b6ff8
AK
1523static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1524 unsigned long address,
1525 pmd_t *pmdp)
1526{
8809aa2d 1527 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
f28b6ff8
AK
1528}
1529#define pmdp_collapse_flush pmdp_collapse_flush
1530
1ae1c1d0
GS
1531#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1532#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1533
1534static inline int pmd_trans_huge(pmd_t pmd)
1535{
1536 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1537}
1538
fd8cfd30 1539#define has_transparent_hugepage has_transparent_hugepage
1ae1c1d0
GS
1540static inline int has_transparent_hugepage(void)
1541{
466178fc 1542 return MACHINE_HAS_EDAT1 ? 1 : 0;
1ae1c1d0 1543}
75077afb
GS
1544#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1545
1da177e4 1546/*
1da177e4
LT
1547 * 64 bit swap entry format:
1548 * A page-table entry has some bits we have to treat in a special way.
4e0a6412 1549 * Bits 52 and bit 55 have to be zero, otherwise a specification
1da177e4 1550 * exception will occur instead of a page translation exception. The
4e0a6412 1551 * specification exception has the bad habit not to store necessary
1da177e4 1552 * information in the lowcore.
a1c843b8
MS
1553 * Bits 54 and 63 are used to indicate the page type.
1554 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1555 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1556 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1557 * for the offset.
1558 * | offset |01100|type |00|
1559 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1560 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1da177e4 1561 */
5a79859a 1562
a1c843b8
MS
1563#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1564#define __SWP_OFFSET_SHIFT 12
1565#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1566#define __SWP_TYPE_SHIFT 2
5a79859a 1567
4448aaf0 1568static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1569{
1570 pte_t pte;
a1c843b8
MS
1571
1572 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1573 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1574 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1da177e4
LT
1575 return pte;
1576}
1577
a1c843b8
MS
1578static inline unsigned long __swp_type(swp_entry_t entry)
1579{
1580 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1581}
1582
1583static inline unsigned long __swp_offset(swp_entry_t entry)
1584{
1585 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1586}
1587
1588static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1589{
1590 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1591}
1da177e4
LT
1592
1593#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1594#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1595
1da177e4
LT
1596#endif /* !__ASSEMBLY__ */
1597
1598#define kern_addr_valid(addr) (1)
1599
17f34580
HC
1600extern int vmem_add_mapping(unsigned long start, unsigned long size);
1601extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1602extern int s390_enable_sie(void);
3ac8e380 1603extern int s390_enable_skey(void);
a13cff31 1604extern void s390_reset_cmma(struct mm_struct *mm);
f4eb07c1 1605
1f6b83e5
MS
1606/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1607#define HAVE_ARCH_UNMAPPED_AREA
1608#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1609
1da177e4
LT
1610/*
1611 * No page table caches to initialise
1612 */
765a0cac
HC
1613static inline void pgtable_cache_init(void) { }
1614static inline void check_pgt_cache(void) { }
1da177e4 1615
1da177e4
LT
1616#include <asm-generic/pgtable.h>
1617
1618#endif /* _S390_PAGE_H */