]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/s390/include/asm/pgtable.h
s390/dumpstack: fix address ranges for asynchronous and panic stack
[mirror_ubuntu-artful-kernel.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
1da177e4
LT
14/*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29#ifndef __ASSEMBLY__
9789db08 30#include <linux/sched.h>
2dcea57a 31#include <linux/mm_types.h>
abf09bed 32#include <linux/page-flags.h>
1da177e4 33#include <asm/bug.h>
b2fa47e6 34#include <asm/page.h>
1da177e4 35
1da177e4
LT
36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37extern void paging_init(void);
2b67fc46 38extern void vmem_map_init(void);
1da177e4
LT
39
40/*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
4b3073e1 44#define update_mmu_cache(vma, address, ptep) do { } while (0)
b113da65 45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
46
47/*
238ec4ef 48 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
49 * for zero-mapped memory areas etc..
50 */
238ec4ef
MS
51
52extern unsigned long empty_zero_page;
53extern unsigned long zero_page_mask;
54
55#define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 58#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 59
4f2e2903
LT
60/* TODO: s390 cannot support io_remap_pfn_range... */
61#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
62 remap_pfn_range(vma, vaddr, pfn, size, prot)
63
1da177e4
LT
64#endif /* !__ASSEMBLY__ */
65
66/*
67 * PMD_SHIFT determines the size of the area a second-level page
68 * table can map
69 * PGDIR_SHIFT determines what a third-level page table entry can map
70 */
f4815ac6 71#ifndef CONFIG_64BIT
146e4b3c
MS
72# define PMD_SHIFT 20
73# define PUD_SHIFT 20
74# define PGDIR_SHIFT 20
f4815ac6 75#else /* CONFIG_64BIT */
146e4b3c 76# define PMD_SHIFT 20
190a1d72 77# define PUD_SHIFT 31
5a216a20 78# define PGDIR_SHIFT 42
f4815ac6 79#endif /* CONFIG_64BIT */
1da177e4
LT
80
81#define PMD_SIZE (1UL << PMD_SHIFT)
82#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
83#define PUD_SIZE (1UL << PUD_SHIFT)
84#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
85#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
86#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
87
88/*
89 * entries per page directory level: the S390 is two-level, so
90 * we don't really have any PMD directory physically.
91 * for S390 segment-table entries are combined to one PGD
92 * that leads to 1024 pte per pgd
93 */
146e4b3c 94#define PTRS_PER_PTE 256
f4815ac6 95#ifndef CONFIG_64BIT
146e4b3c 96#define PTRS_PER_PMD 1
5a216a20 97#define PTRS_PER_PUD 1
f4815ac6 98#else /* CONFIG_64BIT */
146e4b3c 99#define PTRS_PER_PMD 2048
5a216a20 100#define PTRS_PER_PUD 2048
f4815ac6 101#endif /* CONFIG_64BIT */
146e4b3c 102#define PTRS_PER_PGD 2048
1da177e4 103
d455a369
HD
104#define FIRST_USER_ADDRESS 0
105
1da177e4
LT
106#define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108#define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
110#define pud_ERROR(e) \
111 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
112#define pgd_ERROR(e) \
113 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
114
115#ifndef __ASSEMBLY__
116/*
c972cc60
HC
117 * The vmalloc and module area will always be on the topmost area of the kernel
118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
120 * modules will reside. That makes sure that inter module branches always
121 * happen without trampolines and in addition the placement within a 2GB frame
122 * is branch prediction unit friendly.
8b62bc96 123 */
239a6425 124extern unsigned long VMALLOC_START;
14045ebf
MS
125extern unsigned long VMALLOC_END;
126extern struct page *vmemmap;
239a6425 127
14045ebf 128#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
5fd9c6e2 129
c972cc60
HC
130#ifdef CONFIG_64BIT
131extern unsigned long MODULES_VADDR;
132extern unsigned long MODULES_END;
133#define MODULES_VADDR MODULES_VADDR
134#define MODULES_END MODULES_END
135#define MODULES_LEN (1UL << 31)
136#endif
137
1da177e4
LT
138/*
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
144 *
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
147 *
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
153 *
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
157 *
158 * The 31 bit segmenttable origin of S390 has following format:
159 *
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
170 *
171 * A 64 bit pagetable entry of S390 has following format:
6a985c61 172 * | PFRA |0IPC| OS |
1da177e4
LT
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
6a985c61 178 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
179 *
180 * A 64 bit segmenttable entry of S390 has following format:
181 * | P-table origin | TT
182 * 0000000000111111111122222222223333333333444444444455555555556666
183 * 0123456789012345678901234567890123456789012345678901234567890123
184 *
185 * I Segment-Invalid Bit: Segment is not available for address-translation
186 * C Common-Segment Bit: Segment is not private (PoP 3-30)
187 * P Page-Protection Bit: Store access not possible for page
188 * TT Type 00
189 *
190 * A 64 bit region table entry of S390 has following format:
191 * | S-table origin | TF TTTL
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
194 *
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * TT Type 01
197 * TF
190a1d72 198 * TL Table length
1da177e4
LT
199 *
200 * The 64 bit regiontable origin of S390 has following format:
201 * | region table origon | DTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
204 *
205 * X Space-Switch event:
206 * G Segment-Invalid Bit:
207 * P Private-Space Bit:
208 * S Storage-Alteration:
209 * R Real space
210 * TL Table-Length:
211 *
212 * A storage key has the following format:
213 * | ACC |F|R|C|0|
214 * 0 3 4 5 6 7
215 * ACC: access key
216 * F : fetch protection bit
217 * R : referenced bit
218 * C : changed bit
219 */
220
221/* Hardware bits in the page table entry */
6a985c61 222#define _PAGE_CO 0x100 /* HW Change-bit override */
83377484
MS
223#define _PAGE_RO 0x200 /* HW read-only bit */
224#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
225
226/* Software bits in the page table entry */
83377484
MS
227#define _PAGE_SWT 0x001 /* SW pte type bit t */
228#define _PAGE_SWX 0x002 /* SW pte type bit x */
abf09bed
MS
229#define _PAGE_SWC 0x004 /* SW pte changed bit */
230#define _PAGE_SWR 0x008 /* SW pte referenced bit */
231#define _PAGE_SWW 0x010 /* SW pte write bit */
232#define _PAGE_SPECIAL 0x020 /* SW associated with special page */
a08cb629 233#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 234
138c9021 235/* Set of bits not changed in pte_modify */
abf09bed
MS
236#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_SWC | _PAGE_SWR)
138c9021 238
83377484 239/* Six different types of pages. */
9282ed92
GS
240#define _PAGE_TYPE_EMPTY 0x400
241#define _PAGE_TYPE_NONE 0x401
83377484
MS
242#define _PAGE_TYPE_SWAP 0x403
243#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
244#define _PAGE_TYPE_RO 0x200
245#define _PAGE_TYPE_RW 0x000
1da177e4 246
53492b1d
GS
247/*
248 * Only four types for huge pages, using the invalid bit and protection bit
249 * of a segment table entry.
250 */
251#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
252#define _HPAGE_TYPE_NONE 0x220
253#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
254#define _HPAGE_TYPE_RW 0x000
255
83377484
MS
256/*
257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
258 * pte_none and pte_file to find out the pte type WITHOUT holding the page
259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
262 * This change is done while holding the lock, but the intermediate step
263 * of a previously valid pte with the hw invalid bit set can be observed by
264 * handle_pte_fault. That makes it necessary that all valid pte types with
265 * the hw invalid bit set must be distinguishable from the four pte types
266 * empty, none, swap and file.
267 *
268 * irxt ipte irxt
269 * _PAGE_TYPE_EMPTY 1000 -> 1000
270 * _PAGE_TYPE_NONE 1001 -> 1001
271 * _PAGE_TYPE_SWAP 1011 -> 1011
272 * _PAGE_TYPE_FILE 11?1 -> 11?1
273 * _PAGE_TYPE_RO 0100 -> 1100
274 * _PAGE_TYPE_RW 0000 -> 1000
275 *
c1821c2e 276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
278 * pte_file is true for bits combinations 1101, 1111
c1821c2e 279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
280 */
281
f4815ac6 282#ifndef CONFIG_64BIT
1da177e4 283
3610cce8
MS
284/* Bits in the segment table address-space-control-element */
285#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
286#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
287#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
288#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
289#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 290
3610cce8
MS
291/* Bits in the segment table entry */
292#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
80217147 293#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
3610cce8
MS
294#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
295#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
296#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 297
3610cce8
MS
298#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
299#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4 300
6c61cfe9
MS
301/* Page status table bits for virtualization */
302#define RCP_ACC_BITS 0xf0000000UL
303#define RCP_FP_BIT 0x08000000UL
304#define RCP_PCL_BIT 0x00800000UL
305#define RCP_HR_BIT 0x00400000UL
306#define RCP_HC_BIT 0x00200000UL
307#define RCP_GR_BIT 0x00040000UL
308#define RCP_GC_BIT 0x00020000UL
6b8224e4 309#define RCP_IN_BIT 0x00002000UL /* IPTE notify bit */
6c61cfe9
MS
310
311/* User dirty / referenced bit for KVM's migration feature */
312#define KVM_UR_BIT 0x00008000UL
313#define KVM_UC_BIT 0x00004000UL
314
f4815ac6 315#else /* CONFIG_64BIT */
1da177e4 316
3610cce8
MS
317/* Bits in the segment/region table address-space-control-element */
318#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
319#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
320#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
321#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
322#define _ASCE_REAL_SPACE 0x20 /* real space control */
323#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
324#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
325#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
326#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
327#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
328#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
329
330/* Bits in the region table entry */
331#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
abf09bed 332#define _REGION_ENTRY_RO 0x200 /* region protection bit */
3610cce8
MS
333#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
334#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
335#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
336#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
337#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
338#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
339
340#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
341#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
342#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
343#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
344#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
345#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
346
18da2369 347#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
1819ed1f
HC
348#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
349#define _REGION3_ENTRY_CO 0x100 /* change-recording override */
18da2369 350
1da177e4 351/* Bits in the segment table entry */
ea81531d 352#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
3610cce8
MS
353#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
354#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
355#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 356
3610cce8
MS
357#define _SEGMENT_ENTRY (0)
358#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
359
53492b1d
GS
360#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
361#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
75077afb
GS
362#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
363#define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
53492b1d 364
1ae1c1d0
GS
365/* Set of bits not changed in pmd_modify */
366#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
367 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
368
6c61cfe9
MS
369/* Page status table bits for virtualization */
370#define RCP_ACC_BITS 0xf000000000000000UL
371#define RCP_FP_BIT 0x0800000000000000UL
372#define RCP_PCL_BIT 0x0080000000000000UL
373#define RCP_HR_BIT 0x0040000000000000UL
374#define RCP_HC_BIT 0x0020000000000000UL
375#define RCP_GR_BIT 0x0004000000000000UL
376#define RCP_GC_BIT 0x0002000000000000UL
6b8224e4 377#define RCP_IN_BIT 0x0000200000000000UL /* IPTE notify bit */
6c61cfe9
MS
378
379/* User dirty / referenced bit for KVM's migration feature */
380#define KVM_UR_BIT 0x0000800000000000UL
381#define KVM_UC_BIT 0x0000400000000000UL
382
f4815ac6 383#endif /* CONFIG_64BIT */
1da177e4
LT
384
385/*
3610cce8
MS
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
1da177e4 389 */
3610cce8
MS
390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
1da177e4 392
1da177e4 393/*
9282ed92 394 * Page protection definitions.
1da177e4 395 */
9282ed92
GS
396#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
397#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
abf09bed
MS
398#define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
399#define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
9282ed92 400
abf09bed 401#define PAGE_KERNEL PAGE_RWC
bddb7ae2 402#define PAGE_SHARED PAGE_KERNEL
9282ed92 403#define PAGE_COPY PAGE_RO
1da177e4
LT
404
405/*
043d0708
MS
406 * On s390 the page table entry has an invalid bit and a read-only bit.
407 * Read permission implies execute permission and write permission
408 * implies read permission.
1da177e4
LT
409 */
410 /*xwr*/
9282ed92
GS
411#define __P000 PAGE_NONE
412#define __P001 PAGE_RO
413#define __P010 PAGE_RO
414#define __P011 PAGE_RO
043d0708
MS
415#define __P100 PAGE_RO
416#define __P101 PAGE_RO
417#define __P110 PAGE_RO
418#define __P111 PAGE_RO
9282ed92
GS
419
420#define __S000 PAGE_NONE
421#define __S001 PAGE_RO
422#define __S010 PAGE_RW
423#define __S011 PAGE_RW
043d0708
MS
424#define __S100 PAGE_RO
425#define __S101 PAGE_RO
426#define __S110 PAGE_RW
427#define __S111 PAGE_RW
1da177e4 428
106c992a
GS
429/*
430 * Segment entry (large page) protection definitions.
431 */
432#define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
433#define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
434#define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
435
b2fa47e6 436static inline int mm_exclusive(struct mm_struct *mm)
1da177e4 437{
b2fa47e6
MS
438 return likely(mm == current->active_mm &&
439 atomic_read(&mm->context.attach_count) <= 1);
1da177e4 440}
1da177e4 441
b2fa47e6
MS
442static inline int mm_has_pgste(struct mm_struct *mm)
443{
444#ifdef CONFIG_PGSTE
445 if (unlikely(mm->context.has_pgste))
446 return 1;
447#endif
448 return 0;
449}
1da177e4
LT
450/*
451 * pgd/pmd/pte query functions
452 */
f4815ac6 453#ifndef CONFIG_64BIT
1da177e4 454
4448aaf0
AB
455static inline int pgd_present(pgd_t pgd) { return 1; }
456static inline int pgd_none(pgd_t pgd) { return 0; }
457static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 458
190a1d72
MS
459static inline int pud_present(pud_t pud) { return 1; }
460static inline int pud_none(pud_t pud) { return 0; }
18da2369 461static inline int pud_large(pud_t pud) { return 0; }
190a1d72
MS
462static inline int pud_bad(pud_t pud) { return 0; }
463
f4815ac6 464#else /* CONFIG_64BIT */
1da177e4 465
5a216a20
MS
466static inline int pgd_present(pgd_t pgd)
467{
6252d702
MS
468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
469 return 1;
5a216a20
MS
470 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
471}
472
473static inline int pgd_none(pgd_t pgd)
474{
6252d702
MS
475 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
476 return 0;
5a216a20
MS
477 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
478}
479
480static inline int pgd_bad(pgd_t pgd)
481{
6252d702
MS
482 /*
483 * With dynamic page table levels the pgd can be a region table
484 * entry or a segment table entry. Check for the bit that are
485 * invalid for either table entry.
486 */
5a216a20 487 unsigned long mask =
6252d702 488 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
489 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
490 return (pgd_val(pgd) & mask) != 0;
491}
190a1d72
MS
492
493static inline int pud_present(pud_t pud)
1da177e4 494{
6252d702
MS
495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
496 return 1;
0d017923 497 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
498}
499
190a1d72 500static inline int pud_none(pud_t pud)
1da177e4 501{
6252d702
MS
502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
503 return 0;
0d017923 504 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
505}
506
18da2369
HC
507static inline int pud_large(pud_t pud)
508{
509 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
510 return 0;
511 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
512}
513
190a1d72 514static inline int pud_bad(pud_t pud)
1da177e4 515{
6252d702
MS
516 /*
517 * With dynamic page table levels the pud can be a region table
518 * entry or a segment table entry. Check for the bit that are
519 * invalid for either table entry.
520 */
5a216a20 521 unsigned long mask =
6252d702 522 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
523 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
524 return (pud_val(pud) & mask) != 0;
1da177e4
LT
525}
526
f4815ac6 527#endif /* CONFIG_64BIT */
3610cce8 528
4448aaf0 529static inline int pmd_present(pmd_t pmd)
1da177e4 530{
d8e7a33d
GS
531 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
532 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
533 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
1da177e4
LT
534}
535
4448aaf0 536static inline int pmd_none(pmd_t pmd)
1da177e4 537{
d8e7a33d
GS
538 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
539 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
1da177e4
LT
540}
541
378b1e7a
HC
542static inline int pmd_large(pmd_t pmd)
543{
544#ifdef CONFIG_64BIT
545 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
546#else
547 return 0;
548#endif
549}
550
4448aaf0 551static inline int pmd_bad(pmd_t pmd)
1da177e4 552{
3610cce8
MS
553 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
554 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
555}
556
75077afb
GS
557#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
558extern void pmdp_splitting_flush(struct vm_area_struct *vma,
559 unsigned long addr, pmd_t *pmdp);
560
1ae1c1d0
GS
561#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
562extern int pmdp_set_access_flags(struct vm_area_struct *vma,
563 unsigned long address, pmd_t *pmdp,
564 pmd_t entry, int dirty);
565
566#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
567extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
568 unsigned long address, pmd_t *pmdp);
569
570#define __HAVE_ARCH_PMD_WRITE
571static inline int pmd_write(pmd_t pmd)
572{
573 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
574}
575
576static inline int pmd_young(pmd_t pmd)
577{
578 return 0;
579}
580
4448aaf0 581static inline int pte_none(pte_t pte)
1da177e4 582{
83377484 583 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
584}
585
4448aaf0 586static inline int pte_present(pte_t pte)
1da177e4 587{
83377484
MS
588 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
589 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
590 (!(pte_val(pte) & _PAGE_INVALID) &&
591 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
592}
593
4448aaf0 594static inline int pte_file(pte_t pte)
1da177e4 595{
83377484
MS
596 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
597 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
598}
599
7e675137
NP
600static inline int pte_special(pte_t pte)
601{
a08cb629 602 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
603}
604
ba8a9229 605#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
606static inline int pte_same(pte_t a, pte_t b)
607{
608 return pte_val(a) == pte_val(b);
609}
1da177e4 610
b2fa47e6 611static inline pgste_t pgste_get_lock(pte_t *ptep)
5b7baf05 612{
b2fa47e6 613 unsigned long new = 0;
5b7baf05 614#ifdef CONFIG_PGSTE
b2fa47e6
MS
615 unsigned long old;
616
5b7baf05 617 preempt_disable();
b2fa47e6
MS
618 asm(
619 " lg %0,%2\n"
620 "0: lgr %1,%0\n"
621 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
622 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
623 " csg %0,%1,%2\n"
624 " jl 0b\n"
625 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
626 : "Q" (ptep[PTRS_PER_PTE]) : "cc");
5b7baf05 627#endif
b2fa47e6 628 return __pgste(new);
5b7baf05
CB
629}
630
b2fa47e6 631static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
5b7baf05
CB
632{
633#ifdef CONFIG_PGSTE
b2fa47e6
MS
634 asm(
635 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
636 " stg %1,%0\n"
637 : "=Q" (ptep[PTRS_PER_PTE])
638 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
5b7baf05
CB
639 preempt_enable();
640#endif
641}
642
b2fa47e6 643static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
5b7baf05
CB
644{
645#ifdef CONFIG_PGSTE
a43a9d93 646 unsigned long address, bits;
b2fa47e6
MS
647 unsigned char skey;
648
b56433cb 649 if (pte_val(*ptep) & _PAGE_INVALID)
09b53883 650 return pgste;
a43a9d93
HC
651 address = pte_val(*ptep) & PAGE_MASK;
652 skey = page_get_storage_key(address);
b2fa47e6
MS
653 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
654 /* Clear page changed & referenced bit in the storage key */
7c81878b 655 if (bits & _PAGE_CHANGED)
abf09bed 656 page_set_storage_key(address, skey ^ bits, 0);
7c81878b
CO
657 else if (bits)
658 page_reset_referenced(address);
b2fa47e6
MS
659 /* Transfer page changed & referenced bit to guest bits in pgste */
660 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
661 /* Get host changed & referenced bits from pgste */
662 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
abf09bed
MS
663 /* Transfer page changed & referenced bit to kvm user bits */
664 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
665 /* Clear relevant host bits in pgste. */
b2fa47e6
MS
666 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
667 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
668 /* Copy page access key and fetch protection bit to pgste */
669 pgste_val(pgste) |=
670 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
abf09bed
MS
671 /* Transfer referenced bit to pte */
672 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
b2fa47e6
MS
673#endif
674 return pgste;
675
676}
677
678static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
679{
680#ifdef CONFIG_PGSTE
681 int young;
682
b56433cb 683 if (pte_val(*ptep) & _PAGE_INVALID)
09b53883 684 return pgste;
abf09bed 685 /* Get referenced bit from storage key */
b2fa47e6 686 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
abf09bed
MS
687 if (young)
688 pgste_val(pgste) |= RCP_GR_BIT;
689 /* Get host referenced bit from pgste */
690 if (pgste_val(pgste) & RCP_HR_BIT) {
691 pgste_val(pgste) &= ~RCP_HR_BIT;
692 young = 1;
693 }
694 /* Transfer referenced bit to kvm user bits and pte */
695 if (young) {
696 pgste_val(pgste) |= KVM_UR_BIT;
b2fa47e6 697 pte_val(*ptep) |= _PAGE_SWR;
abf09bed 698 }
b2fa47e6
MS
699#endif
700 return pgste;
b2fa47e6
MS
701}
702
abf09bed 703static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
b2fa47e6
MS
704{
705#ifdef CONFIG_PGSTE
a43a9d93 706 unsigned long address;
338679f7 707 unsigned long nkey;
b2fa47e6 708
b56433cb 709 if (pte_val(entry) & _PAGE_INVALID)
09b53883 710 return;
338679f7 711 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
09b53883 712 address = pte_val(entry) & PAGE_MASK;
338679f7
CB
713 /*
714 * Set page access key and fetch protection bit from pgste.
715 * The guest C/R information is still in the PGSTE, set real
716 * key C/R to 0.
717 */
718 nkey = (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
719 page_set_storage_key(address, nkey, 0);
5b7baf05
CB
720#endif
721}
722
abf09bed
MS
723static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
724{
725 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
726 /*
727 * Without enhanced suppression-on-protection force
728 * the dirty bit on for all writable ptes.
729 */
730 pte_val(entry) |= _PAGE_SWC;
731 pte_val(entry) &= ~_PAGE_RO;
732 }
733 *ptep = entry;
734}
735
e5992f2e
MS
736/**
737 * struct gmap_struct - guest address space
738 * @mm: pointer to the parent mm_struct
739 * @table: pointer to the page directory
480e5926 740 * @asce: address space control element for gmap page table
e5992f2e
MS
741 * @crst_list: list of all crst tables used in the guest address space
742 */
743struct gmap {
744 struct list_head list;
745 struct mm_struct *mm;
746 unsigned long *table;
480e5926 747 unsigned long asce;
e5992f2e
MS
748 struct list_head crst_list;
749};
750
751/**
752 * struct gmap_rmap - reverse mapping for segment table entries
d3383632 753 * @gmap: pointer to the gmap_struct
e5992f2e 754 * @entry: pointer to a segment table entry
d3383632 755 * @vmaddr: virtual address in the guest address space
e5992f2e
MS
756 */
757struct gmap_rmap {
758 struct list_head list;
d3383632 759 struct gmap *gmap;
e5992f2e 760 unsigned long *entry;
d3383632 761 unsigned long vmaddr;
e5992f2e
MS
762};
763
764/**
765 * struct gmap_pgtable - gmap information attached to a page table
766 * @vmaddr: address of the 1MB segment in the process virtual memory
d3383632 767 * @mapper: list of segment table entries mapping a page table
e5992f2e
MS
768 */
769struct gmap_pgtable {
770 unsigned long vmaddr;
771 struct list_head mapper;
772};
773
d3383632
MS
774/**
775 * struct gmap_notifier - notify function block for page invalidation
776 * @notifier_call: address of callback function
777 */
778struct gmap_notifier {
779 struct list_head list;
780 void (*notifier_call)(struct gmap *gmap, unsigned long address);
781};
782
e5992f2e
MS
783struct gmap *gmap_alloc(struct mm_struct *mm);
784void gmap_free(struct gmap *gmap);
785void gmap_enable(struct gmap *gmap);
786void gmap_disable(struct gmap *gmap);
787int gmap_map_segment(struct gmap *gmap, unsigned long from,
d3383632 788 unsigned long to, unsigned long len);
e5992f2e 789int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
c5034945
HC
790unsigned long __gmap_translate(unsigned long address, struct gmap *);
791unsigned long gmap_translate(unsigned long address, struct gmap *);
499069e1 792unsigned long __gmap_fault(unsigned long address, struct gmap *);
e5992f2e 793unsigned long gmap_fault(unsigned long address, struct gmap *);
388186bc 794void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
e5992f2e 795
d3383632
MS
796void gmap_register_ipte_notifier(struct gmap_notifier *);
797void gmap_unregister_ipte_notifier(struct gmap_notifier *);
798int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
799void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
800
801static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
802 unsigned long addr,
803 pte_t *ptep, pgste_t pgste)
804{
805#ifdef CONFIG_PGSTE
806 if (pgste_val(pgste) & RCP_IN_BIT) {
807 pgste_val(pgste) &= ~RCP_IN_BIT;
808 gmap_do_ipte_notify(mm, addr, ptep);
809 }
810#endif
811 return pgste;
812}
813
b2fa47e6
MS
814/*
815 * Certain architectures need to do special things when PTEs
816 * within a page table are directly modified. Thus, the following
817 * hook is made available.
818 */
819static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
820 pte_t *ptep, pte_t entry)
821{
822 pgste_t pgste;
823
824 if (mm_has_pgste(mm)) {
825 pgste = pgste_get_lock(ptep);
abf09bed
MS
826 pgste_set_key(ptep, pgste, entry);
827 pgste_set_pte(ptep, entry);
b2fa47e6 828 pgste_set_unlock(ptep, pgste);
abf09bed
MS
829 } else {
830 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
831 pte_val(entry) |= _PAGE_CO;
b2fa47e6 832 *ptep = entry;
abf09bed 833 }
b2fa47e6
MS
834}
835
1da177e4
LT
836/*
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
839 */
4448aaf0 840static inline int pte_write(pte_t pte)
1da177e4 841{
abf09bed 842 return (pte_val(pte) & _PAGE_SWW) != 0;
1da177e4
LT
843}
844
4448aaf0 845static inline int pte_dirty(pte_t pte)
1da177e4 846{
abf09bed 847 return (pte_val(pte) & _PAGE_SWC) != 0;
1da177e4
LT
848}
849
4448aaf0 850static inline int pte_young(pte_t pte)
1da177e4 851{
b2fa47e6
MS
852#ifdef CONFIG_PGSTE
853 if (pte_val(pte) & _PAGE_SWR)
854 return 1;
855#endif
1da177e4
LT
856 return 0;
857}
858
1da177e4
LT
859/*
860 * pgd/pmd/pte modification functions
861 */
862
b2fa47e6 863static inline void pgd_clear(pgd_t *pgd)
5a216a20 864{
f4815ac6 865#ifdef CONFIG_64BIT
6252d702
MS
866 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
867 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
b2fa47e6 868#endif
5a216a20
MS
869}
870
b2fa47e6 871static inline void pud_clear(pud_t *pud)
1da177e4 872{
f4815ac6 873#ifdef CONFIG_64BIT
6252d702
MS
874 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
875 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
b2fa47e6 876#endif
1da177e4
LT
877}
878
b2fa47e6 879static inline void pmd_clear(pmd_t *pmdp)
1da177e4 880{
3610cce8 881 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
882}
883
4448aaf0 884static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 885{
9282ed92 886 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1da177e4
LT
887}
888
889/*
890 * The following pte modification functions only work if
891 * pte_present() is true. Undefined behaviour if not..
892 */
4448aaf0 893static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 894{
138c9021 895 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4 896 pte_val(pte) |= pgprot_val(newprot);
abf09bed
MS
897 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
898 pte_val(pte) &= ~_PAGE_RO;
1da177e4
LT
899 return pte;
900}
901
4448aaf0 902static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 903{
abf09bed 904 pte_val(pte) &= ~_PAGE_SWW;
9282ed92 905 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
906 if (!(pte_val(pte) & _PAGE_INVALID))
907 pte_val(pte) |= _PAGE_RO;
908 return pte;
909}
910
4448aaf0 911static inline pte_t pte_mkwrite(pte_t pte)
1da177e4 912{
abf09bed
MS
913 pte_val(pte) |= _PAGE_SWW;
914 if (pte_val(pte) & _PAGE_SWC)
915 pte_val(pte) &= ~_PAGE_RO;
1da177e4
LT
916 return pte;
917}
918
4448aaf0 919static inline pte_t pte_mkclean(pte_t pte)
1da177e4 920{
b2fa47e6 921 pte_val(pte) &= ~_PAGE_SWC;
abf09bed
MS
922 /* Do not clobber _PAGE_TYPE_NONE pages! */
923 if (!(pte_val(pte) & _PAGE_INVALID))
924 pte_val(pte) |= _PAGE_RO;
1da177e4
LT
925 return pte;
926}
927
4448aaf0 928static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 929{
abf09bed
MS
930 pte_val(pte) |= _PAGE_SWC;
931 if (pte_val(pte) & _PAGE_SWW)
932 pte_val(pte) &= ~_PAGE_RO;
1da177e4
LT
933 return pte;
934}
935
4448aaf0 936static inline pte_t pte_mkold(pte_t pte)
1da177e4 937{
b2fa47e6
MS
938#ifdef CONFIG_PGSTE
939 pte_val(pte) &= ~_PAGE_SWR;
940#endif
1da177e4
LT
941 return pte;
942}
943
4448aaf0 944static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 945{
1da177e4
LT
946 return pte;
947}
948
7e675137
NP
949static inline pte_t pte_mkspecial(pte_t pte)
950{
a08cb629 951 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
952 return pte;
953}
954
84afdcee
HC
955#ifdef CONFIG_HUGETLB_PAGE
956static inline pte_t pte_mkhuge(pte_t pte)
957{
84afdcee
HC
958 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
959 return pte;
960}
961#endif
962
15e86b0c 963/*
b2fa47e6 964 * Get (and clear) the user dirty bit for a pte.
15e86b0c 965 */
b2fa47e6
MS
966static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
967 pte_t *ptep)
15e86b0c 968{
b2fa47e6
MS
969 pgste_t pgste;
970 int dirty = 0;
971
972 if (mm_has_pgste(mm)) {
973 pgste = pgste_get_lock(ptep);
974 pgste = pgste_update_all(ptep, pgste);
975 dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
976 pgste_val(pgste) &= ~KVM_UC_BIT;
977 pgste_set_unlock(ptep, pgste);
978 return dirty;
15e86b0c 979 }
15e86b0c
FF
980 return dirty;
981}
b2fa47e6
MS
982
983/*
984 * Get (and clear) the user referenced bit for a pte.
985 */
986static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
987 pte_t *ptep)
988{
989 pgste_t pgste;
990 int young = 0;
991
992 if (mm_has_pgste(mm)) {
993 pgste = pgste_get_lock(ptep);
994 pgste = pgste_update_young(ptep, pgste);
995 young = !!(pgste_val(pgste) & KVM_UR_BIT);
996 pgste_val(pgste) &= ~KVM_UR_BIT;
997 pgste_set_unlock(ptep, pgste);
998 }
999 return young;
1000}
15e86b0c 1001
ba8a9229
MS
1002#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1003static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1004 unsigned long addr, pte_t *ptep)
1da177e4 1005{
b2fa47e6
MS
1006 pgste_t pgste;
1007 pte_t pte;
1008
1009 if (mm_has_pgste(vma->vm_mm)) {
1010 pgste = pgste_get_lock(ptep);
1011 pgste = pgste_update_young(ptep, pgste);
1012 pte = *ptep;
1013 *ptep = pte_mkold(pte);
1014 pgste_set_unlock(ptep, pgste);
1015 return pte_young(pte);
1016 }
1da177e4
LT
1017 return 0;
1018}
1019
ba8a9229
MS
1020#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1021static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1022 unsigned long address, pte_t *ptep)
1da177e4 1023{
5b7baf05
CB
1024 /* No need to flush TLB
1025 * On s390 reference bits are in storage key and never in TLB
1026 * With virtualization we handle the reference bit, without we
1027 * we can simply return */
5b7baf05 1028 return ptep_test_and_clear_young(vma, address, ptep);
1da177e4
LT
1029}
1030
9282ed92 1031static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 1032{
9282ed92 1033 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
f4815ac6 1034#ifndef CONFIG_64BIT
146e4b3c 1035 /* pto must point to the start of the segment table */
1da177e4 1036 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
1037#else
1038 /* ipte in zarch mode can do the math */
1039 pte_t *pto = ptep;
1040#endif
94c12cc7
MS
1041 asm volatile(
1042 " ipte %2,%3"
1043 : "=m" (*ptep) : "m" (*ptep),
1044 "a" (pto), "a" (address));
1da177e4 1045 }
9282ed92
GS
1046}
1047
ba8a9229
MS
1048/*
1049 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1050 * both clear the TLB for the unmapped pte. The reason is that
1051 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1052 * to modify an active pte. The sequence is
1053 * 1) ptep_get_and_clear
1054 * 2) set_pte_at
1055 * 3) flush_tlb_range
1056 * On s390 the tlb needs to get flushed with the modification of the pte
1057 * if the pte is active. The only way how this can be implemented is to
1058 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1059 * is a nop.
1060 */
1061#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6
MS
1062static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1063 unsigned long address, pte_t *ptep)
1064{
1065 pgste_t pgste;
1066 pte_t pte;
1067
1068 mm->context.flush_mm = 1;
d3383632 1069 if (mm_has_pgste(mm)) {
b2fa47e6 1070 pgste = pgste_get_lock(ptep);
d3383632
MS
1071 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1072 }
b2fa47e6
MS
1073
1074 pte = *ptep;
1075 if (!mm_exclusive(mm))
1076 __ptep_ipte(address, ptep);
1077 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1078
1079 if (mm_has_pgste(mm)) {
1080 pgste = pgste_update_all(&pte, pgste);
1081 pgste_set_unlock(ptep, pgste);
1082 }
1083 return pte;
1084}
1085
1086#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1087static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1088 unsigned long address,
1089 pte_t *ptep)
1090{
d3383632 1091 pgste_t pgste;
b2fa47e6
MS
1092 pte_t pte;
1093
1094 mm->context.flush_mm = 1;
d3383632
MS
1095 if (mm_has_pgste(mm)) {
1096 pgste = pgste_get_lock(ptep);
1097 pgste_ipte_notify(mm, address, ptep, pgste);
1098 }
b2fa47e6
MS
1099
1100 pte = *ptep;
1101 if (!mm_exclusive(mm))
1102 __ptep_ipte(address, ptep);
b56433cb
CB
1103
1104 if (mm_has_pgste(mm))
1105 pgste = pgste_update_all(&pte, pgste);
b2fa47e6
MS
1106 return pte;
1107}
1108
1109static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1110 unsigned long address,
1111 pte_t *ptep, pte_t pte)
1112{
b56433cb
CB
1113 pgste_t pgste;
1114
abf09bed 1115 if (mm_has_pgste(mm)) {
b56433cb
CB
1116 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1117 pgste_set_key(ptep, pgste, pte);
abf09bed 1118 pgste_set_pte(ptep, pte);
b56433cb 1119 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1120 } else
1121 *ptep = pte;
b2fa47e6 1122}
ba8a9229
MS
1123
1124#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
1125static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1126 unsigned long address, pte_t *ptep)
1127{
b2fa47e6
MS
1128 pgste_t pgste;
1129 pte_t pte;
1130
d3383632 1131 if (mm_has_pgste(vma->vm_mm)) {
b2fa47e6 1132 pgste = pgste_get_lock(ptep);
d3383632
MS
1133 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1134 }
b2fa47e6
MS
1135
1136 pte = *ptep;
1137 __ptep_ipte(address, ptep);
1138 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1139
1140 if (mm_has_pgste(vma->vm_mm)) {
1141 pgste = pgste_update_all(&pte, pgste);
1142 pgste_set_unlock(ptep, pgste);
1143 }
1da177e4
LT
1144 return pte;
1145}
1146
ba8a9229
MS
1147/*
1148 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1149 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1150 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1151 * cannot be accessed while the batched unmap is running. In this case
1152 * full==1 and a simple pte_clear is enough. See tlb.h.
1153 */
1154#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1155static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
b2fa47e6 1156 unsigned long address,
ba8a9229 1157 pte_t *ptep, int full)
1da177e4 1158{
b2fa47e6
MS
1159 pgste_t pgste;
1160 pte_t pte;
1161
d3383632 1162 if (mm_has_pgste(mm)) {
b2fa47e6 1163 pgste = pgste_get_lock(ptep);
d3383632
MS
1164 if (!full)
1165 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1166 }
ba8a9229 1167
b2fa47e6
MS
1168 pte = *ptep;
1169 if (!full)
1170 __ptep_ipte(address, ptep);
1171 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1172
1173 if (mm_has_pgste(mm)) {
1174 pgste = pgste_update_all(&pte, pgste);
1175 pgste_set_unlock(ptep, pgste);
1176 }
ba8a9229 1177 return pte;
1da177e4
LT
1178}
1179
ba8a9229 1180#define __HAVE_ARCH_PTEP_SET_WRPROTECT
b2fa47e6
MS
1181static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1182 unsigned long address, pte_t *ptep)
1183{
1184 pgste_t pgste;
1185 pte_t pte = *ptep;
1186
1187 if (pte_write(pte)) {
1188 mm->context.flush_mm = 1;
d3383632 1189 if (mm_has_pgste(mm)) {
b2fa47e6 1190 pgste = pgste_get_lock(ptep);
d3383632
MS
1191 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1192 }
b2fa47e6
MS
1193
1194 if (!mm_exclusive(mm))
1195 __ptep_ipte(address, ptep);
abf09bed 1196 pte = pte_wrprotect(pte);
b2fa47e6 1197
abf09bed
MS
1198 if (mm_has_pgste(mm)) {
1199 pgste_set_pte(ptep, pte);
b2fa47e6 1200 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1201 } else
1202 *ptep = pte;
b2fa47e6
MS
1203 }
1204 return pte;
1205}
ba8a9229
MS
1206
1207#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6
MS
1208static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1209 unsigned long address, pte_t *ptep,
1210 pte_t entry, int dirty)
1211{
1212 pgste_t pgste;
1213
1214 if (pte_same(*ptep, entry))
1215 return 0;
d3383632 1216 if (mm_has_pgste(vma->vm_mm)) {
b2fa47e6 1217 pgste = pgste_get_lock(ptep);
d3383632
MS
1218 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1219 }
b2fa47e6
MS
1220
1221 __ptep_ipte(address, ptep);
b2fa47e6 1222
abf09bed
MS
1223 if (mm_has_pgste(vma->vm_mm)) {
1224 pgste_set_pte(ptep, entry);
b2fa47e6 1225 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1226 } else
1227 *ptep = entry;
b2fa47e6
MS
1228 return 1;
1229}
1da177e4 1230
1da177e4
LT
1231/*
1232 * Conversion functions: convert a page and protection to a page entry,
1233 * and a page entry and page directory to the page they refer to.
1234 */
1235static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1236{
1237 pte_t __pte;
1238 pte_val(__pte) = physpage + pgprot_val(pgprot);
1239 return __pte;
1240}
1241
2dcea57a
HC
1242static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1243{
0b2b6e1d 1244 unsigned long physpage = page_to_phys(page);
abf09bed 1245 pte_t __pte = mk_pte_phys(physpage, pgprot);
1da177e4 1246
abf09bed
MS
1247 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1248 pte_val(__pte) |= _PAGE_SWC;
1249 pte_val(__pte) &= ~_PAGE_RO;
1250 }
1251 return __pte;
2dcea57a
HC
1252}
1253
190a1d72
MS
1254#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1255#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1256#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1257#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1258
190a1d72
MS
1259#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1260#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1261
f4815ac6 1262#ifndef CONFIG_64BIT
1da177e4 1263
190a1d72
MS
1264#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1265#define pud_deref(pmd) ({ BUG(); 0UL; })
1266#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 1267
190a1d72
MS
1268#define pud_offset(pgd, address) ((pud_t *) pgd)
1269#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 1270
f4815ac6 1271#else /* CONFIG_64BIT */
1da177e4 1272
190a1d72
MS
1273#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1274#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1275#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1276
5a216a20
MS
1277static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1278{
6252d702
MS
1279 pud_t *pud = (pud_t *) pgd;
1280 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1281 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1282 return pud + pud_index(address);
1283}
1da177e4 1284
190a1d72 1285static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1286{
6252d702
MS
1287 pmd_t *pmd = (pmd_t *) pud;
1288 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1289 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1290 return pmd + pmd_index(address);
1da177e4
LT
1291}
1292
f4815ac6 1293#endif /* CONFIG_64BIT */
1da177e4 1294
190a1d72
MS
1295#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1296#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1297#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1298
190a1d72 1299#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 1300
190a1d72
MS
1301/* Find an entry in the lowest level page table.. */
1302#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1303#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4 1304#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1da177e4 1305#define pte_unmap(pte) do { } while (0)
1da177e4 1306
1ae1c1d0
GS
1307static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1308{
1309 unsigned long sto = (unsigned long) pmdp -
1310 pmd_index(address) * sizeof(pmd_t);
1311
1312 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1313 asm volatile(
1314 " .insn rrf,0xb98e0000,%2,%3,0,0"
1315 : "=m" (*pmdp)
1316 : "m" (*pmdp), "a" (sto),
1317 "a" ((address & HPAGE_MASK))
1318 : "cc"
1319 );
1320 }
1321}
1322
106c992a 1323#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1ae1c1d0
GS
1324static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1325{
d8e7a33d
GS
1326 /*
1327 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1328 * Convert to segment table entry format.
1329 */
1330 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1331 return pgprot_val(SEGMENT_NONE);
1332 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1333 return pgprot_val(SEGMENT_RO);
1334 return pgprot_val(SEGMENT_RW);
1ae1c1d0
GS
1335}
1336
1337static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1338{
1339 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1340 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1341 return pmd;
1342}
1343
106c992a 1344static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1345{
106c992a
GS
1346 pmd_t __pmd;
1347 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1348 return __pmd;
1ae1c1d0
GS
1349}
1350
1351static inline pmd_t pmd_mkwrite(pmd_t pmd)
1352{
d8e7a33d
GS
1353 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1354 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1355 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1ae1c1d0
GS
1356 return pmd;
1357}
106c992a
GS
1358#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1359
1360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1361
1362#define __HAVE_ARCH_PGTABLE_DEPOSIT
1363extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
1364
1365#define __HAVE_ARCH_PGTABLE_WITHDRAW
1366extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
1367
1368static inline int pmd_trans_splitting(pmd_t pmd)
1369{
1370 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1371}
1372
1373static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1374 pmd_t *pmdp, pmd_t entry)
1375{
1376 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1377 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1378 *pmdp = entry;
1379}
1380
1381static inline pmd_t pmd_mkhuge(pmd_t pmd)
1382{
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1384 return pmd;
1385}
1ae1c1d0
GS
1386
1387static inline pmd_t pmd_wrprotect(pmd_t pmd)
1388{
1389 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1390 return pmd;
1391}
1392
1393static inline pmd_t pmd_mkdirty(pmd_t pmd)
1394{
1395 /* No dirty bit in the segment table entry. */
1396 return pmd;
1397}
1398
1399static inline pmd_t pmd_mkold(pmd_t pmd)
1400{
1401 /* No referenced bit in the segment table entry. */
1402 return pmd;
1403}
1404
1405static inline pmd_t pmd_mkyoung(pmd_t pmd)
1406{
1407 /* No referenced bit in the segment table entry. */
1408 return pmd;
1409}
1410
1411#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1412static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1413 unsigned long address, pmd_t *pmdp)
1414{
1415 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1416 long tmp, rc;
1417 int counter;
1418
1419 rc = 0;
1420 if (MACHINE_HAS_RRBM) {
1421 counter = PTRS_PER_PTE >> 6;
1422 asm volatile(
1423 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1424 " ogr %1,%0\n"
1425 " la %3,0(%4,%3)\n"
1426 " brct %2,0b\n"
1427 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1428 "+a" (pmd_addr)
1429 : "a" (64 * 4096UL) : "cc");
1430 rc = !!rc;
1431 } else {
1432 counter = PTRS_PER_PTE;
1433 asm volatile(
1434 "0: rrbe 0,%2\n"
1435 " la %2,0(%3,%2)\n"
1436 " brc 12,1f\n"
1437 " lhi %0,1\n"
1438 "1: brct %1,0b\n"
1439 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1440 : "a" (4096UL) : "cc");
1441 }
1442 return rc;
1443}
1444
1445#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1446static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1447 unsigned long address, pmd_t *pmdp)
1448{
1449 pmd_t pmd = *pmdp;
1450
1451 __pmd_idte(address, pmdp);
1452 pmd_clear(pmdp);
1453 return pmd;
1454}
1455
1456#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1457static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1458 unsigned long address, pmd_t *pmdp)
1459{
1460 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1461}
1462
1463#define __HAVE_ARCH_PMDP_INVALIDATE
1464static inline void pmdp_invalidate(struct vm_area_struct *vma,
1465 unsigned long address, pmd_t *pmdp)
1466{
1467 __pmd_idte(address, pmdp);
1468}
1469
be328650
GS
1470#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1471static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1472 unsigned long address, pmd_t *pmdp)
1473{
1474 pmd_t pmd = *pmdp;
1475
1476 if (pmd_write(pmd)) {
1477 __pmd_idte(address, pmdp);
1478 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1479 }
1480}
1481
1ae1c1d0
GS
1482#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1483#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1484
1485static inline int pmd_trans_huge(pmd_t pmd)
1486{
1487 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1488}
1489
1490static inline int has_transparent_hugepage(void)
1491{
1492 return MACHINE_HAS_HPAGE ? 1 : 0;
1493}
1494
1495static inline unsigned long pmd_pfn(pmd_t pmd)
1496{
171c4006 1497 return pmd_val(pmd) >> PAGE_SHIFT;
1ae1c1d0 1498}
75077afb
GS
1499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500
1da177e4
LT
1501/*
1502 * 31 bit swap entry format:
1503 * A page-table entry has some bits we have to treat in a special way.
1504 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1505 * exception will occur instead of a page translation exception. The
1506 * specifiation exception has the bad habit not to store necessary
1507 * information in the lowcore.
1508 * Bit 21 and bit 22 are the page invalid bit and the page protection
1509 * bit. We set both to indicate a swapped page.
1510 * Bit 30 and 31 are used to distinguish the different page types. For
1511 * a swapped page these bits need to be zero.
1512 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1513 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1514 * plus 24 for the offset.
1515 * 0| offset |0110|o|type |00|
1516 * 0 0000000001111111111 2222 2 22222 33
1517 * 0 1234567890123456789 0123 4 56789 01
1518 *
1519 * 64 bit swap entry format:
1520 * A page-table entry has some bits we have to treat in a special way.
1521 * Bits 52 and bit 55 have to be zero, otherwise an specification
1522 * exception will occur instead of a page translation exception. The
1523 * specifiation exception has the bad habit not to store necessary
1524 * information in the lowcore.
1525 * Bit 53 and bit 54 are the page invalid bit and the page protection
1526 * bit. We set both to indicate a swapped page.
1527 * Bit 62 and 63 are used to distinguish the different page types. For
1528 * a swapped page these bits need to be zero.
1529 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1530 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1531 * plus 56 for the offset.
1532 * | offset |0110|o|type |00|
1533 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1534 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1535 */
f4815ac6 1536#ifndef CONFIG_64BIT
1da177e4
LT
1537#define __SWP_OFFSET_MASK (~0UL >> 12)
1538#else
1539#define __SWP_OFFSET_MASK (~0UL >> 11)
1540#endif
4448aaf0 1541static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1542{
1543 pte_t pte;
1544 offset &= __SWP_OFFSET_MASK;
9282ed92 1545 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1546 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1547 return pte;
1548}
1549
1550#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1551#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1552#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1553
1554#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1555#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1556
f4815ac6 1557#ifndef CONFIG_64BIT
1da177e4 1558# define PTE_FILE_MAX_BITS 26
f4815ac6 1559#else /* CONFIG_64BIT */
1da177e4 1560# define PTE_FILE_MAX_BITS 59
f4815ac6 1561#endif /* CONFIG_64BIT */
1da177e4
LT
1562
1563#define pte_to_pgoff(__pte) \
1564 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1565
1566#define pgoff_to_pte(__off) \
1567 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1568 | _PAGE_TYPE_FILE })
1da177e4
LT
1569
1570#endif /* !__ASSEMBLY__ */
1571
1572#define kern_addr_valid(addr) (1)
1573
17f34580
HC
1574extern int vmem_add_mapping(unsigned long start, unsigned long size);
1575extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1576extern int s390_enable_sie(void);
f4eb07c1 1577
1da177e4
LT
1578/*
1579 * No page table caches to initialise
1580 */
765a0cac
HC
1581static inline void pgtable_cache_init(void) { }
1582static inline void check_pgt_cache(void) { }
1da177e4 1583
1da177e4
LT
1584#include <asm-generic/pgtable.h>
1585
1586#endif /* _S390_PAGE_H */