]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/s390/include/asm/pgtable.h
Merge branch 'x86/boot' into x86/mm, to avoid conflict
[mirror_ubuntu-focal-kernel.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
1da177e4 14/*
a1c843b8
MS
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
1da177e4
LT
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
9849a569 27#include <asm-generic/5level-fixup.h>
9789db08 28#include <linux/sched.h>
2dcea57a 29#include <linux/mm_types.h>
abf09bed 30#include <linux/page-flags.h>
527e30b4 31#include <linux/radix-tree.h>
37cd944c 32#include <linux/atomic.h>
1da177e4 33#include <asm/bug.h>
b2fa47e6 34#include <asm/page.h>
1da177e4 35
0ccb32c9 36extern pgd_t swapper_pg_dir[];
1da177e4 37extern void paging_init(void);
2b67fc46 38extern void vmem_map_init(void);
e8a97e42
HC
39pmd_t *vmem_pmd_alloc(void);
40pte_t *vmem_pte_alloc(void);
1da177e4 41
37cd944c
HC
42enum {
43 PG_DIRECT_MAP_4K = 0,
44 PG_DIRECT_MAP_1M,
45 PG_DIRECT_MAP_2G,
46 PG_DIRECT_MAP_MAX
47};
48
49extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
50
51static inline void update_page_count(int level, long count)
52{
53 if (IS_ENABLED(CONFIG_PROC_FS))
54 atomic_long_add(count, &direct_pages_count[level]);
55}
56
57struct seq_file;
58void arch_report_meminfo(struct seq_file *m);
59
1da177e4
LT
60/*
61 * The S390 doesn't have any external MMU info: the kernel page
62 * tables contain all the necessary information.
63 */
4b3073e1 64#define update_mmu_cache(vma, address, ptep) do { } while (0)
b113da65 65#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
66
67/*
238ec4ef 68 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
69 * for zero-mapped memory areas etc..
70 */
238ec4ef
MS
71
72extern unsigned long empty_zero_page;
73extern unsigned long zero_page_mask;
74
75#define ZERO_PAGE(vaddr) \
76 (virt_to_page((void *)(empty_zero_page + \
77 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 78#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 79
4f2e2903 80/* TODO: s390 cannot support io_remap_pfn_range... */
1da177e4
LT
81#endif /* !__ASSEMBLY__ */
82
83/*
84 * PMD_SHIFT determines the size of the area a second-level page
85 * table can map
86 * PGDIR_SHIFT determines what a third-level page table entry can map
87 */
5a79859a
HC
88#define PMD_SHIFT 20
89#define PUD_SHIFT 31
90#define PGDIR_SHIFT 42
1da177e4
LT
91
92#define PMD_SIZE (1UL << PMD_SHIFT)
93#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
94#define PUD_SIZE (1UL << PUD_SHIFT)
95#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
96#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
97#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
98
99/*
100 * entries per page directory level: the S390 is two-level, so
101 * we don't really have any PMD directory physically.
102 * for S390 segment-table entries are combined to one PGD
103 * that leads to 1024 pte per pgd
104 */
146e4b3c 105#define PTRS_PER_PTE 256
146e4b3c 106#define PTRS_PER_PMD 2048
5a216a20 107#define PTRS_PER_PUD 2048
146e4b3c 108#define PTRS_PER_PGD 2048
1da177e4 109
d016bf7e 110#define FIRST_USER_ADDRESS 0UL
d455a369 111
1da177e4
LT
112#define pte_ERROR(e) \
113 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
114#define pmd_ERROR(e) \
115 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
116#define pud_ERROR(e) \
117 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
118#define pgd_ERROR(e) \
119 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
120
121#ifndef __ASSEMBLY__
122/*
a1c843b8
MS
123 * The vmalloc and module area will always be on the topmost area of the
124 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
c972cc60
HC
125 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
126 * modules will reside. That makes sure that inter module branches always
127 * happen without trampolines and in addition the placement within a 2GB frame
128 * is branch prediction unit friendly.
8b62bc96 129 */
239a6425 130extern unsigned long VMALLOC_START;
14045ebf
MS
131extern unsigned long VMALLOC_END;
132extern struct page *vmemmap;
239a6425 133
14045ebf 134#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
5fd9c6e2 135
c972cc60
HC
136extern unsigned long MODULES_VADDR;
137extern unsigned long MODULES_END;
138#define MODULES_VADDR MODULES_VADDR
139#define MODULES_END MODULES_END
140#define MODULES_LEN (1UL << 31)
c972cc60 141
c933146a
HC
142static inline int is_module_addr(void *addr)
143{
c933146a
HC
144 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
145 if (addr < (void *)MODULES_VADDR)
146 return 0;
147 if (addr > (void *)MODULES_END)
148 return 0;
c933146a
HC
149 return 1;
150}
151
1da177e4 152/*
1da177e4 153 * A 64 bit pagetable entry of S390 has following format:
6a985c61 154 * | PFRA |0IPC| OS |
1da177e4
LT
155 * 0000000000111111111122222222223333333333444444444455555555556666
156 * 0123456789012345678901234567890123456789012345678901234567890123
157 *
158 * I Page-Invalid Bit: Page is not available for address-translation
159 * P Page-Protection Bit: Store access not possible for page
6a985c61 160 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
161 *
162 * A 64 bit segmenttable entry of S390 has following format:
163 * | P-table origin | TT
164 * 0000000000111111111122222222223333333333444444444455555555556666
165 * 0123456789012345678901234567890123456789012345678901234567890123
166 *
167 * I Segment-Invalid Bit: Segment is not available for address-translation
168 * C Common-Segment Bit: Segment is not private (PoP 3-30)
169 * P Page-Protection Bit: Store access not possible for page
170 * TT Type 00
171 *
172 * A 64 bit region table entry of S390 has following format:
173 * | S-table origin | TF TTTL
174 * 0000000000111111111122222222223333333333444444444455555555556666
175 * 0123456789012345678901234567890123456789012345678901234567890123
176 *
177 * I Segment-Invalid Bit: Segment is not available for address-translation
178 * TT Type 01
179 * TF
190a1d72 180 * TL Table length
1da177e4
LT
181 *
182 * The 64 bit regiontable origin of S390 has following format:
183 * | region table origon | DTTL
184 * 0000000000111111111122222222223333333333444444444455555555556666
185 * 0123456789012345678901234567890123456789012345678901234567890123
186 *
187 * X Space-Switch event:
188 * G Segment-Invalid Bit:
189 * P Private-Space Bit:
190 * S Storage-Alteration:
191 * R Real space
192 * TL Table-Length:
193 *
194 * A storage key has the following format:
195 * | ACC |F|R|C|0|
196 * 0 3 4 5 6 7
197 * ACC: access key
198 * F : fetch protection bit
199 * R : referenced bit
200 * C : changed bit
201 */
202
203/* Hardware bits in the page table entry */
57d7f939 204#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
e5098611 205#define _PAGE_PROTECT 0x200 /* HW read-only bit */
83377484 206#define _PAGE_INVALID 0x400 /* HW invalid bit */
e5098611 207#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
3610cce8
MS
208
209/* Software bits in the page table entry */
e5098611 210#define _PAGE_PRESENT 0x001 /* SW pte present bit */
e5098611
MS
211#define _PAGE_YOUNG 0x004 /* SW pte young bit */
212#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
0944fe3f
MS
213#define _PAGE_READ 0x010 /* SW pte read bit */
214#define _PAGE_WRITE 0x020 /* SW pte write bit */
215#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
b31288fa 216#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
a08cb629 217#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 218
5614dd92
MS
219#ifdef CONFIG_MEM_SOFT_DIRTY
220#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
221#else
222#define _PAGE_SOFT_DIRTY 0x000
223#endif
224
138c9021 225/* Set of bits not changed in pte_modify */
6a5c1482 226#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
5614dd92 227 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
53492b1d 228
83377484 229/*
6e76d4b2
KS
230 * handle_pte_fault uses pte_present and pte_none to find out the pte type
231 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
232 * distinguish present from not-present ptes. It is changed only with the page
233 * table lock held.
83377484 234 *
e5098611 235 * The following table gives the different possible bit combinations for
a1c843b8
MS
236 * the pte hardware and software bits in the last 12 bits of a pte
237 * (. unassigned bit, x don't care, t swap type):
83377484 238 *
0944fe3f
MS
239 * 842100000000
240 * 000084210000
241 * 000000008421
a1c843b8
MS
242 * .IR.uswrdy.p
243 * empty .10.00000000
244 * swap .11..ttttt.0
245 * prot-none, clean, old .11.xx0000.1
246 * prot-none, clean, young .11.xx0001.1
bc29b7ac
GS
247 * prot-none, dirty, old .11.xx0010.1
248 * prot-none, dirty, young .11.xx0011.1
a1c843b8
MS
249 * read-only, clean, old .11.xx0100.1
250 * read-only, clean, young .01.xx0101.1
251 * read-only, dirty, old .11.xx0110.1
252 * read-only, dirty, young .01.xx0111.1
253 * read-write, clean, old .11.xx1100.1
254 * read-write, clean, young .01.xx1101.1
255 * read-write, dirty, old .10.xx1110.1
256 * read-write, dirty, young .00.xx1111.1
257 * HW-bits: R read-only, I invalid
258 * SW-bits: p present, y young, d dirty, r read, w write, s special,
259 * u unused, l large
e5098611 260 *
a1c843b8
MS
261 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
262 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
263 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
83377484
MS
264 */
265
3610cce8
MS
266/* Bits in the segment/region table address-space-control-element */
267#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
268#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
269#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
270#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
271#define _ASCE_REAL_SPACE 0x20 /* real space control */
272#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
273#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
274#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
275#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
276#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
277#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
278
279/* Bits in the region table entry */
280#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
e5098611 281#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
57d7f939 282#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
4be130a0 283#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
e5098611 284#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
3610cce8
MS
285#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
286#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
287#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
288#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
289#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
290
291#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
e5098611 292#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
3610cce8 293#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
e5098611 294#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
3610cce8 295#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
e5098611 296#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
3610cce8 297
9e20b4da
HC
298#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
299#define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
300
2dffdcba
HC
301#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
302#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
303#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
304#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
305#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
306
307#ifdef CONFIG_MEM_SOFT_DIRTY
308#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
309#else
310#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
311#endif
312
d08de8e2
GS
313#define _REGION_ENTRY_BITS 0xfffffffffffff227UL
314#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
315
1da177e4 316/* Bits in the segment table entry */
0944fe3f 317#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
152125b7 318#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
ea81531d 319#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
3610cce8 320#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
e5098611 321#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
57d7f939 322#define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
e5098611 323#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
1da177e4 324
3610cce8 325#define _SEGMENT_ENTRY (0)
e5098611 326#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
3610cce8 327
152125b7
MS
328#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
329#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
152125b7 330#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
bc29b7ac
GS
331#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
332#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
0944fe3f 333
5614dd92
MS
334#ifdef CONFIG_MEM_SOFT_DIRTY
335#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
336#else
337#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338#endif
339
0944fe3f 340/*
2dffdcba
HC
341 * Segment table and region3 table entry encoding
342 * (R = read-only, I = invalid, y = young bit):
bc29b7ac 343 * dy..R...I...wr
152125b7
MS
344 * prot-none, clean, old 00..1...1...00
345 * prot-none, clean, young 01..1...1...00
346 * prot-none, dirty, old 10..1...1...00
347 * prot-none, dirty, young 11..1...1...00
bc29b7ac
GS
348 * read-only, clean, old 00..1...1...01
349 * read-only, clean, young 01..1...0...01
350 * read-only, dirty, old 10..1...1...01
351 * read-only, dirty, young 11..1...0...01
152125b7
MS
352 * read-write, clean, old 00..1...1...11
353 * read-write, clean, young 01..1...0...11
354 * read-write, dirty, old 10..0...1...11
355 * read-write, dirty, young 11..0...0...11
0944fe3f
MS
356 * The segment table origin is used to distinguish empty (origin==0) from
357 * read-write, old segment table entries (origin!=0)
a1c843b8
MS
358 * HW-bits: R read-only, I invalid
359 * SW-bits: y young, d dirty, r read, w write
0944fe3f 360 */
e5098611 361
6c61cfe9 362/* Page status table bits for virtualization */
0d0dafc1
MS
363#define PGSTE_ACC_BITS 0xf000000000000000UL
364#define PGSTE_FP_BIT 0x0800000000000000UL
365#define PGSTE_PCL_BIT 0x0080000000000000UL
366#define PGSTE_HR_BIT 0x0040000000000000UL
367#define PGSTE_HC_BIT 0x0020000000000000UL
368#define PGSTE_GR_BIT 0x0004000000000000UL
369#define PGSTE_GC_BIT 0x0002000000000000UL
0a61b222
MS
370#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
371#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
4be130a0 372#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
6c61cfe9 373
b31288fa
KW
374/* Guest Page State used for virtualization */
375#define _PGSTE_GPS_ZERO 0x0000000080000000UL
376#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
377#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
378#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
379
1da177e4 380/*
3610cce8
MS
381 * A user page table pointer has the space-switch-event bit, the
382 * private-space-control bit and the storage-alteration-event-control
383 * bit set. A kernel page table pointer doesn't need them.
1da177e4 384 */
3610cce8
MS
385#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
386 _ASCE_ALT_EVENT)
1da177e4 387
1da177e4 388/*
9282ed92 389 * Page protection definitions.
1da177e4 390 */
bc29b7ac 391#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
57d7f939
MS
392#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
393 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
394#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
0944fe3f 395 _PAGE_INVALID | _PAGE_PROTECT)
57d7f939
MS
396#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
397 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
398#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
0944fe3f
MS
399 _PAGE_INVALID | _PAGE_PROTECT)
400
401#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 402 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
0944fe3f 403#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
57d7f939 404 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
0944fe3f 405#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
57d7f939
MS
406 _PAGE_PROTECT | _PAGE_NOEXEC)
407#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_YOUNG | _PAGE_DIRTY)
1da177e4
LT
409
410/*
043d0708
MS
411 * On s390 the page table entry has an invalid bit and a read-only bit.
412 * Read permission implies execute permission and write permission
413 * implies read permission.
1da177e4
LT
414 */
415 /*xwr*/
9282ed92 416#define __P000 PAGE_NONE
57d7f939
MS
417#define __P001 PAGE_RO
418#define __P010 PAGE_RO
419#define __P011 PAGE_RO
420#define __P100 PAGE_RX
421#define __P101 PAGE_RX
422#define __P110 PAGE_RX
423#define __P111 PAGE_RX
9282ed92
GS
424
425#define __S000 PAGE_NONE
57d7f939
MS
426#define __S001 PAGE_RO
427#define __S010 PAGE_RW
428#define __S011 PAGE_RW
429#define __S100 PAGE_RX
430#define __S101 PAGE_RX
431#define __S110 PAGE_RWX
432#define __S111 PAGE_RWX
1da177e4 433
106c992a
GS
434/*
435 * Segment entry (large page) protection definitions.
436 */
e5098611
MS
437#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
438 _SEGMENT_ENTRY_PROTECT)
57d7f939
MS
439#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
440 _SEGMENT_ENTRY_READ | \
441 _SEGMENT_ENTRY_NOEXEC)
442#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
152125b7 443 _SEGMENT_ENTRY_READ)
57d7f939
MS
444#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
445 _SEGMENT_ENTRY_WRITE | \
446 _SEGMENT_ENTRY_NOEXEC)
447#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
152125b7 448 _SEGMENT_ENTRY_WRITE)
2dffdcba
HC
449#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
450 _SEGMENT_ENTRY_LARGE | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_WRITE | \
453 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
454 _SEGMENT_ENTRY_DIRTY | \
455 _SEGMENT_ENTRY_NOEXEC)
2dffdcba
HC
456#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_YOUNG | \
57d7f939
MS
460 _SEGMENT_ENTRY_PROTECT | \
461 _SEGMENT_ENTRY_NOEXEC)
2dffdcba
HC
462
463/*
464 * Region3 entry (large page) protection definitions.
465 */
466
467#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
468 _REGION3_ENTRY_LARGE | \
469 _REGION3_ENTRY_READ | \
470 _REGION3_ENTRY_WRITE | \
471 _REGION3_ENTRY_YOUNG | \
57d7f939
MS
472 _REGION3_ENTRY_DIRTY | \
473 _REGION_ENTRY_NOEXEC)
2dffdcba
HC
474#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 _REGION3_ENTRY_LARGE | \
476 _REGION3_ENTRY_READ | \
477 _REGION3_ENTRY_YOUNG | \
57d7f939
MS
478 _REGION_ENTRY_PROTECT | \
479 _REGION_ENTRY_NOEXEC)
106c992a 480
b2fa47e6
MS
481static inline int mm_has_pgste(struct mm_struct *mm)
482{
483#ifdef CONFIG_PGSTE
484 if (unlikely(mm->context.has_pgste))
485 return 1;
486#endif
487 return 0;
488}
65eef335 489
0b46e0a3
MS
490static inline int mm_alloc_pgste(struct mm_struct *mm)
491{
492#ifdef CONFIG_PGSTE
493 if (unlikely(mm->context.alloc_pgste))
494 return 1;
495#endif
496 return 0;
497}
498
2faee8ff
DD
499/*
500 * In the case that a guest uses storage keys
501 * faults should no longer be backed by zero pages
502 */
503#define mm_forbids_zeropage mm_use_skey
65eef335
DD
504static inline int mm_use_skey(struct mm_struct *mm)
505{
506#ifdef CONFIG_PGSTE
507 if (mm->context.use_skey)
508 return 1;
509#endif
510 return 0;
511}
512
4ccccc52
HC
513static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
514{
515 register unsigned long reg2 asm("2") = old;
516 register unsigned long reg3 asm("3") = new;
517 unsigned long address = (unsigned long)ptr | 1;
518
519 asm volatile(
520 " csp %0,%3"
521 : "+d" (reg2), "+m" (*ptr)
522 : "d" (reg3), "d" (address)
523 : "cc");
524}
525
e8a97e42
HC
526static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
527{
528 register unsigned long reg2 asm("2") = old;
529 register unsigned long reg3 asm("3") = new;
530 unsigned long address = (unsigned long)ptr | 1;
531
532 asm volatile(
533 " .insn rre,0xb98a0000,%0,%3"
534 : "+d" (reg2), "+m" (*ptr)
535 : "d" (reg3), "d" (address)
536 : "cc");
537}
538
539#define CRDTE_DTT_PAGE 0x00UL
540#define CRDTE_DTT_SEGMENT 0x10UL
541#define CRDTE_DTT_REGION3 0x14UL
542#define CRDTE_DTT_REGION2 0x18UL
543#define CRDTE_DTT_REGION1 0x1cUL
544
545static inline void crdte(unsigned long old, unsigned long new,
546 unsigned long table, unsigned long dtt,
547 unsigned long address, unsigned long asce)
548{
549 register unsigned long reg2 asm("2") = old;
550 register unsigned long reg3 asm("3") = new;
551 register unsigned long reg4 asm("4") = table | dtt;
552 register unsigned long reg5 asm("5") = address;
553
554 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
555 : "+d" (reg2)
556 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
557 : "memory", "cc");
558}
559
1da177e4
LT
560/*
561 * pgd/pmd/pte query functions
562 */
5a216a20
MS
563static inline int pgd_present(pgd_t pgd)
564{
6252d702
MS
565 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
566 return 1;
5a216a20
MS
567 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
568}
569
570static inline int pgd_none(pgd_t pgd)
571{
6252d702
MS
572 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
573 return 0;
e5098611 574 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
5a216a20
MS
575}
576
577static inline int pgd_bad(pgd_t pgd)
578{
6252d702
MS
579 /*
580 * With dynamic page table levels the pgd can be a region table
581 * entry or a segment table entry. Check for the bit that are
582 * invalid for either table entry.
583 */
5a216a20 584 unsigned long mask =
e5098611 585 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
586 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
587 return (pgd_val(pgd) & mask) != 0;
588}
190a1d72
MS
589
590static inline int pud_present(pud_t pud)
1da177e4 591{
6252d702
MS
592 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
593 return 1;
0d017923 594 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
595}
596
190a1d72 597static inline int pud_none(pud_t pud)
1da177e4 598{
6252d702
MS
599 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
600 return 0;
d08de8e2 601 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
1da177e4
LT
602}
603
18da2369
HC
604static inline int pud_large(pud_t pud)
605{
606 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
607 return 0;
608 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
609}
610
9e20b4da
HC
611static inline unsigned long pud_pfn(pud_t pud)
612{
613 unsigned long origin_mask;
614
615 origin_mask = _REGION3_ENTRY_ORIGIN;
616 if (pud_large(pud))
617 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
618 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
619}
620
d08de8e2
GS
621static inline int pmd_large(pmd_t pmd)
622{
623 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
624}
625
626static inline int pmd_bad(pmd_t pmd)
627{
628 if (pmd_large(pmd))
629 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
630 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
631}
632
190a1d72 633static inline int pud_bad(pud_t pud)
1da177e4 634{
d08de8e2
GS
635 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
636 return pmd_bad(__pmd(pud_val(pud)));
637 if (pud_large(pud))
638 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
639 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
1da177e4
LT
640}
641
4448aaf0 642static inline int pmd_present(pmd_t pmd)
1da177e4 643{
54397bb0 644 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
645}
646
4448aaf0 647static inline int pmd_none(pmd_t pmd)
1da177e4 648{
54397bb0 649 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
650}
651
7cded342 652static inline unsigned long pmd_pfn(pmd_t pmd)
0944fe3f 653{
152125b7
MS
654 unsigned long origin_mask;
655
656 origin_mask = _SEGMENT_ENTRY_ORIGIN;
657 if (pmd_large(pmd))
658 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
659 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
0944fe3f
MS
660}
661
1ae1c1d0
GS
662#define __HAVE_ARCH_PMD_WRITE
663static inline int pmd_write(pmd_t pmd)
664{
152125b7
MS
665 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
666}
667
668static inline int pmd_dirty(pmd_t pmd)
669{
670 int dirty = 1;
671 if (pmd_large(pmd))
672 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
673 return dirty;
1ae1c1d0
GS
674}
675
676static inline int pmd_young(pmd_t pmd)
677{
152125b7
MS
678 int young = 1;
679 if (pmd_large(pmd))
0944fe3f 680 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
0944fe3f 681 return young;
1ae1c1d0
GS
682}
683
e5098611 684static inline int pte_present(pte_t pte)
1da177e4 685{
e5098611
MS
686 /* Bit pattern: (pte & 0x001) == 0x001 */
687 return (pte_val(pte) & _PAGE_PRESENT) != 0;
1da177e4
LT
688}
689
e5098611 690static inline int pte_none(pte_t pte)
1da177e4 691{
e5098611
MS
692 /* Bit pattern: pte == 0x400 */
693 return pte_val(pte) == _PAGE_INVALID;
1da177e4
LT
694}
695
b31288fa
KW
696static inline int pte_swap(pte_t pte)
697{
a1c843b8
MS
698 /* Bit pattern: (pte & 0x201) == 0x200 */
699 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
700 == _PAGE_PROTECT;
b31288fa
KW
701}
702
7e675137
NP
703static inline int pte_special(pte_t pte)
704{
a08cb629 705 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
706}
707
ba8a9229 708#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
709static inline int pte_same(pte_t a, pte_t b)
710{
711 return pte_val(a) == pte_val(b);
712}
1da177e4 713
b54565b8
MS
714#ifdef CONFIG_NUMA_BALANCING
715static inline int pte_protnone(pte_t pte)
716{
717 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
718}
719
720static inline int pmd_protnone(pmd_t pmd)
721{
722 /* pmd_large(pmd) implies pmd_present(pmd) */
723 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
724}
725#endif
726
5614dd92
MS
727static inline int pte_soft_dirty(pte_t pte)
728{
729 return pte_val(pte) & _PAGE_SOFT_DIRTY;
730}
731#define pte_swp_soft_dirty pte_soft_dirty
732
733static inline pte_t pte_mksoft_dirty(pte_t pte)
734{
735 pte_val(pte) |= _PAGE_SOFT_DIRTY;
736 return pte;
737}
738#define pte_swp_mksoft_dirty pte_mksoft_dirty
739
740static inline pte_t pte_clear_soft_dirty(pte_t pte)
741{
742 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
743 return pte;
744}
745#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
746
747static inline int pmd_soft_dirty(pmd_t pmd)
748{
749 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
750}
751
752static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
753{
754 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
755 return pmd;
756}
757
758static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
759{
760 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
761 return pmd;
762}
763
1da177e4
LT
764/*
765 * query functions pte_write/pte_dirty/pte_young only work if
766 * pte_present() is true. Undefined behaviour if not..
767 */
4448aaf0 768static inline int pte_write(pte_t pte)
1da177e4 769{
e5098611 770 return (pte_val(pte) & _PAGE_WRITE) != 0;
1da177e4
LT
771}
772
4448aaf0 773static inline int pte_dirty(pte_t pte)
1da177e4 774{
e5098611 775 return (pte_val(pte) & _PAGE_DIRTY) != 0;
1da177e4
LT
776}
777
4448aaf0 778static inline int pte_young(pte_t pte)
1da177e4 779{
0944fe3f 780 return (pte_val(pte) & _PAGE_YOUNG) != 0;
1da177e4
LT
781}
782
b31288fa
KW
783#define __HAVE_ARCH_PTE_UNUSED
784static inline int pte_unused(pte_t pte)
785{
786 return pte_val(pte) & _PAGE_UNUSED;
787}
788
1da177e4
LT
789/*
790 * pgd/pmd/pte modification functions
791 */
792
b2fa47e6 793static inline void pgd_clear(pgd_t *pgd)
5a216a20 794{
6252d702
MS
795 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
796 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
797}
798
b2fa47e6 799static inline void pud_clear(pud_t *pud)
1da177e4 800{
6252d702
MS
801 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
802 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
803}
804
b2fa47e6 805static inline void pmd_clear(pmd_t *pmdp)
1da177e4 806{
54397bb0 807 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
808}
809
4448aaf0 810static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 811{
e5098611 812 pte_val(*ptep) = _PAGE_INVALID;
1da177e4
LT
813}
814
815/*
816 * The following pte modification functions only work if
817 * pte_present() is true. Undefined behaviour if not..
818 */
4448aaf0 819static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 820{
138c9021 821 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4 822 pte_val(pte) |= pgprot_val(newprot);
0944fe3f 823 /*
57d7f939
MS
824 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
825 * has the invalid bit set, clear it again for readable, young pages
0944fe3f
MS
826 */
827 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
828 pte_val(pte) &= ~_PAGE_INVALID;
829 /*
57d7f939
MS
830 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
831 * protection bit set, clear it again for writable, dirty pages
0944fe3f 832 */
e5098611
MS
833 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
834 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
835 return pte;
836}
837
4448aaf0 838static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 839{
e5098611
MS
840 pte_val(pte) &= ~_PAGE_WRITE;
841 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
842 return pte;
843}
844
4448aaf0 845static inline pte_t pte_mkwrite(pte_t pte)
1da177e4 846{
e5098611
MS
847 pte_val(pte) |= _PAGE_WRITE;
848 if (pte_val(pte) & _PAGE_DIRTY)
849 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
850 return pte;
851}
852
4448aaf0 853static inline pte_t pte_mkclean(pte_t pte)
1da177e4 854{
e5098611
MS
855 pte_val(pte) &= ~_PAGE_DIRTY;
856 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
857 return pte;
858}
859
4448aaf0 860static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 861{
5614dd92 862 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
e5098611
MS
863 if (pte_val(pte) & _PAGE_WRITE)
864 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
865 return pte;
866}
867
4448aaf0 868static inline pte_t pte_mkold(pte_t pte)
1da177e4 869{
e5098611 870 pte_val(pte) &= ~_PAGE_YOUNG;
0944fe3f 871 pte_val(pte) |= _PAGE_INVALID;
1da177e4
LT
872 return pte;
873}
874
4448aaf0 875static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 876{
0944fe3f
MS
877 pte_val(pte) |= _PAGE_YOUNG;
878 if (pte_val(pte) & _PAGE_READ)
879 pte_val(pte) &= ~_PAGE_INVALID;
1da177e4
LT
880 return pte;
881}
882
7e675137
NP
883static inline pte_t pte_mkspecial(pte_t pte)
884{
a08cb629 885 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
886 return pte;
887}
888
84afdcee
HC
889#ifdef CONFIG_HUGETLB_PAGE
890static inline pte_t pte_mkhuge(pte_t pte)
891{
e5098611 892 pte_val(pte) |= _PAGE_LARGE;
84afdcee
HC
893 return pte;
894}
895#endif
896
34eeaf37
MS
897#define IPTE_GLOBAL 0
898#define IPTE_LOCAL 1
53e857f3 899
34eeaf37 900static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
1b948d6c
MS
901{
902 unsigned long pto = (unsigned long) ptep;
903
34eeaf37 904 /* Invalidation + TLB flush for the pte */
1b948d6c 905 asm volatile(
34eeaf37
MS
906 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
907 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
908 [m4] "i" (local));
1b948d6c
MS
909}
910
34eeaf37
MS
911static inline void __ptep_ipte_range(unsigned long address, int nr,
912 pte_t *ptep, int local)
cfb0b241
HC
913{
914 unsigned long pto = (unsigned long) ptep;
915
34eeaf37 916 /* Invalidate a range of ptes + TLB flush of the ptes */
cfb0b241
HC
917 do {
918 asm volatile(
34eeaf37
MS
919 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
920 : [r2] "+a" (address), [r3] "+a" (nr)
921 : [r1] "a" (pto), [m4] "i" (local) : "memory");
cfb0b241
HC
922 } while (nr != 255);
923}
924
0a61b222 925/*
ebde765c
MS
926 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
927 * both clear the TLB for the unmapped pte. The reason is that
928 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
929 * to modify an active pte. The sequence is
930 * 1) ptep_get_and_clear
931 * 2) set_pte_at
932 * 3) flush_tlb_range
933 * On s390 the tlb needs to get flushed with the modification of the pte
934 * if the pte is active. The only way how this can be implemented is to
935 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
936 * is a nop.
0a61b222 937 */
ebde765c
MS
938pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
939pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
0a61b222 940
0944fe3f
MS
941#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
942static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
943 unsigned long addr, pte_t *ptep)
944{
ebde765c 945 pte_t pte = *ptep;
0944fe3f 946
ebde765c
MS
947 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
948 return pte_young(pte);
0944fe3f
MS
949}
950
951#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
952static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
953 unsigned long address, pte_t *ptep)
954{
955 return ptep_test_and_clear_young(vma, address, ptep);
956}
957
ba8a9229 958#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6 959static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
ebde765c 960 unsigned long addr, pte_t *ptep)
b2fa47e6 961{
ebde765c 962 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
b2fa47e6
MS
963}
964
965#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ebde765c
MS
966pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
967void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
ba8a9229
MS
968
969#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22 970static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
ebde765c 971 unsigned long addr, pte_t *ptep)
f0e47c22 972{
ebde765c 973 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
974}
975
ba8a9229
MS
976/*
977 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
978 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
979 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
980 * cannot be accessed while the batched unmap is running. In this case
981 * full==1 and a simple pte_clear is enough. See tlb.h.
982 */
983#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
984static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
ebde765c 985 unsigned long addr,
ba8a9229 986 pte_t *ptep, int full)
1da177e4 987{
ebde765c
MS
988 if (full) {
989 pte_t pte = *ptep;
990 *ptep = __pte(_PAGE_INVALID);
991 return pte;
b2fa47e6 992 }
ebde765c 993 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
994}
995
ba8a9229 996#define __HAVE_ARCH_PTEP_SET_WRPROTECT
ebde765c
MS
997static inline void ptep_set_wrprotect(struct mm_struct *mm,
998 unsigned long addr, pte_t *ptep)
b2fa47e6 999{
b2fa47e6
MS
1000 pte_t pte = *ptep;
1001
ebde765c
MS
1002 if (pte_write(pte))
1003 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
b2fa47e6 1004}
ba8a9229
MS
1005
1006#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6 1007static inline int ptep_set_access_flags(struct vm_area_struct *vma,
ebde765c 1008 unsigned long addr, pte_t *ptep,
b2fa47e6
MS
1009 pte_t entry, int dirty)
1010{
ebde765c 1011 if (pte_same(*ptep, entry))
b2fa47e6 1012 return 0;
ebde765c
MS
1013 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1014 return 1;
1015}
b2fa47e6 1016
1e133ab2
MS
1017/*
1018 * Additional functions to handle KVM guest page tables
1019 */
1020void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1021 pte_t *ptep, pte_t entry);
1022void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0
MS
1023void ptep_notify(struct mm_struct *mm, unsigned long addr,
1024 pte_t *ptep, unsigned long bits);
b2d73b2a 1025int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
4be130a0 1026 pte_t *ptep, int prot, unsigned long bit);
1e133ab2
MS
1027void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1028 pte_t *ptep , int reset);
1029void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
4be130a0 1030int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
a9d23e71 1031 pte_t *sptep, pte_t *tptep, pte_t pte);
4be130a0 1032void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1e133ab2
MS
1033
1034bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1035int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1036 unsigned char key, bool nq);
1824c723
DH
1037int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1038 unsigned char key, unsigned char *oldkey,
1039 bool nq, bool mr, bool mc);
a7e19ab5 1040int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
154c8c19
DH
1041int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1042 unsigned char *key);
b2fa47e6 1043
ebde765c
MS
1044/*
1045 * Certain architectures need to do special things when PTEs
1046 * within a page table are directly modified. Thus, the following
1047 * hook is made available.
1048 */
1049static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1050 pte_t *ptep, pte_t entry)
1051{
57d7f939
MS
1052 if (!MACHINE_HAS_NX)
1053 pte_val(entry) &= ~_PAGE_NOEXEC;
ebde765c 1054 if (mm_has_pgste(mm))
1e133ab2 1055 ptep_set_pte_at(mm, addr, ptep, entry);
ebde765c 1056 else
abf09bed 1057 *ptep = entry;
b2fa47e6 1058}
1da177e4 1059
1da177e4
LT
1060/*
1061 * Conversion functions: convert a page and protection to a page entry,
1062 * and a page entry and page directory to the page they refer to.
1063 */
1064static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1065{
1066 pte_t __pte;
1067 pte_val(__pte) = physpage + pgprot_val(pgprot);
0944fe3f 1068 return pte_mkyoung(__pte);
1da177e4
LT
1069}
1070
2dcea57a
HC
1071static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1072{
0b2b6e1d 1073 unsigned long physpage = page_to_phys(page);
abf09bed 1074 pte_t __pte = mk_pte_phys(physpage, pgprot);
1da177e4 1075
e5098611
MS
1076 if (pte_write(__pte) && PageDirty(page))
1077 __pte = pte_mkdirty(__pte);
abf09bed 1078 return __pte;
2dcea57a
HC
1079}
1080
190a1d72
MS
1081#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1082#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1083#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1084#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1085
190a1d72
MS
1086#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1087#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1088
190a1d72
MS
1089#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1090#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1091#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1092
5a216a20
MS
1093static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1094{
6252d702
MS
1095 pud_t *pud = (pud_t *) pgd;
1096 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1097 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1098 return pud + pud_index(address);
1099}
1da177e4 1100
190a1d72 1101static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1102{
6252d702
MS
1103 pmd_t *pmd = (pmd_t *) pud;
1104 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1105 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1106 return pmd + pmd_index(address);
1da177e4
LT
1107}
1108
190a1d72
MS
1109#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1110#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1111#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1112
152125b7 1113#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
d08de8e2 1114#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1da177e4 1115
190a1d72
MS
1116/* Find an entry in the lowest level page table.. */
1117#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1118#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4 1119#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1da177e4 1120#define pte_unmap(pte) do { } while (0)
1da177e4 1121
152125b7 1122static inline pmd_t pmd_wrprotect(pmd_t pmd)
0944fe3f 1123{
152125b7
MS
1124 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1125 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1126 return pmd;
1127}
1128
1129static inline pmd_t pmd_mkwrite(pmd_t pmd)
1130{
1131 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1132 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1133 return pmd;
1134 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1135 return pmd;
1136}
1137
1138static inline pmd_t pmd_mkclean(pmd_t pmd)
1139{
1140 if (pmd_large(pmd)) {
1141 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
0944fe3f 1142 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
152125b7
MS
1143 }
1144 return pmd;
1145}
1146
1147static inline pmd_t pmd_mkdirty(pmd_t pmd)
1148{
1149 if (pmd_large(pmd)) {
5614dd92
MS
1150 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1151 _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1152 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1153 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1154 }
1155 return pmd;
1156}
1157
9e20b4da
HC
1158static inline pud_t pud_wrprotect(pud_t pud)
1159{
1160 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1161 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1162 return pud;
1163}
1164
1165static inline pud_t pud_mkwrite(pud_t pud)
1166{
1167 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1168 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1169 return pud;
1170 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1171 return pud;
1172}
1173
1174static inline pud_t pud_mkclean(pud_t pud)
1175{
1176 if (pud_large(pud)) {
1177 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1178 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1179 }
1180 return pud;
1181}
1182
1183static inline pud_t pud_mkdirty(pud_t pud)
1184{
1185 if (pud_large(pud)) {
1186 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1187 _REGION3_ENTRY_SOFT_DIRTY;
1188 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1189 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1190 }
1191 return pud;
1192}
1193
1194#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1195static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1196{
1197 /*
57d7f939
MS
1198 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1199 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
9e20b4da
HC
1200 */
1201 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1202 return pgprot_val(SEGMENT_NONE);
57d7f939
MS
1203 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1204 return pgprot_val(SEGMENT_RO);
1205 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1206 return pgprot_val(SEGMENT_RX);
1207 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1208 return pgprot_val(SEGMENT_RW);
1209 return pgprot_val(SEGMENT_RWX);
9e20b4da
HC
1210}
1211
152125b7
MS
1212static inline pmd_t pmd_mkyoung(pmd_t pmd)
1213{
1214 if (pmd_large(pmd)) {
0944fe3f 1215 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
152125b7
MS
1216 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1217 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
0944fe3f 1218 }
0944fe3f
MS
1219 return pmd;
1220}
1221
1222static inline pmd_t pmd_mkold(pmd_t pmd)
1223{
152125b7 1224 if (pmd_large(pmd)) {
0944fe3f
MS
1225 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1226 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1227 }
0944fe3f
MS
1228 return pmd;
1229}
1230
1ae1c1d0
GS
1231static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1232{
152125b7
MS
1233 if (pmd_large(pmd)) {
1234 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1235 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
fecffad2 1236 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1237 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1238 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1239 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1240 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1241 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1242 return pmd;
1243 }
1244 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1ae1c1d0
GS
1245 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1246 return pmd;
1247}
1248
106c992a 1249static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1250{
106c992a
GS
1251 pmd_t __pmd;
1252 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
152125b7 1253 return __pmd;
1ae1c1d0
GS
1254}
1255
106c992a
GS
1256#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1257
1b948d6c
MS
1258static inline void __pmdp_csp(pmd_t *pmdp)
1259{
4ccccc52
HC
1260 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1261 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1b948d6c
MS
1262}
1263
47e4d851
MS
1264#define IDTE_GLOBAL 0
1265#define IDTE_LOCAL 1
d08de8e2 1266
47e4d851 1267static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1b948d6c
MS
1268{
1269 unsigned long sto;
1270
1271 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1272 asm volatile(
47e4d851
MS
1273 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1274 : "+m" (*pmdp)
1275 : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1276 [m4] "i" (local)
1b948d6c
MS
1277 : "cc" );
1278}
1279
47e4d851 1280static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
d08de8e2
GS
1281{
1282 unsigned long r3o;
1283
1284 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1285 r3o |= _ASCE_TYPE_REGION3;
1286 asm volatile(
47e4d851
MS
1287 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1288 : "+m" (*pudp)
1289 : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1290 [m4] "i" (local)
d08de8e2
GS
1291 : "cc");
1292}
1293
227be799
MS
1294pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1295pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
d08de8e2 1296pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1b948d6c 1297
227be799
MS
1298#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1299
1300#define __HAVE_ARCH_PGTABLE_DEPOSIT
1301void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1302 pgtable_t pgtable);
1303
1304#define __HAVE_ARCH_PGTABLE_WITHDRAW
1305pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1b948d6c 1306
227be799
MS
1307#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1308static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1309 unsigned long addr, pmd_t *pmdp,
1310 pmd_t entry, int dirty)
3eabaee9 1311{
227be799 1312 VM_BUG_ON(addr & ~HPAGE_MASK);
3eabaee9 1313
227be799
MS
1314 entry = pmd_mkyoung(entry);
1315 if (dirty)
1316 entry = pmd_mkdirty(entry);
1317 if (pmd_val(*pmdp) == pmd_val(entry))
1318 return 0;
1319 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1320 return 1;
3eabaee9
MS
1321}
1322
227be799
MS
1323#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1324static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1325 unsigned long addr, pmd_t *pmdp)
1326{
1327 pmd_t pmd = *pmdp;
106c992a 1328
227be799
MS
1329 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1330 return pmd_young(pmd);
1331}
106c992a 1332
227be799
MS
1333#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1334static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1335 unsigned long addr, pmd_t *pmdp)
1336{
1337 VM_BUG_ON(addr & ~HPAGE_MASK);
1338 return pmdp_test_and_clear_young(vma, addr, pmdp);
1339}
106c992a 1340
106c992a
GS
1341static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1342 pmd_t *pmdp, pmd_t entry)
1343{
57d7f939
MS
1344 if (!MACHINE_HAS_NX)
1345 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
106c992a
GS
1346 *pmdp = entry;
1347}
1348
1349static inline pmd_t pmd_mkhuge(pmd_t pmd)
1350{
1351 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
152125b7
MS
1352 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1353 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1ae1c1d0
GS
1354 return pmd;
1355}
1356
8809aa2d
AK
1357#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1358static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
227be799 1359 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1360{
54397bb0 1361 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1ae1c1d0
GS
1362}
1363
8809aa2d
AK
1364#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1365static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
227be799 1366 unsigned long addr,
8809aa2d 1367 pmd_t *pmdp, int full)
fcbe08d6 1368{
227be799
MS
1369 if (full) {
1370 pmd_t pmd = *pmdp;
54397bb0 1371 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
227be799
MS
1372 return pmd;
1373 }
54397bb0 1374 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
fcbe08d6
MS
1375}
1376
8809aa2d
AK
1377#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1378static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
227be799 1379 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1380{
227be799 1381 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1ae1c1d0
GS
1382}
1383
1384#define __HAVE_ARCH_PMDP_INVALIDATE
1385static inline void pmdp_invalidate(struct vm_area_struct *vma,
227be799 1386 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1387{
54397bb0 1388 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1ae1c1d0
GS
1389}
1390
be328650
GS
1391#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1392static inline void pmdp_set_wrprotect(struct mm_struct *mm,
227be799 1393 unsigned long addr, pmd_t *pmdp)
be328650
GS
1394{
1395 pmd_t pmd = *pmdp;
1396
227be799
MS
1397 if (pmd_write(pmd))
1398 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
be328650
GS
1399}
1400
f28b6ff8
AK
1401static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1402 unsigned long address,
1403 pmd_t *pmdp)
1404{
8809aa2d 1405 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
f28b6ff8
AK
1406}
1407#define pmdp_collapse_flush pmdp_collapse_flush
1408
1ae1c1d0
GS
1409#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1410#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1411
1412static inline int pmd_trans_huge(pmd_t pmd)
1413{
1414 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1415}
1416
fd8cfd30 1417#define has_transparent_hugepage has_transparent_hugepage
1ae1c1d0
GS
1418static inline int has_transparent_hugepage(void)
1419{
466178fc 1420 return MACHINE_HAS_EDAT1 ? 1 : 0;
1ae1c1d0 1421}
75077afb
GS
1422#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1423
1da177e4 1424/*
1da177e4
LT
1425 * 64 bit swap entry format:
1426 * A page-table entry has some bits we have to treat in a special way.
4e0a6412 1427 * Bits 52 and bit 55 have to be zero, otherwise a specification
1da177e4 1428 * exception will occur instead of a page translation exception. The
4e0a6412 1429 * specification exception has the bad habit not to store necessary
1da177e4 1430 * information in the lowcore.
a1c843b8
MS
1431 * Bits 54 and 63 are used to indicate the page type.
1432 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1433 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1434 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1435 * for the offset.
1436 * | offset |01100|type |00|
1437 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1438 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1da177e4 1439 */
5a79859a 1440
a1c843b8
MS
1441#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1442#define __SWP_OFFSET_SHIFT 12
1443#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1444#define __SWP_TYPE_SHIFT 2
5a79859a 1445
4448aaf0 1446static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1447{
1448 pte_t pte;
a1c843b8
MS
1449
1450 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1451 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1452 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1da177e4
LT
1453 return pte;
1454}
1455
a1c843b8
MS
1456static inline unsigned long __swp_type(swp_entry_t entry)
1457{
1458 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1459}
1460
1461static inline unsigned long __swp_offset(swp_entry_t entry)
1462{
1463 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1464}
1465
1466static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1467{
1468 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1469}
1da177e4
LT
1470
1471#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1472#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1473
1da177e4
LT
1474#endif /* !__ASSEMBLY__ */
1475
1476#define kern_addr_valid(addr) (1)
1477
17f34580
HC
1478extern int vmem_add_mapping(unsigned long start, unsigned long size);
1479extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1480extern int s390_enable_sie(void);
3ac8e380 1481extern int s390_enable_skey(void);
a13cff31 1482extern void s390_reset_cmma(struct mm_struct *mm);
f4eb07c1 1483
1f6b83e5
MS
1484/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1485#define HAVE_ARCH_UNMAPPED_AREA
1486#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1487
1da177e4
LT
1488/*
1489 * No page table caches to initialise
1490 */
765a0cac
HC
1491static inline void pgtable_cache_init(void) { }
1492static inline void check_pgt_cache(void) { }
1da177e4 1493
1da177e4
LT
1494#include <asm-generic/pgtable.h>
1495
1496#endif /* _S390_PAGE_H */