]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - arch/s390/kernel/time.c
[S390] split page_test_and_clear_dirty.
[mirror_ubuntu-kernels.git] / arch / s390 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * arch/s390/kernel/time.c
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/kernel.h>
19#include <linux/param.h>
20#include <linux/string.h>
21#include <linux/mm.h>
22#include <linux/interrupt.h>
23#include <linux/time.h>
24#include <linux/delay.h>
25#include <linux/init.h>
26#include <linux/smp.h>
27#include <linux/types.h>
28#include <linux/profile.h>
29#include <linux/timex.h>
30#include <linux/notifier.h>
dc64bef5 31#include <linux/clocksource.h>
1da177e4
LT
32
33#include <asm/uaccess.h>
34#include <asm/delay.h>
35#include <asm/s390_ext.h>
36#include <asm/div64.h>
37#include <asm/irq.h>
5a489b98 38#include <asm/irq_regs.h>
1da177e4 39#include <asm/timer.h>
d54853ef 40#include <asm/etr.h>
1da177e4
LT
41
42/* change this if you have some constant time drift */
43#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
44#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
45
d54853ef
MS
46/* The value of the TOD clock for 1.1.1970. */
47#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
48
1da177e4
LT
49/*
50 * Create a small time difference between the timer interrupts
51 * on the different cpus to avoid lock contention.
52 */
53#define CPU_DEVIATION (smp_processor_id() << 12)
54
55#define TICK_SIZE tick
56
1da177e4 57static ext_int_info_t ext_int_info_cc;
d54853ef 58static ext_int_info_t ext_int_etr_cc;
1da177e4
LT
59static u64 init_timer_cc;
60static u64 jiffies_timer_cc;
61static u64 xtime_cc;
62
1da177e4
LT
63/*
64 * Scheduler clock - returns current time in nanosec units.
65 */
66unsigned long long sched_clock(void)
67{
9dbafa53 68 return ((get_clock() - jiffies_timer_cc) * 125) >> 9;
1da177e4
LT
69}
70
32f65f27
JG
71/*
72 * Monotonic_clock - returns # of nanoseconds passed since time_init()
73 */
74unsigned long long monotonic_clock(void)
75{
76 return sched_clock();
77}
78EXPORT_SYMBOL(monotonic_clock);
79
1da177e4
LT
80void tod_to_timeval(__u64 todval, struct timespec *xtime)
81{
82 unsigned long long sec;
83
84 sec = todval >> 12;
85 do_div(sec, 1000000);
86 xtime->tv_sec = sec;
87 todval -= (sec * 1000000) << 12;
88 xtime->tv_nsec = ((todval * 1000) >> 12);
89}
90
1da177e4 91#ifdef CONFIG_PROFILING
5a489b98 92#define s390_do_profile() profile_tick(CPU_PROFILING)
1da177e4 93#else
5a489b98 94#define s390_do_profile() do { ; } while(0)
1da177e4
LT
95#endif /* CONFIG_PROFILING */
96
1da177e4 97/*
d54853ef
MS
98 * Advance the per cpu tick counter up to the time given with the
99 * "time" argument. The per cpu update consists of accounting
100 * the virtual cpu time, calling update_process_times and calling
101 * the profiling hook. If xtime is before time it is advanced as well.
1da177e4 102 */
d54853ef 103void account_ticks(u64 time)
1da177e4 104{
3171a030 105 __u32 ticks;
d54853ef 106 __u64 tmp;
1da177e4
LT
107
108 /* Calculate how many ticks have passed. */
d54853ef 109 if (time < S390_lowcore.jiffy_timer)
1da177e4 110 return;
d54853ef 111 tmp = time - S390_lowcore.jiffy_timer;
1da177e4
LT
112 if (tmp >= 2*CLK_TICKS_PER_JIFFY) { /* more than two ticks ? */
113 ticks = __div(tmp, CLK_TICKS_PER_JIFFY) + 1;
114 S390_lowcore.jiffy_timer +=
115 CLK_TICKS_PER_JIFFY * (__u64) ticks;
116 } else if (tmp >= CLK_TICKS_PER_JIFFY) {
117 ticks = 2;
118 S390_lowcore.jiffy_timer += 2*CLK_TICKS_PER_JIFFY;
119 } else {
120 ticks = 1;
121 S390_lowcore.jiffy_timer += CLK_TICKS_PER_JIFFY;
122 }
123
1da177e4
LT
124#ifdef CONFIG_SMP
125 /*
126 * Do not rely on the boot cpu to do the calls to do_timer.
127 * Spread it over all cpus instead.
128 */
129 write_seqlock(&xtime_lock);
130 if (S390_lowcore.jiffy_timer > xtime_cc) {
3171a030 131 __u32 xticks;
1da177e4
LT
132 tmp = S390_lowcore.jiffy_timer - xtime_cc;
133 if (tmp >= 2*CLK_TICKS_PER_JIFFY) {
134 xticks = __div(tmp, CLK_TICKS_PER_JIFFY);
135 xtime_cc += (__u64) xticks * CLK_TICKS_PER_JIFFY;
136 } else {
137 xticks = 1;
138 xtime_cc += CLK_TICKS_PER_JIFFY;
139 }
3171a030 140 do_timer(xticks);
1da177e4
LT
141 }
142 write_sequnlock(&xtime_lock);
143#else
3171a030 144 do_timer(ticks);
1da177e4
LT
145#endif
146
147#ifdef CONFIG_VIRT_CPU_ACCOUNTING
1f1c12af 148 account_tick_vtime(current);
1da177e4
LT
149#else
150 while (ticks--)
5a489b98 151 update_process_times(user_mode(get_irq_regs()));
1da177e4
LT
152#endif
153
5a489b98 154 s390_do_profile();
1da177e4
LT
155}
156
157#ifdef CONFIG_NO_IDLE_HZ
158
159#ifdef CONFIG_NO_IDLE_HZ_INIT
160int sysctl_hz_timer = 0;
161#else
162int sysctl_hz_timer = 1;
163#endif
164
165/*
166 * Stop the HZ tick on the current CPU.
167 * Only cpu_idle may call this function.
168 */
4d284cac 169static void stop_hz_timer(void)
1da177e4 170{
1b44e98d
MS
171 unsigned long flags;
172 unsigned long seq, next;
4b7e0706 173 __u64 timer, todval;
5afdbd6e 174 int cpu = smp_processor_id();
1da177e4
LT
175
176 if (sysctl_hz_timer != 0)
177 return;
178
5afdbd6e 179 cpu_set(cpu, nohz_cpu_mask);
1da177e4
LT
180
181 /*
182 * Leave the clock comparator set up for the next timer
183 * tick if either rcu or a softirq is pending.
184 */
5afdbd6e
HC
185 if (rcu_needs_cpu(cpu) || local_softirq_pending()) {
186 cpu_clear(cpu, nohz_cpu_mask);
1da177e4
LT
187 return;
188 }
189
190 /*
191 * This cpu is going really idle. Set up the clock comparator
192 * for the next event.
193 */
1b44e98d
MS
194 next = next_timer_interrupt();
195 do {
196 seq = read_seqbegin_irqsave(&xtime_lock, flags);
705af309 197 timer = ((__u64) next) - ((__u64) jiffies) + jiffies_64;
1b44e98d 198 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
4b7e0706
MS
199 todval = -1ULL;
200 /* Be careful about overflows. */
201 if (timer < (-1ULL / CLK_TICKS_PER_JIFFY)) {
202 timer = jiffies_timer_cc + timer * CLK_TICKS_PER_JIFFY;
203 if (timer >= jiffies_timer_cc)
204 todval = timer;
205 }
d54853ef 206 set_clock_comparator(todval);
1da177e4
LT
207}
208
209/*
210 * Start the HZ tick on the current CPU.
211 * Only cpu_idle may call this function.
212 */
4d284cac 213static void start_hz_timer(void)
1da177e4 214{
5a489b98
HC
215 BUG_ON(!in_interrupt());
216
1da177e4
LT
217 if (!cpu_isset(smp_processor_id(), nohz_cpu_mask))
218 return;
d54853ef
MS
219 account_ticks(get_clock());
220 set_clock_comparator(S390_lowcore.jiffy_timer + CPU_DEVIATION);
1da177e4
LT
221 cpu_clear(smp_processor_id(), nohz_cpu_mask);
222}
223
224static int nohz_idle_notify(struct notifier_block *self,
225 unsigned long action, void *hcpu)
226{
227 switch (action) {
228 case CPU_IDLE:
229 stop_hz_timer();
230 break;
231 case CPU_NOT_IDLE:
232 start_hz_timer();
233 break;
234 }
235 return NOTIFY_OK;
236}
237
238static struct notifier_block nohz_idle_nb = {
239 .notifier_call = nohz_idle_notify,
240};
241
2b67fc46 242static void __init nohz_init(void)
1da177e4
LT
243{
244 if (register_idle_notifier(&nohz_idle_nb))
245 panic("Couldn't register idle notifier");
246}
247
248#endif
249
250/*
d54853ef
MS
251 * Set up per cpu jiffy timer and set the clock comparator.
252 */
253static void setup_jiffy_timer(void)
254{
255 /* Set up clock comparator to next jiffy. */
256 S390_lowcore.jiffy_timer =
257 jiffies_timer_cc + (jiffies_64 + 1) * CLK_TICKS_PER_JIFFY;
258 set_clock_comparator(S390_lowcore.jiffy_timer + CPU_DEVIATION);
259}
260
261/*
262 * Set up lowcore and control register of the current cpu to
263 * enable TOD clock and clock comparator interrupts.
1da177e4
LT
264 */
265void init_cpu_timer(void)
266{
d54853ef
MS
267 setup_jiffy_timer();
268
269 /* Enable clock comparator timer interrupt. */
270 __ctl_set_bit(0,11);
271
272 /* Always allow ETR external interrupts, even without an ETR. */
273 __ctl_set_bit(0, 4);
274}
275
276static void clock_comparator_interrupt(__u16 code)
277{
278 /* set clock comparator for next tick */
279 set_clock_comparator(S390_lowcore.jiffy_timer + CPU_DEVIATION);
280}
281
282static void etr_reset(void);
283static void etr_init(void);
284static void etr_ext_handler(__u16);
285
286/*
287 * Get the TOD clock running.
288 */
289static u64 __init reset_tod_clock(void)
290{
291 u64 time;
292
293 etr_reset();
294 if (store_clock(&time) == 0)
295 return time;
296 /* TOD clock not running. Set the clock to Unix Epoch. */
297 if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0)
298 panic("TOD clock not operational.");
1da177e4 299
d54853ef 300 return TOD_UNIX_EPOCH;
1da177e4
LT
301}
302
dc64bef5
MS
303static cycle_t read_tod_clock(void)
304{
305 return get_clock();
306}
307
308static struct clocksource clocksource_tod = {
309 .name = "tod",
310 .rating = 100,
311 .read = read_tod_clock,
312 .mask = -1ULL,
313 .mult = 1000,
314 .shift = 12,
cc02d809 315 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
dc64bef5
MS
316};
317
318
1da177e4
LT
319/*
320 * Initialize the TOD clock and the CPU timer of
321 * the boot cpu.
322 */
323void __init time_init(void)
324{
d54853ef
MS
325 init_timer_cc = reset_tod_clock();
326 xtime_cc = init_timer_cc + CLK_TICKS_PER_JIFFY;
1da177e4
LT
327 jiffies_timer_cc = init_timer_cc - jiffies_64 * CLK_TICKS_PER_JIFFY;
328
329 /* set xtime */
d54853ef 330 tod_to_timeval(init_timer_cc - TOD_UNIX_EPOCH, &xtime);
1da177e4
LT
331 set_normalized_timespec(&wall_to_monotonic,
332 -xtime.tv_sec, -xtime.tv_nsec);
333
334 /* request the clock comparator external interrupt */
d54853ef
MS
335 if (register_early_external_interrupt(0x1004,
336 clock_comparator_interrupt,
1da177e4
LT
337 &ext_int_info_cc) != 0)
338 panic("Couldn't request external interrupt 0x1004");
339
dc64bef5
MS
340 if (clocksource_register(&clocksource_tod) != 0)
341 panic("Could not register TOD clock source");
342
d54853ef
MS
343 /* request the etr external interrupt */
344 if (register_early_external_interrupt(0x1406, etr_ext_handler,
345 &ext_int_etr_cc) != 0)
346 panic("Couldn't request external interrupt 0x1406");
347
348 /* Enable TOD clock interrupts on the boot cpu. */
349 init_cpu_timer();
1da177e4
LT
350
351#ifdef CONFIG_NO_IDLE_HZ
352 nohz_init();
353#endif
354
355#ifdef CONFIG_VIRT_TIMER
356 vtime_init();
357#endif
d54853ef
MS
358 etr_init();
359}
360
361/*
362 * External Time Reference (ETR) code.
363 */
364static int etr_port0_online;
365static int etr_port1_online;
366
367static int __init early_parse_etr(char *p)
368{
369 if (strncmp(p, "off", 3) == 0)
370 etr_port0_online = etr_port1_online = 0;
371 else if (strncmp(p, "port0", 5) == 0)
372 etr_port0_online = 1;
373 else if (strncmp(p, "port1", 5) == 0)
374 etr_port1_online = 1;
375 else if (strncmp(p, "on", 2) == 0)
376 etr_port0_online = etr_port1_online = 1;
377 return 0;
378}
379early_param("etr", early_parse_etr);
380
381enum etr_event {
382 ETR_EVENT_PORT0_CHANGE,
383 ETR_EVENT_PORT1_CHANGE,
384 ETR_EVENT_PORT_ALERT,
385 ETR_EVENT_SYNC_CHECK,
386 ETR_EVENT_SWITCH_LOCAL,
387 ETR_EVENT_UPDATE,
388};
389
390enum etr_flags {
391 ETR_FLAG_ENOSYS,
392 ETR_FLAG_EACCES,
393 ETR_FLAG_STEAI,
394};
395
396/*
397 * Valid bit combinations of the eacr register are (x = don't care):
398 * e0 e1 dp p0 p1 ea es sl
399 * 0 0 x 0 0 0 0 0 initial, disabled state
400 * 0 0 x 0 1 1 0 0 port 1 online
401 * 0 0 x 1 0 1 0 0 port 0 online
402 * 0 0 x 1 1 1 0 0 both ports online
403 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
404 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
405 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
406 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
407 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
408 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
409 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
410 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
411 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
412 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
413 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
414 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
415 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
416 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
417 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
418 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
419 */
420static struct etr_eacr etr_eacr;
421static u64 etr_tolec; /* time of last eacr update */
422static unsigned long etr_flags;
423static struct etr_aib etr_port0;
424static int etr_port0_uptodate;
425static struct etr_aib etr_port1;
426static int etr_port1_uptodate;
427static unsigned long etr_events;
428static struct timer_list etr_timer;
429static struct tasklet_struct etr_tasklet;
430static DEFINE_PER_CPU(atomic_t, etr_sync_word);
431
432static void etr_timeout(unsigned long dummy);
433static void etr_tasklet_fn(unsigned long dummy);
434
435/*
436 * The etr get_clock function. It will write the current clock value
437 * to the clock pointer and return 0 if the clock is in sync with the
438 * external time source. If the clock mode is local it will return
439 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
440 * reference. This function is what ETR is all about..
441 */
442int get_sync_clock(unsigned long long *clock)
443{
444 atomic_t *sw_ptr;
445 unsigned int sw0, sw1;
446
447 sw_ptr = &get_cpu_var(etr_sync_word);
448 sw0 = atomic_read(sw_ptr);
449 *clock = get_clock();
450 sw1 = atomic_read(sw_ptr);
451 put_cpu_var(etr_sync_sync);
452 if (sw0 == sw1 && (sw0 & 0x80000000U))
453 /* Success: time is in sync. */
454 return 0;
455 if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
456 return -ENOSYS;
457 if (test_bit(ETR_FLAG_EACCES, &etr_flags))
458 return -EACCES;
459 return -EAGAIN;
460}
461EXPORT_SYMBOL(get_sync_clock);
462
463/*
464 * Make get_sync_clock return -EAGAIN.
465 */
466static void etr_disable_sync_clock(void *dummy)
467{
468 atomic_t *sw_ptr = &__get_cpu_var(etr_sync_word);
469 /*
470 * Clear the in-sync bit 2^31. All get_sync_clock calls will
471 * fail until the sync bit is turned back on. In addition
472 * increase the "sequence" counter to avoid the race of an
473 * etr event and the complete recovery against get_sync_clock.
474 */
475 atomic_clear_mask(0x80000000, sw_ptr);
476 atomic_inc(sw_ptr);
477}
478
479/*
480 * Make get_sync_clock return 0 again.
481 * Needs to be called from a context disabled for preemption.
482 */
483static void etr_enable_sync_clock(void)
484{
485 atomic_t *sw_ptr = &__get_cpu_var(etr_sync_word);
486 atomic_set_mask(0x80000000, sw_ptr);
487}
488
489/*
490 * Reset ETR attachment.
491 */
492static void etr_reset(void)
493{
494 etr_eacr = (struct etr_eacr) {
495 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
496 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
497 .es = 0, .sl = 0 };
498 if (etr_setr(&etr_eacr) == 0)
499 etr_tolec = get_clock();
500 else {
501 set_bit(ETR_FLAG_ENOSYS, &etr_flags);
502 if (etr_port0_online || etr_port1_online) {
503 printk(KERN_WARNING "Running on non ETR capable "
504 "machine, only local mode available.\n");
505 etr_port0_online = etr_port1_online = 0;
506 }
507 }
508}
509
510static void etr_init(void)
511{
512 struct etr_aib aib;
513
514 if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
515 return;
516 /* Check if this machine has the steai instruction. */
517 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
518 set_bit(ETR_FLAG_STEAI, &etr_flags);
519 setup_timer(&etr_timer, etr_timeout, 0UL);
520 tasklet_init(&etr_tasklet, etr_tasklet_fn, 0);
521 if (!etr_port0_online && !etr_port1_online)
522 set_bit(ETR_FLAG_EACCES, &etr_flags);
523 if (etr_port0_online) {
524 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
525 tasklet_hi_schedule(&etr_tasklet);
526 }
527 if (etr_port1_online) {
528 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
529 tasklet_hi_schedule(&etr_tasklet);
530 }
531}
532
533/*
534 * Two sorts of ETR machine checks. The architecture reads:
535 * "When a machine-check niterruption occurs and if a switch-to-local or
536 * ETR-sync-check interrupt request is pending but disabled, this pending
537 * disabled interruption request is indicated and is cleared".
538 * Which means that we can get etr_switch_to_local events from the machine
539 * check handler although the interruption condition is disabled. Lovely..
540 */
541
542/*
543 * Switch to local machine check. This is called when the last usable
544 * ETR port goes inactive. After switch to local the clock is not in sync.
545 */
546void etr_switch_to_local(void)
547{
548 if (!etr_eacr.sl)
549 return;
550 etr_disable_sync_clock(NULL);
551 set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
552 tasklet_hi_schedule(&etr_tasklet);
553}
554
555/*
556 * ETR sync check machine check. This is called when the ETR OTE and the
557 * local clock OTE are farther apart than the ETR sync check tolerance.
558 * After a ETR sync check the clock is not in sync. The machine check
559 * is broadcasted to all cpus at the same time.
560 */
561void etr_sync_check(void)
562{
563 if (!etr_eacr.es)
564 return;
565 etr_disable_sync_clock(NULL);
566 set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
567 tasklet_hi_schedule(&etr_tasklet);
568}
569
570/*
571 * ETR external interrupt. There are two causes:
572 * 1) port state change, check the usability of the port
573 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
574 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
575 * or ETR-data word 4 (edf4) has changed.
576 */
577static void etr_ext_handler(__u16 code)
578{
579 struct etr_interruption_parameter *intparm =
580 (struct etr_interruption_parameter *) &S390_lowcore.ext_params;
581
582 if (intparm->pc0)
583 /* ETR port 0 state change. */
584 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
585 if (intparm->pc1)
586 /* ETR port 1 state change. */
587 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
588 if (intparm->eai)
589 /*
590 * ETR port alert on either port 0, 1 or both.
591 * Both ports are not up-to-date now.
592 */
593 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
594 tasklet_hi_schedule(&etr_tasklet);
595}
596
597static void etr_timeout(unsigned long dummy)
598{
599 set_bit(ETR_EVENT_UPDATE, &etr_events);
600 tasklet_hi_schedule(&etr_tasklet);
601}
602
603/*
604 * Check if the etr mode is pss.
605 */
606static inline int etr_mode_is_pps(struct etr_eacr eacr)
607{
608 return eacr.es && !eacr.sl;
609}
610
611/*
612 * Check if the etr mode is etr.
613 */
614static inline int etr_mode_is_etr(struct etr_eacr eacr)
615{
616 return eacr.es && eacr.sl;
617}
618
619/*
620 * Check if the port can be used for TOD synchronization.
621 * For PPS mode the port has to receive OTEs. For ETR mode
622 * the port has to receive OTEs, the ETR stepping bit has to
623 * be zero and the validity bits for data frame 1, 2, and 3
624 * have to be 1.
625 */
626static int etr_port_valid(struct etr_aib *aib, int port)
627{
628 unsigned int psc;
629
630 /* Check that this port is receiving OTEs. */
631 if (aib->tsp == 0)
632 return 0;
633
634 psc = port ? aib->esw.psc1 : aib->esw.psc0;
635 if (psc == etr_lpsc_pps_mode)
636 return 1;
637 if (psc == etr_lpsc_operational_step)
638 return !aib->esw.y && aib->slsw.v1 &&
639 aib->slsw.v2 && aib->slsw.v3;
640 return 0;
641}
642
643/*
644 * Check if two ports are on the same network.
645 */
646static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
647{
648 // FIXME: any other fields we have to compare?
649 return aib1->edf1.net_id == aib2->edf1.net_id;
650}
651
652/*
653 * Wrapper for etr_stei that converts physical port states
654 * to logical port states to be consistent with the output
655 * of stetr (see etr_psc vs. etr_lpsc).
656 */
657static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
658{
659 BUG_ON(etr_steai(aib, func) != 0);
660 /* Convert port state to logical port state. */
661 if (aib->esw.psc0 == 1)
662 aib->esw.psc0 = 2;
663 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
664 aib->esw.psc0 = 1;
665 if (aib->esw.psc1 == 1)
666 aib->esw.psc1 = 2;
667 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
668 aib->esw.psc1 = 1;
669}
670
671/*
672 * Check if the aib a2 is still connected to the same attachment as
673 * aib a1, the etv values differ by one and a2 is valid.
674 */
675static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
676{
677 int state_a1, state_a2;
678
679 /* Paranoia check: e0/e1 should better be the same. */
680 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
681 a1->esw.eacr.e1 != a2->esw.eacr.e1)
682 return 0;
683
684 /* Still connected to the same etr ? */
685 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
686 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
687 if (state_a1 == etr_lpsc_operational_step) {
688 if (state_a2 != etr_lpsc_operational_step ||
689 a1->edf1.net_id != a2->edf1.net_id ||
690 a1->edf1.etr_id != a2->edf1.etr_id ||
691 a1->edf1.etr_pn != a2->edf1.etr_pn)
692 return 0;
693 } else if (state_a2 != etr_lpsc_pps_mode)
694 return 0;
695
696 /* The ETV value of a2 needs to be ETV of a1 + 1. */
697 if (a1->edf2.etv + 1 != a2->edf2.etv)
698 return 0;
699
700 if (!etr_port_valid(a2, p))
701 return 0;
702
703 return 1;
704}
705
706/*
707 * The time is "clock". xtime is what we think the time is.
708 * Adjust the value by a multiple of jiffies and add the delta to ntp.
709 * "delay" is an approximation how long the synchronization took. If
710 * the time correction is positive, then "delay" is subtracted from
711 * the time difference and only the remaining part is passed to ntp.
712 */
713static void etr_adjust_time(unsigned long long clock, unsigned long long delay)
714{
715 unsigned long long delta, ticks;
716 struct timex adjust;
717
718 /*
719 * We don't have to take the xtime lock because the cpu
720 * executing etr_adjust_time is running disabled in
721 * tasklet context and all other cpus are looping in
722 * etr_sync_cpu_start.
723 */
724 if (clock > xtime_cc) {
725 /* It is later than we thought. */
726 delta = ticks = clock - xtime_cc;
727 delta = ticks = (delta < delay) ? 0 : delta - delay;
728 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
729 init_timer_cc = init_timer_cc + delta;
730 jiffies_timer_cc = jiffies_timer_cc + delta;
731 xtime_cc = xtime_cc + delta;
732 adjust.offset = ticks * (1000000 / HZ);
733 } else {
734 /* It is earlier than we thought. */
735 delta = ticks = xtime_cc - clock;
736 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
737 init_timer_cc = init_timer_cc - delta;
738 jiffies_timer_cc = jiffies_timer_cc - delta;
739 xtime_cc = xtime_cc - delta;
740 adjust.offset = -ticks * (1000000 / HZ);
741 }
742 if (adjust.offset != 0) {
743 printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n",
744 adjust.offset);
745 adjust.modes = ADJ_OFFSET_SINGLESHOT;
746 do_adjtimex(&adjust);
747 }
748}
749
6c732de2 750#ifdef CONFIG_SMP
d54853ef
MS
751static void etr_sync_cpu_start(void *dummy)
752{
753 int *in_sync = dummy;
754
755 etr_enable_sync_clock();
756 /*
757 * This looks like a busy wait loop but it isn't. etr_sync_cpus
758 * is called on all other cpus while the TOD clocks is stopped.
759 * __udelay will stop the cpu on an enabled wait psw until the
760 * TOD is running again.
761 */
6c732de2 762 while (*in_sync == 0) {
d54853ef 763 __udelay(1);
6c732de2
HC
764 /*
765 * A different cpu changes *in_sync. Therefore use
766 * barrier() to force memory access.
767 */
768 barrier();
769 }
d54853ef
MS
770 if (*in_sync != 1)
771 /* Didn't work. Clear per-cpu in sync bit again. */
772 etr_disable_sync_clock(NULL);
773 /*
774 * This round of TOD syncing is done. Set the clock comparator
775 * to the next tick and let the processor continue.
776 */
777 setup_jiffy_timer();
778}
779
780static void etr_sync_cpu_end(void *dummy)
781{
782}
6c732de2 783#endif /* CONFIG_SMP */
d54853ef
MS
784
785/*
786 * Sync the TOD clock using the port refered to by aibp. This port
787 * has to be enabled and the other port has to be disabled. The
788 * last eacr update has to be more than 1.6 seconds in the past.
789 */
790static int etr_sync_clock(struct etr_aib *aib, int port)
791{
792 struct etr_aib *sync_port;
793 unsigned long long clock, delay;
794 int in_sync, follows;
795 int rc;
796
797 /* Check if the current aib is adjacent to the sync port aib. */
798 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
799 follows = etr_aib_follows(sync_port, aib, port);
800 memcpy(sync_port, aib, sizeof(*aib));
801 if (!follows)
802 return -EAGAIN;
803
804 /*
805 * Catch all other cpus and make them wait until we have
806 * successfully synced the clock. smp_call_function will
807 * return after all other cpus are in etr_sync_cpu_start.
808 */
809 in_sync = 0;
810 preempt_disable();
811 smp_call_function(etr_sync_cpu_start,&in_sync,0,0);
812 local_irq_disable();
813 etr_enable_sync_clock();
814
815 /* Set clock to next OTE. */
816 __ctl_set_bit(14, 21);
817 __ctl_set_bit(0, 29);
818 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
819 if (set_clock(clock) == 0) {
820 __udelay(1); /* Wait for the clock to start. */
821 __ctl_clear_bit(0, 29);
822 __ctl_clear_bit(14, 21);
823 etr_stetr(aib);
824 /* Adjust Linux timing variables. */
825 delay = (unsigned long long)
826 (aib->edf2.etv - sync_port->edf2.etv) << 32;
827 etr_adjust_time(clock, delay);
828 setup_jiffy_timer();
829 /* Verify that the clock is properly set. */
830 if (!etr_aib_follows(sync_port, aib, port)) {
831 /* Didn't work. */
832 etr_disable_sync_clock(NULL);
833 in_sync = -EAGAIN;
834 rc = -EAGAIN;
835 } else {
836 in_sync = 1;
837 rc = 0;
838 }
839 } else {
840 /* Could not set the clock ?!? */
841 __ctl_clear_bit(0, 29);
842 __ctl_clear_bit(14, 21);
843 etr_disable_sync_clock(NULL);
844 in_sync = -EAGAIN;
845 rc = -EAGAIN;
846 }
847 local_irq_enable();
848 smp_call_function(etr_sync_cpu_end,NULL,0,0);
849 preempt_enable();
850 return rc;
851}
852
853/*
854 * Handle the immediate effects of the different events.
855 * The port change event is used for online/offline changes.
856 */
857static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
858{
859 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
860 eacr.es = 0;
861 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
862 eacr.es = eacr.sl = 0;
863 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
864 etr_port0_uptodate = etr_port1_uptodate = 0;
865
866 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
867 if (eacr.e0)
868 /*
869 * Port change of an enabled port. We have to
870 * assume that this can have caused an stepping
871 * port switch.
872 */
873 etr_tolec = get_clock();
874 eacr.p0 = etr_port0_online;
875 if (!eacr.p0)
876 eacr.e0 = 0;
877 etr_port0_uptodate = 0;
878 }
879 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
880 if (eacr.e1)
881 /*
882 * Port change of an enabled port. We have to
883 * assume that this can have caused an stepping
884 * port switch.
885 */
886 etr_tolec = get_clock();
887 eacr.p1 = etr_port1_online;
888 if (!eacr.p1)
889 eacr.e1 = 0;
890 etr_port1_uptodate = 0;
891 }
892 clear_bit(ETR_EVENT_UPDATE, &etr_events);
893 return eacr;
894}
895
896/*
897 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
898 * one of the ports needs an update.
899 */
900static void etr_set_tolec_timeout(unsigned long long now)
901{
902 unsigned long micros;
903
904 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
905 (!etr_eacr.p1 || etr_port1_uptodate))
906 return;
907 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
908 micros = (micros > 1600000) ? 0 : 1600000 - micros;
909 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
910}
911
912/*
913 * Set up a time that expires after 1/2 second.
914 */
915static void etr_set_sync_timeout(void)
916{
917 mod_timer(&etr_timer, jiffies + HZ/2);
918}
919
920/*
921 * Update the aib information for one or both ports.
922 */
923static struct etr_eacr etr_handle_update(struct etr_aib *aib,
924 struct etr_eacr eacr)
925{
926 /* With both ports disabled the aib information is useless. */
927 if (!eacr.e0 && !eacr.e1)
928 return eacr;
929
930 /* Update port0 or port1 with aib stored in etr_tasklet_fn. */
931 if (aib->esw.q == 0) {
932 /* Information for port 0 stored. */
933 if (eacr.p0 && !etr_port0_uptodate) {
934 etr_port0 = *aib;
935 if (etr_port0_online)
936 etr_port0_uptodate = 1;
937 }
938 } else {
939 /* Information for port 1 stored. */
940 if (eacr.p1 && !etr_port1_uptodate) {
941 etr_port1 = *aib;
942 if (etr_port0_online)
943 etr_port1_uptodate = 1;
944 }
945 }
946
947 /*
948 * Do not try to get the alternate port aib if the clock
949 * is not in sync yet.
950 */
951 if (!eacr.es)
952 return eacr;
953
954 /*
955 * If steai is available we can get the information about
956 * the other port immediately. If only stetr is available the
957 * data-port bit toggle has to be used.
958 */
959 if (test_bit(ETR_FLAG_STEAI, &etr_flags)) {
960 if (eacr.p0 && !etr_port0_uptodate) {
961 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
962 etr_port0_uptodate = 1;
963 }
964 if (eacr.p1 && !etr_port1_uptodate) {
965 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
966 etr_port1_uptodate = 1;
967 }
968 } else {
969 /*
970 * One port was updated above, if the other
971 * port is not uptodate toggle dp bit.
972 */
973 if ((eacr.p0 && !etr_port0_uptodate) ||
974 (eacr.p1 && !etr_port1_uptodate))
975 eacr.dp ^= 1;
976 else
977 eacr.dp = 0;
978 }
979 return eacr;
980}
981
982/*
983 * Write new etr control register if it differs from the current one.
984 * Return 1 if etr_tolec has been updated as well.
985 */
986static void etr_update_eacr(struct etr_eacr eacr)
987{
988 int dp_changed;
989
990 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
991 /* No change, return. */
992 return;
993 /*
994 * The disable of an active port of the change of the data port
995 * bit can/will cause a change in the data port.
996 */
997 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
998 (etr_eacr.dp ^ eacr.dp) != 0;
999 etr_eacr = eacr;
1000 etr_setr(&etr_eacr);
1001 if (dp_changed)
1002 etr_tolec = get_clock();
1003}
1004
1005/*
1006 * ETR tasklet. In this function you'll find the main logic. In
1007 * particular this is the only function that calls etr_update_eacr(),
1008 * it "controls" the etr control register.
1009 */
1010static void etr_tasklet_fn(unsigned long dummy)
1011{
1012 unsigned long long now;
1013 struct etr_eacr eacr;
1014 struct etr_aib aib;
1015 int sync_port;
1016
1017 /* Create working copy of etr_eacr. */
1018 eacr = etr_eacr;
1019
1020 /* Check for the different events and their immediate effects. */
1021 eacr = etr_handle_events(eacr);
1022
1023 /* Check if ETR is supposed to be active. */
1024 eacr.ea = eacr.p0 || eacr.p1;
1025 if (!eacr.ea) {
1026 /* Both ports offline. Reset everything. */
1027 eacr.dp = eacr.es = eacr.sl = 0;
1028 on_each_cpu(etr_disable_sync_clock, NULL, 0, 1);
1029 del_timer_sync(&etr_timer);
1030 etr_update_eacr(eacr);
1031 set_bit(ETR_FLAG_EACCES, &etr_flags);
1032 return;
1033 }
1034
1035 /* Store aib to get the current ETR status word. */
1036 BUG_ON(etr_stetr(&aib) != 0);
1037 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1038 now = get_clock();
1039
1040 /*
1041 * Update the port information if the last stepping port change
1042 * or data port change is older than 1.6 seconds.
1043 */
1044 if (now >= etr_tolec + (1600000 << 12))
1045 eacr = etr_handle_update(&aib, eacr);
1046
1047 /*
1048 * Select ports to enable. The prefered synchronization mode is PPS.
1049 * If a port can be enabled depends on a number of things:
1050 * 1) The port needs to be online and uptodate. A port is not
1051 * disabled just because it is not uptodate, but it is only
1052 * enabled if it is uptodate.
1053 * 2) The port needs to have the same mode (pps / etr).
1054 * 3) The port needs to be usable -> etr_port_valid() == 1
1055 * 4) To enable the second port the clock needs to be in sync.
1056 * 5) If both ports are useable and are ETR ports, the network id
1057 * has to be the same.
1058 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1059 */
1060 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1061 eacr.sl = 0;
1062 eacr.e0 = 1;
1063 if (!etr_mode_is_pps(etr_eacr))
1064 eacr.es = 0;
1065 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1066 eacr.e1 = 0;
1067 // FIXME: uptodate checks ?
1068 else if (etr_port0_uptodate && etr_port1_uptodate)
1069 eacr.e1 = 1;
1070 sync_port = (etr_port0_uptodate &&
1071 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1072 clear_bit(ETR_FLAG_EACCES, &etr_flags);
1073 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1074 eacr.sl = 0;
1075 eacr.e0 = 0;
1076 eacr.e1 = 1;
1077 if (!etr_mode_is_pps(etr_eacr))
1078 eacr.es = 0;
1079 sync_port = (etr_port1_uptodate &&
1080 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1081 clear_bit(ETR_FLAG_EACCES, &etr_flags);
1082 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1083 eacr.sl = 1;
1084 eacr.e0 = 1;
1085 if (!etr_mode_is_etr(etr_eacr))
1086 eacr.es = 0;
1087 if (!eacr.es || !eacr.p1 ||
1088 aib.esw.psc1 != etr_lpsc_operational_alt)
1089 eacr.e1 = 0;
1090 else if (etr_port0_uptodate && etr_port1_uptodate &&
1091 etr_compare_network(&etr_port0, &etr_port1))
1092 eacr.e1 = 1;
1093 sync_port = (etr_port0_uptodate &&
1094 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1095 clear_bit(ETR_FLAG_EACCES, &etr_flags);
1096 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1097 eacr.sl = 1;
1098 eacr.e0 = 0;
1099 eacr.e1 = 1;
1100 if (!etr_mode_is_etr(etr_eacr))
1101 eacr.es = 0;
1102 sync_port = (etr_port1_uptodate &&
1103 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1104 clear_bit(ETR_FLAG_EACCES, &etr_flags);
1105 } else {
1106 /* Both ports not usable. */
1107 eacr.es = eacr.sl = 0;
1108 sync_port = -1;
1109 set_bit(ETR_FLAG_EACCES, &etr_flags);
1110 }
1111
1112 /*
1113 * If the clock is in sync just update the eacr and return.
1114 * If there is no valid sync port wait for a port update.
1115 */
1116 if (eacr.es || sync_port < 0) {
1117 etr_update_eacr(eacr);
1118 etr_set_tolec_timeout(now);
1119 return;
1120 }
1121
1122 /*
1123 * Prepare control register for clock syncing
1124 * (reset data port bit, set sync check control.
1125 */
1126 eacr.dp = 0;
1127 eacr.es = 1;
1128
1129 /*
1130 * Update eacr and try to synchronize the clock. If the update
1131 * of eacr caused a stepping port switch (or if we have to
1132 * assume that a stepping port switch has occured) or the
1133 * clock syncing failed, reset the sync check control bit
1134 * and set up a timer to try again after 0.5 seconds
1135 */
1136 etr_update_eacr(eacr);
1137 if (now < etr_tolec + (1600000 << 12) ||
1138 etr_sync_clock(&aib, sync_port) != 0) {
1139 /* Sync failed. Try again in 1/2 second. */
1140 eacr.es = 0;
1141 etr_update_eacr(eacr);
1142 etr_set_sync_timeout();
1143 } else
1144 etr_set_tolec_timeout(now);
1145}
1146
1147/*
1148 * Sysfs interface functions
1149 */
1150static struct sysdev_class etr_sysclass = {
1151 set_kset_name("etr")
1152};
1153
1154static struct sys_device etr_port0_dev = {
1155 .id = 0,
1156 .cls = &etr_sysclass,
1157};
1158
1159static struct sys_device etr_port1_dev = {
1160 .id = 1,
1161 .cls = &etr_sysclass,
1162};
1163
1164/*
1165 * ETR class attributes
1166 */
1167static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1168{
1169 return sprintf(buf, "%i\n", etr_port0.esw.p);
1170}
1171
1172static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1173
1174static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1175{
1176 char *mode_str;
1177
1178 if (etr_mode_is_pps(etr_eacr))
1179 mode_str = "pps";
1180 else if (etr_mode_is_etr(etr_eacr))
1181 mode_str = "etr";
1182 else
1183 mode_str = "local";
1184 return sprintf(buf, "%s\n", mode_str);
1185}
1186
1187static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1188
1189/*
1190 * ETR port attributes
1191 */
1192static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1193{
1194 if (dev == &etr_port0_dev)
1195 return etr_port0_online ? &etr_port0 : NULL;
1196 else
1197 return etr_port1_online ? &etr_port1 : NULL;
1198}
1199
1200static ssize_t etr_online_show(struct sys_device *dev, char *buf)
1201{
1202 unsigned int online;
1203
1204 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1205 return sprintf(buf, "%i\n", online);
1206}
1207
1208static ssize_t etr_online_store(struct sys_device *dev,
1209 const char *buf, size_t count)
1210{
1211 unsigned int value;
1212
1213 value = simple_strtoul(buf, NULL, 0);
1214 if (value != 0 && value != 1)
1215 return -EINVAL;
1216 if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
1217 return -ENOSYS;
1218 if (dev == &etr_port0_dev) {
1219 if (etr_port0_online == value)
1220 return count; /* Nothing to do. */
1221 etr_port0_online = value;
1222 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1223 tasklet_hi_schedule(&etr_tasklet);
1224 } else {
1225 if (etr_port1_online == value)
1226 return count; /* Nothing to do. */
1227 etr_port1_online = value;
1228 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1229 tasklet_hi_schedule(&etr_tasklet);
1230 }
1231 return count;
1232}
1233
1234static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1235
1236static ssize_t etr_stepping_control_show(struct sys_device *dev, char *buf)
1237{
1238 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1239 etr_eacr.e0 : etr_eacr.e1);
1240}
1241
1242static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1243
1244static ssize_t etr_mode_code_show(struct sys_device *dev, char *buf)
1245{
1246 if (!etr_port0_online && !etr_port1_online)
1247 /* Status word is not uptodate if both ports are offline. */
1248 return -ENODATA;
1249 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1250 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1251}
1252
1253static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1254
1255static ssize_t etr_untuned_show(struct sys_device *dev, char *buf)
1256{
1257 struct etr_aib *aib = etr_aib_from_dev(dev);
1258
1259 if (!aib || !aib->slsw.v1)
1260 return -ENODATA;
1261 return sprintf(buf, "%i\n", aib->edf1.u);
1262}
1263
1264static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1265
1266static ssize_t etr_network_id_show(struct sys_device *dev, char *buf)
1267{
1268 struct etr_aib *aib = etr_aib_from_dev(dev);
1269
1270 if (!aib || !aib->slsw.v1)
1271 return -ENODATA;
1272 return sprintf(buf, "%i\n", aib->edf1.net_id);
1273}
1274
1275static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1276
1277static ssize_t etr_id_show(struct sys_device *dev, char *buf)
1278{
1279 struct etr_aib *aib = etr_aib_from_dev(dev);
1280
1281 if (!aib || !aib->slsw.v1)
1282 return -ENODATA;
1283 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1284}
1285
1286static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1287
1288static ssize_t etr_port_number_show(struct sys_device *dev, char *buf)
1289{
1290 struct etr_aib *aib = etr_aib_from_dev(dev);
1291
1292 if (!aib || !aib->slsw.v1)
1293 return -ENODATA;
1294 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1295}
1296
1297static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1298
1299static ssize_t etr_coupled_show(struct sys_device *dev, char *buf)
1300{
1301 struct etr_aib *aib = etr_aib_from_dev(dev);
1302
1303 if (!aib || !aib->slsw.v3)
1304 return -ENODATA;
1305 return sprintf(buf, "%i\n", aib->edf3.c);
1306}
1307
1308static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1309
1310static ssize_t etr_local_time_show(struct sys_device *dev, char *buf)
1311{
1312 struct etr_aib *aib = etr_aib_from_dev(dev);
1313
1314 if (!aib || !aib->slsw.v3)
1315 return -ENODATA;
1316 return sprintf(buf, "%i\n", aib->edf3.blto);
1317}
1318
1319static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1320
1321static ssize_t etr_utc_offset_show(struct sys_device *dev, char *buf)
1322{
1323 struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325 if (!aib || !aib->slsw.v3)
1326 return -ENODATA;
1327 return sprintf(buf, "%i\n", aib->edf3.buo);
1328}
1329
1330static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332static struct sysdev_attribute *etr_port_attributes[] = {
1333 &attr_online,
1334 &attr_stepping_control,
1335 &attr_state_code,
1336 &attr_untuned,
1337 &attr_network,
1338 &attr_id,
1339 &attr_port,
1340 &attr_coupled,
1341 &attr_local_time,
1342 &attr_utc_offset,
1343 NULL
1344};
1345
1346static int __init etr_register_port(struct sys_device *dev)
1347{
1348 struct sysdev_attribute **attr;
1349 int rc;
1350
1351 rc = sysdev_register(dev);
1352 if (rc)
1353 goto out;
1354 for (attr = etr_port_attributes; *attr; attr++) {
1355 rc = sysdev_create_file(dev, *attr);
1356 if (rc)
1357 goto out_unreg;
1358 }
1359 return 0;
1360out_unreg:
1361 for (; attr >= etr_port_attributes; attr--)
1362 sysdev_remove_file(dev, *attr);
1363 sysdev_unregister(dev);
1364out:
1365 return rc;
1366}
1367
1368static void __init etr_unregister_port(struct sys_device *dev)
1369{
1370 struct sysdev_attribute **attr;
1371
1372 for (attr = etr_port_attributes; *attr; attr++)
1373 sysdev_remove_file(dev, *attr);
1374 sysdev_unregister(dev);
1375}
1376
1377static int __init etr_init_sysfs(void)
1378{
1379 int rc;
1380
1381 rc = sysdev_class_register(&etr_sysclass);
1382 if (rc)
1383 goto out;
1384 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1385 if (rc)
1386 goto out_unreg_class;
1387 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1388 if (rc)
1389 goto out_remove_stepping_port;
1390 rc = etr_register_port(&etr_port0_dev);
1391 if (rc)
1392 goto out_remove_stepping_mode;
1393 rc = etr_register_port(&etr_port1_dev);
1394 if (rc)
1395 goto out_remove_port0;
1396 return 0;
1397
1398out_remove_port0:
1399 etr_unregister_port(&etr_port0_dev);
1400out_remove_stepping_mode:
1401 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1402out_remove_stepping_port:
1403 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1404out_unreg_class:
1405 sysdev_class_unregister(&etr_sysclass);
1406out:
1407 return rc;
1da177e4
LT
1408}
1409
d54853ef 1410device_initcall(etr_init_sysfs);