]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/s390/kernel/kprobes.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kernel / kprobes.c
CommitLineData
4ba069b8
MG
1/*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
4ba069b8
MG
23#include <linux/kprobes.h>
24#include <linux/ptrace.h>
25#include <linux/preempt.h>
26#include <linux/stop_machine.h>
1eeb66a1 27#include <linux/kdebug.h>
a2b53673 28#include <linux/uaccess.h>
4ba069b8 29#include <asm/cacheflush.h>
4ba069b8 30#include <asm/sections.h>
4ba069b8 31#include <linux/module.h>
5a0e3ad6 32#include <linux/slab.h>
4ba069b8
MG
33
34DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36
f438d914
MH
37struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38
4ba069b8
MG
39int __kprobes arch_prepare_kprobe(struct kprobe *p)
40{
41 /* Make sure the probe isn't going on a difficult instruction */
42 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
43 return -EINVAL;
44
5532bd0f 45 if ((unsigned long)p->addr & 0x01)
4ba069b8 46 return -EINVAL;
4ba069b8
MG
47
48 /* Use the get_insn_slot() facility for correctness */
49 if (!(p->ainsn.insn = get_insn_slot()))
50 return -ENOMEM;
51
52 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53
54 get_instruction_type(&p->ainsn);
55 p->opcode = *p->addr;
56 return 0;
57}
58
59int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60{
61 switch (*(__u8 *) instruction) {
62 case 0x0c: /* bassm */
63 case 0x0b: /* bsm */
64 case 0x83: /* diag */
65 case 0x44: /* ex */
66 return -EINVAL;
67 }
68 switch (*(__u16 *) instruction) {
69 case 0x0101: /* pr */
70 case 0xb25a: /* bsa */
71 case 0xb240: /* bakr */
72 case 0xb258: /* bsg */
73 case 0xb218: /* pc */
74 case 0xb228: /* pt */
75 return -EINVAL;
76 }
77 return 0;
78}
79
80void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81{
82 /* default fixup method */
83 ainsn->fixup = FIXUP_PSW_NORMAL;
84
85 /* save r1 operand */
86 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87
88 /* save the instruction length (pop 5-5) in bytes */
9c5f225f 89 switch (*(__u8 *) (ainsn->insn) >> 6) {
4ba069b8
MG
90 case 0:
91 ainsn->ilen = 2;
92 break;
93 case 1:
94 case 2:
95 ainsn->ilen = 4;
96 break;
97 case 3:
98 ainsn->ilen = 6;
99 break;
100 }
101
102 switch (*(__u8 *) ainsn->insn) {
103 case 0x05: /* balr */
104 case 0x0d: /* basr */
105 ainsn->fixup = FIXUP_RETURN_REGISTER;
106 /* if r2 = 0, no branch will be taken */
107 if ((*ainsn->insn & 0x0f) == 0)
108 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
109 break;
110 case 0x06: /* bctr */
111 case 0x07: /* bcr */
112 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
113 break;
114 case 0x45: /* bal */
115 case 0x4d: /* bas */
116 ainsn->fixup = FIXUP_RETURN_REGISTER;
117 break;
118 case 0x47: /* bc */
119 case 0x46: /* bct */
120 case 0x86: /* bxh */
121 case 0x87: /* bxle */
122 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
123 break;
124 case 0x82: /* lpsw */
125 ainsn->fixup = FIXUP_NOT_REQUIRED;
126 break;
127 case 0xb2: /* lpswe */
128 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
129 ainsn->fixup = FIXUP_NOT_REQUIRED;
130 }
131 break;
132 case 0xa7: /* bras */
133 if ((*ainsn->insn & 0x0f) == 0x05) {
134 ainsn->fixup |= FIXUP_RETURN_REGISTER;
135 }
136 break;
137 case 0xc0:
138 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
139 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
140 ainsn->fixup |= FIXUP_RETURN_REGISTER;
141 break;
142 case 0xeb:
143 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
144 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
145 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146 }
147 break;
148 case 0xe3: /* bctg */
149 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
150 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151 }
152 break;
153 }
154}
155
156static int __kprobes swap_instruction(void *aref)
157{
acf01800
HC
158 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
159 unsigned long status = kcb->kprobe_status;
4ba069b8 160 struct ins_replace_args *args = aref;
acf01800 161 int rc;
a2b53673 162
acf01800
HC
163 kcb->kprobe_status = KPROBE_SWAP_INST;
164 rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
165 kcb->kprobe_status = status;
166 return rc;
4ba069b8
MG
167}
168
169void __kprobes arch_arm_kprobe(struct kprobe *p)
170{
4ba069b8
MG
171 struct ins_replace_args args;
172
173 args.ptr = p->addr;
174 args.old = p->opcode;
175 args.new = BREAKPOINT_INSTRUCTION;
9b1a4d38 176 stop_machine(swap_instruction, &args, NULL);
4ba069b8
MG
177}
178
179void __kprobes arch_disarm_kprobe(struct kprobe *p)
180{
4ba069b8
MG
181 struct ins_replace_args args;
182
183 args.ptr = p->addr;
184 args.old = BREAKPOINT_INSTRUCTION;
185 args.new = p->opcode;
9b1a4d38 186 stop_machine(swap_instruction, &args, NULL);
4ba069b8
MG
187}
188
189void __kprobes arch_remove_kprobe(struct kprobe *p)
190{
12941560
MH
191 if (p->ainsn.insn) {
192 free_insn_slot(p->ainsn.insn, 0);
193 p->ainsn.insn = NULL;
194 }
4ba069b8
MG
195}
196
197static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
198{
199 per_cr_bits kprobe_per_regs[1];
200
201 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
202 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
203
204 /* Set up the per control reg info, will pass to lctl */
205 kprobe_per_regs[0].em_instruction_fetch = 1;
206 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
207 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
208
209 /* Set the PER control regs, turns on single step for this address */
210 __ctl_load(kprobe_per_regs, 9, 11);
211 regs->psw.mask |= PSW_MASK_PER;
212 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
213}
214
215static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
216{
217 kcb->prev_kprobe.kp = kprobe_running();
218 kcb->prev_kprobe.status = kcb->kprobe_status;
219 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
220 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
221 sizeof(kcb->kprobe_saved_ctl));
222}
223
224static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
225{
226 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
227 kcb->kprobe_status = kcb->prev_kprobe.status;
228 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
229 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
230 sizeof(kcb->kprobe_saved_ctl));
231}
232
233static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
234 struct kprobe_ctlblk *kcb)
235{
236 __get_cpu_var(current_kprobe) = p;
237 /* Save the interrupt and per flags */
238 kcb->kprobe_saved_imask = regs->psw.mask &
239 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
240 /* Save the control regs that govern PER */
241 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
242}
243
4c4308cb 244void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
4ba069b8
MG
245 struct pt_regs *regs)
246{
4c4308cb 247 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
4ba069b8 248
4c4308cb
CH
249 /* Replace the return addr with trampoline addr */
250 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
4ba069b8
MG
251}
252
253static int __kprobes kprobe_handler(struct pt_regs *regs)
254{
255 struct kprobe *p;
256 int ret = 0;
257 unsigned long *addr = (unsigned long *)
258 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
259 struct kprobe_ctlblk *kcb;
260
261 /*
262 * We don't want to be preempted for the entire
263 * duration of kprobe processing
264 */
265 preempt_disable();
266 kcb = get_kprobe_ctlblk();
267
268 /* Check we're not actually recursing */
269 if (kprobe_running()) {
270 p = get_kprobe(addr);
271 if (p) {
272 if (kcb->kprobe_status == KPROBE_HIT_SS &&
273 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
274 regs->psw.mask &= ~PSW_MASK_PER;
275 regs->psw.mask |= kcb->kprobe_saved_imask;
276 goto no_kprobe;
277 }
278 /* We have reentered the kprobe_handler(), since
279 * another probe was hit while within the handler.
280 * We here save the original kprobes variables and
281 * just single step on the instruction of the new probe
282 * without calling any user handlers.
283 */
284 save_previous_kprobe(kcb);
285 set_current_kprobe(p, regs, kcb);
286 kprobes_inc_nmissed_count(p);
287 prepare_singlestep(p, regs);
288 kcb->kprobe_status = KPROBE_REENTER;
289 return 1;
290 } else {
291 p = __get_cpu_var(current_kprobe);
292 if (p->break_handler && p->break_handler(p, regs)) {
293 goto ss_probe;
294 }
295 }
296 goto no_kprobe;
297 }
298
299 p = get_kprobe(addr);
f794c827
MS
300 if (!p)
301 /*
302 * No kprobe at this address. The fault has not been
303 * caused by a kprobe breakpoint. The race of breakpoint
304 * vs. kprobe remove does not exist because on s390 we
9b1a4d38 305 * use stop_machine to arm/disarm the breakpoints.
f794c827 306 */
4ba069b8 307 goto no_kprobe;
4ba069b8
MG
308
309 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
310 set_current_kprobe(p, regs, kcb);
311 if (p->pre_handler && p->pre_handler(p, regs))
312 /* handler has already set things up, so skip ss setup */
313 return 1;
314
315ss_probe:
316 prepare_singlestep(p, regs);
317 kcb->kprobe_status = KPROBE_HIT_SS;
318 return 1;
319
320no_kprobe:
321 preempt_enable_no_resched();
322 return ret;
323}
324
325/*
326 * Function return probe trampoline:
327 * - init_kprobes() establishes a probepoint here
328 * - When the probed function returns, this probe
329 * causes the handlers to fire
330 */
a806170e 331static void __used kretprobe_trampoline_holder(void)
4ba069b8
MG
332{
333 asm volatile(".global kretprobe_trampoline\n"
334 "kretprobe_trampoline: bcr 0,0\n");
335}
336
337/*
338 * Called when the probe at kretprobe trampoline is hit
339 */
2b67fc46
HC
340static int __kprobes trampoline_probe_handler(struct kprobe *p,
341 struct pt_regs *regs)
4ba069b8
MG
342{
343 struct kretprobe_instance *ri = NULL;
99219a3f 344 struct hlist_head *head, empty_rp;
4ba069b8
MG
345 struct hlist_node *node, *tmp;
346 unsigned long flags, orig_ret_address = 0;
347 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
348
99219a3f 349 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 350 kretprobe_hash_lock(current, &head, &flags);
4ba069b8
MG
351
352 /*
353 * It is possible to have multiple instances associated with a given
354 * task either because an multiple functions in the call path
025dfdaf 355 * have a return probe installed on them, and/or more than one return
4ba069b8
MG
356 * return probe was registered for a target function.
357 *
358 * We can handle this because:
359 * - instances are always inserted at the head of the list
360 * - when multiple return probes are registered for the same
361 * function, the first instance's ret_addr will point to the
362 * real return address, and all the rest will point to
363 * kretprobe_trampoline
364 */
365 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366 if (ri->task != current)
367 /* another task is sharing our hash bucket */
368 continue;
369
370 if (ri->rp && ri->rp->handler)
371 ri->rp->handler(ri, regs);
372
373 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 374 recycle_rp_inst(ri, &empty_rp);
4ba069b8
MG
375
376 if (orig_ret_address != trampoline_address) {
377 /*
378 * This is the real return address. Any other
379 * instances associated with this task are for
380 * other calls deeper on the call stack
381 */
382 break;
383 }
384 }
a5a60a2b 385 kretprobe_assert(ri, orig_ret_address, trampoline_address);
4ba069b8
MG
386 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
387
388 reset_current_kprobe();
ef53d9c5 389 kretprobe_hash_unlock(current, &flags);
4ba069b8
MG
390 preempt_enable_no_resched();
391
99219a3f 392 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
393 hlist_del(&ri->hlist);
394 kfree(ri);
395 }
4ba069b8
MG
396 /*
397 * By returning a non-zero value, we are telling
398 * kprobe_handler() that we don't want the post_handler
399 * to run (and have re-enabled preemption)
400 */
401 return 1;
402}
403
404/*
405 * Called after single-stepping. p->addr is the address of the
406 * instruction whose first byte has been replaced by the "breakpoint"
407 * instruction. To avoid the SMP problems that can occur when we
408 * temporarily put back the original opcode to single-step, we
409 * single-stepped a copy of the instruction. The address of this
410 * copy is p->ainsn.insn.
411 */
412static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
413{
414 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
415
416 regs->psw.addr &= PSW_ADDR_INSN;
417
418 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
419 regs->psw.addr = (unsigned long)p->addr +
420 ((unsigned long)regs->psw.addr -
421 (unsigned long)p->ainsn.insn);
422
423 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
424 if ((unsigned long)regs->psw.addr -
425 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
426 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
427
428 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
429 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
430 (regs->gprs[p->ainsn.reg] -
431 (unsigned long)p->ainsn.insn))
432 | PSW_ADDR_AMODE;
433
434 regs->psw.addr |= PSW_ADDR_AMODE;
435 /* turn off PER mode */
436 regs->psw.mask &= ~PSW_MASK_PER;
437 /* Restore the original per control regs */
438 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
439 regs->psw.mask |= kcb->kprobe_saved_imask;
440}
441
442static int __kprobes post_kprobe_handler(struct pt_regs *regs)
443{
444 struct kprobe *cur = kprobe_running();
445 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
446
447 if (!cur)
448 return 0;
449
450 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
451 kcb->kprobe_status = KPROBE_HIT_SSDONE;
452 cur->post_handler(cur, regs, 0);
453 }
454
455 resume_execution(cur, regs);
456
457 /*Restore back the original saved kprobes variables and continue. */
458 if (kcb->kprobe_status == KPROBE_REENTER) {
459 restore_previous_kprobe(kcb);
460 goto out;
461 }
462 reset_current_kprobe();
463out:
464 preempt_enable_no_resched();
465
466 /*
467 * if somebody else is singlestepping across a probe point, psw mask
468 * will have PER set, in which case, continue the remaining processing
469 * of do_single_step, as if this is not a probe hit.
470 */
471 if (regs->psw.mask & PSW_MASK_PER) {
472 return 0;
473 }
474
475 return 1;
476}
477
33464e3b 478int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
4ba069b8
MG
479{
480 struct kprobe *cur = kprobe_running();
481 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
482 const struct exception_table_entry *entry;
483
484 switch(kcb->kprobe_status) {
485 case KPROBE_SWAP_INST:
486 /* We are here because the instruction replacement failed */
487 return 0;
488 case KPROBE_HIT_SS:
489 case KPROBE_REENTER:
490 /*
491 * We are here because the instruction being single
492 * stepped caused a page fault. We reset the current
493 * kprobe and the nip points back to the probe address
494 * and allow the page fault handler to continue as a
495 * normal page fault.
496 */
497 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
498 regs->psw.mask &= ~PSW_MASK_PER;
499 regs->psw.mask |= kcb->kprobe_saved_imask;
500 if (kcb->kprobe_status == KPROBE_REENTER)
501 restore_previous_kprobe(kcb);
502 else
503 reset_current_kprobe();
504 preempt_enable_no_resched();
505 break;
506 case KPROBE_HIT_ACTIVE:
507 case KPROBE_HIT_SSDONE:
508 /*
509 * We increment the nmissed count for accounting,
510 * we can also use npre/npostfault count for accouting
511 * these specific fault cases.
512 */
513 kprobes_inc_nmissed_count(cur);
514
515 /*
516 * We come here because instructions in the pre/post
517 * handler caused the page_fault, this could happen
518 * if handler tries to access user space by
519 * copy_from_user(), get_user() etc. Let the
520 * user-specified handler try to fix it first.
521 */
522 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
523 return 1;
524
525 /*
526 * In case the user-specified fault handler returned
527 * zero, try to fix up.
528 */
529 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
530 if (entry) {
531 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
532 return 1;
533 }
534
535 /*
536 * fixup_exception() could not handle it,
537 * Let do_page_fault() fix it.
538 */
539 break;
540 default:
541 break;
542 }
543 return 0;
544}
545
546/*
547 * Wrapper routine to for handling exceptions.
548 */
549int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
550 unsigned long val, void *data)
551{
552 struct die_args *args = (struct die_args *)data;
553 int ret = NOTIFY_DONE;
554
555 switch (val) {
556 case DIE_BPT:
557 if (kprobe_handler(args->regs))
558 ret = NOTIFY_STOP;
559 break;
560 case DIE_SSTEP:
561 if (post_kprobe_handler(args->regs))
562 ret = NOTIFY_STOP;
563 break;
564 case DIE_TRAP:
4ba069b8
MG
565 /* kprobe_running() needs smp_processor_id() */
566 preempt_disable();
567 if (kprobe_running() &&
568 kprobe_fault_handler(args->regs, args->trapnr))
569 ret = NOTIFY_STOP;
570 preempt_enable();
571 break;
572 default:
573 break;
574 }
575 return ret;
576}
577
578int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
579{
580 struct jprobe *jp = container_of(p, struct jprobe, kp);
581 unsigned long addr;
582 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
583
584 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
585
586 /* setup return addr to the jprobe handler routine */
587 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
588
589 /* r14 is the function return address */
590 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
591 /* r15 is the stack pointer */
592 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
593 addr = (unsigned long)kcb->jprobe_saved_r15;
594
595 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
596 MIN_STACK_SIZE(addr));
597 return 1;
598}
599
600void __kprobes jprobe_return(void)
601{
602 asm volatile(".word 0x0002");
603}
604
605void __kprobes jprobe_return_end(void)
606{
607 asm volatile("bcr 0,0");
608}
609
610int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
611{
612 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
613 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
614
615 /* Put the regs back */
616 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
617 /* put the stack back */
618 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
619 MIN_STACK_SIZE(stack_addr));
620 preempt_enable_no_resched();
621 return 1;
622}
623
624static struct kprobe trampoline_p = {
625 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
626 .pre_handler = trampoline_probe_handler
627};
628
629int __init arch_init_kprobes(void)
630{
631 return register_kprobe(&trampoline_p);
632}
bf8f6e5b
AM
633
634int __kprobes arch_trampoline_kprobe(struct kprobe *p)
635{
636 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
637 return 1;
638 return 0;
639}